1
|
Gao W, Zhang X, Hu W, Han J, Liu X, Zhang Y, Long M. Neutrophils exhibit flexible migration strategies and trail formation mechanisms on varying adhesive substrates. Biomaterials 2025; 314:122881. [PMID: 39454506 DOI: 10.1016/j.biomaterials.2024.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
Substrate anchorage is essential for cell migration, and actin polymerization at cell front and myosin contractility at cell rear are known to govern cell forward movement. Yet their differential driving strategies for neutrophil migration on distinct adhesiveness substrates and their contributions to the migration-induced trail formation remain unclear. Here we explore the morphological changes, migration dynamics, and trail formation of neutrophils on ICAM-1 and PLL substrates, with a focus on the relationships among adhesive forces, traction forces, and out-of-plane forces. Results indicate that, on ICAM-1, neutrophil migration and trail formation rely on the coordinated interactions of Arp2/3 and myosin, along with biochemical regulation (via Syk and calpain) of adhesion and de-adhesion. This pattern leads to traction forces being concentrated at relatively fewer adhesive sites, facilitating cell forward migration. On PLL, however, neutrophils primarily depend on Arp2/3-mediated actin polymerization, resulting in a broader distribution of traction forces and weaker adhesions, which allows for higher leading-edge migrating velocities. Elevated membrane tension and out-of-plane forces generated by bleb protrusions on PLL reduce the reliance on myosin-driven contraction at the trailing edge, enabling easier tail detachment through elastic recoil. This work highlights the differential impact of substrate adhesiveness on neutrophil migration and trail formation and dynamics, providing new insights into cell migration mechanisms and potential therapeutic targets for inflammatory and immune-related disorders.
Collapse
Affiliation(s)
- Wenbo Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoning Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhui Hu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Han
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Melo Garcia L, Gangadharan A, Banerjee P, Li Y, Zeng AGX, Rafei H, Lin P, Kumar B, Acharya S, Daher M, Muniz-Feliciano L, Deyter GM, Dominguez G, Park JM, Reyes Silva F, Nunez Cortes AK, Basar R, Uprety N, Shanley M, Kaplan M, Liu E, Shpall EJ, Rezvani K. Overcoming CD226-related immune evasion in acute myeloid leukemia with CD38 CAR-engineered NK cells. Cell Rep 2025; 44:115122. [PMID: 39754720 DOI: 10.1016/j.celrep.2024.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/26/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
CD226 plays a vital role in natural killer (NK) cell cytotoxicity, interacting with its ligands CD112 and CD155 to initiate immune synapse formation, primarily through leukocyte function-associated-1 (LFA-1). Our study examined the role of CD226 in NK cell surveillance of acute myeloid leukemia (AML). NK cells in patients with AML had lower expression of CD226. CRISPR-Cas9 deletion of CD226 led to reduced LFA-1 recruitment, poor synapse formation, and decreased NK cell anti-leukemic activity. Engineering NK cells to express a chimeric antigen receptor targeting the AML antigen CD38 (CAR38) could overcome the need for CD226 to establish strong immune synapses. LFA-1 blockade reduced CAR38 NK cell activity, and this depended on the CD38 expression levels of AML cells. This suggests parallel but potentially cooperative roles for LFA-1 and CAR38 in synapse formation. Our findings suggest that CAR38 NK cells could be an effective therapeutic strategy to overcome CD226-mediated immune evasion in AML.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Lymphocyte Function-Associated Antigen-1/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Cell Line, Tumor
- Immune Evasion
- Immunological Synapses/metabolism
- Female
- Animals
- Male
Collapse
Affiliation(s)
- Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; Hematology-Oncology Service, CHU de Québec - Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Achintyan Gangadharan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33616, USA
| | - Pinaki Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andy G X Zeng
- Princess Margaret Cancer Center, University Healthy Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gary M Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Dominguez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeong Min Park
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francia Reyes Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Ren XS, He J, Li S, Hu H, Kyle M, Kohsaka S, Zhao LR. Hematopoietic Growth Factors Regulate the Entry of Monocytes into the Adult Brain via Chemokine Receptor CCR5. Int J Mol Sci 2024; 25:8898. [PMID: 39201584 PMCID: PMC11354986 DOI: 10.3390/ijms25168898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Monocytes are circulating macrophage precursors generated from bone marrow hematopoietic stem cells. In adults, monocytes continuously replenish cerebral border-associated macrophages under physiological conditions. Monocytes also rapidly infiltrate the brain in pathological settings. The mechanisms of recruiting monocyte-derived macrophages into the brain under pathological conditions have been extensively studied. However, it remains unclear how monocytes enter the brain to renew border-associated macrophages under physiological conditions. Using both in vitro and in vivo approaches, this study reveals that a combination of two hematopoietic growth factors, stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF), complementarily and synergistically enhances the adhesion of monocytes to cerebral endothelial cells in a dose-dependent manner. Cysteine-cysteine chemokine receptor 5 (CCR5) in brain endothelial cells, but not the cell adhesion molecules mediating neuroinflammation-related infiltration of monocyte-derived macrophages, modulates SCF+G-CSF-enhanced monocyte-endothelial cell adhesion. Blocking CCR5 or genetically deleting CCR5 reduces monocyte-endothelial cell adhesion induced by SCF+G-CSF. The SCF+G-CSF-enhanced recruitment of bone marrow-derived monocytes/macrophages into the cerebral perivascular space is also reduced in adult CCR5 knockout mice. This study demonstrates the role of SCF and G-CSF in regulating the entry of monocytes into the adult brain to replenish perivascular macrophages.
Collapse
Affiliation(s)
- Xuefang Sophie Ren
- Department of Neurology, Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Junchi He
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Songruo Li
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Heng Hu
- Department of Neurology, Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Michele Kyle
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Shinichi Kohsaka
- National Institute of Neuroscience, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Li-Ru Zhao
- Department of Neurology, Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
Kondo N, Ueda Y, Kinashi T. Low-affinity LFA1-dependent outside-in signaling mediates avidity modulation via the Rabin8-Rab8 axis. PNAS NEXUS 2024; 3:pgae332. [PMID: 39170909 PMCID: PMC11337121 DOI: 10.1093/pnasnexus/pgae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Lymphocyte interactions mediated by leukocyte integrin lymphocyte function-associated antigen 1 (LFA1) and intercellular adhesion molecules (ICAMs) are important for lymphocyte trafficking and antigen recognition. Integrins are regulated by the modulation of ligand-binding affinity and avidity (valency). Although the mechanism underlying high-affinity LFA1 binding has been investigated extensively, the molecular mechanisms by which low-affinity multivalent binding initiates adhesion remain unclear. We previously showed that ICAM1 and monoclonal antibodies that recognize specific LFA1 conformations induce the accumulation of LFA1 at the contact surface. In this study, we found that the small GTPase Rab8 is critical for intracellular transport and accumulation of LFA1 at cell contact areas mediated by low-affinity LFA1-dependent outside-in signaling. Super-resolution microscopy revealed that Rab8 co-localized with LFA1 in small vesicles near the contact membrane. Inactivation of Rab8 decreased ICAM1-dependent adhesion and substantially reduced LFA1 density on the contact membrane. The GTP-bound active form of Rab8 increased cell adhesiveness and promoted LFA1 accumulation at the contact area through co-trafficking with LFA1. Rab8 activation was induced by low-affinity conformation-dependent outside-in signaling via the guanine exchange factor Rabin8, which induced Rab8 activation at the cell contact area independent of Rap1. Single-molecule imaging of ICAM1 on a supported planner lipid bilayer demonstrated that Rab8 increased the frequency of LFA1-ICAM1 interactions without affecting their binding lifetime, indicating that Rab8 is mainly involved in the modulation of LFA1 avidity rather than LFA1 affinity. The present findings underscore the importance of low-affinity conformation-dependent outside-in signaling via the Rabin8-Rab8 axis leading to the initiation of LFA1 transport to the contact area.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yoshihiro Ueda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
6
|
Ren X, He J, Hu H, Kohsaka S, Zhao LR. Hematopoietic growth factors Regulate Entry of Monocytes into the Adult Brain via Chemokine Receptor CCR5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594359. [PMID: 38798506 PMCID: PMC11118552 DOI: 10.1101/2024.05.15.594359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Monocytes are circulating macrophage precursors and are generated from bone marrow hematopoietic stem cells. In the adults, monocytes continuously replenish cerebral border-associated macrophages under a physiological condition. Monocytes also rapidly infiltrate into the brain in the settings of pathological conditions. The mechanisms of recruiting monocyte-derived macrophages into the brain under pathological conditions have been extensively studied. However, it remains unclear how monocytes enter the brain for renewal of border-associated macrophages under the physiological condition. Using both in vitro and in vivo approaches, this study reveals that the combination of two hematopoietic growth factors, stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF), complementarily and synergistically enhances adhesion of monocytes to cerebral endothelial cells in a dose dependent manner. Cysteine-cysteine chemokine receptor 5 (CCR5) in brain endothelial cells, but not cell adhesion molecules mediating neuroinflammation-related infiltration of monocyte-derived macrophages, modulates the SCF+G-CSF-enhanced monocyte-endothelial cell adhesion. Blocking CCR5 or genetically deleting CCR5 reduces monocyte-endothelial cell adhesion induced by SCF+G-CSF. SCF+G-CSF-enhanced recruitment of bone marrow-derived monocytes/macrophages in cerebral perivascular space is also reduced in adult CCR5 knockout mice. This study demonstrates the contribution of SCF and G-CSF in regulating the entry of monocytes into the adult brain to replenish perivascular macrophages.
Collapse
|
7
|
Yang L, Chen H, Yang C, Hu Z, Jiang Z, Meng S, Liu R, Huang L, Yang K. Research progress on the regulatory mechanism of integrin-mediated mechanical stress in cells involved in bone metabolism. J Cell Mol Med 2024; 28:e18183. [PMID: 38506078 PMCID: PMC10951882 DOI: 10.1111/jcmm.18183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Mechanical stress is an internal force between various parts of an object that resists external factors and effects that cause an object to deform, and mechanical stress is essential for various tissues that are constantly subjected to mechanical loads to function normally. Integrins are a class of transmembrane heterodimeric glycoprotein receptors that are important target proteins for the action of mechanical stress stimuli on cells and can convert extracellular physical and mechanical signals into intracellular bioelectrical signals, thereby regulating osteogenesis and osteolysis. Integrins play a bidirectional regulatory role in bone metabolism. In this paper, relevant literature published in recent years is reviewed and summarized. The characteristics of integrins and mechanical stress are introduced, as well as the mechanisms underlying responses of integrin to mechanical stress stimulation. The paper focuses on integrin-mediated mechanical stress in different cells involved in bone metabolism and its associated signalling mechanisms. The purpose of this review is to provide a theoretical basis for the application of integrin-mediated mechanical stress to the field of bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Li Yang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Hong Chen
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Chanchan Yang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Zhengqi Hu
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Zhiliang Jiang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Shengzi Meng
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | | | - Lan Huang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | | |
Collapse
|
8
|
Guerra-Espinosa C, Jiménez-Fernández M, Sánchez-Madrid F, Serrador JM. ICAMs in Immunity, Intercellular Adhesion and Communication. Cells 2024; 13:339. [PMID: 38391953 PMCID: PMC10886500 DOI: 10.3390/cells13040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Interactions among leukocytes and leukocytes with immune-associated auxiliary cells represent an essential feature of the immune response that requires the involvement of cell adhesion molecules (CAMs). In the immune system, CAMs include a wide range of members pertaining to different structural and functional families involved in cell development, activation, differentiation and migration. Among them, β2 integrins (LFA-1, Mac-1, p150,95 and αDβ2) are predominantly involved in homotypic and heterotypic leukocyte adhesion. β2 integrins bind to intercellular (I)CAMs, actin cytoskeleton-linked receptors belonging to immunoglobulin superfamily (IgSF)-CAMs expressed by leukocytes and vascular endothelial cells, enabling leukocyte activation and transendothelial migration. β2 integrins have long been viewed as the most important ICAMs partners, propagating intracellular signalling from β2 integrin-ICAM adhesion receptor interaction. In this review, we present previous evidence from pioneering studies and more recent findings supporting an important role for ICAMs in signal transduction. We also discuss the contribution of immune ICAMs (ICAM-1, -2, and -3) to reciprocal cell signalling and function in processes in which β2 integrins supposedly take the lead, paying particular attention to T cell activation, differentiation and migration.
Collapse
Affiliation(s)
- Claudia Guerra-Espinosa
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - María Jiménez-Fernández
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan M. Serrador
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
9
|
Lacouture C, Chaves B, Guipouy D, Houmadi R, Duplan-Eche V, Allart S, Destainville N, Dupré L. LFA-1 nanoclusters integrate TCR stimulation strength to tune T-cell cytotoxic activity. Nat Commun 2024; 15:407. [PMID: 38195629 PMCID: PMC10776856 DOI: 10.1038/s41467-024-44688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
T-cell cytotoxic function relies on the cooperation between the highly specific but poorly adhesive T-cell receptor (TCR) and the integrin LFA-1. How LFA-1-mediated adhesion may scale with TCR stimulation strength is ill-defined. Here, we show that LFA-1 conformation activation scales with TCR stimulation to calibrate human T-cell cytotoxicity. Super-resolution microscopy analysis reveals that >1000 LFA-1 nanoclusters provide a discretized platform at the immunological synapse to translate TCR engagement and density of the LFA-1 ligand ICAM-1 into graded adhesion. Indeed, the number of high-affinity conformation LFA-1 nanoclusters increases as a function of TCR triggering strength. Blockade of LFA-1 conformational activation impairs adhesion to target cells and killing. However, it occurs at a lower TCR stimulation threshold than lytic granule exocytosis implying that it licenses, rather than directly controls, the killing decision. We conclude that the organization of LFA-1 into nanoclusters provides a calibrated system to adjust T-cell killing to the antigen stimulation strength.
Collapse
Affiliation(s)
- Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Beatriz Chaves
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Computational Modeling Group, Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Delphine Guipouy
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Raïssa Houmadi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Valérie Duplan-Eche
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Sophie Allart
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Takada Y, Fujita M, Takada YK. Virtual Screening of Protein Data Bank via Docking Simulation Identified the Role of Integrins in Growth Factor Signaling, the Allosteric Activation of Integrins, and P-Selectin as a New Integrin Ligand. Cells 2023; 12:2265. [PMID: 37759488 PMCID: PMC10527219 DOI: 10.3390/cells12182265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Integrins were originally identified as receptors for extracellular matrix (ECM) and cell-surface molecules (e.g., VCAM-1 and ICAM-1). Later, we discovered that many soluble growth factors/cytokines bind to integrins and play a critical role in growth factor/cytokine signaling (growth factor-integrin crosstalk). We performed a virtual screening of protein data bank (PDB) using docking simulations with the integrin headpiece as a target. We showed that several growth factors (e.g., FGF1 and IGF1) induce a integrin-growth factor-cognate receptor ternary complex on the surface. Growth factor/cytokine mutants defective in integrin binding were defective in signaling functions and act as antagonists of growth factor signaling. Unexpectedly, several growth factor/cytokines activated integrins by binding to the allosteric site (site 2) in the integrin headpiece, which is distinct from the classical ligand (RGD)-binding site (site 1). Since 25-hydroxycholesterol, a major inflammatory mediator, binds to site 2, activates integrins, and induces inflammatory signaling (e.g., IL-6 and TNFα secretion), it has been proposed that site 2 is involved in inflammatory signaling. We showed that several inflammatory factors (CX3CL1, CXCL12, CCL5, sPLA2-IIA, and P-selectin) bind to site 2 and activate integrins. We propose that site 2 is involved in the pro-inflammatory action of these proteins and a potential therapeutic target. It has been well-established that platelet integrin αIIbβ3 is activated by signals from the inside of platelets induced by platelet agonists (inside-out signaling). In addition to the canonical inside-out signaling, we showed that αIIbβ3 can be allosterically activated by inflammatory cytokines/chemokines that are stored in platelet granules (e.g., CCL5, CXCL12) in the absence of inside-out signaling (e.g., soluble integrins in cell-free conditions). Thus, the allosteric activation may be involved in αIIbβ3 activation, platelet aggregation, and thrombosis. Inhibitory chemokine PF4 (CXCL4) binds to site 2 but did not activate integrins, Unexpectedly, we found that PF4/anti-PF4 complex was able to activate integrins, indicating that the anti-PF4 antibody changed the phenotype of PF4 from inhibitory to inflammatory. Since autoantibodies to PF4 are detected in vaccine-induced thrombocytopenic thrombosis (VIPP) and autoimmune diseases (e.g., SLE, and rheumatoid arthritis), we propose that this phenomenon is related to the pathogenesis of these diseases. P-selectin is known to bind exclusively to glycans (e.g., sLex) and involved in cell-cell interaction by binding to PSGL-1 (CD62P glycoprotein ligand-1). Unexpectedly, through docking simulation, we discovered that the P-selectin C-type lectin domain functions as an integrin ligand. It is interesting that no one has studied whether P-selectin binds to integrins in the last few decades. The integrin-binding site and glycan-binding site were close but distinct. Also, P-selectin lectin domain bound to site 2 and allosterically activated integrins.
Collapse
Affiliation(s)
- Yoshikazu Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Masaaki Fujita
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
| | - Yoko K. Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
| |
Collapse
|
11
|
Mallu ACT, Sivagurunathan S, Paul D, Aggarwal H, Nathan AA, Manikandan A, Ravi MM, Boppana R, Jagavelu K, Santra MK, Dixit M. Feeding enhances fibronectin adherence of quiescent lymphocytes through non-canonical insulin signalling. Immunology 2023; 170:60-82. [PMID: 37185810 DOI: 10.1111/imm.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Nutritional availability during fasting and refeeding affects the temporal redistribution of lymphoid and myeloid immune cells among the circulating and tissue-resident pools. Conversely, nutritional imbalance and impaired glucose metabolism are associated with chronic inflammation, aberrant immunity and anomalous leukocyte trafficking. Despite being exposed to periodic alterations in blood insulin levels upon fasting and feeding, studies exploring the physiological effects of these hormonal changes on quiescent immune cell function and trafficking are scanty. Here, we report that oral glucose load in mice and healthy men enhances the adherence of circulating peripheral blood mononuclear cells (PBMCs) and lymphocytes to fibronectin. Adherence to fibronectin is also observed upon regular intake of breakfast following overnight fasting in healthy subjects. This glucose load-induced phenomenon is abrogated in streptozotocin-injected mice that lack insulin. Intra-vital microscopy in mice demonstrated that oral glucose feeding enhances the homing of PBMCs to injured blood vessels in vivo. Furthermore, employing flow cytometry, Western blotting and adhesion assays for PBMCs and Jurkat-T cells, we elucidate that insulin enhances fibronectin adherence of quiescent lymphocytes through non-canonical signalling involving insulin-like growth factor-1 receptor (IGF-1R) autophosphorylation, phospholipase C gamma-1 (PLCγ-1) Tyr783 phosphorylation and inside-out activation of β-integrins respectively. Our findings uncover the physiological relevance of post-prandial insulin spikes in regulating the adherence and trafficking of circulating quiescent T-cells through fibronectin-integrin interaction.
Collapse
Affiliation(s)
- Abhiram Charan Tej Mallu
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sivapriya Sivagurunathan
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Debasish Paul
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Hobby Aggarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abel Arul Nathan
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Amrutha Manikandan
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Mahalakshmi M Ravi
- Institute Hospital, Indian Institute of Technology Madras, Chennai, India
| | - Ramanamurthy Boppana
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | | | - Manas Kumar Santra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Madhulika Dixit
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
12
|
Urquiza M, Benavides-Rubio D, Jimenez-Camacho S. Structural analysis of peptide binding to integrins for cancer detection and treatment. Biophys Rev 2023; 15:699-708. [PMID: 37681100 PMCID: PMC10480133 DOI: 10.1007/s12551-023-01084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/20/2023] [Indexed: 09/09/2023] Open
Abstract
Integrins are cell receptors involved in several metabolic pathways often associated with cell proliferation. Some of these integrins are downregulated during human physical development, but when these integrins are overexpressed in adult humans, they can be associated with several diseases, such as cancer. Molecules that specifically bind to these integrins are useful for cancer detection, diagnosis, and treatment. This review focuses on the structures of integrin-peptidic ligand complexes to dissect how the binding occurs and the molecular basis of the specificity and affinity of these peptidic ligands. Understanding these interactions at the molecular level is fundamental to be able to design new peptides that are more specific and more sensitive to a particular integrin. The integrin complexes covered in this review are α5β1, αIIbβ3, αvβ3, αvβ6, and αvβ8, because the molecular structures of the complex have been experimentally determined and their presence on tumor cancer cells are associated with a poor prognosis, making them targets for cancer detection and treatment.
Collapse
Affiliation(s)
- Mauricio Urquiza
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Daniela Benavides-Rubio
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Silvia Jimenez-Camacho
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia
| |
Collapse
|
13
|
Takada YK, Shimoda M, Takada Y. CD40L Activates Platelet Integrin αIIbβ3 by Binding to the Allosteric Site (Site 2) in a KGD-Independent Manner and HIGM1 Mutations Are Clustered in the Integrin-Binding Sites of CD40L. Cells 2023; 12:1977. [PMID: 37566056 PMCID: PMC10416995 DOI: 10.3390/cells12151977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
CD40L is expressed in activated T cells, and it plays a major role in immune response and is a major therapeutic target for inflammation. High IgM syndrome type 1 (HIGM1) is a congenital functional defect in CD40L/CD40 signaling due to defective CD40L. CD40L is also stored in platelet granules and transported to the surface upon platelet activation. Platelet integrin αIIbβ3 is known to bind to fibrinogen and activation of αIIbβ3 is a key event that triggers platelet aggregation. Also, the KGD motif is critical for αIIbβ3 binding and the interaction stabilizes thrombus. Previous studies showed that CD40L binds to and activates integrins αvβ3 and α5β1 and that HIGM1 mutations are clustered in the integrin-binding sites. However, the specifics of CD40L binding to αIIbβ3 were unclear. Here, we show that CD40L binds to αIIbβ3 in a KGD-independent manner using CD40L that lacks the KGD motif. Two HIGM1 mutants, S128E/E129G and L155P, reduced the binding of CD40L to the classical ligand-binding site (site 1) of αIIbβ3, indicating that αIIbβ3 binds to the outer surface of CD40L trimer. Also, CD40L bound to the allosteric site (site 2) of αIIbβ3 and allosterically activated αIIbβ3 without inside-out signaling. Two HIMG1 mutants, K143T and G144E, on the surface of trimeric CD40L suppressed CD40L-induced αIIbβ3 activation. These findings suggest that CD40L binds to αIIbβ3 in a manner different from that of αvβ3 and α5β1 and induces αIIbβ3 activation. HIGM1 mutations are clustered in αIIbβ3 binding sites in CD40L and are predicted to suppress thrombus formation and immune responses through αIIbβ3.
Collapse
Affiliation(s)
- Yoko K. Takada
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA (M.S.)
| | - Michiko Shimoda
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA (M.S.)
| | - Yoshikazu Takada
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA (M.S.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| |
Collapse
|
14
|
Kamioka Y, Ueda Y, Kondo N, Tokuhiro K, Ikeda Y, Bergmeier W, Kinashi T. Distinct bidirectional regulation of LFA1 and α4β7 by Rap1 and integrin adaptors in T cells under shear flow. Cell Rep 2023; 42:112580. [PMID: 37267105 PMCID: PMC10592472 DOI: 10.1016/j.celrep.2023.112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Bidirectional control of integrin activation plays crucial roles in cell adhesive behaviors, but how integrins are specifically regulated by inside-out and outside-in signaling has not been fully understood. Here, we report distinct bidirectional regulation of major lymphocyte homing receptors LFA1 and α4β7 in primary T cells. A small increase of Rap1 activation in L-selectin-mediated tether/rolling was boosted by the outside-in signaling from ICAM1-interacting LFA1 through subsecond, simultaneous activation of Rap1 GTPase and talin1, but not kindlin-3, resulting in increased capture and slowing. In contrast, none of them were required for tether/rolling by α4β7 on MAdCAM1. High Rap1 activation with chemokines or the loss of Rap1-inactivating proteins Rasa3 and Sipa1 increased talin1/kindlin-3-dependent arrest with high-affinity binding of LFA1 to membrane-anchored ICAM1. However, despite increased affinity of α4β7, activated Rap1 severely suppressed adhesion on MAdCAM1 under shear flow, indicating the critical importance of a sequential outside-in/inside-out signaling for α4β7.
Collapse
Affiliation(s)
- Yuji Kamioka
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
15
|
Shi H, Shao B. LFA-1 Activation in T-Cell Migration and Immunological Synapse Formation. Cells 2023; 12:cells12081136. [PMID: 37190045 DOI: 10.3390/cells12081136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Integrin LFA-1 plays a critical role in T-cell migration and in the formation of immunological synapses. LFA-1 functions through interacting with its ligands with differing affinities: low, intermediate, and high. Most prior research has studied how LFA-1 in the high-affinity state regulates the trafficking and functions of T cells. LFA-1 is also presented in the intermediate-affinity state on T cells, however, the signaling to activate LFA-1 to the intermediate-affinity state and the role of LFA-1 in this affinity state both remain largely elusive. This review briefly summarizes the activation and roles of LFA-1 with varied ligand-binding affinities in the regulation of T-cell migration and immunological synapse formation.
Collapse
Affiliation(s)
- Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
16
|
Mancuso RV, Schneider G, Hürzeler M, Gut M, Zurflüh J, Breitenstein W, Bouitbir J, Reisen F, Atz K, Ehrhardt C, Duthaler U, Gygax D, Schmidt AG, Krähenbühl S, Weitz-Schmidt G. Allosteric targeting resolves limitations of earlier LFA-1 directed modalities. Biochem Pharmacol 2023; 211:115504. [PMID: 36921634 DOI: 10.1016/j.bcp.2023.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Integrins are a family of cell surface receptors well-recognized for their therapeutic potential in a wide range of diseases. However, the development of integrin targeting medications has been impacted by unexpected downstream effects, reflecting originally unforeseen interference with the bidirectional signalling and cross-communication of integrins. We here selected one of the most severely affected target integrins, the integrin lymphocyte function-associated antigen-1 (LFA-1, αLβ2, CD11a/CD18), as a prototypic integrin to systematically assess and overcome these known shortcomings. We employed a two-tiered ligand-based virtual screening approach to identify a novel class of allosteric small molecule inhibitors targeting this integrin's αI domain. The newly discovered chemical scaffold was derivatized, yielding potent bis-and tris-aryl-bicyclic-succinimides which inhibit LFA-1 in vitro at low nanomolar concentrations. The characterisation of these compounds in comparison to earlier LFA-1 targeting modalities established that the allosteric LFA-1 inhibitors (i) are devoid of partial agonism, (ii) selectively bind LFA-1 versus other integrins, (iii) do not trigger internalization of LFA-1 itself or other integrins and (iv) display oral availability. This profile differentiates the new generation of allosteric LFA-1 inhibitors from previous ligand mimetic-based LFA-1 inhibitors and anti-LFA-1 antibodies, and is projected to support novel immune regulatory regimens selectively targeting the integrin LFA-1. The rigorous computational and experimental assessment schedule described here is designed to be adaptable to the preclinical discovery and development of novel allosterically acting compounds targeting integrins other than LFA-1, providing an exemplary approach for the early characterisation of next generation integrin inhibitors.
Collapse
Affiliation(s)
- Riccardo V Mancuso
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland; ETH Singapore SEC Ltd, Singapore
| | - Marianne Hürzeler
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Martin Gut
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Jonas Zurflüh
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Werner Breitenstein
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Jamal Bouitbir
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland
| | - Felix Reisen
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland; ETH Singapore SEC Ltd, Singapore
| | - Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland; ETH Singapore SEC Ltd, Singapore
| | | | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland
| | - Daniel Gygax
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | | | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | | |
Collapse
|
17
|
Gu Y, Dong B, He X, Qiu Z, Zhang J, Zhang M, Liu H, Pang X, Cui Y. The challenges and opportunities of αvβ3-based therapeutics in cancer: From bench to clinical trials. Pharmacol Res 2023; 189:106694. [PMID: 36775082 DOI: 10.1016/j.phrs.2023.106694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Integrins are main cell adhesion receptors serving as linker attaching cells to extracellular matrix (ECM) and bidirectional hubs transmitting biochemical and mechanical signals between cells and their environment. Integrin αvβ3 is a critical family member of integrins and interacts with ECM proteins containing RGD tripeptide sequence. Accumulating evidence indicated that the abnormal expression of integrin αvβ3 was associated with various tumor progressions, including tumor initiation, sustained tumor growth, distant metastasis, drug resistance development, maintenance of stemness in cancer cells. Therefore, αvβ3 has been explored as a therapeutic target in various types of cancers, but there is no αvβ3 antagonist approved for human therapy. Targeting-integrin αvβ3 therapeutics has been a challenge, but lessons from the past are valuable to the development of innovative targeting approaches. This review systematically summarized the structure, signal transduction, regulatory role in cancer, and drug development history of integrin αvβ3, and also provided new insights into αvβ3-based therapeutics in cancer from bench to clinical trials, which would contribute to developing effective targeting αvβ3 agents for cancer treatment.
Collapse
Affiliation(s)
- Yanlun Gu
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Bingqi Dong
- Department of General Surgery, Peking University First Hospital, Xishiku street, Xicheng District, 100034 Beijing, China
| | - Xu He
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Juqi Zhang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Mo Zhang
- Department of traditional Chinese and Western medicine,Peking University Of First Hospital, Xishiku street 8th,Xicheng District,10034 Beijing, China
| | - Haitao Liu
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, 100191 Beijing, China.
| |
Collapse
|
18
|
Wang B, Zhang Z, Liu W, Tan B. Targeting regulatory T cells in gastric cancer: Pathogenesis, immunotherapy, and prognosis. Biomed Pharmacother 2023; 158:114180. [PMID: 36586241 DOI: 10.1016/j.biopha.2022.114180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer (GC) remains one of the most common malignancies worldwide. Despite immune-checkpoint inhibitors (ICIs) has revolutionized cancer treatment and obtained durable clinical responses, only a fraction of GC patients benefit from it. As an important component of T cells, regulatory T cells (Tregs) play a vital role in the pathogenesis of GC, keep a core balance between immune suppression and autoimmunity, and function as predictive biomarkers for prognosis of GC patients. In this review, we discuss the role of Tregs in the pathogenesis of GC, and targeting Tregs via influencing their transcription factor, migration, co-stimulatory receptors, immune checkpoints, and cytokines. We also focus on the currently important findings of Tregs metabolism including amino acid, fatty acid, and lactic acid metabolism of GC. The emerging role of microbiome and clinical combined therapy in modulating Tregs in GC treatment is also summarized. Meanwhile, this review recapitulates a novel regulator, magnesium, is involved in mediating Tregs in GC. These research advances on Treg-related strategies provide new insights and challenges for GC progression, treatment, and prognosis. And we hope our review can stimulate further discovery and implication of mediators and pathways targeting Tregs.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Zaibo Zhang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Wenbo Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China.
| |
Collapse
|
19
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 281] [Impact Index Per Article: 140.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
20
|
Park JA, Youm Y, Lee HR, Lee Y, Barron SL, Kwak T, Park GT, Song YC, Owens RM, Kim JH, Jung S. Transfer-Tattoo-Like Cell-Sheet Delivery Induced by Interfacial Cell Migration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204390. [PMID: 36066995 DOI: 10.1002/adma.202204390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
A direct transfer of a cell sheet from a culture surface to a target tissue is introduced. Commercially available, flexible parylene is used as the culture surface, and it is proposed that the UV-treated parylene offers adequate and intermediate levels of cell adhesiveness for both the stable cell attachment during culture and for the efficient cell transfer to a target surface. The versatility of this cell-transfer process is demonstrated with various cell types, including MRC-5, HDFn, HULEC-5a, MC3T3-E1, A549, C2C12 cells, and MDCK-II cells. The novel cell-sheet engineering is based on a mechanism of interfacial cell migration between two surfaces with different adhesion preferences. Monitoring of cytoskeletal dynamics and drug treatments during the cell-transfer process reveals that the interfacial cell migration occurs by utilizing the existing transmembrane proteins on the cell surface to bind to the targeted surface. The re-establishment and reversal of cell polarity after the transfer process are also identified. Its unique capabilities of 3D multilayer stacking, freeform design, and curved surface application are demonstrated. Finally, the therapeutic potential of the cell-sheet delivery system is demonstrated by applying it to cutaneous wound healing and skin-tissue regeneration in mice models.
Collapse
Affiliation(s)
- Ju An Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Yejin Youm
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hwa-Rim Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yongwoo Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sarah L Barron
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Taejeong Kwak
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gyu Tae Park
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Young-Cheol Song
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Sungjune Jung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
21
|
Takada YK, Fujita M, Takada Y. Pro-Inflammatory Chemokines CCL5, CXCL12, and CX3CL1 Bind to and Activate Platelet Integrin αIIbβ3 in an Allosteric Manner. Cells 2022; 11:cells11193059. [PMID: 36231020 PMCID: PMC9563052 DOI: 10.3390/cells11193059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Activation of platelet integrin αIIbβ3, a key event for hemostasis and thrombus formation, is known to be mediated exclusively by inside-out signaling. We showed that inflammatory chemokines CX3CL1 and CXCL12 in previous studies, and CCL5 in this study, bound to the allosteric binding site (site 2) of vascular integrin αvβ3, in addition to the classical ligand binding site (site 1), and allosterically activated integrins independent of inside-out signaling. Since αIIbβ3 is exposed to inflammatory chemokines at increased concentrations during inflammation (e.g., cytokine/chemokine storm) and platelet activation, we hypothesized that these chemokines bind to and activate αIIbβ3 in an allosteric activation mechanism. We found that these chemokines bound to αIIbβ3. Notably, they activated soluble αIIbβ3 in 1 mM Ca2+ by binding to site 2. They activated cell-surface αIIbβ3 on CHO cells, which lack machinery for inside-out signaling or chemokine receptors, quickly (<1 min) and at low concentrations (1–10 ng/mL) compared to activation of soluble αIIbβ3, probably because chemokines bind to cell surface proteoglycans. Furthermore, activation of αIIbβ3 by the chemokines was several times more potent than 1 mM Mn2+. We propose that CCL5 and CXCL12 (stored in platelet granules) may allosterically activate αIIbβ3 upon platelet activation and trigger platelet aggregation. Transmembrane CX3CL1 on activated endothelial cells may mediate platelet–endothelial interaction by binding to and activating αIIbβ3. Additionally, these chemokines in circulation over-produced during inflammation may trigger αIIbβ3 activation, which is a possible missing link between inflammation and thrombosis.
Collapse
Affiliation(s)
- Yoko K. Takada
- Department of Dermatology, School of Medicine, University of California–Davis, 4645 Second Ave., Research III Suite 3300, Sacramento, CA 95817, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Masaaki Fujita
- Department of Dermatology, School of Medicine, University of California–Davis, 4645 Second Ave., Research III Suite 3300, Sacramento, CA 95817, USA
| | - Yoshikazu Takada
- Department of Dermatology, School of Medicine, University of California–Davis, 4645 Second Ave., Research III Suite 3300, Sacramento, CA 95817, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Correspondence:
| |
Collapse
|
22
|
β 2-Integrin Adhesive Bond Tension under Shear Stress Modulates Cytosolic Calcium Flux and Neutrophil Inflammatory Response. Cells 2022; 11:cells11182822. [PMID: 36139397 PMCID: PMC9497066 DOI: 10.3390/cells11182822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
On arrested neutrophils a focal adhesive cluster of ~200 high affinity (HA) β2-integrin bonds under tension is sufficient to trigger Ca2+ flux that signals an increase in activation in direct proportion to increments in shear stress. We reasoned that a threshold tension acting on individual β2-integrin bonds provides a mechanical means of transducing the magnitude of fluid drag force into signals that enhance the efficiency of neutrophil recruitment and effector function. Tension gauge tethers (TGT) are a duplex of DNA nucleotides that rupture at a precise shear force, which increases with the extent of nucleotide overlap, ranging from a tolerance of 54pN to 12pN. TGT annealed to a substrate captures neutrophils via allosteric antibodies that stabilize LFA-1 in a high- or low-affinity conformation. Neutrophils sheared on TGT substrates were recorded in real time to form HA β2-integrin bonds and flux cytosolic Ca2+, which elicited shape change and downstream production of reactive oxygen species. A threshold force of 33pN triggered consolidation of HA β2-integrin bonds and triggered membrane influx of Ca2+, whereas an optimum tension of 54pN efficiently transduced activation at a level equivalent to chemotactic stimulation on ICAM-1. We conclude that neutrophils sense the level of fluid drag transduced through individual β2-integrin bonds, providing an intrinsic means to modulate inflammatory response in the microcirculation.
Collapse
|
23
|
LFA1 Activation: Insights from a Single-Molecule Approach. Cells 2022; 11:cells11111751. [PMID: 35681446 PMCID: PMC9179313 DOI: 10.3390/cells11111751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Integrin LFA1 is a cell adhesion receptor expressed exclusively in leukocytes, and plays crucial roles in lymphocyte trafficking, antigen recognition, and effector functions. Since the discovery that the adhesiveness of LFA1 can be dynamically changed upon stimulation, one challenge has been understanding how integrins are regulated by inside-out signaling coupled with macromolecular conformational changes, as well as ligand bindings that transduce signals from the extracellular domain to the cytoplasm in outside-in signaling. The small GTPase Rap1 and integrin adaptor proteins talin1 and kindlin-3 have been recognized as critical molecules for integrin activation. However, their cooperative regulation of integrin adhesiveness in lymphocytes requires further research. Recent advances in single-molecule imaging techniques have revealed dynamic molecular processes in real-time and provided insight into integrin activation in cellular environments. This review summarizes integrin regulation and discusses new findings regarding the bidirectionality of LFA1 activation and signaling processes in lymphocytes.
Collapse
|
24
|
Humanized β2 Integrin-Expressing Hoxb8 Cells Serve as Model to Study Integrin Activation. Cells 2022; 11:cells11091532. [PMID: 35563841 PMCID: PMC9102476 DOI: 10.3390/cells11091532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
The use of cell-based reporter systems has provided valuable insights into the molecular mechanisms of integrin activation. However, current models have significant drawbacks because their artificially expressed integrins cannot be regulated by either physiological stimuli or endogenous signaling pathways. Here, we report the generation of a Hoxb8 cell line expressing human β2 integrin that functionally replaced the deleted mouse ortholog. Hoxb8 cells are murine hematopoietic progenitor cells that can be efficiently differentiated into neutrophils and macrophages resembling their primary counterparts. Importantly, these cells can be stimulated by physiological stimuli triggering classical integrin inside-out signaling pathways, ultimately leading to β2 integrin conformational changes that can be recorded by the conformation-specific antibodies KIM127 and mAb24. Moreover, these cells can be efficiently manipulated via the CRISPR/Cas9 technique or retroviral vector systems. Deletion of the key integrin regulators talin1 and kindlin3 or expression of β2 integrins with mutations in their binding sites abolished both integrin extension and full activation regardless of whether only one or both activators no longer bind to the integrin. Moreover, humanized β2 integrin Hoxb8 cells represent a valuable new model for rapidly testing the role of putative integrin regulators in controlling β2 integrin activity in a physiological context.
Collapse
|
25
|
The interface between biochemical signaling and cell mechanics shapes T lymphocyte migration and activation. Eur J Cell Biol 2022; 101:151236. [DOI: 10.1016/j.ejcb.2022.151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022] Open
|
26
|
Cappenberg A, Kardell M, Zarbock A. Selectin-Mediated Signaling-Shedding Light on the Regulation of Integrin Activity in Neutrophils. Cells 2022; 11:cells11081310. [PMID: 35455989 PMCID: PMC9025114 DOI: 10.3390/cells11081310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
As a consequence of tissue injury or infection, neutrophils are recruited in a stepwise recruitment process from the bloodstream into the surrounding tissue. Selectins are a family of adhesion molecules comprised of L-, E-, and P-selectin. Differences in expression patterns, protein structure, and ligand binding characteristics mediate distinct functions of each selectin. Interactions of selectins and their counter-receptors mediate the first contact of neutrophils with the endothelium, as well as subsequent neutrophil rolling along the endothelial surface. For efficient neutrophil recruitment, activation of β2-integrins on the cell surface is essential. Integrin activation can be elicited via selectin- as well as chemokine-mediated inside-out signaling resulting in integrin conformational changes and clustering. Dysregulation of selectin-induced integrin activation on neutrophils is involved in the development of severe pathological disease conditions including leukocyte adhesion deficiency (LAD) syndromes in humans. Here, we review molecular mechanisms involved in selectin-mediated signaling pathways in neutrophils and their impact on integrin activation, neutrophil recruitment, and inflammatory diseases.
Collapse
|
27
|
Monocytes augment inflammatory responses in human aortic valve interstitial cells via β 2-integrin/ICAM-1-mediated signaling. Inflamm Res 2022; 71:681-694. [PMID: 35411432 PMCID: PMC10156628 DOI: 10.1007/s00011-022-01566-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Inflammatory infiltration in aortic valves promotes calcific aortic valve disease (CAVD) progression. While soluble extracellular matrix (ECM) proteins induce inflammatory responses in aortic valve interstitial cells (AVICs), the impact of monocytes on AVIC inflammatory responses is unknown. We tested the hypothesis that monocytes enhance AVIC inflammatory responses to soluble ECM protein in this study. METHODS Human AVICs isolated from normal aortic valves were cocultured with monocytes and stimulated with soluble ECM protein (matrilin-2). ICAM-1 and IL-6 productions were assessed. YAP and NF-κB phosphorylation were analyzed. Recombinant CD18, neutralizing antibodies against β2-integrin or ICAM-1, and inhibitor of YAP or NF-κB were applied. RESULTS AVIC expression of ICAM-1 and IL-6 was markedly enhanced by the presence of monocytes, although matrilin-2 did not affect monocyte production of ICAM-1 or IL-6. Matrilin-2 up-regulated the expression of monocyte β2-integrin and AVIC ICAM-1, leading to monocyte-AVIC adhesion. Neutralizing β2-integrin or ICAM-1 in coculture suppressed monocyte adhesion to AVICs and the expression of ICAM-1 and IL-6. Recombinant CD18 enhanced the matrilin-2-induced ICAM-1 and IL-6 expression in AVIC monoculture. Further, stimulation of coculture with matrilin-2 induced greater YAP and NF-κB phosphorylation. Inhibiting either YAP or NF-κB markedly suppressed the inflammatory response to matrilin-2 in coculture. CONCLUSION Monocyte β2-integrin interacts with AVIC ICAM-1 to augment AVIC inflammatory responses to soluble matrilin-2 through enhancing the activation of YAP and NF-κB signaling pathways. Infiltrated monocytes may promote valvular inflammation through cell-cell interaction with AVICs to enhance their sensitivity to damage-associated molecular patterns.
Collapse
|
28
|
Paoletta MS, Wilkowsky SE. Thrombospondin Related Anonymous Protein Superfamily in Vector-Borne Apicomplexans: The Parasite’s Toolkit for Cell Invasion. Front Cell Infect Microbiol 2022; 12:831592. [PMID: 35463644 PMCID: PMC9019593 DOI: 10.3389/fcimb.2022.831592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Apicomplexan parasites transmitted by vectors, including Babesia spp. and Plasmodium spp., cause severe disease in both humans and animals. These parasites have a complex life cycle during which they migrate, invade, and replicate in contrasting hosts such as the mammal and the invertebrate vector. The interaction of parasites with the host cell is mediated by adhesive proteins which play a key role in the different cellular processes regarding successful progression of the life cycle. Thrombospondin related anonymous protein (TRAP) is a superfamily of adhesins that are involved in motility, invasion and egress of the parasite. These proteins are stored and released from apical organelles and have either one or two types of adhesive domains, namely thrombospondin type 1 repeat and von Willebrand factor type A, that upon secretion are located in the extracellular portion of the molecule. Proteins from the TRAP superfamily have been intensively studied in Plasmodium species and to a lesser extent in Babesia spp., where they have proven to be functionally relevant throughout the entire parasite’s journey both in the arthropod vector and in the mammalian host. In recent years new findings provided answers to the role of TRAP proteins and in some cases the function of these adhesins during the parasite’s life cycle was redefined. In this review we will discuss the current knowledge of the diverse roles of the TRAP superfamily in vector-borne parasites from Class Aconoidasida. We will focus on the varied approaches that allowed the understanding of protein function and the relevance of TRAP- superfamily throughout the entire parasite’s cell cycle.
Collapse
|
29
|
Understanding the Role of LFA-1 in Leukocyte Adhesion Deficiency Type I (LAD I): Moving towards Inflammation? Int J Mol Sci 2022; 23:ijms23073578. [PMID: 35408940 PMCID: PMC8998723 DOI: 10.3390/ijms23073578] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
LFA-1 (Lymphocyte function-associated antigen-1) is a heterodimeric integrin (CD11a/CD18) present on the surface of all leukocytes; it is essential for leukocyte recruitment to the site of tissue inflammation, but also for other immunological processes such as T cell activation and formation of the immunological synapse. Absent or dysfunctional expression of LFA-1, caused by mutations in the ITGB2 (integrin subunit beta 2) gene, results in a rare immunodeficiency syndrome known as Leukocyte adhesion deficiency type I (LAD I). Patients suffering from severe LAD I present with recurrent infections of the skin and mucosa, as well as inflammatory symptoms complicating the clinical course of the disease before and after allogeneic hematopoietic stem cell transplantation (alloHSCT); alloHSCT is currently the only established curative treatment option. With this review, we aim to provide an overview of the intrinsic role of inflammation in LAD I.
Collapse
|
30
|
Lötscher J, Martí I Líndez AA, Kirchhammer N, Cribioli E, Giordano Attianese GMP, Trefny MP, Lenz M, Rothschild SI, Strati P, Künzli M, Lotter C, Schenk SH, Dehio P, Löliger J, Litzler L, Schreiner D, Koch V, Page N, Lee D, Grählert J, Kuzmin D, Burgener AV, Merkler D, Pless M, Balmer ML, Reith W, Huwyler J, Irving M, King CG, Zippelius A, Hess C. Magnesium sensing via LFA-1 regulates CD8 + T cell effector function. Cell 2022; 185:585-602.e29. [PMID: 35051368 DOI: 10.1016/j.cell.2021.12.039] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.
Collapse
Affiliation(s)
- Jonas Lötscher
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Adrià-Arnau Martí I Líndez
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nicole Kirchhammer
- Department of Biomedicine, Cancer Immunology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Elisabetta Cribioli
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Greta Maria Paola Giordano Attianese
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Marcel P Trefny
- Department of Biomedicine, Cancer Immunology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Markus Lenz
- University of Applied Science Northwestern Switzerland, Institute for Ecopreneurship, 4132 Muttenz, Switzerland
| | - Sacha I Rothschild
- Division of Medical Oncology and Comprehensive Cancer Center, University Hospital Basel, 4031 Basel, Switzerland; Swiss Group for Clinical Cancer Research, 3008 Bern, Switzerland
| | - Paolo Strati
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marco Künzli
- Department of Biomedicine, Immune Cell Biology, University and University Hospital of Basel, 4031 Basel, Switzerland
| | - Claudia Lotter
- Department of Pharmaceutical Sciences, Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Susanne H Schenk
- Department of Pharmaceutical Sciences, Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Philippe Dehio
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Jordan Löliger
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Ludivine Litzler
- Department of Biomedicine, Immune Cell Biology, University and University Hospital of Basel, 4031 Basel, Switzerland
| | - David Schreiner
- Department of Biomedicine, Immune Cell Biology, University and University Hospital of Basel, 4031 Basel, Switzerland
| | - Victoria Koch
- Department of Biomedicine, Cancer Immunology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Dahye Lee
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Jasmin Grählert
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Dmitry Kuzmin
- Hornet Therapeutics Ltd, London SW1Y 5ES, UK; Department of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anne-Valérie Burgener
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Miklos Pless
- Swiss Group for Clinical Cancer Research, 3008 Bern, Switzerland; Department of Oncology, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland
| | - Maria L Balmer
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Department for Biomedical Research (DBMR), University Clinic for Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, University of Bern, 3008 Bern, Switzerland; Diabetes Center Berne (DCB), 3010 Bern, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Carolyn G King
- Department of Biomedicine, Immune Cell Biology, University and University Hospital of Basel, 4031 Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, Cancer Immunology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Division of Medical Oncology and Comprehensive Cancer Center, University Hospital Basel, 4031 Basel, Switzerland
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
31
|
Al-Aghbar MA, Jainarayanan AK, Dustin ML, Roffler SR. The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Commun Biol 2022; 5:40. [PMID: 35017678 PMCID: PMC8752658 DOI: 10.1038/s42003-021-02995-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
T cells are critically important for host defense against infections. T cell activation is specific because signal initiation requires T cell receptor (TCR) recognition of foreign antigen peptides presented by major histocompatibility complexes (pMHC) on antigen presenting cells (APCs). Recent advances reveal that the TCR acts as a mechanoreceptor, but it remains unclear how pMHC/TCR engagement generates mechanical forces that are converted to intracellular signals. Here we propose a TCR Bending Mechanosignal (TBM) model, in which local bending of the T cell membrane on the nanometer scale allows sustained contact of relatively small pMHC/TCR complexes interspersed among large surface receptors and adhesion molecules on the opposing surfaces of T cells and APCs. Localized T cell membrane bending is suggested to increase accessibility of TCR signaling domains to phosphorylation, facilitate selective recognition of agonists that form catch bonds, and reduce noise signals associated with slip bonds.
Collapse
Affiliation(s)
- Mohammad Ameen Al-Aghbar
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Ashwin K Jainarayanan
- Interdisciplinary Bioscience Doctoral Training Program and Exeter College, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
32
|
Li J, Yan J, Springer TA. Low affinity integrin states have faster ligand binding kinetics than the high affinity state. eLife 2021; 10:73359. [PMID: 34854380 PMCID: PMC8730728 DOI: 10.7554/elife.73359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022] Open
Abstract
Integrin conformational ensembles contain two low-affinity states, bent-closed and extended-closed, and an active, high-affinity, extended-open state. It is widely thought that integrins must be activated before they bind ligand; however, one model holds that activation follows ligand binding. As ligand-binding kinetics are not only rate limiting for cell adhesion but also have important implications for the mechanism of activation, we measure them here for integrins α4β1 and α5β1 and show that the low-affinity states bind substantially faster than the high-affinity state. On- and off-rates are similar for integrins on cell surfaces and as ectodomain fragments. Although the extended-open conformation’s on-rate is ~20-fold slower, its off-rate is ~25,000-fold slower, resulting in a large affinity increase. The tighter ligand-binding pocket in the open state may slow its on-rate. Low-affinity integrin states not only bind ligand more rapidly, but are also more populous on the cell surface than high-affinity states. Thus, our results suggest that integrin binding to ligand may precede, rather than follow, activation by ‘inside-out signaling.’
Collapse
Affiliation(s)
- Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Jiabin Yan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| |
Collapse
|
33
|
Kárpáti É, Kremlitzka M, Sándor N, Hajnal D, Schneider AE, Józsi M. Complement Factor H Family Proteins Modulate Monocyte and Neutrophil Granulocyte Functions. Front Immunol 2021; 12:660852. [PMID: 34671340 PMCID: PMC8521052 DOI: 10.3389/fimmu.2021.660852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023] Open
Abstract
Besides being a key effector arm of innate immunity, a plethora of non-canonical functions of complement has recently been emerging. Factor H (FH), the main regulator of the alternative pathway of complement activation, has been reported to bind to various immune cells and regulate their functions, beyond its role in modulating complement activation. In this study we investigated the effect of FH, its alternative splice product FH-like protein 1 (FHL-1), the FH-related (FHR) proteins FHR-1 and FHR-5, and the recently developed artificial complement inhibitor mini-FH, on two key innate immune cells, monocytes and neutrophilic granulocytes. We found that, similar to FH, the other factor H family proteins FHL-1, FHR-1 and FHR-5, as well as the recombinant mini-FH, are able to bind to both monocytes and neutrophils. As a functional outcome, immobilized FH and FHR-1 inhibited PMA-induced NET formation, but increased the adherence and IL-8 production of neutrophils. FHL-1 increased only the adherence of the cells, while FHR-5 was ineffective in altering these functions. The adherence of monocytes was increased on FH, recombinant mini-FH and FHL-1 covered surfaces and, except for FHL-1, the same molecules also enhanced secretion of the inflammatory cytokines IL-1β and TNFα. When monocytes were stimulated with LPS in the presence of immobilized FH family proteins, FH, FHL-1 and mini-FH enhanced whereas FHR-1 and FHR-5 decreased the secretion of TNFα; FHL-1 and mini-FH also enhanced IL-10 release compared to the effect of LPS alone. Our results reveal heterogeneous effects of FH and FH family members on monocytes and neutrophils, altering key features involved in pathogen killing, and also demonstrate that FH-based complement inhibitors, such as mini-FH, may have effects beyond their function of inhibiting complement activation. Thus, our data provide new insight into the non-canonical functions of FH, FHL-1, FHR-1 and FHR-5 that might be exploited during protection against infections and in vaccine development.
Collapse
Affiliation(s)
- Éva Kárpáti
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mariann Kremlitzka
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dávid Hajnal
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea E Schneider
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
34
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke DS, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. Sci Rep 2021; 11:20398. [PMID: 34650161 PMCID: PMC8516859 DOI: 10.1038/s41598-021-99893-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 infection depends on binding its spike (S) protein to angiotensin-converting enzyme 2 (ACE2). The S protein expresses an RGD motif, suggesting that integrins may be co-receptors. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating cell entry and productive infection. We used flow cytometry and confocal microscopy to show that SARS-CoV-2R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn2+, which induces integrin extension, enhances cell entry of SARS-CoV-2R18. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2R18 with basal state integrins, but is ineffective against Mn2+-activated integrins. RGD-integrin antagonists inhibited SARS-CoV-2R18 binding regardless of integrin activation status. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand-binding function of integrins via a talin-dependent mechanism, and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα13. Using cell-permeable peptide inhibitors of talin and Gα13 binding to the cytoplasmic tail of an integrin's β subunit, we demonstrate that talin-mediated signaling is essential for productive infection.
Collapse
Affiliation(s)
- Peter Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Derek A Rinaldi
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Virginie Bondu
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Alison M Kell
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Steven Bradfute
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
35
|
Leithner A, Altenburger LM, Hauschild R, Assen FP, Rottner K, Stradal TEB, Diz-Muñoz A, Stein JV, Sixt M. Dendritic cell actin dynamics control contact duration and priming efficiency at the immunological synapse. J Cell Biol 2021; 220:211749. [PMID: 33533935 PMCID: PMC7863705 DOI: 10.1083/jcb.202006081] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) are crucial for the priming of naive T cells and the initiation of adaptive immunity. Priming is initiated at a heterologous cell–cell contact, the immunological synapse (IS). While it is established that F-actin dynamics regulates signaling at the T cell side of the contact, little is known about the cytoskeletal contribution on the DC side. Here, we show that the DC actin cytoskeleton is decisive for the formation of a multifocal synaptic structure, which correlates with T cell priming efficiency. DC actin at the IS appears in transient foci that are dynamized by the WAVE regulatory complex (WRC). The absence of the WRC in DCs leads to stabilized contacts with T cells, caused by an increase in ICAM1-integrin–mediated cell–cell adhesion. This results in lower numbers of activated and proliferating T cells, demonstrating an important role for DC actin in the regulation of immune synapse functionality.
Collapse
Affiliation(s)
- Alexander Leithner
- Institute of Science and Technology Austria, Klosterneuburg, Austria.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Lukas M Altenburger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Frank P Assen
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Klemens Rottner
- Zoological Institute, Technical University Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Units, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
36
|
Structural analysis of receptors and actin polarity in platelet protrusions. Proc Natl Acad Sci U S A 2021; 118:2105004118. [PMID: 34504018 PMCID: PMC8449362 DOI: 10.1073/pnas.2105004118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
During activation the platelet cytoskeleton is reorganized, inducing adhesion to the extracellular matrix and cell spreading. These processes are critical for wound healing and clot formation. Initially, this task relies on the formation of strong cellular-extracellular matrix interactions, exposed in subendothelial lesions. Despite the medical relevance of these processes, there is a lack of high-resolution structural information on the platelet cytoskeleton controlling cell spreading and adhesion. Here, we present in situ structural analysis of membrane receptors and the underlying cytoskeleton in platelet protrusions by applying cryoelectron tomography to intact platelets. We utilized three-dimensional averaging procedures to study receptors at the plasma membrane. Analysis of substrate interaction-free receptors yielded one main structural class resolved to 26 Å, resembling the αIIbβ3 integrin folded conformation. Furthermore, structural analysis of the actin network in pseudopodia indicates a nonuniform polarity of filaments. This organization would allow generation of the contractile forces required for integrin-mediated cell adhesion.
Collapse
|
37
|
Garrido-Casado M, Asensio-Juárez G, Vicente-Manzanares M. Nonmuscle Myosin II Regulation Directs Its Multiple Roles in Cell Migration and Division. Annu Rev Cell Dev Biol 2021; 37:285-310. [PMID: 34314591 DOI: 10.1146/annurev-cellbio-042721-105528] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
38
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke D, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34312625 DOI: 10.1101/2021.07.20.453118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular entry of coronaviruses depends on binding of the viral spike (S) protein to a specific cellular receptor, the angiotensin-converting enzyme 2 (ACE2). Furthermore, the viral spike protein expresses an RGD motif, suggesting that cell surface integrins may be attachment co-receptors. However, using infectious SARS-CoV-2 requires a biosafety level 3 laboratory (BSL-3), which limits the techniques that can be used to study the mechanism of cell entry. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating both cell entry and productive infection. We used flow cytometry and confocal fluorescence microscopy to show that fluorescently labeled SARS-CoV-2 R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn 2+ , which activates integrins and induces integrin extension, enhances cell binding and entry of SARS-CoV-2 R18 in proportion to the fraction of integrins activated. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2 R18 with basal state integrins, but is ineffective against Mn 2+ -activated integrins. At the same time, RGD-integrin antagonists inhibited SARS-CoV-2 R18 binding regardless of integrin activity state. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand binding function of integrins via a talin dependent mechanism and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα 13 and induces cell spreading, retraction, migration, and proliferation. Using cell-permeable peptide inhibitors of talin, and Gα 13 binding to the cytoplasmic tail of an integrin's β subunit, we further demonstrate that talin-mediated signaling is essential for productive infection by SARS-CoV-2.
Collapse
|
39
|
Santoni G, Amantini C, Santoni M, Maggi F, Morelli MB, Santoni A. Mechanosensation and Mechanotransduction in Natural Killer Cells. Front Immunol 2021; 12:688918. [PMID: 34335592 PMCID: PMC8320435 DOI: 10.3389/fimmu.2021.688918] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are a main subset of innate lymphocytes that contribute to host immune protection against viruses and tumors by mediating target cell killing and secreting a wide array of cytokines. Their functions are finely regulated by a balance between activating and inhibitory receptors and involve also adhesive interactions. Mechanotransduction is the process in which physical forces sensed by mechanosensors are translated into chemical signaling. Herein, we report findings on the involvement of this mechanism that is mainly mediated by actin cytoskeleton, in the regulation of NK cell adhesion, migration, tissue infiltration and functions. Actin represents the structural basis for NK cell immunological synapse (NKIS) and polarization of secretory apparatus. NK-target cell interaction involves the formation of both uropods and membrane nanotubes that allow target cell interaction over long distances. Actin retrograde flow (ARF) regulates NK cell signaling and controls the equilibrium between activation versus inhibition. Activating NKIS is associated with rapid lamellipodial ARF, whereas lower centripetal actin flow is present during inhibitory NKIS where β actin can associate with the tyrosine phosphatase SHP-1. Overall, a better knowledge of mechanotransduction might represent a future challenge: Realization of nanomaterials tailored for NK cells, would be important to translate in vitro studies in in vivo new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Federica Maggi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
40
|
Shear forces induce ICAM-1 nanoclustering on endothelial cells that impact on T-cell migration. Biophys J 2021; 120:2644-2656. [PMID: 34087211 DOI: 10.1016/j.bpj.2021.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/13/2023] Open
Abstract
The leukocyte-specific β2-integrin LFA-1 and its ligand ICAM-1, expressed on endothelial cells (ECs), are involved in the arrest, adhesion, and transendothelial migration of leukocytes. Although the role of mechanical forces on LFA-1 activation is well established, the impact of forces on its major ligand ICAM-1 has received less attention. Using a parallel-plate flow chamber combined with confocal and super-resolution microscopy, we show that prolonged shear flow induces global translocation of ICAM-1 on ECs upstream of flow direction. Interestingly, shear forces caused actin rearrangements and promoted actin-dependent ICAM-1 nanoclustering before LFA-1 engagement. T cells adhered to mechanically prestimulated ECs or nanoclustered ICAM-1 substrates developed a promigratory phenotype, migrated faster, and exhibited shorter-lived interactions with ECs than when adhered to non mechanically stimulated ECs or to monomeric ICAM-1 substrates. Together, our results indicate that shear forces increase ICAM-1/LFA-1 bonds because of ICAM-1 nanoclustering, strengthening adhesion and allowing cells to exert higher traction forces required for faster migration. Our data also underscore the importance of mechanical forces regulating the nanoscale organization of membrane receptors and their contribution to cell adhesion regulation.
Collapse
|
41
|
Robert P, Biarnes-Pelicot M, Garcia-Seyda N, Hatoum P, Touchard D, Brustlein S, Nicolas P, Malissen B, Valignat MP, Theodoly O. Functional Mapping of Adhesiveness on Live Cells Reveals How Guidance Phenotypes Can Emerge From Complex Spatiotemporal Integrin Regulation. Front Bioeng Biotechnol 2021; 9:625366. [PMID: 33898401 PMCID: PMC8058417 DOI: 10.3389/fbioe.2021.625366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/05/2021] [Indexed: 01/13/2023] Open
Abstract
Immune cells have the ubiquitous capability to migrate disregarding the adhesion properties of the environment, which requires a versatile adaptation of their adhesiveness mediated by integrins, a family of specialized adhesion proteins. Each subtype of integrins has several ligands and several affinity states controlled by internal and external stimuli. However, probing cell adhesion properties on live cells without perturbing cell motility is highly challenging, especially in vivo. Here, we developed a novel in vitro method using micron-size beads pulled by flow to functionally probe the local surface adhesiveness of live and motile cells. This method allowed a functional mapping of the adhesiveness mediated by VLA-4 and LFA-1 integrins on the trailing and leading edges of live human T lymphocytes. We show that cell polarization processes enhance integrin-mediated adhesiveness toward cell rear for VLA-4 and cell front for LFA-1. Furthermore, an inhibiting crosstalk of LFA-1 toward VLA-4 and an activating crosstalk of VLA-4 toward LFA-1 were found to modulate cell adhesiveness with a long-distance effect across the cell. These combined signaling processes directly support the bistable model that explains the emergence of the versatile guidance of lymphocyte under flow. Molecularly, Sharpin, an LFA-1 inhibitor in lymphocyte uropod, was found involved in the LFA-1 deadhesion of lymphocytes; however, both Sharpin and Myosin inhibition had a rather modest impact on adhesiveness. Quantitative 3D immunostaining identified high-affinity LFA-1 and VLA-4 densities at around 50 and 100 molecules/μm2 in basal adherent zones, respectively. Interestingly, a latent adhesiveness of dorsal zones was not grasped by immunostaining but assessed by direct functional assays with beads. The combination of live functional assays, molecular imaging, and genome editing is instrumental to characterizing the spatiotemporal regulation of integrin-mediated adhesiveness at molecular and cell scales, which opens a new perspective to decipher sophisticated phenotypes of motility and guidance.
Collapse
Affiliation(s)
- Philippe Robert
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Martine Biarnes-Pelicot
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Nicolas Garcia-Seyda
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Petra Hatoum
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Dominique Touchard
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Sophie Brustlein
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Philippe Nicolas
- Aix-Marseille University, CNRS, INSERM U1104 Centre d'immunologie de Marseille-Luminy, Marseille, France
| | - Bernard Malissen
- Aix-Marseille University, CNRS, INSERM U1104 Centre d'immunologie de Marseille-Luminy, Marseille, France
| | - Marie-Pierre Valignat
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| | - Olivier Theodoly
- LAI, Aix-Marseille University, CNRS, INSERM U1067 Adhésion Cellulaires et lnflammation, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
42
|
Sun H, Zhi K, Hu L, Fan Z. The Activation and Regulation of β2 Integrins in Phagocytes and Phagocytosis. Front Immunol 2021; 12:633639. [PMID: 33868253 PMCID: PMC8044391 DOI: 10.3389/fimmu.2021.633639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Phagocytes, which include neutrophils, monocytes, macrophages, and dendritic cells, protect the body by removing foreign particles, bacteria, and dead or dying cells. Phagocytic integrins are greatly involved in the recognition of and adhesion to specific antigens on cells and pathogens during phagocytosis as well as the recruitment of immune cells. β2 integrins, including αLβ2, αMβ2, αXβ2, and αDβ2, are the major integrins presented on the phagocyte surface. The activation of β2 integrins is essential to the recruitment and phagocytic function of these phagocytes and is critical for the regulation of inflammation and immune defense. However, aberrant activation of β2 integrins aggravates auto-immune diseases, such as psoriasis, arthritis, and multiple sclerosis, and facilitates tumor metastasis, making them double-edged swords as candidates for therapeutic intervention. Therefore, precise regulation of phagocyte activities by targeting β2 integrins should promote their host defense functions with minimal side effects on other cells. Here, we reviewed advances in the regulatory mechanisms underlying β2 integrin inside-out signaling, as well as the roles of β2 integrin activation in phagocyte functions.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kangkang Zhi
- Department of Vascular Surgery, Changzheng Hospital, Shanghai, China
| | - Liang Hu
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States
| |
Collapse
|
43
|
Soluble CD40L activates soluble and cell-surface integrin αvβ3, α5β1, and α4β1 by binding to the allosteric ligand-binding site (site 2). J Biol Chem 2021; 296:100399. [PMID: 33571526 PMCID: PMC7960543 DOI: 10.1016/j.jbc.2021.100399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 11/20/2022] Open
Abstract
CD40L is a member of the TNF superfamily that participates in immune cell activation. It binds to and signals through several integrins, including αvβ3 and α5β1, which bind to the trimeric interface of CD40L. We previously showed that several integrin ligands can bind to the allosteric site (site 2), which is distinct from the classical ligand-binding site (site 1), raising the question of if CD40L activates integrins. In our explorations of this question, we determined that integrin α4β1, which is prevalently expressed on the same CD4+ T cells as CD40L, is another receptor for CD40L. Soluble (s)CD40L activated soluble integrins αvβ3, α5β1, and α4β1 in cell-free conditions, indicating that this activation does not require inside-out signaling. Moreover, sCD40L activated cell-surface integrins in CHO cells that do not express CD40. To learn more about the mechanism of binding, we determined that sCD40L bound to a cyclic peptide from site 2. Docking simulations predicted that the residues of CD40L that bind to site 2 are located outside of the CD40L trimer interface, at a site where four HIGM1 (hyper-IgM syndrome type 1) mutations are clustered. We tested the effect of these mutations, finding that the K143T and G144E mutants were the most defective in integrin activation, providing support that this region interacts with site 2. We propose that allosteric integrin activation by CD40L also plays a role in CD40L signaling, and defective site 2 binding may be related to the impaired CD40L signaling functions of these HIGM1 mutants.
Collapse
|
44
|
Feng W, Nguyen H, Shen D, Deng H, Jiang Z, Podolnikova N, Ugarova T, Wang X. Structural Characterization of the Interaction between the α MI-Domain of the Integrin Mac-1 (α Mβ 2) and the Cytokine Pleiotrophin. Biochemistry 2021; 60:182-193. [PMID: 33427449 DOI: 10.1021/acs.biochem.0c00700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Integrin Mac-1 (αMβ2) is an adhesion receptor vital to many functions of myeloid leukocytes. It is also the most promiscuous member of the integrin family capable of recognizing a broad range of ligands. In particular, its ligand-binding αMI-domain is known to bind cationic proteins/peptides depleted in acidic residues. This contradicts the canonical ligand-binding mechanism of αI-domains, which requires an acidic amino acid in the ligand to coordinate the divalent cation within the metal ion-dependent adhesion site (MIDAS) of αI-domains. The lack of acidic amino acids in the αMI-domain-binding sequences suggests the existence of an as-yet uncharacterized interaction mechanism. In the present study, we analyzed interactions of the αMI-domain with a representative Mac-1 ligand, the cationic cytokine pleiotrophin (PTN). Through NMR chemical shift perturbation analysis, cross saturation, NOESY, and mutagenesis studies, we found the interaction between the αMI-domain and PTN is divalent cation-independent and mediated mostly by hydrophobic contacts between the N-terminal domain of PTN and residues in the α5-β5 loop of αMI-domain. The observation that increased ionic strength weakens the interaction between the proteins indicates electrostatic forces may also play a significant role in the binding. On the basis of the results from these experiments, we formulated a model of the interaction between the αMI-domain and PTN.
Collapse
|
45
|
Dynamics and Physics of Integrin Activation in Tumor Cells by Nano-Sized Extracellular Ligands and Electromagnetic Fields. Methods Mol Biol 2021; 2217:197-233. [PMID: 33215383 DOI: 10.1007/978-1-0716-0962-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Integrins are stress-sensing proteins expressed on the surface of cells. They regulate bidirectional signal transduction during cell-cell or cell-extracellular matrix (ECM) contacts. Integrins link the ECM with the cytoplasm through interaction with their ligands. Biophysically, such interactions can be understood as changes in stress fields at specific integrin stress-sensing domains, such as the MIDAS and ADMIDAS domains. Stress changes between ligands and cytoskeletal structures are involved in cancer cell growth by altering signal transduction pathways dependent on integrin activation. In this chapter, previous results regarding integrin activation and tumor cell growth using nanoparticles (NPs) of different materials, sizes and shapes are placed within a framework of polarized NPs in the ECM by external electromagnetic fields, in which the synergic action between polarized NPs and electromagnetic fields activates the integrins. Small size NPs activate integrins via the polar component of the dipole force between NPs and integrin sensing stress sites, while large size NPs exercise a similar action via the radial component. A quantum electrodynamic model also accounts for ECM overstressing by electromagnetic mode trapping between coherent symmetric and antisymmetric quantum states.
Collapse
|
46
|
Song G, Luo BH. Atypical structure and function of integrin α V β 8. J Cell Physiol 2020; 236:4874-4887. [PMID: 33368230 DOI: 10.1002/jcp.30242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
Abstract
Integrins are heterodimeric transmembrane proteins that play important roles in various biological processes. Most integrins serve as adhesion molecules and transmit bidirectional signaling across the cell membrane through global conformational changes from the bent closed to the extended open conformation. However, integrin β8 is distinctive in structure and function. Its cytoplasmic domain lacks the conserved protein-binding sequence, which is important in transmitting inside-out signals, suggesting that integrin β8 may have a different activation mechanism or lack such signaling. In addition, the ligand-binding or activating metal ion Mn2+ does not induce a global conformational change in integrin β8 . It may have only one conformation, that is, an extended, closed conformation, but with high affinity for ligands under physiological conditions, and is, therefore, considered an atypical integrin member. The extended structure and high ligand-binding affinity of integrin αv β8 make it ideal for encountering and binding ligands expressed on an opposing cell or in the extracellular matrix. In this review, we summarize the progress in integrin β8 research with a focus on its distinctive function and structure among integrin members.
Collapse
Affiliation(s)
- Guannan Song
- Department of Life Science, University of Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bing-Hao Luo
- Department of Life Science, University of Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
47
|
Mao D, Lü S, Zhang X, Long M. Mechanically Regulated Outside-In Activation of an I-Domain-Containing Integrin. Biophys J 2020; 119:966-977. [PMID: 32814058 DOI: 10.1016/j.bpj.2020.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022] Open
Abstract
Integrins are heterodimeric transmembrane proteins that mediate cellular adhesion and bidirectional mechanotransductions through their conformational allostery. The allosteric pathway of an I-domain-containing integrin remains unclear because of its complexity and lack of effective experiments. For a typical I-domain-containing integrin αXβ2, molecular dynamics simulations were employed here to investigate the conformational dynamics in the first two steps of outside-in activation, the bindings of both the external and internal ligands. Results showed that the internal ligand binding is a prerequisite to the allosteric transmission from the α- to β-subunits and the exertion of external force to integrin-ligand complex. The opening state of αI domain with downward movement and lower half unfolding of α7-helix ensures the stable intersubunit conformational transmission through external ligand binding first and internal ligand binding later. Reverse binding order induces a, to our knowledge, novel but unstable swingout of β-subunit Hybrid domain with the retained close states of both αI and βI domains. Prebinding of external ligand greatly facilitates the following internal ligand binding and vice versa. These simulations furthered the understanding in the outside-in activation of I-domain-containing integrins from the viewpoint of internal allosteric pathways.
Collapse
Affiliation(s)
- Debin Mao
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiao Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
48
|
Sato T, Ishihara S, Marui R, Takagi J, Katagiri K. Dissection of α 4β 7 integrin regulation by Rap1 using novel conformation-specific monoclonal anti-β 7 antibodies. Sci Rep 2020; 10:13221. [PMID: 32764635 PMCID: PMC7413538 DOI: 10.1038/s41598-020-70111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/20/2020] [Indexed: 11/24/2022] Open
Abstract
Integrin activation is associated with conformational regulation. In this study, we developed a system to evaluate conformational changes in α4β7 integrin. We first inserted the PA tag into the plexin-semaphorin-integrin (PSI) domain of β7 chain, which reacted with an anti-PA tag antibody (NZ-1) in an Mn2+-dependent manner. The small GTPase Rap1 deficiency, as well as chemokine stimulation and the introduction of the active form of Rap1, Rap1V12, enhanced the binding of NZ-1 to the PA-tagged mutant integrin, and increased the binding affinity to mucosal addressing cell adhesion molecule-1 (MAdCAM-1). Furthermore, we generated two kinds of hybridomas producing monoclonal antibodies (mAbs) that recognized Mn2+-dependent epitopes of β7. Both epitopes were exposed to bind to mAbs on the cells by the introduction of Rap1V12. Although one epitope in the PSI domain of β7 was exposed on Rap1-deficienct cells, the other epitope in the hybrid domain of β7 was not. These data indicate that the conversion of Rap1-GDP to GTP exerts two distinct effects stepwise on the conformation of α4β7. The induction of colitis by Rap1-deficient CD4+ effector/memory T cells suggests that the removal of constraining effect by Rap1-GDP on α4β7 is sufficient for homing of these pathogenic T cells into colon lamina propria (LP).
Collapse
Affiliation(s)
- Tsuyoshi Sato
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Sayaka Ishihara
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ryoya Marui
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
49
|
Klug D, Goellner S, Kehrer J, Sattler J, Strauss L, Singer M, Lu C, Springer TA, Frischknecht F. Evolutionarily distant I domains can functionally replace the essential ligand-binding domain of Plasmodium TRAP. eLife 2020; 9:57572. [PMID: 32648541 PMCID: PMC7351488 DOI: 10.7554/elife.57572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/25/2020] [Indexed: 02/02/2023] Open
Abstract
Inserted (I) domains function as ligand-binding domains in adhesins that support cell adhesion and migration in many eukaryotic phyla. These adhesins include integrin αβ heterodimers in metazoans and single subunit transmembrane proteins in apicomplexans such as TRAP in Plasmodium and MIC2 in Toxoplasma. Here we show that the I domain of TRAP is essential for sporozoite gliding motility, mosquito salivary gland invasion and mouse infection. Its replacement with the I domain from Toxoplasma MIC2 fully restores tissue invasion and parasite transmission, while replacement with the aX I domain from human integrins still partially restores liver infection. Mutations around the ligand binding site allowed salivary gland invasion but led to inefficient transmission to the rodent host. These results suggest that apicomplexan parasites appropriated polyspecific I domains in part for their ability to engage with multiple ligands and to provide traction for emigration into diverse organs in distant phyla. Malaria is an infectious disease caused by single-celled parasites known as Plasmodium. Humans and other animals with backbones – such as birds, reptiles and rodents – can become hosts for these parasites if an infected female mosquito feeds on their blood. Likewise, healthy mosquitoes can in turn become infected with Plasmodium if they feed on the blood of an infected animal. To complete their life cycle, Plasmodium parasites within a mosquito must become spore-like cells called sporozoites. These sporozoites are highly mobile and can get into the mosquitoes’ salivary glands, meaning they can be passed on to a new host when the insect feeds. During a mosquito bite the sporozoites are spat into the skin of the potential host, where they then need to migrate rapidly to enter the bloodstream. Once in the blood, the sporozoites can then get into liver cells and begin a new infection. One protein called TRAP, which is found on the surface of the sporozoites, is important for their migration and the infection of the salivary glands or liver. Yet it was not known how this happens at the level of the individual proteins involved. Klug et al. have now tested how a part of the TRAP protein, called the I domain, contributes to the infection process. In the experiments, the I domain of TRAP was deleted which showed that the sporozoites need this domain to be able to move around and get into the host tissues. Without the I domain the sporozoites were stuck and could not successfully infect either the mosquitoes, the livers of mice, or human liver cells grown in the laboratory. Klug et al. then replaced the Plasmodium I domain of TRAP with the I domain from a distantly related parasite called Toxoplasma gondii, which causes a condition known as toxoplasmosis. The I domain from Toxoplasma allowed the Plasmodium parasites to infect the host tissues again. This observation was unexpected because Toxoplasma and Plasmodium parasites have evolved separately over the last 800 million years and Toxoplasma does not infect insects. These findings suggest that the I domain of TRAP evolved to bind several other proteins in different tissues and hosts. Future studies will investigate which other parasite proteins TRAP works with to guide sporozoites to the salivary glands or liver. Knowledge of how these proteins act together may lead to new approaches for treating or preventing malaria. For example, some treatments could stop sporozoites from entering liver cells.
Collapse
Affiliation(s)
- Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Sarah Goellner
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,Department of Molecular Virology, Heidelberg University Medical School, Heidelberg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Léanne Strauss
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, München, Germany
| | - Chafen Lu
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, United States
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, United States
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| |
Collapse
|
50
|
Van Laethem F, Saba I, Lu J, Bhattacharya A, Tai X, Guinter TI, Engelhardt B, Alag A, Rojano M, Ashe JM, Hanada KI, Yang JC, Sun PD, Singer A. Novel MHC-Independent αβTCRs Specific for CD48, CD102, and CD155 Self-Proteins and Their Selection in the Thymus. Front Immunol 2020; 11:1216. [PMID: 32612609 PMCID: PMC7308553 DOI: 10.3389/fimmu.2020.01216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
MHC-independent αβTCRs (TCRs) recognize conformational epitopes on native self-proteins and arise in mice lacking both MHC and CD4/CD8 coreceptor proteins. Although naturally generated in the thymus, these TCRs resemble re-engineered therapeutic chimeric antigen receptor (CAR) T cells in their specificity for MHC-independent ligands. Here we identify naturally arising MHC-independent TCRs reactive to three native self-proteins (CD48, CD102, and CD155) involved in cell adhesion. We report that naturally arising MHC-independent TCRs require high affinity TCR-ligand engagements in the thymus to signal positive selection and that high affinity positive selection generates a peripheral TCR repertoire with limited diversity and increased self-reactivity. We conclude that the affinity of TCR-ligand engagements required to signal positive selection in the thymus inversely determines the diversity and self-tolerance of the mature TCR repertoire that is selected.
Collapse
Affiliation(s)
- François Van Laethem
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Ingrid Saba
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Abhisek Bhattacharya
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Terry I Guinter
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Britta Engelhardt
- Theodor Kocher Institute, Faculty of Bern, Universität Bern, Bern, Switzerland
| | - Amala Alag
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Mirelle Rojano
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jennifer M Ashe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Ken-Ichi Hanada
- Surgery Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - James C Yang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|