1
|
Yamaguchi K, Chen X, Rodgers B, Miura F, Bashtrykov P, Bonhomme F, Salinas-Luypaert C, Haxholli D, Gutekunst N, Aygenli BÖ, Ferry L, Kirsh O, Laisné M, Scelfo A, Ugur E, Arimondo PB, Leonhardt H, Kanemaki MT, Bartke T, Fachinetti D, Jeltsch A, Ito T, Defossez PA. Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells. Nat Commun 2024; 15:2960. [PMID: 38580649 PMCID: PMC10997609 DOI: 10.1038/s41467-024-47314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
DNA methylation is an essential epigenetic chromatin modification, and its maintenance in mammals requires the protein UHRF1. It is yet unclear if UHRF1 functions solely by stimulating DNA methylation maintenance by DNMT1, or if it has important additional functions. Using degron alleles, we show that UHRF1 depletion causes a much greater loss of DNA methylation than DNMT1 depletion. This is not caused by passive demethylation as UHRF1-depleted cells proliferate more slowly than DNMT1-depleted cells. Instead, bioinformatics, proteomics and genetics experiments establish that UHRF1, besides activating DNMT1, interacts with DNMT3A and DNMT3B and promotes their activity. In addition, we show that UHRF1 antagonizes active DNA demethylation by TET2. Therefore, UHRF1 has non-canonical roles that contribute importantly to DNA methylation homeostasis; these findings have practical implications for epigenetics in health and disease.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France.
| | - Xiaoying Chen
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Brianna Rodgers
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, Epigenetic Chemical Biology, CNRS, UMR 3523, Chem4Life, Paris, France
| | | | - Deis Haxholli
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicole Gutekunst
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | | | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Marthe Laisné
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Andrea Scelfo
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Enes Ugur
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, Epigenetic Chemical Biology, CNRS, UMR 3523, Chem4Life, Paris, France
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
- Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | |
Collapse
|
2
|
Dudek AM, Feist WN, Sasu EJ, Luna SE, Ben-Efraim K, Bak RO, Cepika AM, Porteus MH. A simultaneous knockout knockin genome editing strategy in HSPCs potently inhibits CCR5- and CXCR4-tropic HIV-1 infection. Cell Stem Cell 2024; 31:499-518.e6. [PMID: 38579682 PMCID: PMC11212398 DOI: 10.1016/j.stem.2024.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/29/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Allogeneic hematopoietic stem and progenitor cell transplant (HSCT) of CCR5 null (CCR5Δ32) cells can be curative for HIV-1-infected patients. However, because allogeneic HSCT poses significant risk, CCR5Δ32 matched bone marrow donors are rare, and CCR5Δ32 transplant does not confer resistance to the CXCR4-tropic virus, it is not a viable option for most patients. We describe a targeted Cas9/AAV6-based genome editing strategy for autologous HSCT resulting in both CCR5- and CXCR4-tropic HIV-1 resistance. Edited human hematopoietic stem and progenitor cells (HSPCs) maintain multi-lineage repopulation capacity in vivo, and edited primary human T cells potently inhibit infection by both CCR5-tropic and CXCR4-tropic HIV-1. Modification rates facilitated complete loss of CCR5-tropic replication and up to a 2,000-fold decrease in CXCR4-tropic replication without CXCR4 locus disruption. This multi-factor editing strategy in HSPCs could provide a broad approach for autologous HSCT as a functional cure for both CCR5-tropic and CXCR4-tropic HIV-1 infections.
Collapse
Affiliation(s)
- Amanda M Dudek
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William N Feist
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena J Sasu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sofia E Luna
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaya Ben-Efraim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rasmus O Bak
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark
| | - Alma-Martina Cepika
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Li NN, Lun DX, Gong N, Meng G, Du XY, Wang H, Bao X, Li XY, Song JW, Hu K, Li L, Li SY, Liu W, Zhu W, Zhang Y, Li J, Yao T, Mou L, Han X, Hao F, Hu Y, Liu L, Zhu H, Wu Y, Liu B. Targeting the chromatin structural changes of antitumor immunity. J Pharm Anal 2024; 14:100905. [PMID: 38665224 PMCID: PMC11043877 DOI: 10.1016/j.jpha.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 04/28/2024] Open
Abstract
Epigenomic imbalance drives abnormal transcriptional processes, promoting the onset and progression of cancer. Although defective gene regulation generally affects carcinogenesis and tumor suppression networks, tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes, which may have significant implications for the development and application of epigenetic therapy, cancer immunotherapy, and their combinations. Herein, we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes, DNA methylation, histone post-translational modification, and chromatin structure in tumor immunogenicity, and introduce these epigenetic research methods. We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immunotherapy through the complex interaction between cancer epigenetics and cancer immunology.
Collapse
Affiliation(s)
- Nian-nian Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deng-xing Lun
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Ningning Gong
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Gang Meng
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, Shaanxi, 725000, China
| | - Xin-ying Du
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - He Wang
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiangxiang Bao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xin-yang Li
- Guizhou Education University, Guiyang, 550018, China
| | - Ji-wu Song
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Kewei Hu
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Lala Li
- Guizhou Normal University, Guiyang, 550025, China
| | - Si-ying Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wenbo Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wanping Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yunlong Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jikai Li
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, Tianjin, 300299, China
| | - Ting Yao
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| | - Leming Mou
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiaoqing Han
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Furong Hao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yongcheng Hu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Lin Liu
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongguang Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yuyun Wu
- Xinqiao Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Bin Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| |
Collapse
|
4
|
Su J, Lin X, Li D, Yang C, Lv S, Chen X, Yang X, Pan B, Xu R, Ren L, Zhang Y, Xie Y, Chen Q, Xia C. Prevotella copri exhausts intrinsic indole-3-pyruvic acid in the host to promote breast cancer progression: inactivation of AMPK via UHRF1-mediated negative regulation. Gut Microbes 2024; 16:2347757. [PMID: 38773738 PMCID: PMC11123460 DOI: 10.1080/19490976.2024.2347757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Emerging evidence has revealed the novel role of gut microbiota in the development of cancer. The characteristics of function and composition in the gut microbiota of patients with breast cancer patients has been reported, however the detailed causation between gut microbiota and breast cancer remains uncertain. In the present study, 16S rRNA sequencing revealed that Prevotella, particularly the dominant species Prevotella copri, is significantly enriched and prevalent in gut microbiota of breast cancer patients. Prior-oral administration of P. copri could promote breast cancer growth in specific pathogen-free mice and germ-free mice, accompanied with sharp reduction of indole-3-pyruvic acid (IPyA). Mechanistically, the present of excessive P. copri consumed a large amount of tryptophan (Trp), thus hampering the physiological accumulation of IPyA in the host. Our results revealed that IPyA is an intrinsic anti-cancer reagent in the host at physiological level. Briefly, IPyA directly suppressed the transcription of UHRF1, following by the declined UHRF1 and PP2A C in nucleus, thus inhibiting the phosphorylation of AMPK, which is just opposite to the cancer promoting effect of P. copri. Therefore, the exhaustion of IPyA by excessive P. copri strengthens the UHRF1-mediated negative control to inactivated the energy-controlling AMPK signaling pathway to promote tumor growth, which was indicated by the alternation in pattern of protein expression and DNA methylation. Our findings, for the first time, highlighted P. copri as a risk factor for the progression of breast cancer.
Collapse
Affiliation(s)
- Jiyan Su
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xiaojie Lin
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Dan Li
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, P. R. China
| | - Chunmin Yang
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Shumei Lv
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
| | - Xiaohong Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, P. R. China
| | - Xiujuan Yang
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Botao Pan
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Rui Xu
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Liping Ren
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yanfang Zhang
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yizhen Xie
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- R&D Department, Guangdong Yuewei Edible Fungi Technology Co. Ltd, Guangzhou, P. R. China
| | - Qianjun Chen
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Chenglai Xia
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Alhosin M. Epigenetics Mechanisms of Honeybees: Secrets of Royal Jelly. Epigenet Insights 2023; 16:25168657231213717. [PMID: 38033464 PMCID: PMC10687967 DOI: 10.1177/25168657231213717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Early diets in honeybees have effects on epigenome with consequences on their phenotype. Depending on the early larval diet, either royal jelly (RJ) or royal worker, 2 different female castes are generated from identical genomes, a long-lived queen with fully developed ovaries and a short-lived functionally sterile worker. To generate these prominent physiological and morphological differences between queen and worker, honeybees utilize epigenetic mechanisms which are controlled by nutritional input. These mechanisms include DNA methylation and histone post-translational modifications, mainly histone acetylation. In honeybee larvae, DNA methylation and histone acetylation may be differentially altered by RJ. This diet has biologically active ingredients with inhibitory effects on the de novo methyltransferase DNMT3A or the histone deacetylase 3 HDAC3 to create and maintain the epigenetic state necessary for developing larvae to generate a queen. DNMT and HDAC enzymes work together to induce the formation of a compacted chromatin structure, repressing transcription. Such dialog could be coordinated by their association with other epigenetic factors including the ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1). Through its multiple functional domains, UHRF1 acts as an epigenetic reader of both DNA methylation patterns and histone marks. The present review discusses the epigenetic regulation of honeybee's chromatin and how the early diets in honeybees can affect the DNA/histone modifying types of machinery that are necessary to stimulate the larvae to turn into either queen or worker. The review also looks at future directions in epigenetics mechanisms of honeybees, mainly the potential role of UHRF1 in these mechanisms.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Liu J, Wu Y, Dong G, Zhu G, Zhou G. Progress of Research on the Physiology and Molecular Regulation of Sorghum Growth under Salt Stress by Gibberellin. Int J Mol Sci 2023; 24:ijms24076777. [PMID: 37047750 PMCID: PMC10094886 DOI: 10.3390/ijms24076777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
Plant growth often encounters diverse abiotic stresses. As a global resource-based ecological problem, salinity is widely distributed and one of the major abiotic stresses affecting crop yields worldwide. Sorghum, a cereal crop with medium salt tolerance and great value for the development and utilization of salted soils, is an important source of food, brewing, energy, and forage production. However, in soils with high salt concentrations, sorghum experiences low emergence and suppressed metabolism. It has been demonstrated that the effects of salt stress on germination and seedling growth can be effectively mitigated to a certain extent by the exogenous amendment of hormonal gibberellin (GA). At present, most of the studies on sorghum salt tolerance at home and abroad focus on morphological and physiological levels, including the transcriptome analysis of the exogenous hormone on sorghum salt stress tolerance, the salt tolerance metabolism pathway, and the mining of key salt tolerance regulation genes. The high-throughput sequencing technology is increasingly widely used in the study of crop resistance, which is of great significance to the study of plant resistance gene excavation and mechanism. In this study, we aimed to review the effects of the exogenous hormone GA on leaf morphological traits of sorghum seedlings and further analyze the physiological response of sorghum seedling leaves and the regulation of sorghum growth and development. This review not only focuses on the role of GA but also explores the signal transduction pathways of GA and the performance of their responsive genes under salt stress, thus helping to further clarify the mechanism of regulating growth and production under salt stress. This will serve as a reference for the molecular discovery of key genes related to salt stress and the development of new sorghum varieties.
Collapse
Affiliation(s)
- Jiao Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yanqing Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Guichun Dong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Guanglong Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Yaacobi-Artzi S, Kalo D, Roth Z. Seasonal variation in the morphokinetics of in-vitro-derived bovine embryos is associated with the blastocyst developmental competence and gene expression. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1030949. [PMID: 36406891 PMCID: PMC9670144 DOI: 10.3389/frph.2022.1030949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Summer heat stress is a major cause of reduced development of preimplantation embryos. Nevertheless, seasonal effects on embryo morphokinetics have been less studied. We used a non-invasive time-lapse system that allows continuous monitoring of embryos to study the seasonal impact on embryo morphokinetics. The experiments were performed during the cold and the hot seasons. Cumulus-oocyte complexes were aspirated from ovaries, in-vitro-matured, and fertilized. Putative zygotes were cultured in an incubator equipped with a time-lapse system. The cleavage and blastocyst formation rates were lower in the hot vs. the cold season (p < 0.01). The kinetics of the embryos differed between seasons, reflected by a delay in the second cleavage in the hot vs. the cold season (p < 0.03). The distribution of the embryos into different morphological grades (good, fair, and poor) throughout the first three cleavages differed between seasons, with a higher proportion of good-grade embryos in the hot season (p < 0.03). Cleaved embryos were categorized as either normal or abnormal, based on their first cleavage pattern. Normal cleavage was defined as when the first cleavage resulted in two equal blastomeres and further classified as either synchronous or asynchronous, according to their subsequent cleavages. Abnormal cleavage was defined as when the embryo directly cleaved into more than two blastomeres, it cleaved unequally into two unevenly sized blastomeres, or when the fusion of already divided blastomeres occurred. The proportion of abnormally cleaved embryos was higher in the hot season vs. the cold one (p < 0.01), reflected by a higher proportion of unequally cleaved embryos (p < 0.02). In the cold season, abnormally cleaved embryos had a lower potential to develop into blastocysts relative to their normally cleaved counterparts (p < 0.001). Blastocysts that developed in the cold and the hot seasons differed in the expression of genes that related to the cell cycle (STAT1; p < 0.01), stress (HSF1; p < 0.03), and embryo development (ZP3; p < 0.05). A higher expression level was recorded for the STAT1 and UHRF1 genes in blastocysts that developed from unequally vs. the synchronously cleaved embryos (p < 0.04). We provide the first evidence for a seasonal effect on embryo morphokinetics, which might explain the reduced embryo development during the hot season.
Collapse
|
8
|
Qin W, Steinek C, Kolobynina K, Forné I, Imhof A, Cardoso M, Leonhardt H. Probing protein ubiquitination in live cells. Nucleic Acids Res 2022; 50:e125. [PMID: 36189882 PMCID: PMC9757074 DOI: 10.1093/nar/gkac805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022] Open
Abstract
The reversible attachment of ubiquitin governs the interaction, activity and degradation of proteins whereby the type and target of this conjugation determine the biological response. The investigation of this complex and multi-faceted protein ubiquitination mostly relies on painstaking biochemical analyses. Here, we employ recombinant binding domains to probe the ubiquitination of proteins in living cells. We immobilize GFP-fused proteins of interest at a distinct cellular structure and detect their ubiquitination state with red fluorescent ubiquitin binders. With this ubiquitin fluorescent three-hybrid (ubiF3H) assay we identified HP1β as a novel ubiquitination target of UHRF1. The use of linkage specific ubiquitin binding domains enabled the discrimination of K48 and K63 linked protein ubiquitination. To enhance signal-to-noise ratio, we implemented fluorescence complementation (ubiF3Hc) with split YFP. Using in addition a cell cycle marker we could show that HP1β is mostly ubiquitinated by UHRF1 during S phase and deubiquitinated by the protease USP7. With this complementation assay we could also directly detect the ubiquitination of the tumor suppressor p53 and monitor its inhibition by the anti-cancer drug Nutlin-3. Altogether, we demonstrate the utility of the ubiF3H assay to probe the ubiquitination of specific proteins and to screen for ligases, proteases and small molecules controlling this posttranslational modification.
Collapse
Affiliation(s)
- Weihua Qin
- Correspondence may also be addressed to Weihua Qin. Tel: +49 89 2180 71132; Fax: +49 89 2180 74236;
| | - Clemens Steinek
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Ksenia Kolobynina
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Heinrich Leonhardt
- To whom correspondence should be addressed. Tel: +49 89 2180 74232; Fax: +49 89 2180 74236;
| |
Collapse
|
9
|
Surdyka M, Jesion E, Niewiadomska-Cimicka A, Trottier Y, Kalinowska-Pośka Ż, Figiel M. Selective transduction of cerebellar Purkinje and granule neurons using delivery of AAV-PHP.eB and AAVrh10 vectors at axonal terminal locations. Front Mol Neurosci 2022; 15:947490. [PMID: 36176957 PMCID: PMC9513253 DOI: 10.3389/fnmol.2022.947490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Adeno-associated virus (AAV)-based brain gene therapies require precision without off-targeting of unaffected neurons to avoid side effects. The cerebellum and its cell populations, including granule and Purkinje cells, are vulnerable to neurodegeneration; hence, conditions to deliver the therapy to specific cell populations selectively remain challenging. We have investigated a system consisting of the AAV serotypes, targeted injections, and transduction modes (direct or retrograde) for targeted delivery of AAV to cerebellar cell populations. We selected the AAV-PHP.eB and AAVrh10 serotypes valued for their retrograde features, and we thoroughly examined their cerebellar transduction pattern when injected into lobules and deep cerebellar nuclei. We found that AAVrh10 is suitable for the transduction of neurons in the mode highly dependent on placing the virus at axonal terminals. The strategy secures selective transduction for granule cells. The AAV-PHP.eB can transduce Purkinje cells and is very selective for the cell type when injected into the DCN at axonal PC terminals. Therefore, both serotypes can be used in a retrograde mode for selective transduction of major neuronal types in the cerebellum. Moreover, our in vivo transduction strategies are suitable for pre-clinical protocol development for gene delivery to granule cells by AAVrh10 and Purkinje cells by AAV-PHPeB.
Collapse
Affiliation(s)
- Magdalena Surdyka
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Ewelina Jesion
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Anna Niewiadomska-Cimicka
- Institute of Genetics and Molecular and Cellular Biology, INSERM U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Yvon Trottier
- Institute of Genetics and Molecular and Cellular Biology, INSERM U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Żaneta Kalinowska-Pośka
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Maciej Figiel
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
- *Correspondence: Maciej Figiel
| |
Collapse
|
10
|
Involvement of PGC7 and UHRF1 in the regulation of DNA methylation of the IG-DMR in the imprinted Dlk1-Dio3 locus. Acta Biochim Biophys Sin (Shanghai) 2022; 54:917-930. [PMID: 35866604 PMCID: PMC9828313 DOI: 10.3724/abbs.2022080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The gene dosage at the imprinted Dlk1-Dio3 locus is critical for cell growth and development. A relatively high gene expression within the Dlk1-Dio3 region, especially the active expression of Gtl2, has been identified as the only reliable marker for cell pluripotency. The DNA methylation state of the IG-DNA methylated regions (DMR), which is located upstream of the Gtl2 gene, dominantly contributes to the control of gene expression in the Dlk1-Dio3 locus. However, the precise mechanism underlying the regulation of DNA methylation in the IG-DMR remains largely unknown. Here, we use the F9 embryonal carcinoma cell line, a low pluripotent cell model, to identify the mechanism responsible for DNA methylation in the IG-DMR, and find that the interaction of PGC7 with UHRF1 is involved in maintaining DNA methylation and inducing DNA hypermethylation in the IG-DMR region. PGC7 and UHRF1 cooperatively bind in the IG-DMR to regulate the methylation of DNA and histones in this imprinted region. PGC7 promotes the recruitment of DNMT1 by UHRF1 to maintain DNA methylation in the IG-DMR locus. The interaction between PGC7 and UHRF1 strengthens their binding to H3K9me3 and leads to further enrichment of H3K9me3 in the IG-DMR by recruiting the specific histone methyltransferase SETDB1. Consequently, the abundance of H3K9me3 promotes DNMT3A to bind to the IG-DMR and increases DNA methylation level in this region. In summary, we propose a new mechanism of DNA methylation regulation in the IG-DMR locus and provide further insight into the understanding of the difference in Gtl2 expression levels between high and low pluripotent cells.
Collapse
|
11
|
Zhou S, Dong J, Xiong M, Gan S, Wen Y, Zhang J, Wang X, Yuan S, Gui Y. UHRF1 interacts with snRNAs and regulates alternative splicing in mouse spermatogonial stem cells. Stem Cell Reports 2022; 17:1859-1873. [PMID: 35905740 PMCID: PMC9391524 DOI: 10.1016/j.stemcr.2022.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/22/2022] Open
Abstract
Life-long male fertility relies on exquisite homeostasis and the development of spermatogonial stem cells (SSCs); however, the underlying molecular genetic and epigenetic regulation in this equilibrium process remains unclear. Here, we document that UHRF1 interacts with snRNAs to regulate pre-mRNA alternative splicing in SSCs and is required for the homeostasis of SSCs in mice. Genetic deficiency of UHRF1 in mouse prospermatogonia results in gradual loss of spermatogonial stem cells, eventually leading to Sertoli-cell-only syndrome (SCOS) and male infertility. Comparative RNA-seq data provide evidence that Uhrf1 ablation dysregulates previously reported SSC maintenance- and differentiation-related genes. We further found that UHRF1 could act as an alternative RNA splicing regulator and interact with Tle3 transcripts to regulate its splicing event in spermatogonia. Collectively, our data reveal a multifunctional role for UHRF1 in regulating gene expression programs and alternative splicing during SSC homeostasis, which may provide clues for treating human male infertility.
Collapse
Affiliation(s)
- Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiming Gan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.
| | - Yaoting Gui
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
12
|
Verdikt R, Bendoumou M, Bouchat S, Nestola L, Pasternak AO, Darcis G, Avettand-Fenoel V, Vanhulle C, Aït-Ammar A, Santangelo M, Plant E, Douce VL, Delacourt N, Cicilionytė A, Necsoi C, Corazza F, Passaes CPB, Schwartz C, Bizet M, Fuks F, Sáez-Cirión A, Rouzioux C, De Wit S, Berkhout B, Gautier V, Rohr O, Van Lint C. Novel role of UHRF1 in the epigenetic repression of the latent HIV-1. EBioMedicine 2022; 79:103985. [PMID: 35429693 PMCID: PMC9038550 DOI: 10.1016/j.ebiom.2022.103985] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The multiplicity, heterogeneity, and dynamic nature of human immunodeficiency virus type-1 (HIV-1) latency mechanisms are reflected in the current lack of functional cure for HIV-1. Accordingly, all classes of latency-reversing agents (LRAs) have been reported to present variable ex vivo potencies. Here, we investigated the molecular mechanisms underlying the potency variability of one LRA: the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-AzadC). METHODS We employed epigenetic interrogation methods (electrophoretic mobility shift assays, chromatin immunoprecipitation, Infinium array) in complementary HIV-1 infection models (latently-infected T-cell line models, primary CD4+ T-cell models and ex vivo cultures of PBMCs from HIV+ individuals). Extracellular staining of cell surface receptors and intracellular metabolic activity were measured in drug-treated cells. HIV-1 expression in reactivation studies was explored by combining the measures of capsid p24Gag protein, green fluorescence protein signal, intracellular and extracellular viral RNA and viral DNA. FINDINGS We uncovered specific demethylation CpG signatures induced by 5-AzadC in the HIV-1 promoter. By analyzing the binding modalities to these CpG, we revealed the recruitment of the epigenetic integrator Ubiquitin-like with PHD and RING finger domain 1 (UHRF1) to the HIV-1 promoter. We showed that UHRF1 redundantly binds to the HIV-1 promoter with different binding modalities where DNA methylation was either non-essential, essential or enhancing UHRF1 binding. We further demonstrated the role of UHRF1 in the epigenetic repression of the latent viral promoter by a concerted control of DNA and histone methylations. INTERPRETATION A better understanding of the molecular mechanisms of HIV-1 latency allows for the development of innovative antiviral strategies. As a proof-of-concept, we showed that pharmacological inhibition of UHRF1 in ex vivo HIV+ patient cell cultures resulted in potent viral reactivation from latency. Together, we identify UHRF1 as a novel actor in HIV-1 epigenetic silencing and highlight that it constitutes a new molecular target for HIV-1 cure strategies. FUNDING Funding was provided by the Belgian National Fund for Scientific Research (F.R.S.-FNRS, Belgium), the « Fondation Roi Baudouin », the NEAT (European AIDS Treatment Network) program, the Internationale Brachet Stiftung, ViiV Healthcare, the Télévie, the Walloon Region (« Fonds de Maturation »), « Les Amis des Instituts Pasteur à Bruxelles, asbl », the University of Brussels (Action de Recherche Concertée ULB grant), the Marie Skodowska Curie COFUND action, the European Union's Horizon 2020 research and innovation program under grant agreement No 691119-EU4HIVCURE-H2020-MSCA-RISE-2015, the French Agency for Research on AIDS and Viral Hepatitis (ANRS), the Sidaction and the "Alsace contre le Cancer" Foundation. This work is supported by 1UM1AI164562-01, co-funded by National Heart, Lung and Blood Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, National Institute on Drug Abuse and the National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Maryam Bendoumou
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Sophie Bouchat
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Lorena Nestola
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Alexander O Pasternak
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Amsterdam 1105 AZ, the Netherland
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège 4000, Belgium
| | - Véronique Avettand-Fenoel
- AP-HP, Hôpital Necker-Enfants-Malades, Service de Microbiologie clinique, Paris 75015, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France; INSERM, U1016, Institut Cochin, Paris, 75014, France; CNRS, UMR8104, Paris 75014, France
| | - Caroline Vanhulle
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Amina Aït-Ammar
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Marion Santangelo
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Valentin Le Douce
- Centre for Research in Infectious Diseases, University College Dublin, Dublin 4, Ireland
| | - Nadège Delacourt
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Aurelija Cicilionytė
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Amsterdam 1105 AZ, the Netherland
| | - Coca Necsoi
- Service des Maladies Infectieuses, CHU St-Pierre, Université Libre de Bruxelles (ULB), Brussels 1000, Belgium
| | - Francis Corazza
- Laboratory of Immunology, IRISLab, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels 1020, Belgium
| | | | - Christian Schwartz
- Laboratoire DHPI EA7292, Université de Strasbourg, Schiltigheim, 67300, France; IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, 67300, France
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Asier Sáez-Cirión
- Départements de Virologie et Immunologie, Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris 75015, France
| | - Christine Rouzioux
- AP-HP, Hôpital Necker-Enfants-Malades, Service de Microbiologie clinique, Paris 75015, France
| | - Stéphane De Wit
- Service des Maladies Infectieuses, CHU St-Pierre, Université Libre de Bruxelles (ULB), Brussels 1000, Belgium
| | - Ben Berkhout
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Amsterdam 1105 AZ, the Netherland
| | - Virginie Gautier
- Centre for Research in Infectious Diseases, University College Dublin, Dublin 4, Ireland
| | - Olivier Rohr
- Laboratoire DHPI EA7292, Université de Strasbourg, Schiltigheim, 67300, France; IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, 67300, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium.
| |
Collapse
|
13
|
Saeki N, Inoue K, Ideta-Otsuka M, Watamori K, Mizuki S, Takenaka K, Igarashi K, Miura H, Takeda S, Imai Y. Epigenetic regulator UHRF1 suppressively orchestrates pro-inflammatory gene expression in rheumatoid arthritis. J Clin Invest 2022; 132:150533. [PMID: 35472067 PMCID: PMC9151705 DOI: 10.1172/jci150533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation with aberrant epigenetic alterations, eventually leading to joint destruction. However, the epigenetic regulatory mechanisms underlying RA pathogenesis remain largely unknown. Here we showed that Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) is a central epigenetic regulator that suppressively orchestrates multiple pathogeneses in RA. UHRF1 expression was remarkably up-regulated in synovial fibroblasts (SF) from arthritis model mice and RA patients. Mice with SF-specific Uhrf1 conditional knockout showed more severe arthritic phenotypes than littermate control. Uhrf1-deficient SF also exhibited enhanced apoptosis resistance and up-regulated expression of several cytokines including Ccl20. In RA patients, DAS28, CRP, and Th17 accumulation as well as apoptosis resistance were negatively correlated with UHRF1 expression in synovium. Finally, Ryuvidine administration that stabilizes UHRF1 ameliorated arthritis pathogeneses in a mouse model of RA. This study demonstrated that UHRF1 expressed in RA SF can contribute to negative feedback mechanisms that suppress multiple pathogenic events in arthritis, suggesting that targeting UHRF1 could be one of the therapeutic strategies for RA.
Collapse
Affiliation(s)
- Noritaka Saeki
- Division of Laboratory Animal Research, Ehime University, Toon, Japan
| | - Kazuki Inoue
- Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Maky Ideta-Otsuka
- Laboratory of Instrumental Analysis, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Kunihiko Watamori
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shinichi Mizuki
- The Center for Rheumatic Diseases, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Katsuhide Igarashi
- Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Hiromasa Miura
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, Tokyo, Japan
| | - Yuuki Imai
- Division of Laboratory Animal Research, Ehime University, Toon, Japan
| |
Collapse
|
14
|
Kyriakopoulos C, Nordström K, Kramer PL, Gottfreund JY, Salhab A, Arand J, Müller F, von Meyenn F, Ficz G, Reik W, Wolf V, Walter J, Giehr P. A comprehensive approach for genome-wide efficiency profiling of DNA modifying enzymes. CELL REPORTS METHODS 2022; 2:100187. [PMID: 35475220 PMCID: PMC9017147 DOI: 10.1016/j.crmeth.2022.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 10/25/2022]
Abstract
A precise understanding of DNA methylation dynamics is of great importance for a variety of biological processes including cellular reprogramming and differentiation. To date, complex integration of multiple and distinct genome-wide datasets is required to realize this task. We present GwEEP (genome-wide epigenetic efficiency profiling) a versatile approach to infer dynamic efficiencies of DNA modifying enzymes. GwEEP relies on genome-wide hairpin datasets, which are translated by a hidden Markov model into quantitative enzyme efficiencies with reported confidence around the estimates. GwEEP predicts de novo and maintenance methylation efficiencies of Dnmts and furthermore the hydroxylation efficiency of Tets. Its design also allows capturing further oxidation processes given available data. We show that GwEEP predicts accurately the epigenetic changes of ESCs following a Serum-to-2i shift and applied to Tet TKO cells confirms the hypothesized mutual interference between Dnmts and Tets.
Collapse
Affiliation(s)
| | - Karl Nordström
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Paula Linh Kramer
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Germany
| | - Judith Yumiko Gottfreund
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Abdulrahman Salhab
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Julia Arand
- Division of Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Fabian Müller
- Department of Integrative Cellular Biology and Bioinformatics, Campus A2.4, 66123 Saarbrücken, Germany
| | - Ferdinand von Meyenn
- Department of Health Sciences and Technology, ETH Zürich, Schorenstrasse 16, Schwerzenbach, 8603 Zürich, Switzerland
| | - Gabriella Ficz
- Haemato-Oncology, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wolf Reik
- Epigenetics Department, Babraham Institute, Cambridge CB22 3AT, UK
| | - Verena Wolf
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Pascal Giehr
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
- Department of Health Sciences and Technology, ETH Zürich, Schorenstrasse 16, Schwerzenbach, 8603 Zürich, Switzerland
| |
Collapse
|
15
|
Sakai H, Sawada Y, Tokunaga N, Tanaka K, Nakagawa S, Sakakibara I, Ono Y, Fukada SI, Ohkawa Y, Kikugawa T, Saika T, Imai Y. Uhrf1 governs the proliferation and differentiation of muscle satellite cells. iScience 2022; 25:103928. [PMID: 35243267 PMCID: PMC8886052 DOI: 10.1016/j.isci.2022.103928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022] Open
Abstract
DNA methylation is an essential form of epigenetic regulation responsible for cellular identity. In muscle stem cells, termed satellite cells, DNA methylation patterns are tightly regulated during differentiation. However, it is unclear how these DNA methylation patterns affect the function of satellite cells. We demonstrate that a key epigenetic regulator, ubiquitin like with PHD and RING finger domains 1 (Uhrf1), is activated in proliferating myogenic cells but not expressed in quiescent satellite cells or differentiated myogenic cells in mice. Ablation of Uhrf1 in mouse satellite cells impairs their proliferation and differentiation, leading to failed muscle regeneration. Uhrf1-deficient myogenic cells exhibited aberrant upregulation of transcripts, including Sox9, with the reduction of DNA methylation level of their promoter and enhancer region. These findings show that Uhrf1 is a critical epigenetic regulator of proliferation and differentiation in satellite cells, by controlling cell-type-specific gene expression via maintenance of DNA methylation. Uhrf1 is activated in proliferating myogenic cells Uhrf1 in satellite cells is required for muscle regeneration Ablation of Uhrf1 in satellite cells impairs their proliferation and differentiation Uhrf1 controls cell-type-specific transcripts via maintenance of DNA methylation
Collapse
Affiliation(s)
- Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
- Corresponding author
| | - Yuichiro Sawada
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Naohito Tokunaga
- Division of Analytical Bio-Medicine, Advanced Research Support Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-0054, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Iori Sakakibara
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo, Kumamoto 860-0811, Japan
| | - So-ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-0054, Japan
| | - Tadahiko Kikugawa
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Takashi Saika
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
- Corresponding author
| |
Collapse
|
16
|
Jurkowska RZ, Jeltsch A. Enzymology of Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:69-110. [DOI: 10.1007/978-3-031-11454-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
UNOKI M, SASAKI H. The UHRF protein family in epigenetics, development, and carcinogenesis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:401-415. [PMID: 36216533 PMCID: PMC9614205 DOI: 10.2183/pjab.98.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 05/31/2023]
Abstract
The UHRF protein family consists of multidomain regulatory proteins that sense modification status of DNA and/or proteins and catalyze the ubiquitylation of target proteins. Through their functional domains, they interact with other molecules and serve as a hub for regulatory networks of several important biological processes, including maintenance of DNA methylation and DNA damage repair. The UHRF family is conserved in vertebrates and plants but is missing from fungi and many nonvertebrate animals. Mammals commonly have UHRF1 and UHRF2, but, despite their high structural similarity, the two paralogues appear to have distinct functions. Furthermore, UHRF1 and UHRF2 show different expression patterns and different outcomes in gene knockout experiments. In this review, we summarize the current knowledge on the molecular function of the UHRF family in various biological pathways and discuss their roles in epigenetics, development, gametogenesis, and carcinogenesis, with a focus on the mammalian UHRF proteins.
Collapse
Affiliation(s)
- Motoko UNOKI
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki SASAKI
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Newkirk SJ, An W. UHRF1: a jack of all trades, and a master epigenetic regulator during spermatogenesis. Biol Reprod 2021; 102:1147-1152. [PMID: 32101289 DOI: 10.1093/biolre/ioaa026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
19
|
Reporter cell assay for human CD33 validated by specific antibodies and human iPSC-derived microglia. Sci Rep 2021; 11:13462. [PMID: 34188106 PMCID: PMC8242067 DOI: 10.1038/s41598-021-92434-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
CD33/Sialic acid-binding Ig-like lectin 3 (SIGLEC3) is an innate immune receptor expressed on myeloid cells and mediates inhibitory signaling via tyrosine phosphatases. Variants of CD33 are associated with Alzheimer’s disease (AD) suggesting that modulation of CD33 signaling might be beneficial in AD. Hence, there is an urgent need for reliable cellular CD33 reporter systems. Therefore, we generated a CD33 reporter cell line expressing a fusion protein consisting of the extracellular domain of either human full-length CD33 (CD33M) or the AD-protective variant CD33ΔE2 (D2-CD33/CD33m) linked to TYRO protein tyrosine kinase binding protein (TYROBP/DAP12) to investigate possible ligands and antibodies for modulation of CD33 signaling. Application of the CD33-specific antibodies P67.6 and 1c7/1 to the CD33M-DAP12 reporter cells resulted in increased phosphorylation of the kinase SYK, which is downstream of DAP12. CD33M-DAP12 but not CD33ΔE2-DAP12 expressing reporter cells showed increased intracellular calcium levels upon treatment with CD33 antibody P67.6 and partially for 1c7/1. Furthermore, stimulation of human induced pluripotent stem cell-derived microglia with the CD33 antibodies P67.6 or 1c7/1 directly counteracted the triggering receptor expressed on myeloid cells 2 (TREM2)-induced phosphorylation of SYK and decreased the phagocytic uptake of bacterial particles. Thus, the developed reporter system confirmed CD33 pathway activation by CD33 antibody clones P67.6 and 1c7/1. In addition, data showed that phosphorylation of SYK by TREM2 activation and phagocytosis of bacterial particles can be directly antagonized by CD33 signaling.
Collapse
|
20
|
Chin MY, Patwardhan AR, Ang KH, Wang AL, Alquezar C, Welch M, Nguyen PT, Grabe M, Molofsky AV, Arkin MR, Kao AW. Genetically Encoded, pH-Sensitive mTFP1 Biosensor for Probing Lysosomal pH. ACS Sens 2021; 6:2168-2180. [PMID: 34102054 PMCID: PMC8240087 DOI: 10.1021/acssensors.0c02318] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/08/2021] [Indexed: 12/15/2022]
Abstract
Lysosomes are important sites for macromolecular degradation, defined by an acidic lumenal pH of ∼4.5. To better understand lysosomal pH, we designed a novel, genetically encoded, fluorescent protein (FP)-based pH biosensor called Fluorescence Indicator REporting pH in Lysosomes (FIRE-pHLy). This biosensor was targeted to lysosomes with lysosomal-associated membrane protein 1 (LAMP1) and reported lumenal pH between 3.5 and 6.0 with monomeric teal fluorescent protein 1 (mTFP1), a bright cyan pH-sensitive FP variant with a pKa of 4.3. Ratiometric quantification was enabled with cytosolically oriented mCherry using high-content quantitative imaging. We expressed FIRE-pHLy in several cellular models and quantified the alkalinizing response to bafilomycin A1, a specific V-ATPase inhibitor. In summary, we have engineered FIRE-pHLy, a specific, robust, and versatile lysosomal pH biosensor, that has broad applications for investigating pH dynamics in aging- and lysosome-related diseases, as well as in lysosome-based drug discovery.
Collapse
Affiliation(s)
- Marcus Y Chin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Anand R Patwardhan
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| | - Kean-Hooi Ang
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Austin L Wang
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| | - Carolina Alquezar
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| | - Mackenzie Welch
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| | - Phi T Nguyen
- Weill Institute for Neurosciences, Department of Psychiatry, University of California, San Francisco, California 94158, United States
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Anna V Molofsky
- Weill Institute for Neurosciences, Department of Psychiatry, University of California, San Francisco, California 94158, United States
| | - Michelle R Arkin
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Aimee W Kao
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| |
Collapse
|
21
|
Dahlet T, Truss M, Frede U, Al Adhami H, Bardet AF, Dumas M, Vallet J, Chicher J, Hammann P, Kottnik S, Hansen P, Luz U, Alvarez G, Auclair G, Hecht J, Robinson PN, Hagemeier C, Weber M. E2F6 initiates stable epigenetic silencing of germline genes during embryonic development. Nat Commun 2021; 12:3582. [PMID: 34117224 PMCID: PMC8195999 DOI: 10.1038/s41467-021-23596-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
In mouse development, long-term silencing by CpG island DNA methylation is specifically targeted to germline genes; however, the molecular mechanisms of this specificity remain unclear. Here, we demonstrate that the transcription factor E2F6, a member of the polycomb repressive complex 1.6 (PRC1.6), is critical to target and initiate epigenetic silencing at germline genes in early embryogenesis. Genome-wide, E2F6 binds preferentially to CpG islands in embryonic cells. E2F6 cooperates with MGA to silence a subgroup of germline genes in mouse embryonic stem cells and in embryos, a function that critically depends on the E2F6 marked box domain. Inactivation of E2f6 leads to a failure to deposit CpG island DNA methylation at these genes during implantation. Furthermore, E2F6 is required to initiate epigenetic silencing in early embryonic cells but becomes dispensable for the maintenance in differentiated cells. Our findings elucidate the mechanisms of epigenetic targeting of germline genes and provide a paradigm for how transient repression signals by DNA-binding factors in early embryonic cells are translated into long-term epigenetic silencing during mouse development. DNA methylation targets CpG island promoters of germline genes to repress their expression in mouse somatic cells. Here the authors show that a transcription factor E2F6 is required to target CpG island DNA methylation and epigenetic silencing to germline genes during early mouse development.
Collapse
Affiliation(s)
- Thomas Dahlet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France
| | - Matthias Truss
- Pediatric Oncology, Labor für Pädiatrische Molekularbiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Ute Frede
- Pediatric Oncology, Labor für Pädiatrische Molekularbiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France
| | - Anaïs F Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France
| | - Judith Vallet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, Strasbourg, France
| | - Sarah Kottnik
- Pediatric Oncology, Labor für Pädiatrische Molekularbiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Hansen
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Uschi Luz
- Pediatric Oncology, Labor für Pädiatrische Molekularbiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gonzalo Alvarez
- Pediatric Oncology, Labor für Pädiatrische Molekularbiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ghislain Auclair
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France
| | - Jochen Hecht
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,Centre for Genomic Regulation, Barcelona, Spain
| | - Peter N Robinson
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Christian Hagemeier
- Pediatric Oncology, Labor für Pädiatrische Molekularbiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Michael Weber
- University of Strasbourg, Strasbourg, France. .,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France.
| |
Collapse
|
22
|
Li Y, Chen X, Lu C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Rep 2021; 22:e51803. [PMID: 33844406 PMCID: PMC8097341 DOI: 10.15252/embr.202051803] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Methylation of cytosine in CpG dinucleotides and histone lysine and arginine residues is a chromatin modification that critically contributes to the regulation of genome integrity, replication, and accessibility. A strong correlation exists between the genome-wide distribution of DNA and histone methylation, suggesting an intimate relationship between these epigenetic marks. Indeed, accumulating literature reveals complex mechanisms underlying the molecular crosstalk between DNA and histone methylation. These in vitro and in vivo discoveries are further supported by the finding that genes encoding DNA- and histone-modifying enzymes are often mutated in overlapping human diseases. Here, we summarize recent advances in understanding how DNA and histone methylation cooperate to maintain the cellular epigenomic landscape. We will also discuss the potential implication of these insights for understanding the etiology of, and developing biomarkers and therapies for, human congenital disorders and cancers that are driven by chromatin abnormalities.
Collapse
Affiliation(s)
- Yinglu Li
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Xiao Chen
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
23
|
Li Q, Chu Z, Geng S. UHRF1 Knockdown Attenuates Cell Growth, Migration, and Invasion in Cutaneous Squamous Cell Carcinoma. Cancer Invest 2020; 39:84-97. [PMID: 33058714 DOI: 10.1080/07357907.2020.1837152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ubiquitin like with PHD and ring finger domains 1 (UHRF1) contributes to the progression of many cancers. Here, we firstly observed UHRF1 was elevated in cutaneous squamous cell carcinoma (cSCC) and related to the differentiation stages. Knockdown of UHRF1 in A431 and Scl-1 attenuated cell proliferation, migration, and invasion, leading to G2/M cell cycle arrest and apoptosis. Through a mouse xenograft model, we found UHRF1 deficiency ameliorated tumor growth. These results may be associated with destruction of multiple signal pathways. In summary, our results suggest UHRF1 is involved in the pathogenesis of cSCC and may be a therapeutic target.
Collapse
Affiliation(s)
- Qingyan Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
24
|
Asada M, Hayashi H, Murakami K, Kikuiri K, Kaneko R, Yuan B, Takagi N. Investigating the Relationship Between Neuronal Cell Death and Early DNA Methylation After Ischemic Injury. Front Neurosci 2020; 14:581915. [PMID: 33177984 PMCID: PMC7591788 DOI: 10.3389/fnins.2020.581915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral ischemia induces neuronal cell death and causes various kinds of brain dysfunction. Therefore, prevention of neuronal cell death is most essential for protection of the brain. On the other hand, it has been reported that epigenetics including DNA methylation plays a pivotal role in pathogenesis of some diseases such as cancer. Accumulating evidences indicate that aberrant DNA methylation is related to cell death. However, DNA methylation after cerebral ischemia has not been fully understood yet. The aim of this present study was to investigate the relationships between DNA methylation and neuronal cell death after cerebral ischemia. We examined DNA methylation under the ischemic condition by using transient middle cerebral artery occlusion and reperfusion (MCAO/R) model rats and N-methyl-D-aspartate (NMDA)–treated cortical neurons in primary culture. In this study, we demonstrated that DNA methylation increased in these neurons 24 h after MCAO/R and that DNA methylation, possibly through activation of DNA methyltransferases (DNMT) 3a, increased in such neurons immediately after NMDA treatment. Furthermore, NMDA-treated neurons were protected by treatment with a DNMT inhibitor that were accompanied by inhibition of DNA methylation. Our results showed that DNA methylation would be an initiation factor of neuronal cell death and that inhibition of such methylation could become an effective therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Mayumi Asada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kenjiro Murakami
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kento Kikuiri
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Ryotaro Kaneko
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Bo Yuan
- Laboratory of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, School of Pharmacy, Josai University, Sakado, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
25
|
Jiang Q, Ang JYJ, Lee AY, Cao Q, Li KY, Yip KY, Leung DCY. G9a Plays Distinct Roles in Maintaining DNA Methylation, Retrotransposon Silencing, and Chromatin Looping. Cell Rep 2020; 33:108315. [PMID: 33113380 DOI: 10.1016/j.celrep.2020.108315] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
G9a is a lysine methyltransferase that regulates epigenetic modifications, transcription, and genome organization. However, whether these properties are dependent on one another or represent distinct functions of G9a remains unclear. In this study, we observe widespread DNA methylation loss in G9a depleted and catalytic mutant embryonic stem cells. Furthermore, we define how G9a regulates chromatin accessibility, epigenetic modifications, and transcriptional silencing in both catalytic-dependent and -independent manners. Reactivated retrotransposons provide alternative promoters and splice sites leading to the upregulation of neighboring genes and the production of chimeric transcripts. Moreover, while topologically associated domains and compartment A/B definitions are largely unaffected, the loss of G9a leads to altered chromatin states, aberrant CTCF and cohesin binding, and differential chromatin looping, especially at retrotransposons. Taken together, our findings reveal how G9a regulates the epigenome, transcriptome, and higher-order chromatin structures in distinct mechanisms.
Collapse
Affiliation(s)
- Qinghong Jiang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Julie Y J Ang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ah Young Lee
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qin Cao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelly Y Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Danny C Y Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
26
|
Production of Baculovirus and Stem Cells for Baculovirus-Mediated Gene Transfer into Human Mesenchymal Stem Cells. Methods Mol Biol 2020; 2183:367-390. [PMID: 32959254 DOI: 10.1007/978-1-0716-0795-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The discovery of the genome-editing tool CRISPR-Cas9 is revolutionizing the world of gene therapy and will extend the gene therapy product pipeline. While applying gene therapy products, the main difficulty is an efficient and effective transfer of the nucleic acids carrying the relevant information to their target destination, the nucleus of the cells. Baculoviruses have shown to be very suitable transport vehicles for this task due to, inter alia, their ability to transduce mammalian/human cells without being pathogenic. This property allows the usage of baculovirus-transduced cells as cell therapy products, thus, combining the advantages of gene and cell therapy. To make such pharmaceuticals available for patients, a successful production and purification is necessary. In this chapter, we describe the generation of a pseudotyped baculovirus vector, followed by downstream processing using depth and tangential-flow filtration. This vector is used subsequently to transduce human mesenchymal stem cells. The production of the cells and the subsequent transduction process are illustrated.
Collapse
|
27
|
Tolmacheva EN, Vasilyev SA, Lebedev IN. Aneuploidy and DNA Methylation as Mirrored Features of Early Human Embryo Development. Genes (Basel) 2020; 11:E1084. [PMID: 32957536 PMCID: PMC7564410 DOI: 10.3390/genes11091084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Genome stability is an integral feature of all living organisms. Aneuploidy is the most common cause of fetal death in humans. The timing of bursts in increased aneuploidy frequency coincides with the waves of global epigenetic reprogramming in mammals. During gametogenesis and early embryogenesis, parental genomes undergo two waves of DNA methylation reprogramming. Failure of these processes can critically affect genome stability, including chromosome segregation during cell division. Abnormal methylation due to errors in the reprogramming process can potentially lead to aneuploidy. On the other hand, the presence of an entire additional chromosome, or chromosome loss, can affect the global genome methylation level. The associations of these two phenomena are well studied in the context of carcinogenesis, but here, we consider the relationship of DNA methylation and aneuploidy in early human and mammalian ontogenesis. In this review, we link these two phenomena and highlight the critical ontogenesis periods and genome regions that play a significant role in human reproduction and in the formation of pathological phenotypes in newborns with chromosomal aneuploidy.
Collapse
Affiliation(s)
- Ekaterina N. Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (S.A.V.); (I.N.L.)
| | | | | |
Collapse
|
28
|
Zhou S, Feng S, Qin W, Wang X, Tang Y, Yuan S. Epigenetic Regulation of Spermatogonial Stem Cell Homeostasis: From DNA Methylation to Histone Modification. Stem Cell Rev Rep 2020; 17:562-580. [PMID: 32939648 DOI: 10.1007/s12015-020-10044-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2020] [Indexed: 12/27/2022]
Abstract
Spermatogonial stem cells(SSCs)are the ultimate germline stem cells with the potential of self-renewal and differentiation, and a dynamic balance of SSCs play an essential role in spermatogenesis. During the gene expression process, genomic DNA and nuclear protein, working together, contribute to SSC homeostasis. Recently, emerging studies have shown that epigenome-related molecules such as chromatin modifiers play an important role in SSC homeostasis through regulating target gene expression. Here, we focus on two types of epigenetic events, including DNA methylation and histone modification, and summarize their function in SSC homeostasis. Understanding the molecular mechanism during SSC homeostasis will promote the recognition of epigenetic biomarkers in male infertility, and bring light into therapies of infertile patients.Graphical Abstract.
Collapse
Affiliation(s)
- Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, 510500, Guangzhou, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, 510500, Guangzhou, China.
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
29
|
Saravanaraman P, Selvam M, Ashok C, Srijyothi L, Baluchamy S. De novo methyltransferases: Potential players in diseases and new directions for targeted therapy. Biochimie 2020; 176:85-102. [PMID: 32659446 DOI: 10.1016/j.biochi.2020.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Epigenetic modifications govern gene expression by guiding the human genome on 'what to express and what not to'. DNA methyltransferases (DNMTs) establish methylation patterns on DNA, particularly in CpG islands, and such patterns play a major role in gene silencing. DNMTs are a family of proteins/enzymes (DNMT1, 2, 3A, 3B, and 3L), among which, DNMT1 (maintenance methyltransferase) and DNMT3 (de novo methyltransferases) that direct mammalian development and genome imprinting are highly investigated. In recent decades, many studies revealed a strong association of DNA methylation patterns with gene expression in various clinical conditions. Differential expression of DNMT3 family proteins and their splice variants result in changes in methylation patterns and such alterations have been associated with the initiation and progression of various diseases, especially cancer. This review will discuss the aberrant modifications generated by DNMT3 proteins under various clinical conditions, suggesting a potential signature for de novo methyltransferases in targeted disease therapy. Further, this review discusses the possibility of using 'CpG island methylation signatures' as promising biomarkers and emphasizes 'targeted hypomethylation' by disrupting the interaction of specific DNMT-protein complexes as the future of cancer therapeutics.
Collapse
Affiliation(s)
- Ponne Saravanaraman
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Murugan Selvam
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Cheemala Ashok
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Loudu Srijyothi
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Sudhakar Baluchamy
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India.
| |
Collapse
|
30
|
Conway M, Xu T, Kirkpatrick A, Ripp S, Sayler G, Close D. Real-time tracking of stem cell viability, proliferation, and differentiation with autonomous bioluminescence imaging. BMC Biol 2020; 18:79. [PMID: 32620121 PMCID: PMC7333384 DOI: 10.1186/s12915-020-00815-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Luminescent reporter proteins are vital tools for visualizing cells and cellular activity. Among the current toolbox of bioluminescent systems, only bacterial luciferase has genetically defined luciferase and luciferin synthesis pathways that are functional at the mammalian cell temperature optimum of 37 °C and have the potential for in vivo applications. However, this system is not functional in all cell types, including stem cells, where the ability to monitor continuously and in real-time cellular processes such as differentiation and proliferation would be particularly advantageous. RESULTS We report that artificial subdivision of the bacterial luciferin and luciferase pathway subcomponents enables continuous or inducible bioluminescence in pluripotent and mesenchymal stem cells when the luciferin pathway is overexpressed with a 20-30:1 ratio. Ratio-based expression is demonstrated to have minimal effects on phenotype or differentiation while enabling autonomous bioluminescence without requiring external excitation. We used this method to assay the proliferation, viability, and toxicology responses of iPSCs and showed that these assays are comparable in their performance to established colorimetric assays. Furthermore, we used the continuous luminescence to track stem cell progeny post-differentiation. Finally, we show that tissue-specific promoters can be used to report cell fate with this system. CONCLUSIONS Our findings expand the utility of bacterial luciferase and provide a new tool for stem cell research by providing a method to easily enable continuous, non-invasive bioluminescent monitoring in pluripotent cells.
Collapse
Affiliation(s)
| | - Tingting Xu
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Steven Ripp
- 490 BioTech, Knoxville, TN, 37996, USA
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Gary Sayler
- 490 BioTech, Knoxville, TN, 37996, USA
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Dan Close
- 490 BioTech, Knoxville, TN, 37996, USA.
| |
Collapse
|
31
|
Harnessing targeted DNA methylation and demethylation using dCas9. Essays Biochem 2020; 63:813-825. [PMID: 31724704 DOI: 10.1042/ebc20190029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
DNA methylation is an essential DNA modification that plays a crucial role in genome regulation during differentiation and development, and is disrupted in a range of disease states. The recent development of CRISPR/catalytically dead CRISPR/Cas9 (dCas9)-based targeted DNA methylation editing tools has enabled new insights into the roles and functional relevance of this modification, including its importance at regulatory regions and the role of aberrant methylation in various diseases. However, while these tools are advancing our ability to understand and manipulate this regulatory layer of the genome, they still possess a variety of limitations in efficacy, implementation, and targeting specificity. Effective targeted DNA methylation editing will continue to advance our fundamental understanding of the role of this modification in different genomic and cellular contexts, and further improvements may enable more accurate disease modeling and possible future treatments. In this review, we discuss strategies, considerations, and future directions for targeted DNA methylation editing.
Collapse
|
32
|
Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomed Pharmacother 2020; 128:110276. [PMID: 32502836 DOI: 10.1016/j.biopha.2020.110276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) have provided an efficient way to integrate our gene of interest into eukaryote cells. Human immunodeficiency virus (HIV)-derived LVs have been vastly studied to become an invaluable asset in gene delivery. This abled LVs to be used in both research laboratories and gene therapy. Pseudotyping HIV-1 based LVs, abled it to transduce different types of cells, especially hematopoietic stem cells. A wide range of tropism, plus to the ability to integrate genes into target cells, made LVs an armamentarium in gene therapy. The third and fourth generations of self-inactivating LVs are being used to achieve safe gene therapy. Not only advanced methods enabled the clinical-grade LV production on a large scale, but also considerably heightened transduction efficiency. One of which is microfluidic systems that revolutionized gene delivery approaches. Since gene therapy using LVs attracted lots of attention to itself, we provided a brief review of LV structure and life-cycle along with methods for improving both LV production and transduction. Also, we mentioned some of their utilization in immunotherapy and gene therapy.
Collapse
|
33
|
Nishiyama A, Mulholland CB, Bultmann S, Kori S, Endo A, Saeki Y, Qin W, Trummer C, Chiba Y, Yokoyama H, Kumamoto S, Kawakami T, Hojo H, Nagae G, Aburatani H, Tanaka K, Arita K, Leonhardt H, Nakanishi M. Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nat Commun 2020; 11:1222. [PMID: 32144273 PMCID: PMC7060239 DOI: 10.1038/s41467-020-15006-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Stable inheritance of DNA methylation is critical for maintaining differentiated phenotypes in multicellular organisms. We have recently identified dual mono-ubiquitylation of histone H3 (H3Ub2) by UHRF1 as an essential mechanism to recruit DNMT1 to chromatin. Here, we show that PCNA-associated factor 15 (PAF15) undergoes UHRF1-dependent dual mono-ubiquitylation (PAF15Ub2) on chromatin in a DNA replication-coupled manner. This event will, in turn, recruit DNMT1. During early S-phase, UHRF1 preferentially ubiquitylates PAF15, whereas H3Ub2 predominates during late S-phase. H3Ub2 is enhanced under PAF15 compromised conditions, suggesting that H3Ub2 serves as a backup for PAF15Ub2. In mouse ES cells, loss of PAF15Ub2 results in DNA hypomethylation at early replicating domains. Together, our results suggest that there are two distinct mechanisms underlying replication timing-dependent recruitment of DNMT1 through PAF15Ub2 and H3Ub2, both of which are prerequisite for high fidelity DNA methylation inheritance. Ubiquitylation of histone H3 (H3Ub2) by UHRF1 recruits DNMT1 to chromatin, which is essential for DNA methylation inheritance. Here, the authors provide evidence that there are two distinct mechanisms underlying replication timing-dependent recruitment of DNMT1 through PAF15Ub2 and H3Ub2, both of which are required for high fidelity DNA methylation inheritance.
Collapse
Affiliation(s)
- Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.
| | - Christopher B Mulholland
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Sebastian Bultmann
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Satomi Kori
- Structure Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Akinori Endo
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Weihua Qin
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Carina Trummer
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Haruka Yokoyama
- Structure Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Soichiro Kumamoto
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Toru Kawakami
- Laboratory of Protein Organic Chemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Hironobu Hojo
- Laboratory of Protein Organic Chemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Genta Nagae
- The Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Hiroyuki Aburatani
- The Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Kyohei Arita
- Structure Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan.
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.
| |
Collapse
|
34
|
MiR-23b-3p reduces the proliferation, migration and invasion of cervical cancer cell lines via the reduction of c-Met expression. Sci Rep 2020; 10:3256. [PMID: 32094378 PMCID: PMC7039958 DOI: 10.1038/s41598-020-60143-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 02/06/2020] [Indexed: 12/26/2022] Open
Abstract
Malignant transformation and progression in cancer is associated with the altered expression of multiple miRNAs, which are considered as post-transcriptional regulators of genes participating in various cellular processes. Although, it has been proposed that miR-23b-3p acts as a tumor suppressor in cervical cancer (CC), not all the pathways through which it alters the cellular processes have been described. The present study examines whether miR-23b-3p directly represses the c-Met expression and that consequently modifies the proliferation, migration and invasion of C33A and CaSki cells. c-Met has five microRNA response elements (MREs) for miR-23b-3p in the 3′-UTR region. The ectopic overexpression of miR-23b-3p significantly reduces c-Met expression in C33A and CaSki cells. The overexpression of miR-23b-3p reduces proliferation, migration and invasion of CaSki cells and the proliferation and invasion in C33A cells. In CaSki cells, the activation of Gab1 and Fak, downstream of c-Met, is reduced in response to the overexpression of miR-23b-3p. Together, the results in the present study indicate that miR-23b-3p is a tumor suppressor that modulates the progression of CC via post-transcriptional regulation of the c-Met oncogene.
Collapse
|
35
|
Dong J, Wang X, Cao C, Wen Y, Sakashita A, Chen S, Zhang J, Zhang Y, Zhou L, Luo M, Liu M, Liao A, Namekawa SH, Yuan S. UHRF1 suppresses retrotransposons and cooperates with PRMT5 and PIWI proteins in male germ cells. Nat Commun 2019; 10:4705. [PMID: 31624244 PMCID: PMC6797737 DOI: 10.1038/s41467-019-12455-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 09/11/2019] [Indexed: 11/20/2022] Open
Abstract
DNA methylation, repressive histone marks, and PIWI-interacting RNA (piRNA) are essential for the control of retrotransposon silencing in the mammalian germline. However, it remains unknown how these repressive epigenetic pathways crosstalk to ensure retrotransposon silencing in the male germline. Here, we show that UHRF1 is responsible for retrotransposon silencing and cooperates with repressive epigenetic pathways in male germ cells. Conditional loss of UHRF1 in postnatal germ cells causes DNA hypomethylation, upregulation of retrotransposons, the activation of a DNA damage response, and switches in the global chromatin status, leading to complete male sterility. Furthermore, we show that UHRF1 interacts with PRMT5, an arginine methyltransferase, to regulate the repressive histone arginine modifications (H4R3me2s and H3R2me2s), and cooperates with the PIWI pathway during spermatogenesis. Collectively, UHRF1 regulates retrotransposon silencing in male germ cells and provides a molecular link between DNA methylation, histone modification, and the PIWI pathway in the germline.
Collapse
Affiliation(s)
- Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Si Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yue Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Liquan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Aihua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
36
|
Giehr P, Kyriakopoulos C, Lepikhov K, Wallner S, Wolf V, Walter J. Two are better than one: HPoxBS - hairpin oxidative bisulfite sequencing. Nucleic Acids Res 2019; 46:e88. [PMID: 29912476 PMCID: PMC6125676 DOI: 10.1093/nar/gky422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
The controlled and stepwise oxidation of 5mC to 5hmC, 5fC and 5caC by Tet enzymes is influencing the chemical and biological properties of cytosine. Besides direct effects on gene regulation, oxidised forms influence the dynamics of demethylation and re-methylation processes. So far, no combined methods exist which allow to precisely determine the strand specific localisation of cytosine modifications along with their CpG symmetric distribution. Here we describe a comprehensive protocol combining conventional hairpin bisulfite with oxidative bisulfite sequencing (HPoxBS) to determine the strand specific distribution of 5mC and 5hmC at base resolution. We apply this method to analyse the contribution of local oxidative effects on DNA demethylation in mouse ES cells. Our method includes the HPoxBS workflow and subsequent data analysis using our developed software tools. Besides a precise estimation and display of strand specific 5mC and 5hmC levels at base resolution we apply the data to predict region specific activities of Dnmt and Tet enzymes. Our experimental and computational workflow provides a precise double strand display of 5mC and 5hmC modifications at single base resolution. Based on our data we predict region specific Tet and Dnmt enzyme efficiencies shaping the distinct locus levels and patterns of 5hmC and 5mC.
Collapse
Affiliation(s)
- Pascal Giehr
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| | | | - Konstantin Lepikhov
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| | - Stefan Wallner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Bayern, Germany
| | - Verena Wolf
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Saarland, Germany
| | - Jörn Walter
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| |
Collapse
|
37
|
Anderson EM, Penrod RD, Barry SM, Hughes BW, Taniguchi M, Cowan CW. It is a complex issue: emerging connections between epigenetic regulators in drug addiction. Eur J Neurosci 2019; 50:2477-2491. [PMID: 30251397 DOI: 10.1111/ejn.14170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Drug use leads to addiction in some individuals, but the underlying brain mechanisms that control the transition from casual drug use to an intractable substance use disorder (SUD) are not well understood. Gene x environment interactions such as the frequency of drug use and the type of substance used likely to promote maladaptive plastic changes in brain regions that are critical for controlling addiction-related behavior. Epigenetics encompasses a broad spectrum of mechanisms important for regulating gene transcription that are not dependent on changes in DNA base pair sequences. This review focuses on the proteins and complexes contributing to epigenetic modifications in the nucleus accumbens (NAc) following drug experience. We discuss in detail the three major mechanisms: histone acetylation and deacetylation, histone methylation, and DNA methylation. We discuss how drug use alters the regulation of the associated proteins regulating these processes and highlight how experimental manipulations of these proteins in the NAc can alter drug-related behaviors. Finally, we discuss the ways that histone modifications and DNA methylation coordinate actions by recruiting large epigenetic enzyme complexes to aid in transcriptional repression. Targeting these multiprotein epigenetic enzyme complexes - and the individual proteins that comprise them - might lead to effective therapeutics to reverse or treat SUDs in patients.
Collapse
Affiliation(s)
- Ethan M Anderson
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Rachel D Penrod
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Sarah M Barry
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Brandon W Hughes
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Makoto Taniguchi
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Christopher W Cowan
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| |
Collapse
|
38
|
Kang K, Huang L, Li Q, Liao X, Dang Q, Yang Y, Luo J, Zeng Y, Li L, Gou D. An improved Tet-on system in microRNA overexpression and CRISPR/Cas9-mediated gene editing. J Anim Sci Biotechnol 2019; 10:43. [PMID: 31198556 PMCID: PMC6556963 DOI: 10.1186/s40104-019-0354-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/12/2019] [Indexed: 11/10/2022] Open
Abstract
Background Tetracycline (Tet)-regulated expression system has become a widely applied tool to control gene activity. This study aimed to improve the Tet-on system with superior regulatory characteristics. Results By comprehensively comparing factors of transactivators, Tet-responsive elements (TREs), orientations of induced expression cassette, and promoters controlling the transactivator, we developed an optimal Tet-on system with enhanced inducible efficiency and lower leakiness. With the system, we successfully performed effective inducible and reversible expression of microRNA, and presented a more precise and easily reproducible fine-tuning for confirming the target of a miRNA. Finally, the system was applied in CRISPR/Cas9-mediated knockout of nuclear factor of activated T cells-5 (NFAT5), a protective transcription factor in cellular osmoregulation. Conclusions This study established an improved Tet-on system for powerful and stringent gene regulation in functional genetic studies. Electronic supplementary material The online version of this article (10.1186/s40104-019-0354-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kang Kang
- 1Department of Biochemistry and Molecular Biology, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060 People's Republic of China
| | - Lian Huang
- 2Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People's Republic of China
| | - Qing Li
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Xiaoyun Liao
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Quanjin Dang
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Yi Yang
- 1Department of Biochemistry and Molecular Biology, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060 People's Republic of China
| | - Jun Luo
- 2Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People's Republic of China
| | - Yan Zeng
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Li Li
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Deming Gou
- 1Department of Biochemistry and Molecular Biology, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060 People's Republic of China.,3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| |
Collapse
|
39
|
Identification of a novel strong promoter from the anhydrobiotic midge, Polypedilum vanderplanki, with conserved function in various insect cell lines. Sci Rep 2019; 9:7004. [PMID: 31065019 PMCID: PMC6504868 DOI: 10.1038/s41598-019-43441-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 11/09/2022] Open
Abstract
Larvae of the African midge Polypedilum vanderplanki (Diptera: Chironomidae) show a form of extreme desiccation tolerance known as anhydrobiosis. The cell line Pv11 was recently established from the species, and these cells can also survive under desiccated conditions, and proliferate normally after rehydration. Here we report the identification of a new promoter, 121, which has strong constitutive transcriptional activity in Pv11 cells and promotes effective expression of exogenous genes. Using a luciferase reporter assay, this strong transcriptional activity was shown to be conserved in cell lines from various insect species, including S2 (Drosophila melanogaster, Diptera), SaPe-4 (Sarcophaga peregrina, Diptera), Sf9 (Spodoptera frugiperda, Lepidoptera) and Tc81 (Tribolium castaneum, Coleoptera) cells. In conjunction with an appropriate selection maker gene, the 121 promoter was able to confer zeocin resistance on SaPe-4 cells and allowed the establishment of stable SaPe-4 cell lines expressing the fluorescent protein AcGFP1; this is the first report of heterologous gene expression in this cell line. These results show the 121 promoter to be a versatile tool for exogenous gene expression in a wide range of insect cell lines, particularly useful to those from non-model insect species.
Collapse
|
40
|
Cao Y, Li M, Liu F, Ni X, Wang S, Zhang H, Sui X, Huo R. Deletion of maternal UHRF1 severely reduces mouse oocyte quality and causes developmental defects in preimplantation embryos. FASEB J 2019; 33:8294-8305. [PMID: 30995416 DOI: 10.1096/fj.201801696rrrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ubiquitin-like, containing PHD and RING finger domains, 1 (UHRF1) protein recognizes DNA methylation and histone modification and plays a critical role in epigenetic regulation. Recently, UHRF1 was shown to have a role in DNA methylation in oocytes and early embryos. Here, we reveal that maternal UHRF1 determines the quality of mouse oocytes. We generated oocyte-specific Uhrf1-knockout mice and found that females were sterile, and few maternal UHRF1-null embryos developed into blastocysts. The UHRF1-null oocytes had an increased incidence of aneuploidy and DNA damage. In addition to defective DNA methylation, histone modification was affected during oogenesis, with UHRF1-null germinal vesicle and metaphase II-stage oocytes exhibiting reduced global histone H3 lysine 9 dimethylation levels and elevated acetylation of histone H4 lysine 12. Taken together, our results suggest that UHRF1 plays an important role in determining oocyte quality and affects epigenetic regulation of oocyte maturation as a maternal protein, which is crucial for embryo developmental potential. Further exploration of the biologic function and underlying mechanisms of maternal UHRF1 will enhance our understanding of the maternal control of the oocyte and early embryonic development.-Cao, Y., Li, M., Liu, F., Ni, X., Wang, S., Zhang, H., Sui, X., Huo, R. Deletion of maternal UHRF1 severely reduces mouse oocyte quality and causes developmental defects in preimplantation embryos.
Collapse
Affiliation(s)
- Yumeng Cao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mingrui Li
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Fei Liu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - XiaoBei Ni
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuai Wang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuesong Sui
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ran Huo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. Proc Natl Acad Sci U S A 2018; 115:E12417-E12426. [PMID: 30530687 DOI: 10.1073/pnas.1812518115] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Injured peripheral sensory neurons switch to a regenerative state after axon injury, which requires transcriptional and epigenetic changes. However, the roles and mechanisms of gene inactivation after injury are poorly understood. Here, we show that DNA methylation, which generally leads to gene silencing, is required for robust axon regeneration after peripheral nerve lesion. Ubiquitin-like containing PHD ring finger 1 (UHRF1), a critical epigenetic regulator involved in DNA methylation, increases upon axon injury and is required for robust axon regeneration. The increased level of UHRF1 results from a decrease in miR-9. The level of another target of miR-9, the transcriptional regulator RE1 silencing transcription factor (REST), transiently increases after injury and is required for axon regeneration. Mechanistically, UHRF1 interacts with DNA methyltransferases (DNMTs) and H3K9me3 at the promoter region to repress the expression of the tumor suppressor gene phosphatase and tensin homolog (PTEN) and REST. Our study reveals an epigenetic mechanism that silences tumor suppressor genes and restricts REST expression in time after injury to promote axon regeneration.
Collapse
|
42
|
Gao LR, Zhang NK, Zhang Y, Chen Y, Wang L, Zhu Y, Tang HH. Overexpression of apelin in Wharton' jelly mesenchymal stem cell reverses insulin resistance and promotes pancreatic β cell proliferation in type 2 diabetic rats. Stem Cell Res Ther 2018; 9:339. [PMID: 30526660 PMCID: PMC6286553 DOI: 10.1186/s13287-018-1084-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023] Open
Abstract
Background Apelin plays a key beneficial role in energy metabolism by increasing glucose uptake and insulin sensitivity; however, apelin has a short half-life because it is rapidly cleared from the circulation limiting its therapeutic benefit. The aim of this study is to create a new approach to treat type 2 diabetes by inducing prolonged expression of apelin in Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs). Methods A type 2 diabetic rat model was given a high-fat diet combined with low-dose streptozotocin (STZ) injection. The human WJ-MSCs were isolated and subsequently transduced with apelin-expressing lentiviral particles (WJMSCs-apelin), and expression was verified by flow cytometry, Western blot, ELISA, and RT-PCR analysis. Type 2 diabetic rats were infused with either WJMSCs-apelin (2 × 106 cells) or an equivalent dose of saline through the tail vein injection 7 days after STZ injection. The therapeutic effects of each infusion group were evaluated by monitoring plasma glucose levels and performing glucose tolerance tests (OGTTs), insulin tolerance tests (IPITTs), confocal microscopy, and immunocytochemical analysis for quantitating islet beta cells. Plasma inflammatory cytokines IL-6 and TNF-α and anti-inflammatory factors adiponectin were measured as well. Results Type 2 diabetic rats infused with WJ-MSCs-apelin significantly decreased levels of blood glucose (from 26.03 ± 2.83 to 15.85 ± 2.13 mmol/L on 7 days P < 0.001, and to 9.41 ± 2.05 on 14 days, P < 0.001). Infusion of WJMSCs-apelin not only improved significantly insulin sensitivity and glucose disposal, but also promoted endogenous pancreatic ß cell proliferation (9.6-fold increase compared to the control group). Furthermore, infusion of the WJMSCs-apelin consistently increased insulin and C-peptide levels in the plasma, and the above effects persisted up to 42 days. The inflammatory cytokines IL-6 and TNF-α were significantly decreased, whereas anti-inflammatory factor adiponectin was significantly increased after WJ-MSC-apelin infusion. Conclusion In this study, we report a novel approach to treat type 2 diabetic rats that combines apelin gene therapy with WJ-MSC cell therapy, which could provide a promising therapeutic option for management of type 2 diabetes clinically.
Collapse
Affiliation(s)
- Lian Ru Gao
- Center of Cardiology, The Sixth Medical Center of P.L.A. General Hospital (Former Navy General Hospital), NO.6 Fucheng Road, Beijing, Haidian District, 100048, People's Republic of China
| | - Ning Kun Zhang
- Center of Cardiology, The Sixth Medical Center of P.L.A. General Hospital (Former Navy General Hospital), NO.6 Fucheng Road, Beijing, Haidian District, 100048, People's Republic of China
| | - Yan Zhang
- Center of Cardiology, The Sixth Medical Center of P.L.A. General Hospital (Former Navy General Hospital), NO.6 Fucheng Road, Beijing, Haidian District, 100048, People's Republic of China
| | - Yu Chen
- Center of Cardiology, The Sixth Medical Center of P.L.A. General Hospital (Former Navy General Hospital), NO.6 Fucheng Road, Beijing, Haidian District, 100048, People's Republic of China
| | - Li Wang
- Department of Internal Medicine, The 413th Hospital of P.L.A. 98 Wenhua Road Zhoushan, Zhejiang, 316000, People's Republic of China
| | - Ying Zhu
- Center of Cardiology, The Sixth Medical Center of P.L.A. General Hospital (Former Navy General Hospital), NO.6 Fucheng Road, Beijing, Haidian District, 100048, People's Republic of China
| | - Hai Hong Tang
- Center of Cardiology, The Sixth Medical Center of P.L.A. General Hospital (Former Navy General Hospital), NO.6 Fucheng Road, Beijing, Haidian District, 100048, People's Republic of China.
| |
Collapse
|
43
|
Age-associated methylation change of CHI promoter in herbaceous peony ( Paeonia lactiflora Pall). Biosci Rep 2018; 38:BSR20180482. [PMID: 30061184 PMCID: PMC6137250 DOI: 10.1042/bsr20180482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 11/17/2022] Open
Abstract
Chalcone isomerase gene (CHI) is a key gene that regulates the formation of yellow traits in petals. To reveal transcriptional regulatory mechanisms of CHI gene in petals of Paeonia lactiflora, we investigated the CHI expression using qPCR, the pigment content by HPLC, and methylation levels using BSP+Miseq sequencing in ‘Huangjinlun’ variety during different developmental stages including flower-bud stage (S1), initiating bloom (S2), bloom stage (S3), and withering stage (S4). Results showed that the expression level of CHI gene at S2 stage was significantly higher than that at other stages (P<0.05), and at S4 stage was extremely significantly lower than other stages (P<0.01). Besides, total anthocyanin, anthoxanthin, and flavonoid contents in petals presented a similar trend with CHI expression during developmental stages. A total of 16 CpG sites varying methylation levels were detected in CHI gene core promoter region, of which the methylation levels at mC-4 and mC-16 sites were extremely significantly negatively correlated with CHI mRNA expression (P<0.01). mC-16 site is located in the binding region of C/EBPα transcription factor, suggesting that methylation at the mC-16 site may inhibit the binding of C/EBPα to CHI promoter DNA, thereby regulating the tissue-specific expression of CHI gene. Our study revealed the expression pattern of CHI gene in petal tissues of P. lactiflora at different developmental stages, which is related to promoter methylation. Moreover, the important transcription regulation element–C/EBPα was identified, providing theoretical reference for in-depth study on the function of CHI gene in P. lactiflora.
Collapse
|
44
|
Wu Z, Feng H, Cao Y, Huang Y, Dai C, Wu S, Bao W. New Insight into the Molecular Mechanism of the FUT2 Regulating Escherichia coli F18 Resistance in Weaned Piglets. Int J Mol Sci 2018; 19:E3301. [PMID: 30352970 PMCID: PMC6275016 DOI: 10.3390/ijms19113301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli (E. coli) F18 is the main pathogen responsible for post-weaning diarrhea (PWD) in piglets. Resistance to E. coli F18 depends on the expression of the cognate receptors in the intestinal epithelial cells. However, the molecular mechanism of E. coli F18 resistance in weaned piglets remains unclear. Here, we performed a comparative transcriptome study of the duodenal tissue from Sutai E. coli F18 sensitive and resistant pigs by RNA-seq, and pig α(1,2) fucosyltransferase 2 (FUT2) was identified as a host differentially expressed gene controlling the E. coli F18 infection. Function analysis showed that the FUT2 expression was high in the duodenum and jejunum, with higher levels detected in sensitive individuals than in resistant individuals (p < 0.01). Expression levels of FUT2 were upregulated in IPEC-J2 cells after lipopolysaccharide (LPS)-induction or E. coli stimulation. FUT2 knockdown decreased the adhesion of E. coli F18 to IPEC-J2 cells (p < 0.05). FUT2 overexpression markedly increased the adhesion of E. coli F18 to IPEC-J2 cells (p < 0.05 or p < 0.01). Furthermore, the FUT2 mRNA levels correlated with methylation levels of the mC-22 site in the specificity protein 1 (Sp1) transcription factor (p < 0.05). Electrophoretic mobility shift assays (EMSA) showed that Sp1 interacts with the wild-type FUT2 promoter DNA, but not with methylated DNA. Our data suggested that FUT2 methylation at the mC-22 site inhibits Sp1 binding to the FUT2 promoter, thereby reducing FUT2 expression and enhancing E. coli F18 resistance in weaned piglets. These observations highlight FUT2 as a promising new target for combating E. coli F18 susceptibility in weaned piglets.
Collapse
Affiliation(s)
- Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Haiyue Feng
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yue Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yanjie Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Chaohui Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
45
|
Jia Y, Guo X, Lu J, Wang X, Qiu L, Wang T. CRISPR/Cas9-mediated gene knockout for DNA methyltransferase Dnmt3a in CHO cells displays enhanced transgenic expression and long-term stability. J Cell Mol Med 2018; 22:4106-4116. [PMID: 29851281 PMCID: PMC6111867 DOI: 10.1111/jcmm.13687] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
CHO cells are the preferred host for the production of complex pharmaceutical proteins in the biopharmaceutical industry, and genome engineering of CHO cells would benefit product yield and stability. Here, we demonstrated the efficacy of a Dnmt3a-deficient CHO cell line created by CRISPR/Cas9 genome editing technology through gene disruptions in Dnmt3a, which encode the proteins involved in DNA methyltransferases. The transgenes, which were driven by the 2 commonly used CMV and EF1α promoters, were evaluated for their expression level and stability. The methylation levels of CpG sites in the promoter regions and the global DNA were compared in the transfected cells. The Dnmt3a-deficent CHO cell line based on Dnmt3a KO displayed an enhanced long-term stability of transgene expression under the control of the CMV promoter in transfected cells in over 60 passages. Under the CMV promoter, the Dnmt3a-deficent cell line with a high transgene expression displayed a low methylation rate in the promoter region and global DNA. Under the EF1α promoter, the Dnmt3a-deficient and normal cell lines with low transgene expression exhibited high DNA methylation rates. These findings provide insight into cell line modification and design for improved recombinant protein production in CHO and other mammalian cells.
Collapse
Affiliation(s)
- Yan‐Long Jia
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao Guo
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Jiang‐Tao Lu
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao‐Yin Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Le‐Le Qiu
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Tian‐Yun Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| |
Collapse
|
46
|
Chaturvedi P, Zhao B, Zimmerman DL, Belmont AS. Stable and reproducible transgene expression independent of proliferative or differentiated state using BAC TG-EMBED. Gene Ther 2018; 25:376-391. [PMID: 29930343 PMCID: PMC6195848 DOI: 10.1038/s41434-018-0021-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/20/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
Reproducible and stable transgene expression is an important goal in both basic research and biotechnology, with each application demanding a range of transgene expression. Problems in achieving stable transgene expression include multi-copy transgene silencing, chromosome-position effects, and loss of expression during long-term culture, induced cell quiescence, and/or cell differentiation. Previously, we described the “BAC TG-EMBED” method for copy-number dependent, chromosome position-independent expression of embedded transgenes within a BAC containing ~170 kb of the mouse Dhfr locus. Here we demonstrate wider applicability of the method by identifying a BAC and promoter combination that drives reproducible, copy-number dependent, position-independent transgene expression even after induced quiescence and/or cell differentiation into multiple cell types. Using a GAPDH BAC containing ~200 kb of the human GAPDH gene locus and a 1.2 kb human UBC promoter, we achieved stable GFP-ZeoR reporter expression in mouse NIH 3T3 cells after low-serum induced cell cycle arrest or differentiation into adipocytes. More notably, GFP-ZeoR expression remained stable and copy-number dependent even after differentiation of mouse ESCs into several distinct lineages. These results highlight the potential use of BAC TG-EMBED as an expression platform for high-level but stable, long-term expression of transgene independent of cell proliferative or differentiated state.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA
| | - Binhui Zhao
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA
| | - David L Zimmerman
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.,Biology Department, College of the Ozarks, Point Lookout, MO, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
47
|
Ibrahim A, Alhosin M, Papin C, Ouararhni K, Omran Z, Zamzami MA, Al-Malki AL, Choudhry H, Mély Y, Hamiche A, Mousli M, Bronner C. Thymoquinone challenges UHRF1 to commit auto-ubiquitination: a key event for apoptosis induction in cancer cells. Oncotarget 2018; 9:28599-28611. [PMID: 29983883 PMCID: PMC6033341 DOI: 10.18632/oncotarget.25583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/19/2018] [Indexed: 01/26/2023] Open
Abstract
Down-regulation of UHRF1 (Ubiquitin-like containing PHD and Ring Finger 1) in Jurkat cells, induced by natural anticancer compounds such as thymoquinone, allows re-expression of tumor suppressor genes such as p73 and p16INK4A . In order to decipher the mechanisms of UHRF1 down-regulation, we investigated the kinetic of expression of HAUSP (herpes virus-associated ubiquitin-specific protease), UHRF1, cleaved caspase-3 and p73 in Jurkat cells treated with thymoquinone. We found that thymoquinone induced degradation of UHRF1, correlated with a sharp decrease in HAUSP and an increase in cleaved caspase-3 and p73. UHRF1 concomitantly underwent a rapid ubiquitination in response to thymoquinone and this effect was not observed in the cells expressing mutant UHRF1 RING domain, suggesting that UHRF1 commits an auto-ubiquitination through its RING domain in response to thymoquinone treatment. Exposure of cells to Z-DEVD, an inhibitor of caspase-3 markedly reduced the thymoquinone-induced down-regulation of UHRF1, while proteosomal inhibitor MG132 had no such effect. The present findings indicate that thymoquinone induces in cancer cells a fast UHRF1 auto-ubiquitination through its RING domain associated with HAUSP down-regulation. They further suggest that thymoquinone-induced UHRF1 auto-ubiquitination followed by its degradation is a key event in inducing apoptosis through a proteasome-independent mechanism.
Collapse
Affiliation(s)
- Abdulkhaleg Ibrahim
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France.,BioTechnology Research Center (BTRC), Tripoli, Lybia
| | - Mahmoud Alhosin
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Christophe Papin
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Khalid Ouararhni
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman Labeed Al-Malki
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yves Mély
- CNRS UMR 7021 Laboratoire de Bioimagerie et Pathologies, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Ali Hamiche
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marc Mousli
- CNRS UMR 7021 Laboratoire de Bioimagerie et Pathologies, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Christian Bronner
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| |
Collapse
|
48
|
Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron PF. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics 2018; 10:17. [PMID: 29449903 PMCID: PMC5807744 DOI: 10.1186/s13148-018-0450-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/30/2018] [Indexed: 11/28/2022] Open
Abstract
Our current view of DNA methylation processes is strongly moving: First, even if it was generally admitted that DNMT3A and DNMT3B are associated with de novo methylation and DNMT1 is associated with inheritance DNA methylation, these distinctions are now not so clear. Secondly, since one decade, many partners of DNMTs have been involved in both the regulation of DNA methylation activity and DNMT recruitment on DNA. The high diversity of interactions and the combination of these interactions let us to subclass the different DNMT-including complexes. For example, the DNMT3L/DNMT3A complex is mainly related to de novo DNA methylation in embryonic states, whereas the DNMT1/PCNA/UHRF1 complex is required for maintaining global DNA methylation following DNA replication. On the opposite to these unspecific DNA methylation machineries (no preferential DNA sequence), some recently identified DNMT-including complexes are recruited on specific DNA sequences. The coexistence of both types of DNA methylation (un/specific) suggests a close cooperation and an orchestration between these systems to maintain genome and epigenome integrities. Deregulation of these systems can lead to pathologic disorders.
Collapse
Affiliation(s)
- Eric Hervouet
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | - Paul Peixoto
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | | | | | - Pierre-François Cartron
- 3INSERM unit S1232, University of Nantes, Nantes, France.,4Institut de cancérologie de l'Ouest, Nantes, France.,REpiCGO (Cancéropole Grand-Ouest), Nantes, France.,EpiSAVMEN Networks, Nantes, Région Pays de la Loire France
| |
Collapse
|
49
|
Yamashita M, Inoue K, Saeki N, Ideta-Otsuka M, Yanagihara Y, Sawada Y, Sakakibara I, Lee J, Ichikawa K, Kamei Y, Iimura T, Igarashi K, Takada Y, Imai Y. Uhrf1 is indispensable for normal limb growth by regulating chondrocyte differentiation through specific gene expression. Development 2018; 145:dev.157412. [PMID: 29180567 DOI: 10.1242/dev.157412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022]
Abstract
Transcriptional regulation can be tightly orchestrated by epigenetic regulators. Among these, ubiquitin-like with PHD and RING finger domains 1 (Uhrf1) is reported to have diverse epigenetic functions, including regulation of DNA methylation. However, the physiological functions of Uhrf1 in skeletal tissues remain unclear. Here, we show that limb mesenchymal cell-specific Uhrf1 conditional knockout mice (Uhrf1ΔLimb/ΔLimb ) exhibit remarkably shortened long bones that have morphological deformities due to dysregulated chondrocyte differentiation and proliferation. RNA-seq performed on primary cultured chondrocytes obtained from Uhrf1ΔLimb/ΔLimb mice showed abnormal chondrocyte differentiation. In addition, integrative analyses using RNA-seq and MBD-seq revealed that Uhrf1 deficiency decreased genome-wide DNA methylation and increased gene expression through reduced DNA methylation in the promoter regions of 28 genes, including Hspb1, which is reported to be an IL1-related gene and to affect chondrocyte differentiation. Hspb1 knockdown in cKO chondrocytes can normalize abnormal expression of genes involved in chondrocyte differentiation, such as Mmp13 These results indicate that Uhrf1 governs cell type-specific transcriptional regulation by controlling the genome-wide DNA methylation status and regulating consequent cell differentiation and skeletal maturation.
Collapse
Affiliation(s)
- Michiko Yamashita
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.,Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Kazuki Inoue
- Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Noritaka Saeki
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Maky Ideta-Otsuka
- Life Science Tokyo Advanced Research center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Science, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuta Yanagihara
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Ehime 791-0295, Japan.,Department of Integrative Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Yuichiro Sawada
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.,Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Iori Sakakibara
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.,Department of Integrative Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Jiwon Lee
- Division of Bio-Imaging, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Koichi Ichikawa
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yoshiaki Kamei
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Tadahiro Iimura
- Division of Bio-Imaging, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.,Division of Analytical Bio-Medicine, Advanced Research Support Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Katsuhide Igarashi
- Life Science Tokyo Advanced Research center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Science, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yasutsugu Takada
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan .,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Ehime 791-0295, Japan.,Department of Integrative Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| |
Collapse
|
50
|
Developmental Testicular Expression, Cloning, and Characterization of Rat HDAC6 In Silico. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5170680. [PMID: 29201907 PMCID: PMC5671680 DOI: 10.1155/2017/5170680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/02/2022]
Abstract
We had previously reported presence of histone deacetylase 6 (HDAC6) in sperm and demonstrated its tubulin deacetylase activity and role in sperm motility in rat. In the present study we report its abundant expression in testis, epididymis, accessory sex organs, brain, and adrenal. In the testis, HDAC6 transcript and protein were observed throughout development. We therefore cloned the gene from rat testis using primers for hdac6 (accession number XM_228753.8) in order to determine the role of acetylation/deacetylation in spermatogenesis. The cloned rat hdac6 gene is ~3.5 kb with 28 exons and 1152 amino acids. We noted 4 single nucleotide polymorphisms (SNPs) on exons 2 (G/A), 5 (A/G), 7 (T/C), and 26 (G/T), respectively, in this sequence when compared to XM_228753.8. These were further validated at both cDNA and gene level. These SNPs resulted in 2 amino acids changes, namely, glycine → arginine and valine → phenylalanine at protein level. Cloned hdac6 overexpressed in HEK293T cells demonstrated significant overexpression by IIF. Alpha-tubulin acetylation analysis of the overexpressed cell lysate demonstrated that the protein was bioactive. This is the first study showing the ontogenic expression in the testis and reporting experimentally validated sequence of rat HDAC6 and its structural and functional annotation in silico. This sequence has been submitted to GenBank (Accession number Rattus KY009929.1).
Collapse
|