1
|
Samer C, McWilliam HEG, McSharry BP, Burchfield JG, Stanton RJ, Rossjohn J, Villadangos JA, Abendroth A, Slobedman B. Impaired endocytosis and accumulation in early endosomal compartments defines herpes simplex virus-mediated disruption of the nonclassical MHC class I-related molecule MR1. J Biol Chem 2024; 300:107748. [PMID: 39260697 DOI: 10.1016/j.jbc.2024.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Presentation of metabolites by the major histocompatibility complex class I-related protein 1 (MR1) molecule to mucosal-associated invariant T cells is impaired during herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections. This is surprising given these viruses do not directly synthesise MR1 ligands. We have previously identified several HSV proteins responsible for rapidly downregulating the intracellular pool of immature MR1, effectively inhibiting new surface antigen presentation, while preexisting ligand-bound mature MR1 is unexpectedly upregulated by HSV-1. Using flow cytometry, immunoblotting, and high-throughput fluorescence microscopy, we demonstrate that the endocytosis of surface MR1 is impaired during HSV infection and that internalized molecules accumulate in EEA1-labeled early endosomes, avoiding degradation. We establish that the short MR1 cytoplasmic tail is not required for HSV-1-mediated downregulation of immature molecules; however it may play a role in the retention of mature molecules on the surface and in early endosomes. We also determine that the HSV-1 US3 protein, the shorter US3.5 kinase and the full-length HSV-2 homolog, all predominantly target mature surface rather than total MR1 levels. We propose that the downregulation of intracellular and cell surface MR1 molecules by US3 and other HSV proteins is an immune-evasive countermeasure to minimize the effect of impaired MR1 endocytosis, which might otherwise render infected cells susceptible to MR1-mediated killing by mucosal-associated invariant T cells.
Collapse
Affiliation(s)
- Carolyn Samer
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian P McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Dentistry and Medical Sciences, Faculty of Science and Health, and Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - James G Burchfield
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Richard J Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK; Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
2
|
Bergeman MH, Velarde K, Hargis HL, Glenn HL, Hogue IB. The Rab6 post-Golgi secretory pathway contributes to herpes simplex virus 1 (HSV-1) egress. J Virol 2024; 98:e0059924. [PMID: 39136459 PMCID: PMC11406995 DOI: 10.1128/jvi.00599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) is an alpha herpesvirus that infects a majority of the world population. The mechanisms and cellular host factors involved in the intracellular transport and exocytosis of HSV-1 particles are not fully understood. To elucidate these late steps in the replication cycle, we developed a live-cell fluorescence microscopy assay of HSV-1 virion intracellular trafficking and exocytosis. This method allows us to track individual virus particles and identify the precise moment and location of particle exocytosis using a pH-sensitive reporter. We show that HSV-1 uses the host cell's post-Golgi secretory pathway during egress. The small GTPase, Rab6, binds to nascent secretory vesicles at the trans-Golgi network and plays important, but non-essential, roles in vesicle traffic and exocytosis at the plasma membrane, therefore making it a useful marker of the Golgi and post-Golgi secretory pathway. We show that HSV-1 particles colocalize with Rab6a in the region of the Golgi, cotraffic with Rab6a to the cell periphery, and undergo exocytosis from Rab6a vesicles. Consistent with previous reports, we find that HSV-1 particles accumulate at preferential egress sites in infected cells. The secretory pathway mediates this preferential/polarized egress, since Rab6a vesicles accumulate near the plasma membrane similarly in uninfected cells. These data suggest that, following particle envelopment, HSV-1 egress follows a pre-existing cellular secretory pathway to exit infected cells rather than novel, virus-induced mechanisms. IMPORTANCE Herpes simplex virus 1 (HSV-1) infects a majority of people. It establishes a life-long latent infection and occasionally reactivates, typically causing characteristic oral or genital lesions. Rarely in healthy natural hosts, but more commonly in zoonotic infections and in elderly, newborn, or immunocompromised patients, HSV-1 can cause severe herpes encephalitis. The precise cellular mechanisms used by HSV-1 remain an important area of research. In particular, the egress pathways that newly assembled virus particles use to exit from infected cells are unclear. In this study, we used fluorescence microscopy to visualize individual virus particles exiting from cells and found that HSV-1 particles use the pre-existing cellular secretory pathway.
Collapse
Affiliation(s)
- Melissa H Bergeman
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kimberly Velarde
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Hailee L Hargis
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Honor L Glenn
- Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ian B Hogue
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Bergner T, Cortez Rayas L, Freimann G, Read C, von Einem J. Secondary Envelopment of Human Cytomegalovirus Is a Fast Process Utilizing the Endocytic Compartment as a Major Membrane Source. Biomolecules 2024; 14:1149. [PMID: 39334915 PMCID: PMC11430300 DOI: 10.3390/biom14091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Secondary envelopment of the human cytomegalovirus (HCMV) is a critical but not well-understood process that takes place at the cytoplasmic viral assembly complex (cVAC) where nucleocapsids acquire their envelope by budding into cellular membranes containing viral glycoproteins. Previous studies presented controversial results regarding the composition of the viral envelope, suggesting trans-Golgi and endosomal origins, as well as intersections with the exosomal and endocytic pathways. Here, we investigated the role of endocytic membranes for the secondary envelopment of HCMV by using wheat germ agglutinin (WGA) pulse labeling to label glycoproteins at the plasma membrane and to follow their trafficking during HCMV infection by light microscopy and transmission electron microscopy (TEM). WGA labeled different membrane compartments within the cVAC, including early endosomes, multivesicular bodies, trans-Golgi, and recycling endosomes. Furthermore, TEM analysis showed that almost 90% of capsids undergoing secondary envelopment and 50% of enveloped capsids were WGA-positive within 90 min. Our data reveal extensive remodeling of the endocytic compartment in the late stage of HCMV infection, where the endocytic compartment provides an optimized environment for virion morphogenesis and serves as the primary membrane source for secondary envelopment. Furthermore, we show that secondary envelopment is a rapid process in which endocytosed membranes are transported from the plasma membrane to the cVAC within minutes to be utilized by capsids for envelopment.
Collapse
Affiliation(s)
- Tim Bergner
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Laura Cortez Rayas
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Gesa Freimann
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| |
Collapse
|
4
|
Ma Y, Zhou Z, Luo T, Meng Q, Wang H, Li X, Gu W, Zhou J, Meng Q. Rab7 GTPase, a direct target of miR-131-3p, limits intracellular Spiroplasma eriocheiris infection by modulating phagocytosis. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109879. [PMID: 39244074 DOI: 10.1016/j.fsi.2024.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Spiroplasma eriocheiris is a kind of intracellular pathogen without cell wall and the causative agent of Chinese mitten crab Eriocheir sinensis "tremor disease", which causes significant economic losses in the crustacean aquaculture. However, little is known about the intracellular transport of this pathogen and host innate immune response to this pathogen. Rab GTPases are key regulators for endocytosis and intracellular pathogen trafficking. In this study, we showed that S. eriocheiris infection upregulated the transcription of Rab7 through the downregulation of miR-131-3p. Subsequently, both hemocytes transfected with miR-131-3p mimics and hemocytes derived from Rab7 knockdown crabs exhibited reduced phagocytic activities and increased susceptibility to S. eriocheiris infection. Additionally, Rab7 could interact with the cell shape-determining protein MreB3 of S. eriocheiris, and its overexpression promoted S. eriocheiris internalization and fusion with lysosomes, thereby limiting S. eriocheiris replication in Drosophila S2 cells. Overall, these results demonstrated that Rab7 facilitated host cell phagocytosis and interacted with MreB3 of S. eriocheiris to prevent S. eriocheiris infection. Moreover, miR-131-3p was identified as a negative regulator of this process through its targeting of Rab7. Therefore, targeting miR-131-3p might be an effective strategy for controlling S. eriocheiris in crab aquaculture.
Collapse
Affiliation(s)
- Yubo Ma
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Zijie Zhou
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Tingyi Luo
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Qian Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Hui Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
5
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
6
|
White S, Roller R. Herpes simplex virus type-1 cVAC formation in neuronal cells is mediated by dynein motor function and glycoprotein retrieval from the plasma membrane. J Virol 2024; 98:e0071324. [PMID: 38899931 PMCID: PMC11265375 DOI: 10.1128/jvi.00713-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Herpesvirus assembly requires the cytoplasmic association of large macromolecular and membrane structures that derive from both the nucleus and cytoplasmic membrane systems. Results from the study of human cytomegalovirus (HCMV) in cells where it organizes a perinuclear cytoplasmic virus assembly compartment (cVAC) show a clear requirement for the minus-end-directed microtubule motor, dynein, for virus assembly. In contrast, the assembly of herpes simplex virus -1 (HSV-1) in epithelial cells where it forms multiple dispersed, peripheral assembly sites is only mildly inhibited by the microtubule-depolymerizing agent, nocodazole. Here, we make use of a neuronal cell line system in which HSV-1 forms a single cVAC and show that dynein and its co-factor dynactin localize to the cVAC, and dynactin is associated with membranes that contain the virion tegument protein pUL11. We also show that the virus membrane-associated structural proteins pUL51 and the viral envelope glycoprotein gE arrive at the cVAC by different routes. Specifically, gE arrives at the cVAC after retrieval from the plasma membrane, suggesting the need for an intact retrograde transport system. Finally, we demonstrate that inhibition of dynactin function profoundly inhibits cVAC formation and virus production during the cytoplasmic assembly phase of infection.IMPORTANCEMany viruses reorganize cytoplasmic membrane systems and macromolecular transport systems to promote the production of progeny virions. Clarifying the mechanisms by which they accomplish this may reveal novel therapeutic strategies and illustrate mechanisms that are critical for normal cellular organization. Here, we explore the mechanism by which HSV-1 moves macromolecular and membrane cargo to generate a virus assembly compartment in the infected cell. We find that the virus makes use of a well-characterized, microtubule-based transport system that is stabilized against drugs that disrupt microtubules.
Collapse
Affiliation(s)
- Shaowen White
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Richard Roller
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Liang DG, Guo YK, Zhao SB, Yang GY, Han YQ, Chu BB, Ming SL. Pseudorabies virus hijacks the Rab6 protein to promote viral assembly and egress. Vet Res 2024; 55:68. [PMID: 38807225 PMCID: PMC11134627 DOI: 10.1186/s13567-024-01328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.
Collapse
Affiliation(s)
- Dong-Ge Liang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Yu-Kun Guo
- Animal Diseases and Public Health Engineering Research Center of Henan Province, College of Food and Drugs, Luoyang Polytechnic, Luoyang, 471023, Henan, China
| | - Shi-Bo Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Ying-Qian Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Longhu Advanced Immunization Laboratory, Zhengzhou, 450046, Henan, China.
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, Henan, China.
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
8
|
Zhang YN, Wang SM, Ren XR, Duan QY, Chen LH. The transmembrane and cytosolic domains of equine herpesvirus type 1 glycoprotein D determine Golgi retention by regulating vesicle formation. Biochem Biophys Res Commun 2024; 702:149654. [PMID: 38340657 DOI: 10.1016/j.bbrc.2024.149654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Accumulating evidence underscores the pivotal role of envelope proteins in viral secondary envelopment. However, the intricate molecular mechanisms governing this phenomenon remain elusive. To shed light on these mechanisms, we investigated a Golgi-retained gD of EHV-1 (gDEHV-1), distinguishing it from its counterparts in Herpes Simplex Virus-1 (HSV-1) and Pseudorabies Virus (PRV). To unravel the specific sequences responsible for the Golgi retention phenotype, we employed a gene truncation and replacement strategy. The results suggested that Golgi retention signals in gDEHV-1 exhibiting a multi-domain character. The extracellular domain of gDEHV-1 was identified as an endoplasmic reticulum (ER)-resident domain, the transmembrane domain and cytoplasmic tail (TM-CT) of gDEHV-1 were integral in facilitating the protein's residence within the Golgi complex. Deletion or replacement of either of these dual domains consistently resulted in the mutant gDEHV-1 being retained in an ER-like structure. Moreover, (TM-CT)EHV-1 demonstrated a preference for binding to endomembranes, inducing the generation of a substantial number of vesicles, potentially originate from the Golgi complex or the ER-Golgi intermediate compartment. In conclusion, our findings provide insights into the intricate molecular mechanisms governing the Golgi retention of gDEHV-1, facilitating the comprehension of the processes underlying viral secondary envelopment.
Collapse
Affiliation(s)
- Yan-Nan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 10083, People's Republic of China.
| | - Shi-Min Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China.
| | - Xin-Rong Ren
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China.
| | - Qi-Ying Duan
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China.
| | - Lin-Hui Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China.
| |
Collapse
|
9
|
Bergeman MH, Hernandez MQ, Diefenderfer J, Drewes JA, Velarde K, Tierney WM, Enow JA, Glenn HL, Rahman MM, Hogue IB. Individual herpes simplex virus 1 (HSV-1) particles exit by exocytosis and accumulate at preferential egress sites. J Virol 2024; 98:e0178523. [PMID: 38193690 PMCID: PMC10883806 DOI: 10.1128/jvi.01785-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/10/2024] Open
Abstract
The human pathogen herpes simplex virus 1 (HSV-1) produces a lifelong infection in the majority of the world's population. While the generalities of alpha herpesvirus assembly and egress pathways are known, the precise molecular and spatiotemporal details remain unclear. In order to study this aspect of HSV-1 infection, we engineered a recombinant HSV-1 strain expressing a pH-sensitive reporter, gM-pHluorin. Using a variety of fluorescent microscopy modalities, we can detect individual virus particles undergoing intracellular transport and exocytosis at the plasma membrane. We show that particles exit from epithelial cells individually, not bulk release of many particles at once, as has been reported for other viruses. In multiple cell types, HSV-1 particles accumulate over time at the cell periphery and cell-cell contacts. We show that this accumulation effect is the result of individual particles undergoing exocytosis at preferential sites and that these egress sites can contribute to cell-cell spread. We also show that the viral membrane proteins gE, gI, and US9, which have important functions in intracellular transport in neurons, are not required for preferential egress and clustering in non-neuronal cells. Importantly, by comparing HSV-1 to a related alpha herpesvirus, pseudorabies virus, we show that this preferential exocytosis and clustering effect are cell type dependent, not virus dependent. This preferential egress and clustering appear to be the result of the arrangement of the microtubule cytoskeleton, as virus particles co-accumulate at the same cell protrusions as an exogenous plus end-directed kinesin motor.IMPORTANCEAlpha herpesviruses produce lifelong infections in their human and animal hosts. The majority of people in the world are infected with herpes simplex virus 1 (HSV-1), which typically causes recurrent oral or genital lesions. However, HSV-1 can also spread to the central nervous system, causing severe encephalitis, and might also contribute to the development of neurodegenerative diseases. Many of the steps of how these viruses infect and replicate inside host cells are known in depth, but the final step, exiting from the infected cell, is not fully understood. In this study, we engineered a novel variant of HSV-1 that allows us to visualize how individual virus particles exit from infected cells. With this imaging assay, we investigated preferential egress site formation in certain cell types and their contribution to the cell-cell spread of HSV-1.
Collapse
Affiliation(s)
- Melissa H. Bergeman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Michaella Q. Hernandez
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | | | - Jake A. Drewes
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kimberly Velarde
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Wesley M. Tierney
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Junior A. Enow
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Honor L. Glenn
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Masmudur M. Rahman
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ian B. Hogue
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
10
|
Bergeman MH, Velarde K, Glenn HL, Hogue IB. Herpes Simplex Virus 1 (HSV-1) Uses the Rab6 Post-Golgi Secretory Pathway For Viral Egress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571414. [PMID: 38168379 PMCID: PMC10760111 DOI: 10.1101/2023.12.13.571414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Herpes Simplex Virus 1 (HSV-1) is an alpha herpesvirus that infects a majority of the world population. The mechanisms and cellular host factors involved in the intracellular transport and exocytosis of HSV-1 particles are not fully understood. To elucidate these late steps in the replication cycle, we developed a live-cell fluorescence microscopy assay of HSV-1 virion intracellular trafficking and exocytosis. This method allows us to track individual virus particles, and identify the precise moment and location of particle exocytosis using a pH-sensitive reporter. We show that HSV-1 uses the host Rab6 post-Golgi secretory pathway during egress. The small GTPase, Rab6, binds to nascent secretory vesicles at the trans-Golgi network and regulates vesicle trafficking and exocytosis at the plasma membrane. HSV-1 particles colocalize with Rab6a in the region of the Golgi, cotraffic with Rab6a to the cell periphery, and undergo exocytosis from Rab6a vesicles. Consistent with previous reports, we find that HSV-1 particles accumulate at preferential egress sites in infected cells. The Rab6a secretory pathway mediates this preferential/polarized egress, since Rab6a vesicles accumulate near the plasma membrane similarly in uninfected cells. These data suggest that, following particle envelopment, HSV-1 egress follows a pre-existing cellular secretory pathway to exit infected cells rather than novel, virus-induced mechanisms.
Collapse
Affiliation(s)
- Melissa H. Bergeman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Kimberly Velarde
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Honor L. Glenn
- Center for Structural Discovery, Biodesign Institute, Arizona State University
| | - Ian B. Hogue
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
11
|
Tan WS, Rong E, Dry I, Lillico SG, Law A, Digard P, Whitelaw B, Dalziel RG. GARP and EARP are required for efficient BoHV-1 replication as identified by a genome wide CRISPR knockout screen. PLoS Pathog 2023; 19:e1011822. [PMID: 38055775 PMCID: PMC10727446 DOI: 10.1371/journal.ppat.1011822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
The advances in gene editing bring unprecedented opportunities in high throughput functional genomics to animal research. Here we describe a genome wide CRISPR knockout library, btCRISPRko.v1, targeting all protein coding genes in the cattle genome. Using it, we conducted genome wide screens during Bovine Herpes Virus type 1 (BoHV-1) replication and compiled a list of pro-viral and anti-viral candidates. These candidates might influence multiple aspects of BoHV-1 biology such as viral entry, genome replication and transcription, viral protein trafficking and virion maturation in the cytoplasm. Some of the most intriguing examples are VPS51, VPS52 and VPS53 that code for subunits of two membrane tethering complexes, the endosome-associated recycling protein (EARP) complex and the Golgi-associated retrograde protein (GARP) complex. These complexes mediate endosomal recycling and retrograde trafficking to the trans Golgi Network (TGN). Simultaneous loss of both complexes in MDBKs resulted in greatly reduced production of infectious BoHV-1 virions. We also found that viruses released by these deficient cells severely lack VP8, the most abundant tegument protein of BoHV-1 that are crucial for its virulence. In combination with previous reports, our data suggest vital roles GARP and EARP play during viral protein packaging and capsid re-envelopment in the cytoplasm. It also contributes to evidence that both the TGN and the recycling endosomes are recruited in this process, mediated by these complexes. The btCRISPRko.v1 library generated here has been controlled for quality and shown to be effective in host gene discovery. We hope it will facilitate efforts in the study of other pathogens and various aspects of cell biology in cattle.
Collapse
Affiliation(s)
- Wenfang S. Tan
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Enguang Rong
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Inga Dry
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Simon G. Lillico
- Division of Functional Genetics and Development, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andy Law
- Division of Genetics and Genomics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Paul Digard
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Bruce Whitelaw
- Division of Functional Genetics and Development, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Robert G. Dalziel
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
12
|
Teixeira SC, Teixeira TL, Tavares PCB, Alves RN, da Silva AA, Borges BC, Martins FA, Dos Santos MA, de Castilhos P, E Silva Brígido RT, Notário AFO, Silveira ACA, da Silva CV. Subversion strategies of lysosomal killing by intracellular pathogens. Microbiol Res 2023; 277:127503. [PMID: 37748260 DOI: 10.1016/j.micres.2023.127503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Thaise Lara Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Aline Alves da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Flávia Alves Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marlus Alves Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Patrícia de Castilhos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | - Claudio Vieira da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
13
|
Wang C, Chen Y, Hu S, Liu X. Insights into the function of ESCRT and its role in enveloped virus infection. Front Microbiol 2023; 14:1261651. [PMID: 37869652 PMCID: PMC10587442 DOI: 10.3389/fmicb.2023.1261651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is an essential molecular machinery in eukaryotic cells that facilitates the invagination of endosomal membranes, leading to the formation of multivesicular bodies (MVBs). It participates in various cellular processes, including lipid bilayer remodeling, cytoplasmic separation, autophagy, membrane fission and re-modeling, plasma membrane repair, as well as the invasion, budding, and release of certain enveloped viruses. The ESCRT complex consists of five complexes, ESCRT-0 to ESCRT-III and VPS4, along with several accessory proteins. ESCRT-0 to ESCRT-II form soluble complexes that shuttle between the cytoplasm and membranes, mainly responsible for recruiting and transporting membrane proteins and viral particles, as well as recruiting ESCRT-III for membrane neck scission. ESCRT-III, a soluble monomer, directly participates in vesicle scission and release, while VPS4 hydrolyzes ATP to provide energy for ESCRT-III complex disassembly, enabling recycling. Studies have confirmed the hijacking of ESCRT complexes by enveloped viruses to facilitate their entry, replication, and budding. Recent research has focused on the interaction between various components of the ESCRT complex and different viruses. In this review, we discuss how different viruses hijack specific ESCRT regulatory proteins to impact the viral life cycle, aiming to explore commonalities in the interaction between viruses and the ESCRT system.
Collapse
Affiliation(s)
- Chunxuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Bergeman MH, Hernandez MQ, Diefenderfer J, Drewes JA, Velarde K, Tierney WM, Enow JA, Glenn HL, Rahman MM, Hogue IB. LIVE-CELL FLUORESCENCE MICROSCOPY OF HSV-1 CELLULAR EGRESS BY EXOCYTOSIS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530373. [PMID: 36909512 PMCID: PMC10002666 DOI: 10.1101/2023.02.27.530373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The human pathogen Herpes Simplex Virus 1 (HSV-1) produces a lifelong infection in the majority of the world's population. While the generalities of alpha herpesvirus assembly and egress pathways are known, the precise molecular and spatiotemporal details remain unclear. In order to study this aspect of HSV-1 infection, we engineered a recombinant HSV-1 strain expressing a pH-sensitive reporter, gM-pHluorin. Using a variety of fluorescent microscopy modalities, we can detect individual virus particles undergoing intracellular transport and exocytosis at the plasma membrane. We show that particles exit from epithelial cells individually, not bulk release of many particles at once, as has been reported for other viruses. In multiple cell types, HSV-1 particles accumulate over time at the cell periphery and cell-cell contacts. We show that this accumulation effect is the result of individual particles undergoing exocytosis at preferential sites and that these egress sites can contribute to cell-cell spread. We also show that the viral membrane proteins gE, gI, and US9, which have important functions in intracellular transport in neurons, are not required for preferential egress and clustering in non-neuronal cells. Importantly, by comparing HSV-1 to a related alpha herpesvirus, pseudorabies virus, we show that this preferential exocytosis and clustering effect is cell type-dependent, not virus dependent. This preferential egress and clustering appears to be the result of the arrangement of the microtubule cytoskeleton, as virus particles co-accumulate at the same cell protrusions as an exogenous plus end-directed kinesin motor.
Collapse
Affiliation(s)
- Melissa H Bergeman
- ASU-Banner Neurodegenerative Research Center, Arizona State University, Tempe, Arizona, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Michaella Q Hernandez
- ASU-Banner Neurodegenerative Research Center, Arizona State University, Tempe, Arizona, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Jenna Diefenderfer
- ASU-Banner Neurodegenerative Research Center, Arizona State University, Tempe, Arizona, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Jake A Drewes
- ASU-Banner Neurodegenerative Research Center, Arizona State University, Tempe, Arizona, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Kimberly Velarde
- ASU-Banner Neurodegenerative Research Center, Arizona State University, Tempe, Arizona, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Wesley M Tierney
- ASU-Banner Neurodegenerative Research Center, Arizona State University, Tempe, Arizona, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Junior A Enow
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Honor L Glenn
- Biodesign Center for Structural Discovery, Arizona State University, Tempe, Arizona, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Masmudur M Rahman
- Biodesign Center for Structural Discovery, Arizona State University, Tempe, Arizona, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Ian B Hogue
- ASU-Banner Neurodegenerative Research Center, Arizona State University, Tempe, Arizona, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| |
Collapse
|
15
|
Chen XN, Liang YF, Weng ZJ, Quan WP, Hu C, Peng YZ, Sun YS, Gao Q, Huang Z, Zhang GH, Gong L. Porcine Enteric Alphacoronavirus Entry through Multiple Pathways (Caveolae, Clathrin, and Macropinocytosis) Requires Rab GTPases for Endosomal Transport. J Virol 2023; 97:e0021023. [PMID: 36975780 PMCID: PMC10134835 DOI: 10.1128/jvi.00210-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Porcine enteric alphacoronavirus (PEAV) is a new bat HKU2-like porcine coronavirus, and its endemic outbreak has caused severe economic losses to the pig industry. Its broad cellular tropism suggests a potential risk of cross-species transmission. A limited understanding of PEAV entry mechanisms may hinder a rapid response to potential outbreaks. This study analyzed PEAV entry events using chemical inhibitors, RNA interference, and dominant-negative mutants. PEAV entry into Vero cells depended on three endocytic pathways: caveolae, clathrin, and macropinocytosis. Endocytosis requires dynamin, cholesterol, and a low pH. Rab5, Rab7, and Rab9 GTPases (but not Rab11) regulate PEAV endocytosis. PEAV particles colocalize with EEA1, Rab5, Rab7, Rab9, and Lamp-1, suggesting that PEAV translocates into early endosomes after internalization, and Rab5, Rab7, and Rab9 regulate trafficking to lysosomes before viral genome release. PEAV enters porcine intestinal cells (IPI-2I) through the same endocytic pathway, suggesting that PEAV may enter various cells through multiple endocytic pathways. This study provides new insights into the PEAV life cycle. IMPORTANCE Emerging and reemerging coronaviruses cause severe human and animal epidemics worldwide. PEAV is the first bat-like coronavirus to cause infection in domestic animals. However, the PEAV entry mechanism into host cells remains unknown. This study demonstrates that PEAV enters into Vero or IPI-2I cells through caveola/clathrin-mediated endocytosis and macropinocytosis, which does not require a specific receptor. Subsequently, Rab5, Rab7, and Rab9 regulate PEAV trafficking from early endosomes to lysosomes, which is pH dependent. The results advance our understanding of the disease and help to develop potential new drug targets against PEAV.
Collapse
Affiliation(s)
- Xiong-nan Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Yi-fan Liang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Zhi-jun Weng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Wei-peng Quan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People’s Republic of China
| | - Chen Hu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yun-zhao Peng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People’s Republic of China
| | - Ying-shuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Qi Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Zhao Huang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Gui-hong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People’s Republic of China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People’s Republic of China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
16
|
Fukushi N, Badr Y, Fukushi H. The N-terminal glycine of EHV-1 UL11 is essential for the localization of UL11 and EHV-1 replication in cultured cells. J Gen Virol 2023; 104. [PMID: 36748631 DOI: 10.1099/jgv.0.001798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Equine herpesvirus type 1 (EHV-1) UL11 is a 74-amino-acid (aa) protein encoded by ORF51. UL11 is modified by acylation including myristoylation and palmitoylation. Myristoylation of EHV-1 UL11 is assumed to occur on the N-terminal glycine, while palmitoylation is assumed to occur on the seventh and ninth cysteines. ORF51, which encodes the first 24 aa, overlaps ORF50 encoding UL12. We previously demonstrated that UL11 was essential for EHV-1 replication in cultured cells and that UL11 was localized at the Golgi apparatus where herpesviruses obtain their final envelope. It is unclear whether the acylation is related to the localization of EHV-1 UL11 and viral replication. In this study, we investigated the role of UL11 acylation in the intracellular localization and viral growth and replication of EHV-1. We constructed seven UL11 acylation mutant plasmids and seven UL11 acylation mutant BAC DNAs; then, we analysed the localizations of the mutant UL11s and attempted virus rescue. We found that both the N-terminal glycine and the seventh or ninth cysteine, especially N-terminal glycine, were involved in the localization of UL11 and viral replication. Taken together, these results suggest that EHV-1 viral growth requires that UL11 is modified by myristoylation of an N-terminal glycine and by palmitoylation of at least one of the cysteines, and that UL11 is localized at the Golgi apparatus. This study shows that a single amino acid in EHV-1 can determine the fate of viral replication.
Collapse
Affiliation(s)
- Noriko Fukushi
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yassien Badr
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Animal Medicine (Branch of Infectious Disease), Faculty of Veterinary Medicine, Damanhour University, El-Beheira 2251, Egypt
| | - Hideto Fukushi
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
17
|
Chen JH, Vanslembrouck B, Ekman A, Aho V, Larabell CA, Le Gros MA, Vihinen-Ranta M, Weinhardt V. Soft X-ray Tomography Reveals HSV-1-Induced Remodeling of Human B Cells. Viruses 2022; 14:2651. [PMID: 36560654 PMCID: PMC9781670 DOI: 10.3390/v14122651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Upon infection, viruses hijack the cell machinery and remodel host cell structures to utilize them for viral proliferation. Since viruses are about a thousand times smaller than their host cells, imaging virus-host interactions at high spatial resolution is like looking for a needle in a haystack. Scouting gross cellular changes with fluorescent microscopy is only possible for well-established viruses, where fluorescent tagging is developed. Soft X-ray tomography (SXT) offers 3D imaging of entire cells without the need for chemical fixation or labeling. Here, we use full-rotation SXT to visualize entire human B cells infected by the herpes simplex virus 1 (HSV-1). We have mapped the temporospatial remodeling of cells during the infection and observed changes in cellular structures, such as the presence of cytoplasmic stress granules and multivesicular structures, formation of nuclear virus-induced dense bodies, and aggregates of capsids. Our results demonstrate the power of SXT imaging for scouting virus-induced changes in infected cells and understanding the orchestration of virus-host remodeling quantitatively.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vesa Aho
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mark A. Le Gros
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Sengupta R, Mihelc EM, Angel S, Lanman JK, Kuhn RJ, Stahelin RV. Contribution of the Golgi apparatus in morphogenesis of a virus-induced cytopathic vacuolar system. Life Sci Alliance 2022; 5:5/10/e202000887. [PMID: 36137747 PMCID: PMC9500387 DOI: 10.26508/lsa.202000887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Electron tomography reveals four classes of cytopathic vesicles-II (CPV-II) stemming from the host Golgi apparatus after Venezuelan equine encephalitis virus infection. The Golgi apparatus (GA) in mammalian cells is pericentrosomally anchored and exhibits a stacked architecture. During infections by members of the alphavirus genus, the host cell GA is thought to give rise to distinct mobile pleomorphic vacuoles known as CPV-II (cytopathic vesicle-II) via unknown morphological steps. To dissect this, we adopted a phased electron tomography approach to image multiple overlapping volumes of a cell infected with Venezuelan equine encephalitis virus (VEEV) and complemented it with localization of a peroxidase-tagged Golgi marker. Analysis of the tomograms revealed a pattern of progressive cisternal bending into double-lamellar vesicles as a central process underpinning the biogenesis and the morphological complexity of this vacuolar system. Here, we propose a model for the conversion of the GA to CPV-II that reveals a unique pathway of intracellular virus envelopment. Our results have implications for alphavirus-induced displacement of Golgi cisternae to the plasma membrane to aid viral egress operating late in the infection cycle.
Collapse
Affiliation(s)
- Ranjan Sengupta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA .,Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Elaine M Mihelc
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Stephanie Angel
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Jason K Lanman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA .,The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
19
|
Abstract
Herpesviruses—ubiquitous pathogens that cause persistent infections—have some of the most complex cell entry mechanisms. Entry of the prototypical herpes simplex virus 1 (HSV-1) requires coordinated efforts of 4 glycoproteins, gB, gD, gH, and gL. The current model posits that the glycoproteins do not interact before receptor engagement and that binding of gD to its receptor causes a “cascade” of sequential pairwise interactions, first activating the gH/gL complex and subsequently activating gB, the viral fusogen. But how these glycoproteins interact remains unresolved. Here, using a quantitative split-luciferase approach, we show that pairwise HSV-1 glycoprotein complexes form before fusion, interact at a steady level throughout fusion, and do not depend on the presence of the cellular receptor. Based on our findings, we propose a revised “conformational cascade” model of HSV-1 entry. We hypothesize that all 4 glycoproteins assemble into a complex before fusion, with gH/gL positioned between gD and gB. Once gD binds to a cognate receptor, the proximity of the glycoproteins within this complex allows for efficient transmission of the activating signal from the receptor-activated gD to gH/gL to gB through sequential conformational changes, ultimately triggering the fusogenic refolding of gB. Our results also highlight previously unappreciated contributions of the transmembrane and cytoplasmic domains to glycoprotein interactions and fusion. Similar principles could be at play in other multicomponent viral entry systems, and the split-luciferase approach used here is a powerful tool for investigating protein-protein interactions in these and a variety of other systems.
Collapse
|
20
|
Cook KC, Tsopurashvili E, Needham JM, Thompson SR, Cristea IM. Restructured membrane contacts rewire organelles for human cytomegalovirus infection. Nat Commun 2022; 13:4720. [PMID: 35953480 PMCID: PMC9366835 DOI: 10.1038/s41467-022-32488-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/30/2022] [Indexed: 12/24/2022] Open
Abstract
Membrane contact sites (MCSs) link organelles to coordinate cellular functions across space and time. Although viruses remodel organelles for their replication cycles, MCSs remain largely unexplored during infections. Here, we design a targeted proteomics platform for measuring MCS proteins at all organelles simultaneously and define functional virus-driven MCS alterations by the ancient beta-herpesvirus human cytomegalovirus (HCMV). Integration with super-resolution microscopy and comparisons to herpes simplex virus (HSV-1), Influenza A, and beta-coronavirus HCoV-OC43 infections reveals time-sensitive contact regulation that allows switching anti- to pro-viral organelle functions. We uncover a stabilized mitochondria-ER encapsulation structure (MENC). As HCMV infection progresses, MENCs become the predominant mitochondria-ER contact phenotype and sequentially recruit the tethering partners VAP-B and PTPIP51, supporting virus production. However, premature ER-mitochondria tethering activates STING and interferon response, priming cells against infection. At peroxisomes, ACBD5-mediated ER contacts balance peroxisome proliferation versus membrane expansion, with ACBD5 impacting the titers of each virus tested.
Collapse
Affiliation(s)
- Katelyn C Cook
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, US
| | - Elene Tsopurashvili
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, US
| | - Jason M Needham
- Department of Microbiology, University of Alabama Birmingham, Birmingham, AL, 35294, US
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama Birmingham, Birmingham, AL, 35294, US
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, US.
| |
Collapse
|
21
|
Flomm FJ, Soh TK, Schneider C, Wedemann L, Britt HM, Thalassinos K, Pfitzner S, Reimer R, Grünewald K, Bosse JB. Intermittent bulk release of human cytomegalovirus. PLoS Pathog 2022; 18:e1010575. [PMID: 35925870 PMCID: PMC9352052 DOI: 10.1371/journal.ppat.1010575] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/06/2022] [Indexed: 01/24/2023] Open
Abstract
Human Cytomegalovirus (HCMV) can infect a variety of cell types by using virions of varying glycoprotein compositions. It is still unclear how this diversity is generated, but spatio-temporally separated envelopment and egress pathways might play a role. So far, one egress pathway has been described in which HCMV particles are individually enveloped into small vesicles and are subsequently exocytosed continuously. However, some studies have also found enveloped virus particles inside multivesicular structures but could not link them to productive egress or degradation pathways. We used a novel 3D-CLEM workflow allowing us to investigate these structures in HCMV morphogenesis and egress at high spatio-temporal resolution. We found that multiple envelopment events occurred at individual vesicles leading to multiviral bodies (MViBs), which subsequently traversed the cytoplasm to release virions as intermittent bulk pulses at the plasma membrane to form extracellular virus accumulations (EVAs). Our data support the existence of a novel bona fide HCMV egress pathway, which opens the gate to evaluate divergent egress pathways in generating virion diversity.
Collapse
Affiliation(s)
- Felix J. Flomm
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
| | - Timothy K. Soh
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
| | | | - Linda Wedemann
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
| | - Hannah M. Britt
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | | | | | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- University of Hamburg, Department of Chemistry, Hamburg, Germany
| | - Jens B. Bosse
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
22
|
Wise EL, Samolej J, Elliott G. Herpes Simplex Virus 1 Expressing GFP-Tagged Virion Host Shutoff (vhs) Protein Uncouples the Activities of RNA Degradation and Differential Nuclear Retention of the Virus Transcriptome. J Virol 2022; 96:e0192621. [PMID: 35758691 PMCID: PMC9327678 DOI: 10.1128/jvi.01926-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virion host shutoff (vhs) protein is an endoribonuclease encoded by herpes simplex virus 1 (HSV1). vhs causes several changes to the infected cell environment that favor the translation of late (L) virus proteins: cellular mRNAs are degraded, immediate early (IE) and early (E) viral transcripts are sequestered in the nucleus with polyA binding protein (PABPC1), and dsRNA is degraded to help dampen the PKR-dependent stress response. To further our understanding of the cell biology of vhs, we constructed a virus expressing vhs tagged at its C terminus with GFP. When first expressed, vhs-GFP localized to juxtanuclear clusters, and later it colocalized and interacted with its binding partner VP16, and was packaged into virions. Despite vhs-GFP maintaining activity when expressed in isolation, it failed to degrade mRNA or relocalise PABPC1 during infection, while viral transcript levels were similar to those seen for a vhs knockout virus. PKR phosphorylation was also enhanced in vhs-GFP infected cells, which is in line with a failure to degrade dsRNA. Nonetheless, mRNA FISH revealed that as in Wt but not Dvhs infection, IE and E, but not L transcripts were retained in the nucleus of vhs-GFP infected cells at late times. These results revealed that the vhs-induced nuclear retention of IE and E transcripts was dependent on vhs expression but not on its endoribonuclease activity, uncoupling these two functions of vhs. IMPORTANCE Like many viruses, herpes simplex virus 1 (HSV1) expresses an endoribonuclease, the virion host shutoff (vhs) protein, which regulates the RNA environment of the infected cell and facilitates the classical cascade of virus protein translation. It does this by causing the degradation of some mRNA molecules and the nuclear retention of others. Here, we describe a virus expressing vhs tagged at its C terminus with a green fluorescent protein (GFP) and show that the vhs-GFP fusion protein retains the physical properties of native vhs but does not induce the degradation of mRNA. Nonetheless, vhs-GFP maintains the ability to trap the early virus transcriptome in the nucleus to favor late protein translation, proving for the first time that mRNA degradation is not a prerequisite for vhs effects on the nuclear transcriptome. This virus, therefore, has uncoupled the nuclear retention and degradation activities of vhs, providing a new understanding of vhs during infection.
Collapse
Affiliation(s)
- Emma L. Wise
- Section of Virology, Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surreygrid.5475.3, Guildford, Surrey, United Kingdom
| | - Jerzy Samolej
- Section of Virology, Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surreygrid.5475.3, Guildford, Surrey, United Kingdom
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surreygrid.5475.3, Guildford, Surrey, United Kingdom
| |
Collapse
|
23
|
Nahas KL, Connor V, Scherer KM, Kaminski CF, Harkiolaki M, Crump CM, Graham SC. Near-native state imaging by cryo-soft-X-ray tomography reveals remodelling of multiple cellular organelles during HSV-1 infection. PLoS Pathog 2022; 18:e1010629. [PMID: 35797345 PMCID: PMC9262197 DOI: 10.1371/journal.ppat.1010629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a large, enveloped DNA virus and its assembly in the cell is a complex multi-step process during which viral particles interact with numerous cellular compartments such as the nucleus and organelles of the secretory pathway. Transmission electron microscopy and fluorescence microscopy are commonly used to study HSV-1 infection. However, 2D imaging limits our understanding of the 3D geometric changes to cellular compartments that accompany infection and sample processing can introduce morphological artefacts that complicate interpretation. In this study, we used soft X-ray tomography to observe differences in whole-cell architecture between HSV-1 infected and uninfected cells. To protect the near-native structure of cellular compartments we used a non-disruptive sample preparation technique involving rapid cryopreservation, and a fluorescent reporter virus was used to facilitate correlation of structural changes with the stage of infection in individual cells. We observed viral capsids and assembly intermediates interacting with nuclear and cytoplasmic membranes. Additionally, we observed differences in the morphology of specific organelles between uninfected and infected cells. The local concentration of cytoplasmic vesicles at the juxtanuclear compartment increased and their mean width decreased as infection proceeded, and lipid droplets transiently increased in size. Furthermore, mitochondria in infected cells were elongated and highly branched, suggesting that HSV-1 infection alters the dynamics of mitochondrial fission/fusion. Our results demonstrate that high-resolution 3D images of cellular compartments can be captured in a near-native state using soft X-ray tomography and have revealed that infection causes striking changes to the morphology of intracellular organelles.
Collapse
Affiliation(s)
- Kamal L. Nahas
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Beamline B24, Diamond Light Source, Didcot, United Kingdom
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katharina M. Scherer
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | | | - Colin M. Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Antiviral Activity and Mechanisms of Seaweeds Bioactive Compounds on Enveloped Viruses-A Review. Mar Drugs 2022; 20:md20060385. [PMID: 35736188 PMCID: PMC9228758 DOI: 10.3390/md20060385] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/13/2022] Open
Abstract
In the last decades, the interest in seaweed has significantly increased. Bioactive compounds from seaweed’s currently receive major attention from pharmaceutical companies as they express several interesting biological activities which are beneficial for humans. The structural diversity of seaweed metabolites provides diverse biological activities which are expressed through diverse mechanisms of actions. This review mainly focuses on the antiviral activity of seaweed’s extracts, highlighting the mechanisms of actions of some seaweed molecules against infection caused by different types of enveloped viruses: influenza, Lentivirus (HIV-1), Herpes viruses, and coronaviruses. Seaweed metabolites with antiviral properties can act trough different pathways by increasing the host’s defense system or through targeting and blocking virus replication before it enters host cells. Several studies have already established the large antiviral spectrum of seaweed’s bioactive compounds. Throughout this review, antiviral mechanisms and medical applications of seaweed’s bioactive compounds are analyzed, suggesting seaweed’s potential source of antiviral compounds for the formulation of novel and natural antiviral drugs.
Collapse
|
25
|
Neurotrophin Signaling Impairment by Viral Infections in the Central Nervous System. Int J Mol Sci 2022; 23:ijms23105817. [PMID: 35628626 PMCID: PMC9146244 DOI: 10.3390/ijms23105817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3), NT-4, and NT-5, are proteins involved in several important functions of the central nervous system. The activation of the signaling pathways of these neurotrophins, or even by their immature form, pro-neurotrophins, starts with their recognition by cellular receptors, such as tropomyosin receptor kinase (Trk) and 75 kD NT receptors (p75NTR). The Trk receptor is considered to have a high affinity for attachment to specific neurotrophins, while the p75NTR receptor has less affinity for attachment with neurotrophins. The correct functioning of these signaling pathways contributes to proper brain development, neuronal survival, and synaptic plasticity. Unbalanced levels of neurotrophins and pro-neurotrophins have been associated with neurological disorders, illustrating the importance of these molecules in the central nervous system. Furthermore, reports have indicated that viruses can alter the normal levels of neurotrophins by interfering with their signaling pathways. This work discusses the importance of neurotrophins in the central nervous system, their signaling pathways, and how viruses can affect them.
Collapse
|
26
|
Abstract
Herpesviruses assemble new viral particles in the nucleus. These nucleocapsids bud through the inner nuclear membrane to produce enveloped viral particles in the perinuclear space before fusing with the outer nuclear membrane to reach the cytoplasm. This unusual route is necessary since viral capsids are too large to pass through nuclear pores. However, the transient perinuclear nucleocapsids (250 nm in diameter) are also larger than the width of the perinuclear space (30 to 50 nm). Interestingly, linker of the nucleoskeleton and cytoskeleton (LINC) components SUN and KASH connect the inner and outer nuclear membranes and regulate their spacing. Previous work by others on the related pseudorabies virus and human cytomegalovirus showed that they functionally interact with SUN proteins. To clarify the role of SUN proteins, we explored their impact on herpes simplex virus 1 (HSV-1), another herpesvirus. Using dominant negative SUN mutants and RNA interference, we show that HSV-1 propagation is dependent on the LINC complex. In contrast to pseudorabies virus, SUN2 disruption by either approach led to increased HSV-1 extracellular viral yields. This SUN2 dependency may be linked to its greater impact on perinuclear spacing in infected cells compared to SUN1. Finally, the virus itself seems to modulate perinuclear spacing. IMPORTANCE The large size of herpesviruses prevents them from travelling across the nuclear pores, and they instead egress across the two nuclear membranes, generating short-lived enveloped perinuclear virions. This poses a challenge as the perinuclear space is smaller than the virions. This implies the separation (unzipping) of the two nuclear membranes to accommodate the viral particles. The LINC complex bridges the two nuclear membranes and is an important regulator of perinuclear spacing. Work by others hint at its functional implication during pseudorabies virus and cytomegalovirus propagation. The present study probes the importance for HSV-1 of the SUN proteins, the LINC components found in the inner nuclear membrane. Using dominant negative constructs and RNA interference (RNAi), the data reveal that SUN2 exhibits antiviral propriety toward HSV-1, as disrupting the protein leads to increased viral yields. This is in contrast with that reported for pseudorabies and suggests that differences among herpesviruses may, once again, prevail.
Collapse
|
27
|
DDX50 Is a Viral Restriction Factor That Enhances IRF3 Activation. Viruses 2022; 14:v14020316. [PMID: 35215908 PMCID: PMC8875258 DOI: 10.3390/v14020316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 11/24/2022] Open
Abstract
The transcription factors IRF3 and NF-κB are crucial in innate immune signalling in response to many viral and bacterial pathogens. However, mechanisms leading to their activation remain incompletely understood. Viral RNA can be detected by RLR receptors, such as RIG-I and MDA5, and the dsRNA receptor TLR3. Alternatively, the DExD-Box RNA helicases DDX1-DDX21-DHX36 activate IRF3/NF-κB in a TRIF-dependent manner independent of RIG-I, MDA5, or TLR3. Here, we describe DDX50, which shares 55.6% amino acid identity with DDX21, as a non-redundant factor that promotes activation of the IRF3 signalling pathway following its stimulation with viral RNA or infection with RNA and DNA viruses. Deletion of DDX50 in mouse and human cells impaired IRF3 phosphorylation and IRF3-dependent endogenous gene expression and cytokine/chemokine production in response to cytoplasmic dsRNA (polyIC transfection), and infection by RNA and DNA viruses. Mechanistically, whilst DDX50 co-immunoprecipitated TRIF, it acted independently to the previously described TRIF-dependent RNA sensor DDX1. Indeed, shRNA-mediated depletion of DDX1 showed DDX1 was dispensable for signalling in response to RNA virus infection. Importantly, loss of DDX50 resulted in a significant increase in replication and dissemination of virus following infection with vaccinia virus, herpes simplex virus, or Zika virus, highlighting its important role as a broad-ranging viral restriction factor.
Collapse
|
28
|
An ESCRT/VPS4 envelopment trap to examine the mechanism of alphaherpesvirus assembly and transport in neurons. J Virol 2022; 96:e0217821. [PMID: 35045266 DOI: 10.1128/jvi.02178-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly and egress of alphaherpesviruses, including Herpes simplex virus type 1 (HSV-1) and Pseudorabies virus (PRV), within neurons is poorly understood. A key unresolved question is the structure of the viral particle that moves by anterograde transport along the axon, and two alternative mechanisms have been described. In the "Married" model capsids acquire their envelopes in the cell body, then traffic along axons as enveloped virions within a bounding organelle. In the "Separate" model non-enveloped capsids travel from the cell body into and along the axon, eventually encountering their envelopment organelles at a distal site such as the nerve cell terminal. Here we describe an "envelopment trap" to test these models using the dominant negative terminal ESCRT component VPS4-EQ. GFP-tagged VPS4-EQ was used to arrest HSV-1 or PRV capsid envelopment, inhibit downstream trafficking and GFP-label envelopment intermediates. We found that GFP-VPS4-EQ inhibited trafficking of HSV-1 capsids into and along the neurites and axons of mouse CAD cells and rat embryonic primary cortical neurons, consistent with egress via the married pathway. In contrast, transport of HSV-1 capsids was unaffected in the neurites of human SK-N-SH neuroblastoma cells, consistent with the separate mechanism. Unexpectedly, PRV (generally thought to utilize the married pathway) also appeared to employ the separate mechanism in SK-N-SH cells. We propose that apparent differences in the methods of HSV-1 and PRV egress are more likely a reflection of the host neuron in which transport is studied, rather than true biological differences between the viruses themselves. IMPORTANCE Alphaherpesviruses, including Herpes simplex virus type 1 (HSV-1) and Pseudorabies virus (PRV), are pathogens of the nervous system. They replicate in the nerve cell body then travel great distances along axons to reach nerve termini and spread to adjacent epithelial cells, however key aspects of how these viruses travel along axons remain controversial. Here we test two alternative mechanisms for transport, the married and separate models, by blocking envelope assembly, a critical step in viral egress. When we arrest formation of the viral envelope using a mutated component of the cellular ESCRT apparatus we find that entry of viral particles into axons is blocked in some types of neuron, but not others. This approach allows us to determine whether envelope assembly occurs prior to entry of viruses into axons, or afterwards, and thus to distinguish between the alternative models for viral transport.
Collapse
|
29
|
Bentaleb C, Hervouet K, Montpellier C, Camuzet C, Ferrié M, Burlaud-Gaillard J, Bressanelli S, Metzger K, Werkmeister E, Ankavay M, Janampa NL, Marlet J, Roux J, Deffaud C, Goffard A, Rouillé Y, Dubuisson J, Roingeard P, Aliouat-Denis CM, Cocquerel L. The endocytic recycling compartment serves as a viral factory for hepatitis E virus. Cell Mol Life Sci 2022; 79:615. [PMID: 36460928 PMCID: PMC9718719 DOI: 10.1007/s00018-022-04646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
Although hepatitis E virus (HEV) is the major leading cause of enterically transmitted viral hepatitis worldwide, many gaps remain in the understanding of the HEV lifecycle. Notably, viral factories induced by HEV have not been documented yet, and it is currently unknown whether HEV infection leads to cellular membrane modeling as many positive-strand RNA viruses. HEV genome encodes the ORF1 replicase, the ORF2 capsid protein and the ORF3 protein involved in virion egress. Previously, we demonstrated that HEV produces different ORF2 isoforms including the virion-associated ORF2i form. Here, we generated monoclonal antibodies that specifically recognize the ORF2i form and antibodies that recognize the different ORF2 isoforms. One antibody, named P1H1 and targeting the ORF2i N-terminus, recognized delipidated HEV particles from cell culture and patient sera. Importantly, AlphaFold2 modeling demonstrated that the P1H1 epitope is exposed on HEV particles. Next, antibodies were used to probe viral factories in HEV-producing/infected cells. By confocal microscopy, we identified subcellular nugget-like structures enriched in ORF1, ORF2 and ORF3 proteins and viral RNA. Electron microscopy analyses revealed an unprecedented HEV-induced membrane network containing tubular and vesicular structures. We showed that these structures are dependent on ORF2i capsid protein assembly and ORF3 expression. An extensive colocalization study of viral proteins with subcellular markers, and silencing experiments demonstrated that these structures are derived from the endocytic recycling compartment (ERC) for which Rab11 is a central player. Hence, HEV hijacks the ERC and forms a membrane network of vesicular and tubular structures that might be the hallmark of HEV infection.
Collapse
Affiliation(s)
- Cyrine Bentaleb
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Kévin Hervouet
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Claire Montpellier
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Charline Camuzet
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Martin Ferrié
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Julien Burlaud-Gaillard
- grid.411167.40000 0004 1765 1600Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France ,Université de Tours et CHRU de Tours, Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - Stéphane Bressanelli
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-Sur-Yvette, France
| | - Karoline Metzger
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Elisabeth Werkmeister
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014-US41-PLBS-Plateformes Lilloises de Biologie and Santé, Lille, France
| | - Maliki Ankavay
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France ,Present Address: Division of Gastroenterology and Hepatology, Institute of Microbiology, Lausanne, Switzerland
| | - Nancy Leon Janampa
- grid.411167.40000 0004 1765 1600Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France
| | - Julien Marlet
- grid.411167.40000 0004 1765 1600Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France
| | | | | | - Anne Goffard
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Yves Rouillé
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Jean Dubuisson
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Philippe Roingeard
- grid.411167.40000 0004 1765 1600Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France ,Université de Tours et CHRU de Tours, Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - Cécile-Marie Aliouat-Denis
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Laurence Cocquerel
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| |
Collapse
|
30
|
Rice SA. Release of HSV-1 Cell-Free Virions: Mechanisms, Regulation, and Likely Role in Human-Human Transmission. Viruses 2021; 13:v13122395. [PMID: 34960664 PMCID: PMC8704881 DOI: 10.3390/v13122395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1, or HSV-1, is a widespread human pathogen that replicates in epithelial cells of the body surface and then establishes latent infection in peripheral neurons. When HSV-1 replicates, viral progeny must be efficiently released to spread infection to new target cells. Viral spread occurs via two major routes. In cell-cell spread, progeny virions are delivered directly to cellular junctions, where they infect adjacent cells. In cell-free release, progeny virions are released into the extracellular milieu, potentially allowing the infection of distant cells. Cell-cell spread of HSV-1 has been well studied and is known to be important for in vivo infection and pathogenesis. In contrast, HSV-1 cell-free release has received less attention, and its significance to viral biology is unclear. Here, I review the mechanisms and regulation of HSV-1 cell-free virion release. Based on knowledge accrued in other herpesviral systems, I argue that HSV-1 cell-free release is likely to be tightly regulated in vivo. Specifically, I hypothesize that this process is generally suppressed as the virus replicates within the body, but activated to high levels at sites of viral reactivation, such as the oral mucosa and skin, in order to promote efficient transmission of HSV-1 to new human hosts.
Collapse
Affiliation(s)
- Stephen A Rice
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
31
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Dorsch AD, Hölper JE, Franzke K, Zaeck LM, Mettenleiter TC, Klupp BG. Role of Vesicle-Associated Membrane Protein-Associated Proteins (VAP) A and VAPB in Nuclear Egress of the Alphaherpesvirus Pseudorabies Virus. Viruses 2021; 13:v13061117. [PMID: 34200728 PMCID: PMC8229525 DOI: 10.3390/v13061117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The molecular mechanism affecting translocation of newly synthesized herpesvirus nucleocapsids from the nucleus into the cytoplasm is still not fully understood. The viral nuclear egress complex (NEC) mediates budding at and scission from the inner nuclear membrane, but the NEC is not sufficient for efficient fusion of the primary virion envelope with the outer nuclear membrane. Since no other viral protein was found to be essential for this process, it was suggested that a cellular machinery is recruited by viral proteins. However, knowledge on fusion mechanisms involving the nuclear membranes is rare. Recently, vesicle-associated membrane protein-associated protein B (VAPB) was shown to play a role in nuclear egress of herpes simplex virus 1 (HSV-1). To test this for the related alphaherpesvirus pseudorabies virus (PrV), we mutated genes encoding VAPB and VAPA by CRISPR/Cas9-based genome editing in our standard rabbit kidney cells (RK13), either individually or in combination. Single as well as double knockout cells were tested for virus propagation and for defects in nuclear egress. However, no deficiency in virus replication nor any effect on nuclear egress was obvious suggesting that VAPB and VAPA do not play a significant role in this process during PrV infection in RK13 cells.
Collapse
Affiliation(s)
- Anna D. Dorsch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
- Correspondence:
| |
Collapse
|
33
|
Russell T, Samolej J, Hollinshead M, Smith GL, Kite J, Elliott G. Novel Role for ESCRT-III Component CHMP4C in the Integrity of the Endocytic Network Utilized for Herpes Simplex Virus Envelopment. mBio 2021; 12:e02183-20. [PMID: 33975940 PMCID: PMC8262985 DOI: 10.1128/mbio.02183-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
Enveloped viruses exploit cellular trafficking pathways for their morphogenesis, providing potential scope for the development of new antiviral therapies. We have previously shown that herpes simplex virus 1 (HSV1) utilizes recycling endocytic membranes as the source of its envelope, in a process involving four Rab GTPases. To identify novel factors involved in HSV1 envelopment, we have screened a small interfering RNA (siRNA) library targeting over 80 human trafficking proteins, including coat proteins, adaptor proteins, fusion factors, fission factors, and Rab effectors. The depletion of 11 factors reduced virus yields by 20- to 100-fold, including three early secretory pathway proteins, four late secretory pathway proteins, and four endocytic pathway proteins, three of which are membrane fission factors. Five of the 11 targets were chosen for further analysis in virus infection, where it was found that the absence of only 1, the fission factor CHMP4C, but not the CHMP4A or CHMP4B paralogues, reduced virus production at the final stage of morphogenesis. Ultrastructural and confocal microscopy of CHMP4C-depleted, HSV1-infected cells showed an accumulation of endocytic membranes; extensive tubulation of recycling, transferrin receptor-positive endosomes indicative of aberrant fission; and a failure in virus envelopment. No effect on the late endocytic pathway was detected, while exogenous CHMP4C was shown to localize to recycling endosomes. Taken together, these data reveal a novel role for the CHMP4C fission factor in the integrity of the recycling endosomal network, which has been unveiled through the dependence of HSV1 on these membranes for the acquisition of their envelopes.IMPORTANCE Cellular transport pathways play a fundamental role in secretion and membrane biogenesis. Enveloped viruses exploit these pathways to direct their membrane proteins to sites of envelopment and, as such, are powerful tools for unraveling subtle activities of trafficking factors, potentially pinpointing therapeutic targets. Using the sensitive biological readout of virus production, over 80 trafficking factors involved in diverse and poorly defined cellular processes have been screened for involvement in the complex process of HSV1 envelopment. Out of 11 potential targets, CHMP4C, a key component in the cell cycle abscission checkpoint, stood out as being required for the process of virus wrapping in endocytic tubules, where it localized. In the absence of CHMP4C, recycling endocytic membranes failed to undergo scission in infected cells, causing transient tubulation and accumulation of membranes and unwrapped virus. These data reveal a new role for this important cellular factor in the biogenesis of recycling endocytic membranes.
Collapse
Affiliation(s)
- Tiffany Russell
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Jerzy Samolej
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Kite
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Gillian Elliott
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
34
|
Jeon H, Kang SK, Lee MJ, Park C, Yoo SM, Kang YH, Lee MS. Rab27b regulates extracellular vesicle production in cells infected with Kaposi's sarcoma-associated herpesvirus to promote cell survival and persistent infection. J Microbiol 2021; 59:522-529. [PMID: 33877577 DOI: 10.1007/s12275-021-1108-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication. EVs and viruses share several properties related to their structure and the biogenesis machinery in cells. EVs from virus-infected cells play a key role in virus spread and suppression using various loading molecules, such as viral proteins, host proteins, and microRNAs. However, it remains unclear how and why viruses regulate EV production inside host cells. The purpose of this study is to investigate the molecular mechanisms underlying EV production and their roles in Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells. Here, we found that KSHV induced EV production in human endothelial cells via Rab-27b upregulation. The suppression of Rab27b expression in KSHV-infected cells enhanced cell death by increasing autophagic flux and autolysosome formation. Our results indicate that Rab27b regulates EV biogenesis to promote cell survival and persistent viral infection during KSHV infection, thereby providing novel insights into the crucial role of Rab-27b in the KSHV life cycle.
Collapse
Affiliation(s)
- Hyungtaek Jeon
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Su-Kyung Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Myung-Ju Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Changhoon Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Seung-Min Yoo
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Yun Hee Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea.
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea.
| |
Collapse
|
35
|
Tognarelli EI, Reyes A, Corrales N, Carreño LJ, Bueno SM, Kalergis AM, González PA. Modulation of Endosome Function, Vesicle Trafficking and Autophagy by Human Herpesviruses. Cells 2021; 10:cells10030542. [PMID: 33806291 PMCID: PMC7999576 DOI: 10.3390/cells10030542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Human herpesviruses are a ubiquitous family of viruses that infect individuals of all ages and are present at a high prevalence worldwide. Herpesviruses are responsible for a broad spectrum of diseases, ranging from skin and mucosal lesions to blindness and life-threatening encephalitis, and some of them, such as Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein–Barr virus (EBV), are known to be oncogenic. Furthermore, recent studies suggest that some herpesviruses may be associated with developing neurodegenerative diseases. These viruses can establish lifelong infections in the host and remain in a latent state with periodic reactivations. To achieve infection and yield new infectious viral particles, these viruses require and interact with molecular host determinants for supporting their replication and spread. Important sets of cellular factors involved in the lifecycle of herpesviruses are those participating in intracellular membrane trafficking pathways, as well as autophagic-based organelle recycling processes. These cellular processes are required by these viruses for cell entry and exit steps. Here, we review and discuss recent findings related to how herpesviruses exploit vesicular trafficking and autophagy components by using both host and viral gene products to promote the import and export of infectious viral particles from and to the extracellular environment. Understanding how herpesviruses modulate autophagy, endolysosomal and secretory pathways, as well as other prominent trafficking vesicles within the cell, could enable the engineering of novel antiviral therapies to treat these viruses and counteract their negative health effects.
Collapse
Affiliation(s)
- Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence:
| |
Collapse
|
36
|
Hilterbrand AT, Daly RE, Heldwein EE. Contributions of the Four Essential Entry Glycoproteins to HSV-1 Tropism and the Selection of Entry Routes. mBio 2021; 12:e00143-21. [PMID: 33653890 PMCID: PMC8092210 DOI: 10.1128/mbio.00143-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/02/2023] Open
Abstract
Herpes simplex viruses (HSV-1 and HSV-2) encode up to 16 envelope proteins, four of which are essential for entry. However, whether these four proteins alone are sufficient to dictate the broad cellular tropism of HSV-1 and the selection of different cell type-dependent entry routes is unknown. To begin addressing this, we previously pseudotyped vesicular stomatitis virus (VSV), lacking its native glycoprotein G, with only the four essential entry glycoproteins of HSV-1: gB, gH, gL, and gD. This novel VSVΔG-BHLD pseudotype recapitulated several important features of HSV-1 entry: the requirement for gB, gH, gL, gD, and a cellular receptor and sensitivity to anti-gB and anti-gH/gL neutralizing antibodies. However, due to the use of a single cell type in that study, the tropism of the VSVΔG-BHLD pseudotype was not investigated. Here, we show that the cellular tropism of the pseudotype is severely limited compared to that of wild-type HSV-1 and that its entry pathways differ from the native HSV-1 entry pathways. To test the hypothesis that other HSV-1 envelope proteins may contribute to HSV-1 tropism, we generated a derivative pseudotype containing the HSV-1 glycoprotein C (VSVΔG-BHLD-gC) and observed a gC-dependent increase in entry efficiency in two cell types. We propose that the pseudotyping platform developed here has the potential to uncover functional contributions of HSV-1 envelope proteins to entry in a gain-of-function manner.IMPORTANCE Herpes simplex viruses (HSV-1 and HSV-2) contain up to 16 different proteins in their envelopes. Four of these, glycoproteins gB, gD, gH, and gL, are termed essential with regard to entry, whereas the rest are typically referred to as nonessential based on the entry phenotypes of the respective single genetic deletions. However, the single-gene deletion approach, which relies on robust loss-of-function phenotypes, may be confounded by functional redundancies among the many HSV-1 envelope proteins. We have developed a pseudotyping platform in which the essential four entry glycoproteins are isolated from the rest, which can be added back individually for systematic gain-of-function entry experiments. Here, we show the utility of this platform for dissecting the contributions of HSV envelope proteins, both the essential four and the remaining dozen (using gC as an example), to HSV entry.
Collapse
Affiliation(s)
- Adam T Hilterbrand
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Raecliffe E Daly
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Cellular, Molecular, and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Cellular, Molecular, and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Why Cells and Viruses Cannot Survive without an ESCRT. Cells 2021; 10:cells10030483. [PMID: 33668191 PMCID: PMC7995964 DOI: 10.3390/cells10030483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear–cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.
Collapse
|
38
|
Scherer KM, Manton JD, Soh TK, Mascheroni L, Connor V, Crump CM, Kaminski CF. A fluorescent reporter system enables spatiotemporal analysis of host cell modification during herpes simplex virus-1 replication. J Biol Chem 2021; 296:100236. [PMID: 33380421 PMCID: PMC7948757 DOI: 10.1074/jbc.ra120.016571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 01/12/2023] Open
Abstract
Herpesviruses are large and complex viruses that have a long history of coevolution with their host species. One important factor in the virus-host interaction is the alteration of intracellular morphology during viral replication with critical implications for viral assembly. However, the details of this remodeling event are not well understood, in part because insufficient tools are available to deconstruct this highly heterogeneous process. To provide an accurate and reliable method of investigating the spatiotemporal dynamics of virus-induced changes to cellular architecture, we constructed a dual-fluorescent reporter virus that enabled us to classify four distinct stages in the infection cycle of herpes simplex virus-1 at the single cell level. This timestamping method can accurately track the infection cycle across a wide range of multiplicities of infection. We used high-resolution fluorescence microscopy analysis of cellular structures in live and fixed cells in concert with our reporter virus to generate a detailed and chronological overview of the spatial and temporal reorganization during viral replication. The highly orchestrated and striking relocation of many organelles around the compartments of secondary envelopment during transition from early to late gene expression suggests that the reshaping of these compartments is essential for virus assembly. We furthermore find that accumulation of HSV-1 capsids in the cytoplasm is accompanied by fragmentation of the Golgi apparatus with potential impact on the late steps of viral assembly. We anticipate that in the future similar tools can be systematically applied for the systems-level analysis of intracellular morphology during replication of other viruses.
Collapse
Affiliation(s)
- Katharina M Scherer
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, UK
| | - James D Manton
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, UK; MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Timothy K Soh
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Luca Mascheroni
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, UK
| | - Vivienne Connor
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Clemens F Kaminski
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Vijayakrishnan S, McElwee M, Loney C, Rixon F, Bhella D. In situ structure of virus capsids within cell nuclei by correlative light and cryo-electron tomography. Sci Rep 2020; 10:17596. [PMID: 33077791 PMCID: PMC7572381 DOI: 10.1038/s41598-020-74104-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/24/2020] [Indexed: 12/02/2022] Open
Abstract
Cryo electron microscopy (cryo-EM), a key method for structure determination involves imaging purified material embedded in vitreous ice. Images are then computationally processed to obtain three-dimensional structures approaching atomic resolution. There is increasing interest in extending structural studies by cryo-EM into the cell, where biological structures and processes may be imaged in context. The limited penetrating power of electrons prevents imaging of thick specimens (> 500 nm) however. Cryo-sectioning methods employed to overcome this are technically challenging, subject to artefacts or involve specialised and costly equipment. Here we describe the first structure of herpesvirus capsids determined by sub-tomogram averaging from nuclei of eukaryotic cells, achieved by cryo-electron tomography (cryo-ET) of re-vitrified cell sections prepared using the Tokuyasu method. Our reconstructions confirm that the capsid associated tegument complex is present on capsids prior to nuclear egress. We demonstrate that this method is suited to both 3D structure determination and correlative light/electron microscopy, thus expanding the scope of cryogenic cellular imaging.
Collapse
Affiliation(s)
- Swetha Vijayakrishnan
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| | - Marion McElwee
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Frazer Rixon
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| |
Collapse
|
40
|
Wang L, Li C, Zhang X, Yang M, Wei S, Huang Y, Qin Q, Wang S. The Small GTPase Rab5c Exerts Bi-Function in Singapore Grouper Iridovirus Infections and Cellular Responses in the Grouper, Epinephelus coioides. Front Immunol 2020; 11:2133. [PMID: 33013900 PMCID: PMC7495150 DOI: 10.3389/fimmu.2020.02133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 02/04/2023] Open
Abstract
The small GTPase Rab5 is one of the master regulators of vesicular trafficking that participates in early stages of the endocytic pathway, such as endocytosis and endosome maturation. Three Rab5 isoforms (a, b, and c) share high sequence identity, and exhibit complex functions. However, the role of Rab5c in virus infection and cellular immune responses remains poorly understood. In this study, based on the established virus-cell infection model, Singapore grouper iridovirus (SGIV)-infected grouper spleen (GS) cells, we investigated the role of Rab5c in virus infection and host immune responses. Rab5c was cloned from the orange-spotted grouper, Epinephelus coioides, and termed EcRab5c. EcRab5c encoded a 220-amino-acid polypeptide, showing 99% and 91% identity to Anabas testudineus, and Homo sapiens, respectively. Confocal imaging showed that EcRab5c localized as punctate structures in the cytoplasm. However, a constitutively active (CA) EcRab5c mutant led to enlarged vesicles, while a dominant negative (DN) EcRab5c mutant reduced vesicle structures. EcRab5c expression levels were significantly increased after SGIV infection. EcRab5c knockdown, or CA/DN EcRab5c overexpression significantly inhibited SGIV infection. Using single-particle imaging analysis, we further observed that EcRab5c disruption impaired crucial events at the early stage of SGIV infection, including virus binding, entry, and transport from early to late endosomes, at the single virus level. Furthermore, it is the first time to investigate that EcRab5c is required in autophagy. Equally, EcRab5c positively regulated interferon-related factors and pro-inflammatory cytokines. In summary, these data showed that EcRab5c exerted a bi-functional role on iridovirus infection and host immunity in fish, which furthers our understanding of virus and host immune interactions.
Collapse
Affiliation(s)
- Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Chen Li
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Xinyue Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
41
|
White S, Kawano H, Harata NC, Roller RJ. Herpes Simplex Virus Organizes Cytoplasmic Membranes To Form a Viral Assembly Center in Neuronal Cells. J Virol 2020; 94:e00900-20. [PMID: 32699089 PMCID: PMC7495378 DOI: 10.1128/jvi.00900-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) is a neuroinvasive virus that has been used as a model organism for studying common properties of all herpesviruses. HSV induces host organelle rearrangement and forms multiple, dispersed assembly compartments in epithelial cells, which complicates the study of HSV assembly. In this study, we show that HSV forms a visually distinct unitary cytoplasmic viral assembly center (cVAC) in both cancerous and primary neuronal cells that concentrates viral structural proteins and is a major site of capsid envelopment. The HSV cVAC also concentrates host membranes that are important for viral assembly, such as Golgi- and recycling endosome-derived membranes. Finally, we show that HSV cVAC formation and/or maintenance depends on an intact microtubule network and a viral tegument protein, pUL51. Our observations suggest that the neuronal cVAC is a uniquely useful model to study common herpesvirus assembly pathways and cell-specific pathways for membrane reorganization.IMPORTANCE Herpesvirus particles are complex and contain many different proteins that must come together in an organized and coordinated fashion. Many viruses solve this coordination problem by creating a specialized assembly factory in the host cell, and the formation of such factories provides a promising target for interfering with virus production. Herpes simplex virus 1 (HSV-1) infects several types of cells, including neurons, but has not previously been shown to form such an organized factory in the nonneuronal cells in which its assembly has been best studied. Here, we show that HSV-1 forms an organized assembly factory in neuronal cells, and we identify some of the viral and host cell factors that are important for its formation.
Collapse
Affiliation(s)
- Shaowen White
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hiroyuki Kawano
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - N Charles Harata
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Richard J Roller
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
42
|
Hensel N, Raker V, Förthmann B, Buch A, Sodeik B, Pich A, Claus P. The Proteome and Secretome of Cortical Brain Cells Infected With Herpes Simplex Virus. Front Neurol 2020; 11:844. [PMID: 32973653 PMCID: PMC7481480 DOI: 10.3389/fneur.2020.00844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023] Open
Abstract
Infections of the brain with herpes simplex virus type 1 (HSV-1) cause life-threatening Herpes simplex encephalitis (HSE) characterized by viral replication in neurons and neuro-inflammation including an infiltration of peripheral immune cells. HSV-1 reprograms host cells to foster its own replication and for immune evasion, but eventually the immune responses clear the infection in most patients. However, many survivors suffer from long-term neuronal damage and cannot regenerate all brain functions. HSV-1 influences the physiology of neurons, astrocytes, oligodendrocytes and microglia, and significantly changes their protein expression and secretion pattern. To characterize temporal changes upon HSV-1 infection in detail, we inoculated mixed primary cultures of the murine brain cortex, and performed quantitative mass spectrometry analyses of the cell-associated proteome and the secretome. We identified 28 differentially regulated host proteins influencing inflammasome formation and intracellular vesicle trafficking during endocytosis and secretion. The NIMA-related kinase 7 (NEK7), a critical component of the inflammasome, and ArfGap1, a regulator of endocytosis, were significantly up-regulated upon HSV-1 infection. In the secretome, we identified 71 proteins including guidance cues regulating axonal regeneration, such as semaphorin6D, which were enriched in the conditioned media of HSV-1 infected cells. Modulation of inflammasome activity and intracellular membrane traffic are critical for HSV-1 cell entry, virus assembly, and intracellular spread. Our proteome analysis provides first clues on host factors that might dampen the inflammasome response and modulate intracellular vesicle transport to promote HSV infection of the brain. Furthermore, our secretome analysis revealed a set of proteins involved in neuroregeneration that might foster neuronal repair processes to restore brain functions after clearance of an HSV-1 infection.
Collapse
Affiliation(s)
- Niko Hensel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hanover, Germany.,Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Verena Raker
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hanover, Germany.,Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Benjamin Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hanover, Germany.,Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Anna Buch
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hanover, Germany.,Institute of Virology, Hannover Medical School, Hanover, Germany
| | - Beate Sodeik
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hanover, Germany.,Center for Systems Neuroscience (ZSN), Hanover, Germany.,Institute of Virology, Hannover Medical School, Hanover, Germany.,DZIF-German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hanover, Germany
| | - Andreas Pich
- Institute for Toxicology, Hannover Medical School, Hanover, Germany.,Core Facility Proteomics, Hannover Medical School, Hanover, Germany
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hanover, Germany.,Center for Systems Neuroscience (ZSN), Hanover, Germany
| |
Collapse
|
43
|
Ahmad I, Wilson DW. HSV-1 Cytoplasmic Envelopment and Egress. Int J Mol Sci 2020; 21:ijms21175969. [PMID: 32825127 PMCID: PMC7503644 DOI: 10.3390/ijms21175969] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a structurally complex enveloped dsDNA virus that has evolved to replicate in human neurons and epithelia. Viral gene expression, DNA replication, capsid assembly, and genome packaging take place in the infected cell nucleus, which mature nucleocapsids exit by envelopment at the inner nuclear membrane then de-envelopment into the cytoplasm. Once in the cytoplasm, capsids travel along microtubules to reach, dock, and envelope at cytoplasmic organelles. This generates mature infectious HSV-1 particles that must then be sorted to the termini of sensory neurons, or to epithelial cell junctions, for spread to uninfected cells. The focus of this review is upon our current understanding of the viral and cellular molecular machinery that enables HSV-1 to travel within infected cells during egress and to manipulate cellular organelles to construct its envelope.
Collapse
Affiliation(s)
- Imran Ahmad
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
44
|
Abstract
During viral replication, herpesviruses utilize a unique strategy, termed nuclear egress, to translocate capsids from the nucleus into the cytoplasm. This initial budding step transfers a newly formed capsid from within the nucleus, too large to fit through nuclear pores, through the inner nuclear membrane to the perinuclear space. The perinuclear enveloped virion must then fuse with the outer nuclear membrane to be released into the cytoplasm for further maturation, undergoing budding once again at the trans-Golgi network or early endosomes, and ultimately exit the cell non-lytically to spread infection. This first budding process is mediated by two conserved viral proteins, UL31 and UL34, that form a heterodimer called the nuclear egress complex (NEC). This review focuses on what we know about how the NEC mediates capsid transport to the perinuclear space, including steps prior to and after this budding event. Additionally, we discuss the involvement of other viral proteins in this process and how NEC-mediated budding may be regulated during infection.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Michael K Thorsen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
45
|
Exocytosis of Progeny Infectious Varicella-Zoster Virus Particles via a Mannose-6-Phosphate Receptor Pathway without Xenophagy following Secondary Envelopment. J Virol 2020; 94:JVI.00800-20. [PMID: 32493818 PMCID: PMC7394889 DOI: 10.1128/jvi.00800-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
The literature on the egress of different herpesviruses after secondary envelopment is contradictory. In this report, we investigated varicella-zoster virus (VZV) egress in a cell line from a child with Pompe disease, a glycogen storage disease caused by a defect in the enzyme required for glycogen digestion. In Pompe cells, both the late autophagy pathway and the mannose-6-phosphate receptor (M6PR) pathway are interrupted. We have postulated that intact autophagic flux is required for higher recoveries of VZV infectivity. To test that hypothesis, we infected Pompe cells and then assessed the VZV infectious cycle. We discovered that the infectious cycle in Pompe cells was remarkably different from that of either fibroblasts or melanoma cells. No large late endosomes filled with VZV particles were observed in Pompe cells; only individual viral particles in small vacuoles were seen. The distribution of the M6PR pathway (trans-Golgi network to late endosomes) was constrained in infected Pompe cells. When cells were analyzed with two different anti-M6PR antibodies, extensive colocalization of the major VZV glycoprotein gE (known to contain M6P residues) and the M6P receptor (M6PR) was documented in the viral highways at the surfaces of non-Pompe cells after maximum-intensity projection of confocal z-stacks, but neither gE nor the M6PR was seen in abundance at the surfaces of infected Pompe cells. Taken together, our results suggested that (i) Pompe cells lack a VZV trafficking pathway within M6PR-positive large endosomes and (ii) most infectious VZV particles in conventional cell substrates are transported via large M6PR-positive vacuoles without degradative xenophagy to the plasma membrane.IMPORTANCE The long-term goal of this research has been to determine why VZV, when grown in cultured cells, invariably is more cell associated and has a lower titer than other alphaherpesviruses, such as herpes simplex virus 1 (HSV1) or pseudorabies virus (PRV). Data from both HSV1 and PRV laboratories have identified a Rab6 secretory pathway for the transport of single enveloped viral particles from the trans-Golgi network within small vacuoles to the plasma membrane. In contrast, after secondary envelopment in fibroblasts or melanoma cells, multiple infectious VZV particles accumulated within large M6PR-positive late endosomes that were not degraded en route to the plasma membrane. We propose that this M6PR pathway is most utilized in VZV infection and least utilized in HSV1 infection, with PRV's usage being closer to HSV1's usage. Supportive data from other VZV, PRV, and HSV1 laboratories about evidence for two egress pathways are included.
Collapse
|
46
|
Soday L, Lu Y, Albarnaz JD, Davies CTR, Antrobus R, Smith GL, Weekes MP. Quantitative Temporal Proteomic Analysis of Vaccinia Virus Infection Reveals Regulation of Histone Deacetylases by an Interferon Antagonist. Cell Rep 2020; 27:1920-1933.e7. [PMID: 31067474 PMCID: PMC6518873 DOI: 10.1016/j.celrep.2019.04.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023] Open
Abstract
Vaccinia virus (VACV) has numerous immune evasion strategies, including multiple mechanisms of inhibition of interferon regulatory factor 3 (IRF-3), nuclear factor κB (NF-κB), and type I interferon (IFN) signaling. Here, we use highly multiplexed proteomics to quantify ∼9,000 cellular proteins and ∼80% of viral proteins at seven time points throughout VACV infection. A total of 265 cellular proteins are downregulated >2-fold by VACV, including putative natural killer cell ligands and IFN-stimulated genes. Two-thirds of these viral targets, including class II histone deacetylase 5 (HDAC5), are degraded proteolytically during infection. In follow-up analysis, we demonstrate that HDAC5 restricts replication of both VACV and herpes simplex virus type 1. By generating a protein-based temporal classification of VACV gene expression, we identify protein C6, a multifunctional IFN antagonist, as being necessary and sufficient for proteasomal degradation of HDAC5. Our approach thus identifies both a host antiviral factor and a viral mechanism of innate immune evasion. Temporal proteomic analysis quantifies host and viral dynamics during vaccinia infection Host protein families are proteasomally degraded over the course of vaccinia infection Vaccinia protein C6 targets HDAC5 for proteasomal degradation HDAC5 is a host antiviral factor that restricts different families of DNA viruses
Collapse
Affiliation(s)
- Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Colin T R Davies
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
47
|
Butt BG, Owen DJ, Jeffries CM, Ivanova L, Hill CH, Houghton JW, Ahmed MF, Antrobus R, Svergun DI, Welch JJ, Crump CM, Graham SC. Insights into herpesvirus assembly from the structure of the pUL7:pUL51 complex. eLife 2020; 9:e53789. [PMID: 32391791 PMCID: PMC7289601 DOI: 10.7554/elife.53789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
Herpesviruses acquire their membrane envelopes in the cytoplasm of infected cells via a molecular mechanism that remains unclear. Herpes simplex virus (HSV)-1 proteins pUL7 and pUL51 form a complex required for efficient virus envelopment. We show that interaction between homologues of pUL7 and pUL51 is conserved across human herpesviruses, as is their association with trans-Golgi membranes. We characterized the HSV-1 pUL7:pUL51 complex by solution scattering and chemical crosslinking, revealing a 1:2 complex that can form higher-order oligomers in solution, and we solved the crystal structure of the core pUL7:pUL51 heterodimer. While pUL7 adopts a previously-unseen compact fold, the helix-turn-helix conformation of pUL51 resembles the cellular endosomal complex required for transport (ESCRT)-III component CHMP4B and pUL51 forms ESCRT-III-like filaments, suggesting a direct role for pUL51 in promoting membrane scission during virus assembly. Our results provide a structural framework for understanding the role of the conserved pUL7:pUL51 complex in herpesvirus assembly.
Collapse
Affiliation(s)
- Benjamin G Butt
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Danielle J Owen
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg SiteHamburgGermany
| | - Lyudmila Ivanova
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Chris H Hill
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Jack W Houghton
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - Md Firoz Ahmed
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg SiteHamburgGermany
| | - John J Welch
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Colin M Crump
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Stephen C Graham
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
48
|
Metrick CM, Koenigsberg AL, Heldwein EE. Conserved Outer Tegument Component UL11 from Herpes Simplex Virus 1 Is an Intrinsically Disordered, RNA-Binding Protein. mBio 2020; 11:e00810-20. [PMID: 32371601 PMCID: PMC7403781 DOI: 10.1128/mbio.00810-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/23/2022] Open
Abstract
A distinguishing morphological feature of all herpesviruses is the multiprotein tegument layer located between the nucleocapsid and lipid envelope of the virion. Tegument proteins play multiple roles in viral replication, including viral assembly, but we do not yet understand their individual functions or how the tegument is assembled and organized. UL11, the smallest tegument protein, is important for several distinct processes in replication, including efficient virion morphogenesis and cell-cell spread. However, the mechanistic understanding of its role in these and other processes is limited in part by the scant knowledge of its biochemical and structural properties. Here, we report that UL11 from herpes simplex virus 1 (HSV-1) is an intrinsically disordered, conformationally dynamic protein that undergoes liquid-liquid phase separation (LLPS) in vitro Intrinsic disorder may underlie the ability of UL11 to exert multiple functions and bind multiple partners. Sequence analysis suggests that not only all UL11 homologs but also all HSV-1 tegument proteins contain intrinsically disordered regions of different lengths. The presence of intrinsic disorder, and potentially, the ability to form LLPS, may thus be a common feature of the tegument proteins. We hypothesize that tegument assembly may involve the formation of a biomolecular condensate, driven by the heterogeneous mixture of intrinsically disordered tegument proteins.IMPORTANCE Herpesvirus virions contain a unique tegument layer sandwiched between the capsid and lipid envelope and composed of multiple copies of about two dozen viral proteins. However, little is known about the structure of the tegument or how it is assembled. Here, we show that a conserved tegument protein UL11 from herpes simplex virus 1, a prototypical alphaherpesvirus, is an intrinsically disordered protein that undergoes liquid-liquid phase separation in vitro Through sequence analysis, we find intrinsically disordered regions of different lengths in all HSV-1 tegument proteins. We hypothesize that intrinsic disorder is a common characteristic of tegument proteins and propose a new model of tegument as a biomolecular condensate.
Collapse
Affiliation(s)
- Claire M Metrick
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Biochemistry, Tufts School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Andrea L Koenigsberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Tufts School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
49
|
The ESCRT-II Subunit EAP20/VPS25 and the Bro1 Domain Proteins HD-PTP and BROX Are Individually Dispensable for Herpes Simplex Virus 1 Replication. J Virol 2020; 94:JVI.01641-19. [PMID: 31748394 DOI: 10.1128/jvi.01641-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Capsid envelopment during assembly of the neurotropic herpesviruses herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) in the infected cell cytoplasm is thought to involve the late-acting cellular ESCRT (endosomal sorting complex required for transport) components ESCRT-III and VPS4 (vacuolar protein sorting 4). However, HSV-1, unlike members of many other families of enveloped viruses, does not appear to require the ESCRT-I subunit TSG101 or the Bro1 domain-containing protein ALIX (Alg-2-interacting protein X) to recruit and activate ESCRT-III. Alternative cellular factors that are known to be capable of regulating ESCRT-III function include the ESCRT-II complex and other members of the Bro1 family. We therefore used small interfering RNA (siRNA) to knock down the essential ESCRT-II subunit EAP20/VPS25 (ELL-associated protein 20/vacuolar protein sorting 25) and the Bro1 proteins HD-PTP (His domain-containing protein tyrosine phosphatase) and BROX (Bro1 domain and CAAX motif containing). We demonstrated reductions in levels of the targeted proteins by Western blotting and used quantitative microscopic assays to confirm loss of ESCRT-II and HD-PTP function. We found that in single-step replication experiments, the final yields of HSV-1 were unchanged following loss of EAP20, HD-PTP, or BROX.IMPORTANCE HSV-1 is a pathogen of the human nervous system that uses its own virus-encoded proteins and the normal cellular ESCRT machinery to drive the construction of its envelope. How HSV-1 structural proteins interact with ESCRT components and which subsets of cellular ESCRT proteins are utilized by the virus remain largely unknown. Here, we demonstrate that an essential component of the ESCRT-II complex and two ESCRT-associated Bro1 proteins are dispensable for HSV-1 replication.
Collapse
|
50
|
Diwaker D, Wilson DW. Microtubule-Dependent Trafficking of Alphaherpesviruses in the Nervous System: The Ins and Outs. Viruses 2019; 11:v11121165. [PMID: 31861082 PMCID: PMC6950448 DOI: 10.3390/v11121165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
The Alphaherpesvirinae include the neurotropic pathogens herpes simplex virus and varicella zoster virus of humans and pseudorabies virus of swine. These viruses establish lifelong latency in the nuclei of peripheral ganglia, but utilize the peripheral tissues those neurons innervate for productive replication, spread, and transmission. Delivery of virions from replicative pools to the sites of latency requires microtubule-directed retrograde axonal transport from the nerve terminus to the cell body of the sensory neuron. As a corollary, during reactivation newly assembled virions must travel along axonal microtubules in the anterograde direction to return to the nerve terminus and infect peripheral tissues, completing the cycle. Neurotropic alphaherpesviruses can therefore exploit neuronal microtubules and motors for long distance axonal transport, and alternate between periods of sustained plus end- and minus end-directed motion at different stages of their infectious cycle. This review summarizes our current understanding of the molecular details by which this is achieved.
Collapse
Affiliation(s)
- Drishya Diwaker
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence: ; Tel.: +1-(718)-430-2305
| |
Collapse
|