1
|
Montecino-Garrido H, Trostchansky A, Espinosa-Parrilla Y, Palomo I, Fuentes E. How Protein Depletion Balances Thrombosis and Bleeding Risk in the Context of Platelet's Activatory and Negative Signaling. Int J Mol Sci 2024; 25:10000. [PMID: 39337488 PMCID: PMC11432290 DOI: 10.3390/ijms251810000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Platelets are small cell fragments that play a crucial role in hemostasis, requiring fast response times and fine signaling pathway regulation. For this regulation, platelets require a balance between two pathway types: the activatory and negative signaling pathways. Activatory signaling mediators are positive responses that enhance stimuli initiated by a receptor in the platelet membrane. Negative signaling regulates and controls the responses downstream of the same receptors to roll back or even avoid spontaneous thrombotic events. Several blood-related pathologies can be observed when these processes are unregulated, such as massive bleeding in activatory signaling inhibition or thrombotic events for negative signaling inhibition. The study of each protein and metabolite in isolation does not help to understand the role of the protein or how it can be contrasted; however, understanding the balance between active and negative signaling could help develop effective therapies to prevent thrombotic events and bleeding disorders.
Collapse
Affiliation(s)
- Hector Montecino-Garrido
- Centro de Estudios en Alimentos Procesados (CEAP), ANID-Regional, Gore Maule R0912001, Talca 3480094, Chile
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Yolanda Espinosa-Parrilla
- Interuniversity Center for Healthy Aging (CIES), Centro Asistencial, Docente e Investigación-CADI-UMAG, Escuela de Medicina, Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
2
|
Subramanyan LV, Rasheed SAK, Wang L, Ghosh S, Ong MSN, Lakshmanan M, Wang M, Casey PJ. GNA13 suppresses proliferation of ER+ breast cancer cells via ERα dependent upregulation of the MYC oncogene. Breast Cancer Res 2024; 26:113. [PMID: 38965558 PMCID: PMC11225210 DOI: 10.1186/s13058-024-01866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
GNA13 (Gα13) is one of two alpha subunit members of the G12/13 family of heterotrimeric G-proteins which mediate signaling downstream of GPCRs. It is known to be essential for embryonic development and vasculogenesis and has been increasingly shown to be involved in mediating several steps of cancer progression. Recent studies found that Gα13 can function as an oncogene and contributes to progression and metastasis of multiple tumor types, including ovarian, head and neck and prostate cancers. In most cases, Gα12 and Gα13, as closely related α-subunits in the subfamily, have similar cellular roles. However, in recent years their differences in signaling and function have started to emerge. We previously identified that Gα13 drives invasion of Triple Negative Breast Cancer (TNBC) cells in vitro. As a highly heterogenous disease with various well-defined molecular subtypes (ER+ /Her2-, ER+ /Her2+, Her2+, TNBC) and subtype associated outcomes, the function(s) of Gα13 beyond TNBC should be explored. Here, we report the finding that low expression of GNA13 is predictive of poorer survival in breast cancer, which challenges the conventional idea of Gα12/13 being universal oncogenes in solid tumors. Consistently, we found that Gα13 suppresses the proliferation in multiple ER+ breast cancer cell lines (MCF-7, ZR-75-1 and T47D). Loss of GNA13 expression drives cell proliferation, soft-agar colony formation and in vivo tumor formation in an orthotopic xenograft model. To evaluate the mechanism of Gα13 action, we performed RNA-sequencing analysis on these cell lines and found that loss of GNA13 results in the upregulation of MYC signaling pathways in ER+ breast cancer cells. Simultaneous silencing of MYC reversed the proliferative effect from the loss of GNA13, validating the role of MYC in Gα13 regulation of proliferation. Further, we found Gα13 regulates the expression of MYC, at both the transcript and protein level in an ERα dependent manner. Taken together, our study provides the first evidence for a tumor suppressive role for Gα13 in breast cancer cells and demonstrates for the first time the direct involvement of Gα13 in ER-dependent regulation of MYC signaling. With a few exceptions, elevated Gα13 levels are generally considered to be oncogenic, similar to Gα12. This study demonstrates an unexpected tumor suppressive role for Gα13 in ER+ breast cancer via regulation of MYC, suggesting that Gα13 can have subtype-dependent tumor suppressive roles in breast cancer.
Collapse
Affiliation(s)
| | | | - Lijin Wang
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
- Bioinformatics and Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Michelle Shi Ning Ong
- Biopharma Innovations and Solutions, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Manikandan Lakshmanan
- Biopharma Innovations and Solutions, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Mei Wang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| | - Patrick J Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Dept. of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
3
|
Neuman JC, Reuter A, Carbajal KA, Schaid MD, Kelly G, Connors K, Kaiser C, Krause J, Hurley LD, Olvera A, Davis DB, Wisinski JA, Gannon M, Kimple ME. The prostaglandin E 2 EP3 receptor has disparate effects on islet insulin secretion and content in β-cells in a high-fat diet-induced mouse model of obesity. Am J Physiol Endocrinol Metab 2024; 326:E567-E576. [PMID: 38477664 PMCID: PMC11376488 DOI: 10.1152/ajpendo.00061.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Signaling through prostaglandin E2 EP3 receptor (EP3) actively contributes to the β-cell dysfunction of type 2 diabetes (T2D). In T2D models, full-body EP3 knockout mice have a significantly worse metabolic phenotype than wild-type controls due to hyperphagia and severe insulin resistance resulting from loss of EP3 in extra-pancreatic tissues, masking any potential beneficial effects of EP3 loss in the β cell. We hypothesized β-cell-specific EP3 knockout (EP3 βKO) mice would be protected from high-fat diet (HFD)-induced glucose intolerance, phenocopying mice lacking the EP3 effector, Gαz, which is much more limited in its tissue distribution. When fed a HFD for 16 wk, though, EP3 βKO mice were partially, but not fully, protected from glucose intolerance. In addition, exendin-4, an analog of the incretin hormone, glucagon-like peptide 1, more strongly potentiated glucose-stimulated insulin secretion in islets from both control diet- and HFD-fed EP3 βKO mice as compared with wild-type controls, with no effect of β-cell-specific EP3 loss on islet insulin content or markers of replication and survival. However, after 26 wk of diet feeding, islets from both control diet- and HFD-fed EP3 βKO mice secreted significantly less insulin as a percent of content in response to stimulatory glucose, with or without exendin-4, with elevated total insulin content unrelated to markers of β-cell replication and survival, revealing severe β-cell dysfunction. Our results suggest that EP3 serves a critical role in temporally regulating β-cell function along the progression to T2D and that there exist Gαz-independent mechanisms behind its effects.NEW & NOTEWORTHY The EP3 receptor is a strong inhibitor of β-cell function and replication, suggesting it as a potential therapeutic target for the disease. Yet, EP3 has protective roles in extrapancreatic tissues. To address this, we designed β-cell-specific EP3 knockout mice and subjected them to high-fat diet feeding to induce glucose intolerance. The negative metabolic phenotype of full-body knockout mice was ablated, and EP3 loss improved glucose tolerance, with converse effects on islet insulin secretion and content.
Collapse
Affiliation(s)
- Joshua C Neuman
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Austin Reuter
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Kathryn A Carbajal
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Michael D Schaid
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Grant Kelly
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Kelsey Connors
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Cecilia Kaiser
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Joshua Krause
- Department of Biology, University of Wisconsin-Lacrosse, La Crosse, Wisconsin, United States
| | - Liam D Hurley
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Angela Olvera
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Dawn Belt Davis
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jaclyn A Wisinski
- Department of Biology, University of Wisconsin-Lacrosse, La Crosse, Wisconsin, United States
| | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Wisconsin, United States
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
4
|
Ramanadham S, Turk J, Bhatnagar S. Noncanonical Regulation of cAMP-Dependent Insulin Secretion and Its Implications in Type 2 Diabetes. Compr Physiol 2023; 13:5023-5049. [PMID: 37358504 PMCID: PMC10809800 DOI: 10.1002/cphy.c220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Impaired glucose tolerance (IGT) and β-cell dysfunction in insulin resistance associated with obesity lead to type 2 diabetes (T2D). Glucose-stimulated insulin secretion (GSIS) from β-cells occurs via a canonical pathway that involves glucose metabolism, ATP generation, inactivation of K ATP channels, plasma membrane depolarization, and increases in cytosolic concentrations of [Ca 2+ ] c . However, optimal insulin secretion requires amplification of GSIS by increases in cyclic adenosine monophosphate (cAMP) signaling. The cAMP effectors protein kinase A (PKA) and exchange factor activated by cyclic-AMP (Epac) regulate membrane depolarization, gene expression, and trafficking and fusion of insulin granules to the plasma membrane for amplifying GSIS. The widely recognized lipid signaling generated within β-cells by the β-isoform of Ca 2+ -independent phospholipase A 2 enzyme (iPLA 2 β) participates in cAMP-stimulated insulin secretion (cSIS). Recent work has identified the role of a G-protein coupled receptor (GPCR) activated signaling by the complement 1q like-3 (C1ql3) secreted protein in inhibiting cSIS. In the IGT state, cSIS is attenuated, and the β-cell function is reduced. Interestingly, while β-cell-specific deletion of iPLA 2 β reduces cAMP-mediated amplification of GSIS, the loss of iPLA 2 β in macrophages (MØ) confers protection against the development of glucose intolerance associated with diet-induced obesity (DIO). In this article, we discuss canonical (glucose and cAMP) and novel noncanonical (iPLA 2 β and C1ql3) pathways and how they may affect β-cell (dys)function in the context of impaired glucose intolerance associated with obesity and T2D. In conclusion, we provide a perspective that in IGT states, targeting noncanonical pathways along with canonical pathways could be a more comprehensive approach for restoring β-cell function in T2D. © 2023 American Physiological Society. Compr Physiol 13:5023-5049, 2023.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sushant Bhatnagar
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
5
|
Dallatana A, Cremonesi L, Trombetta M, Fracasso G, Nocini R, Giacomello L, Innamorati G. G Protein-Coupled Receptors and the Rise of Type 2 Diabetes in Children. Biomedicines 2023; 11:1576. [PMID: 37371671 DOI: 10.3390/biomedicines11061576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The human genome counts hundreds of GPCRs specialized to sense thousands of different extracellular cues, including light, odorants and nutrients in addition to hormones. Primordial GPCRs were likely glucose transporters that became sensors to monitor the abundance of nutrients and direct the cell to switch from aerobic metabolism to fermentation. Human β cells express multiple GPCRs that contribute to regulate glucose homeostasis, cooperating with many others expressed by a variety of cell types and tissues. These GPCRs are intensely studied as pharmacological targets to treat type 2 diabetes in adults. The dramatic rise of type 2 diabetes incidence in pediatric age is likely correlated to the rapidly evolving lifestyle of children and adolescents of the new century. Current pharmacological treatments are based on therapies designed for adults, while youth and puberty are characterized by a different hormonal balance related to glucose metabolism. This review focuses on GPCRs functional traits that are relevant for β cells function, with an emphasis on aspects that could help to differentiate new treatments specifically addressed to young type 2 diabetes patients.
Collapse
Affiliation(s)
- Alessia Dallatana
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Linda Cremonesi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Maddalena Trombetta
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, 37124 Verona, Italy
| | - Giulio Fracasso
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Riccardo Nocini
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Luca Giacomello
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| |
Collapse
|
6
|
Fenske RJ, Weeks AM, Daniels M, Nall R, Pabich S, Brill AL, Peter DC, Punt M, Cox ED, Davis DB, Kimple ME. Plasma Prostaglandin E 2 Metabolite Levels Predict Type 2 Diabetes Status and One-Year Therapeutic Response Independent of Clinical Markers of Inflammation. Metabolites 2022; 12:metabo12121234. [PMID: 36557272 PMCID: PMC9783643 DOI: 10.3390/metabo12121234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Over half of patients with type 2 diabetes (T2D) are unable to achieve blood glucose targets despite therapeutic compliance, significantly increasing their risk of long-term complications. Discovering ways to identify and properly treat these individuals is a critical problem in the field. The arachidonic acid metabolite, prostaglandin E2 (PGE2), has shown great promise as a biomarker of β-cell dysfunction in T2D. PGE2 synthesis, secretion, and downstream signaling are all upregulated in pancreatic islets isolated from T2D mice and human organ donors. In these islets, preventing β-cell PGE2 signaling via a prostaglandin EP3 receptor antagonist significantly improves their glucose-stimulated and hormone-potentiated insulin secretion response. In this clinical cohort study, 167 participants, 35 non-diabetic, and 132 with T2D, were recruited from the University of Wisconsin Hospital and Clinics. At enrollment, a standard set of demographic, biometric, and clinical measurements were performed to quantify obesity status and glucose control. C reactive protein was measured to exclude acute inflammation/illness, and white cell count (WBC), erythrocyte sedimentation rate (ESR), and fasting triglycerides were used as markers of systemic inflammation. Finally, a plasma sample for research was used to determine circulating PGE2 metabolite (PGEM) levels. At baseline, PGEM levels were not correlated with WBC and triglycerides, only weakly correlated with ESR, and were the strongest predictor of T2D disease status. One year after enrollment, blood glucose management was assessed by chart review, with a clinically-relevant change in hemoglobin A1c (HbA1c) defined as ≥0.5%. PGEM levels were strongly predictive of therapeutic response, independent of age, obesity, glucose control, and systemic inflammation at enrollment. Our results provide strong support for future research in this area.
Collapse
Affiliation(s)
- Rachel J. Fenske
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Clinical Nutrition, UW Health University Hospital, Madison, WI 53705, USA
| | - Alicia M. Weeks
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Daniels
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Randall Nall
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha Pabich
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allison L. Brill
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Darby C. Peter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Margaret Punt
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth D. Cox
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Dawn Belt Davis
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (D.B.D.); (M.E.K.); Tel.: +1-1-608-263-2443 (D.B.D.); +1-1-608-265-5627 (M.E.K.)
| | - Michelle E. Kimple
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53792, USA
- Correspondence: (D.B.D.); (M.E.K.); Tel.: +1-1-608-263-2443 (D.B.D.); +1-1-608-265-5627 (M.E.K.)
| |
Collapse
|
7
|
Zhu B, Zhang X, Guo L, Rankin M, Bakaj I, Ho G, Lee SP, Norquay L, Macielag M. Discovery and Optimization of 7-Alkylidenyltetrahydroindazole-Based Acylsulfonamide EP3 Antagonists. ACS Med Chem Lett 2021; 13:111-117. [PMID: 35059130 PMCID: PMC8762748 DOI: 10.1021/acsmedchemlett.1c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/03/2021] [Indexed: 01/16/2023] Open
Abstract
A novel series of 7-alkylidenyltetrahydroindazole-based acylsulfonamides were discovered as potent EP3 antagonists. The initial lead compound 7 exhibited potent in vitro EP3 inhibitory activity and good selectivity against other EP receptors. In addition, compound 7 demonstrated in vivo activity in a rat ivGTT model, reversing the suppressive effect of the EP3-specific agonist sulprostone on glucose-stimulated insulin secretion. Further optimization to improve the pharmacokinetic profile led to the discovery of compounds 26 and 28 with potent in vitro activity and significantly lower in vivo clearance and higher oral exposure than compound 7.
Collapse
Affiliation(s)
- Bin Zhu
- †Discovery
Chemistry and ‡Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania 19477, United States,Tel: 215-628-7943. Fax: 215-540-4612.
| | - Xuqing Zhang
- †Discovery
Chemistry and ‡Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania 19477, United States
| | - Lili Guo
- †Discovery
Chemistry and ‡Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania 19477, United States
| | - Matthew Rankin
- †Discovery
Chemistry and ‡Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania 19477, United States
| | - Ivona Bakaj
- †Discovery
Chemistry and ‡Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania 19477, United States
| | - George Ho
- †Discovery
Chemistry and ‡Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania 19477, United States
| | - Seunghun P. Lee
- †Discovery
Chemistry and ‡Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania 19477, United States
| | - Lisa Norquay
- †Discovery
Chemistry and ‡Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania 19477, United States
| | - Mark Macielag
- †Discovery
Chemistry and ‡Cardiovascular and Metabolism Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania 19477, United States
| |
Collapse
|
8
|
Wisinski JA, Reuter A, Peter DC, Schaid MD, Fenske RJ, Kimple ME. Prostaglandin EP3 receptor signaling is required to prevent insulin hypersecretion and metabolic dysfunction in a non-obese mouse model of insulin resistance. Am J Physiol Endocrinol Metab 2021; 321:E479-E489. [PMID: 34229444 PMCID: PMC8560379 DOI: 10.1152/ajpendo.00051.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When homozygous for the LeptinOb mutation (Ob), Black-and-Tan Brachyury (BTBR) mice become morbidly obese and severely insulin resistant, and by 10 wk of age, frankly diabetic. Previous work has shown prostaglandin EP3 receptor (EP3) expression and activity is upregulated in islets from BTBR-Ob mice as compared with lean controls, actively contributing to their β-cell dysfunction. In this work, we aimed to test the impact of β-cell-specific EP3 loss on the BTBR-Ob phenotype by crossing Ptger3 floxed mice with the rat insulin promoter (RIP)-CreHerr driver strain. Instead, germline recombination of the floxed allele in the founder mouse-an event whose prevalence we identified as directly associated with underlying insulin resistance of the background strain-generated a full-body knockout. Full-body EP3 loss provided no diabetes protection to BTBR-Ob mice but, unexpectedly, significantly worsened BTBR-lean insulin resistance and glucose tolerance. This in vivo phenotype was not associated with changes in β-cell fractional area or markers of β-cell replication ex vivo. Instead, EP3-null BTBR-lean islets had essentially uncontrolled insulin hypersecretion. The selective upregulation of constitutively active EP3 splice variants in islets from young, lean BTBR mice as compared with C57BL/6J, where no phenotype of EP3 loss has been observed, provides a potential explanation for the hypersecretion phenotype. In support of this, high islet EP3 expression in Balb/c females versus Balb/c males was fully consistent with their sexually dimorphic metabolic phenotype after loss of EP3-coupled Gαz protein. Taken together, our findings provide a new dimension to the understanding of EP3 as a critical brake on insulin secretion.NEW & NOTEWORTHY Islet prostaglandin EP3 receptor (EP3) signaling is well known as upregulated in the pathophysiological conditions of type 2 diabetes, contributing to β-cell dysfunction. Unexpected findings in mouse models of non-obese insulin sensitivity and resistance provide a new dimension to our understanding of EP3 as a key modulator of insulin secretion. A previously unknown relationship between mouse insulin resistance and the penetrance of rat insulin promoter-driven germline floxed allele recombination is critical to consider when creating β-cell-specific knockouts.
Collapse
Affiliation(s)
- Jaclyn A Wisinski
- Department of Biology, University of Wisconsin-LaCrosse, La Crosse, Wisconsin
| | - Austin Reuter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Darby C Peter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael D Schaid
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rachel J Fenske
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
9
|
Shah N, Abdalla MA, Deshmukh H, Sathyapalan T. Therapeutics for type-2 diabetes mellitus: a glance at the recent inclusions and novel agents under development for use in clinical practice. Ther Adv Endocrinol Metab 2021; 12:20420188211042145. [PMID: 34589201 PMCID: PMC8474306 DOI: 10.1177/20420188211042145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic, progressive, and multifaceted illness resulting in significant physical and psychological detriment to patients. As of 2019, 463 million people are estimated to be living with DM worldwide, out of which 90% have type-2 diabetes mellitus (T2DM). Over the years, significant progress has been made in identifying the risk factors for developing T2DM, understanding its pathophysiology and uncovering various metabolic pathways implicated in the disease process. This has culminated in the implementation of robust prevention programmes and the development of effective pharmacological agents, which have had a favourable impact on the management of T2DM in recent times. Despite these advances, the incidence and prevalence of T2DM continue to rise. Continuing research in improving efficacy, potency, delivery and reducing the adverse effect profile of currently available formulations is required to keep pace with this growing health challenge. Moreover, new metabolic pathways need to be targeted to produce novel pharmacotherapy to restore glucose homeostasis and address metabolic sequelae in patients with T2DM. We searched PubMed, MEDLINE, and Google Scholar databases for recently included agents and novel medication under development for treatment of T2DM. We discuss the pathophysiology of T2DM and review how the emerging anti-diabetic agents target the metabolic pathways involved. We also look at some of the limiting factors to developing new medication and the introduction of unique methods, including facilitating drug delivery to bypass some of these obstacles. However, despite the advances in the therapeutic options for the treatment of T2DM in recent years, the industry still lacks a curative agent.
Collapse
Affiliation(s)
- Najeeb Shah
- Hull University Teaching Hospitals NHS Trust,
Hull, UK
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Brocklehurst
Building, 220-236 Anlaby Road, Hull, HU3 2RW, UK
| | - Mohammed Altigani Abdalla
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Hull,
UK
| | - Harshal Deshmukh
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| | - Thozhukat Sathyapalan
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| |
Collapse
|
10
|
Truchan NA, Fenske RJ, Sandhu HK, Weeks AM, Patibandla C, Wancewicz B, Pabich S, Reuter A, Harrington JM, Brill AL, Peter DC, Nall R, Daniels M, Punt M, Kaiser CE, Cox ED, Ge Y, Davis DB, Kimple ME. Human Islet Expression Levels of Prostaglandin E 2 Synthetic Enzymes, But Not Prostaglandin EP3 Receptor, Are Positively Correlated with Markers of β-Cell Function and Mass in Nondiabetic Obesity. ACS Pharmacol Transl Sci 2021; 4:1338-1348. [PMID: 34423270 DOI: 10.1021/acsptsci.1c00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/06/2023]
Abstract
Elevated islet production of prostaglandin E2 (PGE2), an arachidonic acid metabolite, and expression of prostaglandin E2 receptor subtype EP3 (EP3) are well-known contributors to the β-cell dysfunction of type 2 diabetes (T2D). Yet, many of the same pathophysiological conditions exist in obesity, and little is known about how the PGE2 production and signaling pathway influences nondiabetic β-cell function. In this work, plasma arachidonic acid and PGE2 metabolite levels were quantified in a cohort of nondiabetic and T2D human subjects to identify their relationship with glycemic control, obesity, and systemic inflammation. In order to link these findings to processes happening at the islet level, cadaveric human islets were subject to gene expression and functional assays. Interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) mRNA levels, but not those of EP3, positively correlated with donor body mass index (BMI). IL-6 expression also strongly correlated with the expression of COX-2 and other PGE2 synthetic pathway genes. Insulin secretion assays using an EP3-specific antagonist confirmed functionally relevant upregulation of PGE2 production. Yet, islets from obese donors were not dysfunctional, secreting just as much insulin in basal and stimulatory conditions as those from nonobese donors as a percent of content. Islet insulin content, on the other hand, was increased with both donor BMI and islet COX-2 expression, while EP3 expression was unaffected. We conclude that upregulated islet PGE2 production may be part of the β-cell adaption response to obesity and insulin resistance that only becomes dysfunctional when both ligand and receptor are highly expressed in T2D.
Collapse
Affiliation(s)
- Nathan A Truchan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Rachel J Fenske
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States.,Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Harpreet K Sandhu
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Alicia M Weeks
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Chinmai Patibandla
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Benjamin Wancewicz
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Samantha Pabich
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Austin Reuter
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Jeffrey M Harrington
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Allison L Brill
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Darby C Peter
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Randall Nall
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Michael Daniels
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Margaret Punt
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Cecilia E Kaiser
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Elizabeth D Cox
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53792, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States.,Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States.,Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
11
|
Sabiha B, Bhatti A, Roomi S, John P, Ali J. In silico analysis of non-synonymous missense SNPs (nsSNPs) in CPE, GNAS genes and experimental validation in type II diabetes mellitus through Next Generation Sequencing. Genomics 2021; 113:2426-2440. [PMID: 34029697 DOI: 10.1016/j.ygeno.2021.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/11/2020] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Non-synonymous missense SNPs (nsSNPs) in CPE and GNAS genes were investigated computationally. In silico identified nsSNPs were experimentally validated in type II diabetes mellitus (T2DM) in Pakistani Pathan population using next generation sequencing (NGS). Sixty two high-risk nsSNPs in CPE and 44 in GNAS were identified. Only 12 in GNAS were clinically significant. Thirty six high-risk nsSNPs in CPE and 08 clinically significant nsSNPs in GNAS lies in the most conserved regions. I-mutant predicted that nsSNPs decrease the proteins stability and ModPred predicted 20 and 12 post-translational modification sites in CPE and GNAS proteins respectively. Ramachandran plot showed 88.7% residues are in the most favored region of protein models. By experimentation, none of the nsSNPs were found to be associated with T2DM. In conclusion, this study differentiates the deleterious nsSNPs from the neutral ones. Although nsSNPs are not associated with T2DM, they can be targeted in other CPE and GNAS genes related disorders.
Collapse
Affiliation(s)
- Bibi Sabiha
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| | - Attya Bhatti
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan.
| | - Sohaib Roomi
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Peter John
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| | - Johar Ali
- Center for Genome Sciences, Rehman Medical College, Phase-V, Hayatabad, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
12
|
Sandhu HK, Neuman JC, Schaid MD, Davis SE, Connors KM, Challa R, Guthery E, Fenske RJ, Patibandla C, Breyer RM, Kimple ME. Rat prostaglandin EP3 receptor is highly promiscuous and is the sole prostanoid receptor family member that regulates INS-1 (832/3) cell glucose-stimulated insulin secretion. Pharmacol Res Perspect 2021; 9:e00736. [PMID: 33694300 PMCID: PMC7947324 DOI: 10.1002/prp2.736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic elevations in fatty acid metabolites termed prostaglandins can be found in circulation and in pancreatic islets from mice or humans with diabetes and have been suggested as contributing to the β‐cell dysfunction of the disease. Two‐series prostaglandins bind to a family of G‐protein‐coupled receptors, each with different biochemical and pharmacological properties. Prostaglandin E receptor (EP) subfamily agonists and antagonists have been shown to influence β‐cell insulin secretion, replication, and/or survival. Here, we define EP3 as the sole prostanoid receptor family member expressed in a rat β‐cell‐derived line that regulates glucose‐stimulated insulin secretion. Several other agonists classically understood as selective for other prostanoid receptor family members also reduce glucose‐stimulated insulin secretion, but these effects are only observed at relatively high concentrations, and, using a well‐characterized EP3‐specific antagonist, are mediated solely by cross‐reactivity with rat EP3. Our findings confirm the critical role of EP3 in regulating β‐cell function, but are also of general interest, as many agonists supposedly selective for other prostanoid receptor family members are also full and efficacious agonists of EP3. Therefore, care must be taken when interpreting experimental results from cells or cell lines that also express EP3.
Collapse
Affiliation(s)
- Harpreet K Sandhu
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Joshua C Neuman
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Schaid
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah E Davis
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelsey M Connors
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Romith Challa
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Erin Guthery
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rachel J Fenske
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Chinmai Patibandla
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Richard M Breyer
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Li C, Xu M, Coyne J, Wang WB, Davila ML, Wang Y, Xiong N. Psoriasis-associated impairment of CCL27/CCR10-derived regulation leads to IL-17A/IL-22-producing skin T-cell overactivation. J Allergy Clin Immunol 2021; 147:759-763.e9. [PMID: 32533971 PMCID: PMC7726097 DOI: 10.1016/j.jaci.2020.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 11/19/2022]
Abstract
Psoriasis-associated suppression of the skin-specific chemokine/receptor CCL27/CCR10 axis leads to enhanced pathogenic IL-17A/IL-22-producing skin T cell activation and inflammation.
Collapse
Affiliation(s)
- Chao Li
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Tex; Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pa; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Ming Xu
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pa
| | - James Coyne
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pa
| | - Wei-Bei Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Tex; Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pa
| | - Micha L Davila
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pa
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pa.
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Tex; Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pa.
| |
Collapse
|
14
|
Schaid MD, Green CL, Peter DC, Gallagher SJ, Guthery E, Carbajal KA, Harrington JM, Kelly GM, Reuter A, Wehner ML, Brill AL, Neuman JC, Lamming DW, Kimple ME. Agonist-independent Gα z activity negatively regulates beta-cell compensation in a diet-induced obesity model of type 2 diabetes. J Biol Chem 2020; 296:100056. [PMID: 33172888 PMCID: PMC7948463 DOI: 10.1074/jbc.ra120.015585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
The inhibitory G protein alpha-subunit (Gαz) is an important modulator of beta-cell function. Full-body Gαz-null mice are protected from hyperglycemia and glucose intolerance after long-term high-fat diet (HFD) feeding. In this study, at a time point in the feeding regimen where WT mice are only mildly glucose intolerant, transcriptomics analyses reveal islets from HFD-fed Gαz KO mice have a dramatically altered gene expression pattern as compared with WT HFD-fed mice, with entire gene pathways not only being more strongly upregulated or downregulated versus control-diet fed groups but actually reversed in direction. Genes involved in the “pancreatic secretion” pathway are the most strongly differentially regulated: a finding that correlates with enhanced islet insulin secretion and decreased glucagon secretion at the study end. The protection of Gαz-null mice from HFD-induced diabetes is beta-cell autonomous, as beta cell–specific Gαz-null mice phenocopy the full-body KOs. The glucose-stimulated and incretin-potentiated insulin secretion response of islets from HFD-fed beta cell–specific Gαz-null mice is significantly improved as compared with islets from HFD-fed WT controls, which, along with no impact of Gαz loss or HFD feeding on beta-cell proliferation or surrogates of beta-cell mass, supports a secretion-specific mechanism. Gαz is coupled to the prostaglandin EP3 receptor in pancreatic beta cells. We confirm the EP3γ splice variant has both constitutive and agonist-sensitive activity to inhibit cAMP production and downstream beta-cell function, with both activities being dependent on the presence of beta-cell Gαz.
Collapse
Affiliation(s)
- Michael D Schaid
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Interdepartmental Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Cara L Green
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Darby C Peter
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shannon J Gallagher
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Erin Guthery
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kathryn A Carbajal
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jeffrey M Harrington
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Grant M Kelly
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Austin Reuter
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Molly L Wehner
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Allison L Brill
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Joshua C Neuman
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Interdepartmental Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dudley W Lamming
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Interdepartmental Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA; Interdepartmental Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA; Department of Cell and Regenerative Biology, University of Wisconsin- Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
| |
Collapse
|
15
|
Naz F, Arish M. GPCRs as an emerging host-directed therapeutic target against mycobacterial infection: From notion to reality. Br J Pharmacol 2020; 179:4899-4909. [PMID: 33150959 DOI: 10.1111/bph.15315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) is one of the successful pathogens and claim millions of deaths across the globe. The emergence of drug resistance in M. tb has created new hurdles in the tuberculosis elimination programme worldwide. Hence, there is an unmet medical need for alternative therapy, which could be achieved by targeting the host's critical signalling pathways that are compromised during M. tb infection. In this review, we have summarized some of the findings involving the modulation of host GPCRs in the regulation of the mycobacterial infection. Understanding the role of these GPCRs not only unravels signalling pathways during infection but also provides clues for targeting critical signalling intermediates for the development of GPCR-based host-directive therapy.
Collapse
Affiliation(s)
- Farha Naz
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Arish
- JH-Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.,Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
16
|
Mei H, Jiang F, Li L, Griswold M, Liu S, Mosley T. Study of genetic correlation between children's sleep and obesity. J Hum Genet 2020; 65:949-959. [PMID: 32555314 DOI: 10.1038/s10038-020-0791-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 11/09/2022]
Abstract
Laboratory and epidemiological studies have shown that short sleep time is associated with obesity. In this study, we conducted a post-GWAS analysis to test genetic correlation between children's sleep and obesity due to linkage disequilibrium (LD) SNPs, shared genes and pathways. Our analysis showed that genetic heritability was 0.14 (p-value = 0.0005) and 0.41 (p-value = 1.18E-24) for children's sleep and obesity, respectively, but genetic correlation due to LD SNPs was insignificant. Gene associations at children's GWAS were measured based on SNP associations and ranked by their uniform score (U-score). After adjusting for gene size, measured as the number of independent SNPs, children's sleep and obesity GWAS had significant gene correlation (r = 0.23). Pathway enrichment analysis showed that "Suz12 target genes" was the significant pathway for both children's sleep and obesity; pathways were significantly shared among top enriched pathways with an OR of 8.1-59.4; and significant correlation coefficient of pathway U-score was r = 0.36. Analysis of sleep time and obesity GWAS variants for all ages in the NHGRI-EBI GWAS Catalog also presented significant pathway correlation (r = 0.30). The "PAX3-FOXO1 target genes" was the significant pathway for all-age obesity phenotype and ranked as the second top associated pathway for all-age sleep time. Our study suggested that genetic correlation of children's sleep time and obesity is attributed to genes with pleiotropy effects and common pathway regulations that may contain only weak SNP associations.
Collapse
Affiliation(s)
- Hao Mei
- Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Fan Jiang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianna Li
- Department of Biology, Tougaloo College, Jackson, MS, USA
| | - Michael Griswold
- Department of Medicine, The MIND Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shijian Liu
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Thomas Mosley
- Department of Medicine, The MIND Center, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
17
|
Priyadarshini M, Cole C, Oroskar G, Ludvik AE, Wicksteed B, He C, Layden BT. Free fatty acid receptor 3 differentially contributes to β-cell compensation under high-fat diet and streptozotocin stress. Am J Physiol Regul Integr Comp Physiol 2020; 318:R691-R700. [PMID: 32073900 DOI: 10.1152/ajpregu.00128.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The free fatty acid receptor 3 (FFA3) is a nutrient sensor of gut microbiota-generated nutrients, the short-chain fatty acids. Previously, we have shown that FFA3 is expressed in β-cells and inhibits islet insulin secretion ex vivo. Here, we determined the physiological relevance of the above observation by challenging wild-type (WT) and FFA3 knockout (KO) male mice with 1) hyperglycemia and monitoring insulin response via highly sensitive hyperglycemic clamps, 2) dietary high fat (HF), and 3) chemical-induced diabetes. As expected, FFA3 KO mice exhibited significantly higher insulin secretion and glucose infusion rate in hyperglycemic clamps. Predictably, under metabolic stress induced by HF-diet feeding, FFA3 KO mice exhibited less glucose intolerance compared with the WT mice. Moreover, similar islet architecture and β-cell area in HF diet-fed FFA3 KO and WT mice was observed. Upon challenge with streptozotocin (STZ), FFA3 KO mice initially exhibited a tendency for an accelerated incidence of diabetes compared with the WT mice. However, this difference was not maintained. Similar glycemia and β-cell mass loss was observed in both genotypes 10 days post-STZ challenge. Higher resistance to STZ-induced diabetes in WT mice could be due to higher basal islet autophagy. However, this difference was not protective because in response to STZ, similar autophagy induction was observed in both WT and FFA3 KO islets. These data demonstrate that FFA3 plays a role in modulating insulin secretion and β-cell response to stressors. The β-cell FFA3 and autophagy link warrant further research.
Collapse
Affiliation(s)
- Medha Priyadarshini
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Connor Cole
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gautham Oroskar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Anton E Ludvik
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Congcong He
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
18
|
Etheridge AS, Gallins PJ, Jima D, Broadaway KA, Ratain MJ, Schuetz E, Schadt E, Schroder A, Molony C, Zhou Y, Mohlke KL, Wright FA, Innocenti F. A New Liver Expression Quantitative Trait Locus Map From 1,183 Individuals Provides Evidence for Novel Expression Quantitative Trait Loci of Drug Response, Metabolic, and Sex-Biased Phenotypes. Clin Pharmacol Ther 2020; 107:1383-1393. [PMID: 31868224 DOI: 10.1002/cpt.1751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
Abstract
Expression quantitative trait locus (eQTL) studies in human liver are crucial for elucidating how genetic variation influences variability in disease risk and therapeutic outcomes and may help guide strategies to obtain maximal efficacy and safety of clinical interventions. Associations between expression microarray and genome-wide genotype data from four human liver eQTL studies (n = 1,183) were analyzed. More than 2.3 million cis-eQTLs for 15,668 genes were identified. When eQTLs were filtered against a list of 1,496 drug response genes, 187,829 cis-eQTLs for 1,191 genes were identified. Additionally, 1,683 sex-biased cis-eQTLs were identified, as well as 49 and 73 cis-eQTLs that colocalized with genome-wide association study signals for blood metabolite or lipid levels, respectively. Translational relevance of these results is evidenced by linking DPYD eQTLs to differences in safety of chemotherapy, linking the sex-biased regulation of PCSK9 expression to anti-lipid therapy, and identifying the G-protein coupled receptor GPR180 as a novel drug target for hypertriglyceridemia.
Collapse
Affiliation(s)
- Amy S Etheridge
- Eshelman School of Pharmacy and Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul J Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Dereje Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark J Ratain
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Erin Schuetz
- Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adrian Schroder
- Center for Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany
| | - Cliona Molony
- Computation Biomedicine, Pfizer, Inc., Boston, Massachusetts, USA
| | - Yihui Zhou
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Federico Innocenti
- Eshelman School of Pharmacy and Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Gupta R, Nguyen DC, Schaid MD, Lei X, Balamurugan AN, Wong GW, Kim JA, Koltes JE, Kimple ME, Bhatnagar S. Complement 1q-like-3 protein inhibits insulin secretion from pancreatic β-cells via the cell adhesion G protein-coupled receptor BAI3. J Biol Chem 2018; 293:18086-18098. [PMID: 30228187 DOI: 10.1074/jbc.ra118.005403] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/06/2018] [Indexed: 01/04/2023] Open
Abstract
Secreted proteins are important metabolic regulators in both healthy and disease states. Here, we sought to investigate the mechanism by which the secreted protein complement 1q-like-3 (C1ql3) regulates insulin secretion from pancreatic β-cells, a key process affecting whole-body glucose metabolism. We found that C1ql3 predominantly inhibits exendin-4- and cAMP-stimulated insulin secretion from mouse and human islets. However, to a lesser extent, C1ql3 also reduced insulin secretion in response to KCl, the potassium channel blocker tolbutamide, and high glucose. Strikingly, C1ql3 did not affect insulin secretion stimulated by fatty acids, amino acids, or mitochondrial metabolites, either at low or submaximal glucose concentrations. Additionally, C1ql3 inhibited glucose-stimulated cAMP levels, and insulin secretion stimulated by exchange protein directly activated by cAMP-2 and protein kinase A. These results suggest that C1ql3 inhibits insulin secretion primarily by regulating cAMP signaling. The cell adhesion G protein-coupled receptor, brain angiogenesis inhibitor-3 (BAI3), is a C1ql3 receptor and is expressed in β-cells and in mouse and human islets, but its function in β-cells remained unknown. We found that siRNA-mediated Bai3 knockdown in INS1(832/13) cells increased glucose-stimulated insulin secretion. Furthermore, incubating the soluble C1ql3-binding fragment of the BAI3 protein completely blocked the inhibitory effects of C1ql3 on insulin secretion in response to cAMP. This suggests that BAI3 mediates the inhibitory effects of C1ql3 on insulin secretion from pancreatic β-cells. These findings demonstrate a novel regulatory mechanism by which C1ql3/BAI3 signaling causes an impairment of insulin secretion from β-cells, possibly contributing to the progression of type 2 diabetes in obesity.
Collapse
Affiliation(s)
- Rajesh Gupta
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama 35294
| | - Dan C Nguyen
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama 35294
| | - Michael D Schaid
- the Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706,; the William S. Middleton Memorial Veterans Hospital, Research Service, Madison, Wisconsin 53705
| | - Xia Lei
- the Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | - G William Wong
- the Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jeong-A Kim
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama 35294
| | - James E Koltes
- the Department of Animal Science, Iowa State University, Ames, Iowa 50011
| | - Michelle E Kimple
- the Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706,; the William S. Middleton Memorial Veterans Hospital, Research Service, Madison, Wisconsin 53705,; the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and the Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Sushant Bhatnagar
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama 35294,.
| |
Collapse
|
20
|
Pomytkin I, Costa‐Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, Lesch K, Ponomarev ED, Strekalova T. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 2018; 24:763-774. [PMID: 29691988 PMCID: PMC6489906 DOI: 10.1111/cns.12866] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/16/2022] Open
Abstract
While the insulin receptor (IR) was found in the CNS decades ago, the brain was long considered to be an insulin-insensitive organ. This view is currently revisited, given emerging evidence of critical roles of IR-mediated signaling in development, neuroprotection, metabolism, and plasticity in the brain. These diverse cellular and physiological IR activities are distinct from metabolic IR functions in peripheral tissues, thus highlighting region specificity of IR properties. This particularly concerns the fact that two IR isoforms, A and B, are predominantly expressed in either the brain or peripheral tissues, respectively, and neurons express exclusively IR-A. Intriguingly, in comparison with IR-B, IR-A displays high binding affinity and is also activated by low concentrations of insulin-like growth factor-2 (IGF-2), a regulator of neuronal plasticity, whose dysregulation is associated with neuropathologic processes. Deficiencies in IR activation, insulin availability, and downstream IR-related mechanisms may result in aberrant IR-mediated functions and, subsequently, a broad range of brain disorders, including neurodevelopmental syndromes, neoplasms, neurodegenerative conditions, and depression. Here, we discuss findings on the brain-specific features of IR-mediated signaling with focus on mechanisms of primary receptor activation and their roles in the neuropathology. We aimed to uncover the remaining gaps in current knowledge on IR physiology and highlight new therapies targeting IR, such as IR sensitizers.
Collapse
Affiliation(s)
- Igor Pomytkin
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - João P. Costa‐Nunes
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Faculdade de Medicina de LisboaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Vladimir Kasatkin
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia
| | - Ekaterina Veniaminova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Anna Demchenko
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Alexey Lyundup
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Klaus‐Peter Lesch
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Division of Molecular PsychiatryCenter of Mental HealthClinical Research Unit on Disorders of Neurodevelopment and CognitionUniversity of WürzburgWürzburgGermany
| | - Eugene D. Ponomarev
- Faculty of MedicineSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong
| | - Tatyana Strekalova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
21
|
Ramos-Romero S, Hereu M, Atienza L, Casas J, Jáuregui O, Amézqueta S, Dasilva G, Medina I, Nogués MR, Romeu M, Torres JL. Mechanistically different effects of fat and sugar on insulin resistance, hypertension, and gut microbiota in rats. Am J Physiol Endocrinol Metab 2018; 314:E552-E563. [PMID: 29351480 DOI: 10.1152/ajpendo.00323.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin resistance (IR) and impaired glucose tolerance (IGT) are the first manifestations of diet-induced metabolic alterations leading to Type 2 diabetes, while hypertension is the deadliest risk factor of cardiovascular disease. The roles of dietary fat and fructose in the development of IR, IGT, and hypertension are controversial. We tested the long-term effects of an excess of fat or sucrose (fructose/glucose) on healthy male Wistar-Kyoto (WKY) rats. Fat affects IR and IGT earlier than fructose through low-grade systemic inflammation evidenced by liver inflammatory infiltration, increased levels of plasma IL-6, PGE2, and reduced levels of protective short-chain fatty acids without triggering hypertension. Increased populations of gut Enterobacteriales and Escherichia coli may contribute to systemic inflammation through the generation of lipopolysaccharides. Unlike fat, fructose induces increased levels of diacylglycerols (lipid mediators of IR) in the liver, urine F2-isoprostanes (markers of systemic oxidative stress), and uric acid, and triggers hypertension. Elevated populations of Enterobacteriales and E. coli were only detected in rats given an excess of fructose at the end of the study. Dietary fat and fructose trigger IR and IGT in clearly differentiated ways in WKY rats: early low-grade inflammation and late direct lipid toxicity, respectively; gut microbiota plays a role mainly in fat-induced IR, and hypertension is independent of inflammation-mediated IR. The results provide evidence that suggests that the combination of fat and sugar is potentially more harmful than fat or sugar alone when taken in excess.
Collapse
Affiliation(s)
- Sara Ramos-Romero
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC) , Barcelona , Spain
- Faculty of Biology, University of Barcelona , Barcelona , Spain
| | - Mercè Hereu
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC) , Barcelona , Spain
| | - Lidia Atienza
- Department of Pathology, Puerta del Mar University Hospital , Cádiz , Spain
| | - Josefina Casas
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, IQAC-CSIC, Barcelona , Spain
| | - Olga Jáuregui
- Scientific and Technological Centers of the University of Barcelona , Barcelona , Spain
| | - Susana Amézqueta
- Faculty of Chemistry, University of Barcelona , Barcelona , Spain
| | | | | | - Maria Rosa Nogués
- Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Romeu
- Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Lluís Torres
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC) , Barcelona , Spain
| |
Collapse
|
22
|
O'Harte FPM, Parthsarathy V, Hogg C, Flatt PR. Apelin-13 analogues show potent in vitro and in vivo insulinotropic and glucose lowering actions. Peptides 2018; 100:219-228. [PMID: 29412822 DOI: 10.1016/j.peptides.2017.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023]
Abstract
Nine structurally modified apelin-13 analogues were assessed for their in vitro and acute in vivo antidiabetic potential. Stability was assessed in mouse plasma and insulinotropic efficacy tested in cultured pancreatic BRIN-BD11 cells and isolated mouse pancreatic islets. Intracellular Ca2+ and cAMP production in BRIN-BD11 cells was determined, as was glucose uptake in 3T3-L1 adipocytes. Acute antihyperglycemic effects of apelin analogues were assessed following i.p. glucose tolerance tests (ipGGT, 18 mmol/kg) in normal and diet-induced-obese (DIO) mice and on food intake in normal mice. Apelin analogues all showed enhanced in vitro stability (up to 5.8-fold, t½ = 12.8 h) in mouse plasma compared to native apelin-13 (t½ = 2.1 h). Compared to glucose controls, stable analogues exhibited enhanced insulinotropic responses from BRIN-BD11 cells (up to 4.7-fold, p < 0.001) and isolated mouse islets (up to 5.3-fold) for 10-7 M apelin-13 amide (versus 7.6-fold for 10-7 M GLP-1). Activation of APJ receptors on BRIN-BD11 cells increased intracellular Ca2+ (up to 3.0-fold, p < 0.001) and cAMP (up to 1.7-fold, p < 0.01). Acute ipGTT showed improved insulinotropic and glucose disposal responses in normal and DIO mice (p < 0.05 and p < 0.01, respectively). Apelin-13 amide and (pGlu)apelin-13 amide were the most effective analogues exhibiting acute, dose-dependent and persistent biological actions. Both analogues stimulated insulin-independent glucose uptake by differentiated adipocytes (2.9-3.3-fold, p < 0.05) and inhibited food intake (26-33%, p < 0.001), up to 180 min in mice, versus saline. In contrast, (Ala13)apelin-13 and (Val13)apelin-13 inhibited insulin secretion, suppressed beta-cell signal transduction and stimulated food intake in mice. Thus, stable analogues of apelin-13 have potential for diabetes/obesity therapy.
Collapse
Affiliation(s)
- F P M O'Harte
- The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK.
| | - V Parthsarathy
- The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
| | - C Hogg
- The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
| | - P R Flatt
- The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
| |
Collapse
|
23
|
Sasson S. Nutrient overload, lipid peroxidation and pancreatic beta cell function. Free Radic Biol Med 2017; 111:102-109. [PMID: 27600453 DOI: 10.1016/j.freeradbiomed.2016.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022]
Abstract
Since the landmark discovery of α,β-unsaturated 4-hydroxyalkenals by Esterbauer and colleagues most studies have addressed the consequences of the tendency of these lipid peroxidation products to form covalent adducts with macromolecules and modify cellular functions. Many studies describe detrimental and cytotoxic effects of 4-hydroxy-2E-nonenal (4-HNE) in myriad tissues and organs and many pathologies. Other studies similarly assigned unfavorable effects to 4-hydroxy-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE). Nutrient overload (e.g., hyperglycemia, hyperlipidemia) modifies lipid metabolism in cells and promotes lipid peroxidation and the generation of α,β-unsaturated 4-hydroxyalkenals. Advances glycation- and lipoxidation end products (AGEs and ALEs) have been associated with the development of insulin resistance and pancreatic beta cell dysfunction and the etiology of type 2 diabetes and its peripheral complications. Less acknowledged are genuine signaling properties of 4-hydroxyalkenals in hormetic processes that provide defense against the consequences of nutrient overload. This review addresses recent findings on such lipohormetic mechanisms that are associated with lipid peroxidation in pancreatic beta cells. This article is part of a Special Issue entitled SI: LIPID OXIDATION PRODUCTS, edited by Giuseppe Poli.
Collapse
Affiliation(s)
- Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Hebrew University Faculty of Medicine, Jerusalem 9112001, Israel.
| |
Collapse
|
24
|
Schaid MD, Wisinski JA, Kimple ME. The EP3 Receptor/G z Signaling Axis as a Therapeutic Target for Diabetes and Cardiovascular Disease. AAPS J 2017; 19:1276-1283. [PMID: 28584908 PMCID: PMC7934137 DOI: 10.1208/s12248-017-0097-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease is a common co-morbidity found with obesity-linked type 2 diabetes. Current pharmaceuticals for these two diseases treat each of them separately. Yet, diabetes and cardiovascular disease share molecular signaling pathways that are increasingly being understood to contribute to disease pathophysiology, particularly in pre-clinical models. This review will focus on one such signaling pathway: that mediated by the G protein-coupled receptor, Prostaglandin E2 Receptor 3 (EP3), and its associated G protein in the insulin-secreting beta-cell and potentially the platelet, Gz. The EP3/Gz signaling axis may hold promise as a dual target for type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Michael D Schaid
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, 4148 UW Medical Foundation Centennial Building, 1685 Highland Ave, Madison, Wisconsin, 53705, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Jaclyn A Wisinski
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Michelle E Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, 4148 UW Medical Foundation Centennial Building, 1685 Highland Ave, Madison, Wisconsin, 53705, USA.
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA.
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
| |
Collapse
|
25
|
Wang Q, Pronin AN, Levay K, Almaca J, Fornoni A, Caicedo A, Slepak VZ. Regulator of G-protein signaling Gβ5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion. FASEB J 2017; 31:4734-4744. [PMID: 28687610 DOI: 10.1096/fj.201700197rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022]
Abstract
In pancreatic β cells, muscarinic cholinergic receptor M3 (M3R) stimulates glucose-induced secretion of insulin. Regulator of G-protein signaling (RGS) proteins are critical modulators of GPCR activity, yet their role in β cells remains largely unknown. R7 subfamily RGS proteins are stabilized by the G-protein subunit Gβ5, such that the knockout of the Gnb5 gene results in degradation of all R7 subunits. We found that Gnb5 knockout in mice or in the insulin-secreting MIN6 cell line almost completely eliminates insulinotropic activity of M3R. Moreover, overexpression of Gβ5-RGS7 strongly promotes M3R-stimulated insulin secretion. Examination of this noncanonical mechanism in Gnb5-/- MIN6 cells showed that cAMP, diacylglycerol, or Ca2+ levels were not significantly affected. There was no reduction in the amplitude of free Ca2+ responses in islets from the Gnb5-/- mice, but the frequency of Ca2+ oscillations induced by cholinergic agonist was lowered by more than 30%. Ablation of Gnb5 impaired M3R-stimulated phosphorylation of ERK1/2. Stimulation of the ERK pathway in Gnb5-/- cells by epidermal growth factor restored M3R-stimulated insulin release to near normal levels. Identification of the novel role of Gβ5-R7 in insulin secretion may lead to a new therapeutic approach for improving pancreatic β-cell function.-Wang, Q., Pronin, A. N., Levay, K., Almaca, J., Fornoni, A., Caicedo, A., Slepak, V. Z. Regulator of G-protein signaling Gβ5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| | - Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| | - Konstantin Levay
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| | - Joana Almaca
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Alessia Fornoni
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Alejandro Caicedo
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| |
Collapse
|
26
|
Neuman JC, Fenske RJ, Kimple ME. Dietary polyunsaturated fatty acids and their metabolites: Implications for diabetes pathophysiology, prevention, and treatment. NUTRITION AND HEALTHY AGING 2017; 4:127-140. [PMID: 28447067 PMCID: PMC5391679 DOI: 10.3233/nha-160004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Affiliation(s)
- Joshua C. Neuman
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rachel J. Fenske
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michelle E. Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
27
|
Carboneau BA, Breyer RM, Gannon M. Regulation of pancreatic β-cell function and mass dynamics by prostaglandin signaling. J Cell Commun Signal 2017; 11:105-116. [PMID: 28132118 DOI: 10.1007/s12079-017-0377-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
Prostaglandins (PGs) are signaling lipids derived from arachidonic acid (AA), which is metabolized by cyclooxygenase (COX)-1 or 2 and class-specific synthases to generate PGD2, PGE2, PGF2α, PGI2 (prostacyclin), and thromboxane A2. PGs signal through G-protein coupled receptors (GPCRs) and are important modulators of an array of physiological functions, including systemic inflammation and insulin secretion from pancreatic islets. The role of PGs in β-cell function has been an active area of interest, beginning in the 1970s. Early studies demonstrated that PGE2 inhibits glucose-stimulated insulin secretion (GSIS), although more recent studies have questioned this inhibitory action of PGE2. The PGE2 receptor EP3 and one of the G-proteins that couples to EP3, GαZ, have been identified as negative regulators of β-cell proliferation and survival. Conversely, PGI2 and its receptor, IP, play a positive role in the β-cell by enhancing GSIS and preserving β-cell mass in response to the β-cell toxin streptozotocin (STZ). In comparison to PGE2 and PGI2, little is known about the function of the remaining PGs within islets. In this review, we discuss the roles of PGs, particularly PGE2 and PGI2, PG receptors, and downstream signaling events that alter β-cell function and regulation of β-cell mass.
Collapse
Affiliation(s)
- Bethany A Carboneau
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, USA
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA. .,Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA. .,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA. .,Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
28
|
Xu H, Fu JL, Miao YF, Wang CJ, Han QF, Li S, Huang SZ, Du SN, Qiu YX, Yang JC, Gustafsson JÅ, Breyer RM, Zheng F, Wang NP, Zhang XY, Guan YF. Prostaglandin E2 receptor EP3 regulates both adipogenesis and lipolysis in mouse white adipose tissue. J Mol Cell Biol 2016; 8:518-529. [PMID: 27436752 PMCID: PMC5181317 DOI: 10.1093/jmcb/mjw035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022] Open
Abstract
Among the four prostaglandin E2 receptors, EP3 receptor is the one most abundantly expressed in white adipose tissue (WAT). The mouse EP3 gene gives rise to three isoforms, namely EP3α, EP3β, and EP3γ, which differ only at their C-terminal tails. To date, functions of EP3 receptor and its isoforms in WAT remain incompletely characterized. In this study, we found that the expression of all EP3 isoforms were downregulated in WAT of both db/db and high-fat diet-induced obese mice. Genetic ablation of three EP3 receptor isoforms (EP3-/- mice) or EP3α and EP3γ isoforms with EP3β intact (EP3β mice) led to an obese phenotype with increased food intake, decreased motor activity, reduced insulin sensitivity, and elevated serum triglycerides. Since the differentiation of preadipocytes and mouse embryonic fibroblasts to adipocytes was markedly facilitated by either pharmacological blockade or genetic deletion/inhibition of EP3 receptor via the cAMP/PKA/PPARγ pathway, increased adipogenesis may contribute to obesity in EP3-/- and EP3β mice. Moreover, both EP3-/- and EP3β mice had increased lipolysis in WAT mainly due to the activated cAMP/PKA/hormone-sensitive lipase pathway. Taken together, our findings suggest that EP3 receptor and its α and γ isoforms are involved in both adipogenesis and lipolysis and influence food intake, serum lipid levels, and insulin sensitivity.
Collapse
Affiliation(s)
- Hu Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jia-Lin Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yi-Fei Miao
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Chun-Jiong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qi-Fei Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Sha Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shi-Zheng Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Sheng-Nan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yu-Xiang Qiu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ji-Chun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Nan-Ping Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiao-Yan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.,Department of Physiology, AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - You-Fei Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China .,Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
29
|
Villa SR, Priyadarshini M, Fuller MH, Bhardwaj T, Brodsky MR, Angueira AR, Mosser RE, Carboneau BA, Tersey SA, Mancebo H, Gilchrist A, Mirmira RG, Gannon M, Layden BT. Loss of Free Fatty Acid Receptor 2 leads to impaired islet mass and beta cell survival. Sci Rep 2016; 6:28159. [PMID: 27324831 PMCID: PMC4914960 DOI: 10.1038/srep28159] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/31/2016] [Indexed: 12/21/2022] Open
Abstract
The regulation of pancreatic β cell mass is a critical factor to help maintain normoglycemia during insulin resistance. Nutrient-sensing G protein-coupled receptors (GPCR) contribute to aspects of β cell function, including regulation of β cell mass. Nutrients such as free fatty acids (FFAs) contribute to precise regulation of β cell mass by signaling through cognate GPCRs, and considerable evidence suggests that circulating FFAs promote β cell expansion by direct and indirect mechanisms. Free Fatty Acid Receptor 2 (FFA2) is a β cell-expressed GPCR that is activated by short chain fatty acids, particularly acetate. Recent studies of FFA2 suggest that it may act as a regulator of β cell function. Here, we set out to explore what role FFA2 may play in regulation of β cell mass. Interestingly, Ffar2(-/-) mice exhibit diminished β cell mass at birth and throughout adulthood, and increased β cell death at adolescent time points, suggesting a role for FFA2 in establishment and maintenance of β cell mass. Additionally, activation of FFA2 with Gαq/11-biased agonists substantially increased β cell proliferation in in vitro and ex vivo proliferation assays. Collectively, these data suggest that FFA2 may be a novel therapeutic target to stimulate β cell growth and proliferation.
Collapse
MESH Headings
- Animals
- Cell Survival
- Cells, Cultured
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Fatty Acids, Nonesterified/metabolism
- Fatty Acids, Volatile/metabolism
- Humans
- Insulin Resistance
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pancreas/pathology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Stephanie R. Villa
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Medha Priyadarshini
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Miles H. Fuller
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tanya Bhardwaj
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael R. Brodsky
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anthony R. Angueira
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rockann E. Mosser
- Vanderbilt University, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN, USA
| | - Bethany A. Carboneau
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN, USA
| | - Sarah A. Tersey
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Annette Gilchrist
- Midwestern University Department of Pharmaceutical Sciences, Downers Grove, IL, USA
| | - Raghavendra G. Mirmira
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Maureen Gannon
- Vanderbilt University, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN, USA
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN, USA
- Tennessee Valley Health Authority, Department of Veterans Affairs, Nashville, TN, USA
| | - Brian T. Layden
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
30
|
|
31
|
Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis. PLoS One 2016; 11:e0152869. [PMID: 27138453 PMCID: PMC4854486 DOI: 10.1371/journal.pone.0152869] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger pathway interactions will improve understanding of critical regulatory sites, how different GPCRs interact and pharmacological targets for modulating insulin secretion in type 2 diabetes.
Collapse
|
32
|
van Unen J, Stumpf AD, Schmid B, Reinhard NR, Hordijk PL, Hoffmann C, Gadella TWJ, Goedhart J. A New Generation of FRET Sensors for Robust Measurement of Gαi1, Gαi2 and Gαi3 Activation Kinetics in Single Cells. PLoS One 2016; 11:e0146789. [PMID: 26799488 PMCID: PMC4723041 DOI: 10.1371/journal.pone.0146789] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/22/2015] [Indexed: 01/14/2023] Open
Abstract
G-protein coupled receptors (GPCRs) can activate a heterotrimeric G-protein complex with subsecond kinetics. Genetically encoded biosensors based on Förster resonance energy transfer (FRET) are ideally suited for the study of such fast signaling events in single living cells. Here we report on the construction and characterization of three FRET biosensors for the measurement of Gαi1, Gαi2 and Gαi3 activation. To enable quantitative long-term imaging of FRET biosensors with high dynamic range, fluorescent proteins with enhanced photophysical properties are required. Therefore, we use the currently brightest and most photostable CFP variant, mTurquoise2, as donor fused to Gαi subunit, and cp173Venus fused to the Gγ2 subunit as acceptor. The Gαi FRET biosensors constructs are expressed together with Gβ1 from a single plasmid, providing preferred relative expression levels with reduced variation in mammalian cells. The Gαi FRET sensors showed a robust response to activation of endogenous or over-expressed alpha-2A-adrenergic receptors, which was inhibited by pertussis toxin. Moreover, we observed activation of the Gαi FRET sensor in single cells upon stimulation of several GPCRs, including the LPA2, M3 and BK2 receptor. Furthermore, we show that the sensors are well suited to extract kinetic parameters from fast measurements in the millisecond time range. This new generation of FRET biosensors for Gαi1, Gαi2 and Gαi3 activation will be valuable for live-cell measurements that probe Gαi activation.
Collapse
Affiliation(s)
- Jakobus van Unen
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Anette D Stumpf
- Bio-Imaging-Center/Rudolf-Virchow-Zentrum and Department of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, 97078, Wuerzburg, Germany
| | - Benedikt Schmid
- Bio-Imaging-Center/Rudolf-Virchow-Zentrum and Department of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, 97078, Wuerzburg, Germany
| | - Nathalie R Reinhard
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands.,Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, NL-1066 CX, Amsterdam, the Netherlands
| | - Peter L Hordijk
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands.,Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, NL-1066 CX, Amsterdam, the Netherlands
| | - Carsten Hoffmann
- Bio-Imaging-Center/Rudolf-Virchow-Zentrum and Department of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, 97078, Wuerzburg, Germany
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Dingemanse J, Bolli M, Iglarz M. Treatment of obesity and pulmonary arterial hypertension with inhibitors of the prostaglandin transporter: evaluation of patent WO2014/204895A1. Expert Opin Ther Pat 2015; 25:1069-77. [PMID: 26099857 DOI: 10.1517/13543776.2015.1056152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Prostaglandins display a wide array of pharmacological effects and prostaglandin analogs are already used in the treatment of pulmonary arterial hypertension (PAH). After synthesis and release from cells, prostaglandins undergo reuptake by the prostaglandin transporter (PGT). WO2014/204895 claims the use of a series of trisubstituted triazine derivatives for the treatment of obesity and PAH. Composition of matter of these triazines has been claimed in WO2011/037610 and the compounds are described as potent inhibitors of the PGT. One compound (nr 146) was shown to improve high fat diet-induced glucose tolerance in a mouse model. In addition, this compound has been explored in the rat monocrotaline model of PAH and reduced characteristic features of the pathology. This class of compounds presents a potential new treatment paradigm in the treatment of obesity-related disorders and PAH.
Collapse
Affiliation(s)
- Jasper Dingemanse
- a 1 Actelion Pharmaceuticals Ltd, Department of Clinical Pharmacology , Gewerbestrasse 16, CH-4123 Allschwil, Switzerland +41 61 565 6463 ; +41 61 565 6200 ;
| | | | | |
Collapse
|
34
|
Jansen F, Kalbe B, Scholz P, Fränzel B, Osterloh M, Wolters D, Hatt H, Neuhaus EM, Osterloh S. Biochemical Large-Scale Interaction Analysis of Murine Olfactory Receptors and Associated Signaling Proteins with Post-Synaptic Density 95, Drosophila Discs Large, Zona-Occludens 1 (PDZ) Domains. Mol Cell Proteomics 2015; 14:2072-84. [PMID: 25979994 DOI: 10.1074/mcp.m114.045997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family among mammalian membrane proteins and are capable of initiating numerous essential signaling cascades. Various GPCR-mediated pathways are organized into protein microdomains that can be orchestrated and regulated through scaffolding proteins, such as PSD-95/discs-large/ZO1 (PDZ) domain proteins. However, detailed binding characteristics of PDZ-GPCR interactions remain elusive because these interactions seem to be more complex than previously thought. To address this issue, we analyzed binding modalities using our established model system. This system includes the 13 individual PDZ domains of the multiple PDZ domain protein 1 (MUPP1; the largest PDZ protein), a broad range of murine olfactory receptors (a multifaceted gene cluster within the family of GPCRs), and associated olfactory signaling proteins. These proteins were analyzed in a large-scale peptide microarray approach and continuative interaction studies. As a result, we demonstrate that canonical binding motifs were not overrepresented among the interaction partners of MUPP1. Furthermore, C-terminal phosphorylation and distinct amino acid replacements abolished PDZ binding promiscuity. In addition to the described in vitro experiments, we identified new interaction partners within the murine olfactory epithelium using pull-down-based interactomics and could verify the partners through co-immunoprecipitation. In summary, the present study provides important insight into the complexity of the binding characteristics of PDZ-GPCR interactions based on olfactory signaling proteins, which could identify novel clinical targets for GPCR-associated diseases in the future.
Collapse
Affiliation(s)
- Fabian Jansen
- From the ‡Department of Cell Physiology, Faculty for Biology and Biotechnology
| | - Benjamin Kalbe
- From the ‡Department of Cell Physiology, Faculty for Biology and Biotechnology
| | - Paul Scholz
- From the ‡Department of Cell Physiology, Faculty for Biology and Biotechnology
| | - Benjamin Fränzel
- §Department of Analytical Chemistry, Faculty for Chemistry and Biochemistry, Ruhr-University Bochum, Germany
| | - Markus Osterloh
- From the ‡Department of Cell Physiology, Faculty for Biology and Biotechnology
| | - Dirk Wolters
- §Department of Analytical Chemistry, Faculty for Chemistry and Biochemistry, Ruhr-University Bochum, Germany
| | - Hanns Hatt
- From the ‡Department of Cell Physiology, Faculty for Biology and Biotechnology
| | | | - Sabrina Osterloh
- From the ‡Department of Cell Physiology, Faculty for Biology and Biotechnology,
| |
Collapse
|
35
|
Walther C, Ferguson SSG. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling. Mol Endocrinol 2015; 29:814-30. [PMID: 25942107 DOI: 10.1210/me.2015-1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| |
Collapse
|
36
|
Kamato D, Thach L, Bernard R, Chan V, Zheng W, Kaur H, Brimble M, Osman N, Little PJ. Structure, Function, Pharmacology, and Therapeutic Potential of the G Protein, Gα/q,11. Front Cardiovasc Med 2015; 2:14. [PMID: 26664886 PMCID: PMC4671355 DOI: 10.3389/fcvm.2015.00014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
G protein coupled receptors (GPCRs) are one of the major classes of cell surface receptors and are associated with a group of G proteins consisting of three subunits termed alpha, beta, and gamma. G proteins are classified into four families according to their α subunit; Gαi, Gαs, Gα12/13, and Gαq. There are several downstream pathways of Gαq of which the best known is upon activation via guanosine triphosphate (GTP), Gαq activates phospholipase Cβ, hydrolyzing phosphatidylinositol 4,5-biphosphate into diacylglycerol and inositol triphosphate and activating protein kinase C and increasing calcium efflux from the endoplasmic reticulum. Although G proteins, in particular, the Gαq/11 are central elements in GPCR signaling, their actual roles have not yet been thoroughly investigated. The lack of research of the role on Gαq/11 in cell biology is partially due to the obscure nature of the available pharmacological agents. YM-254890 is the most useful Gαq-selective inhibitor with antiplatelet, antithrombotic, and thrombolytic effects. YM-254890 inhibits Gαq signaling pathways by preventing the exchange of guanosine diphosphate for GTP. UBO-QIC is a structurally similar compound to YM-254890, which can inhibit platelet aggregation and cause vasorelaxation in rats. Many agents are available for the study of signaling downstream of Gαq/11. The role of G proteins could potentially represent a novel therapeutic target. This review will explore the range of pharmacological and molecular tools available for the study of the role of Gαq/11 in GPCR signaling.
Collapse
Affiliation(s)
- Danielle Kamato
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Lyna Thach
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Rebekah Bernard
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Vincent Chan
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Wenhua Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre , Guangzhou , China ; Faculty of Health Sciences, University of Macau , Macau , China
| | - Harveen Kaur
- Department of Chemistry, University of Auckland , Auckland , New Zealand
| | - Margaret Brimble
- Department of Chemistry, University of Auckland , Auckland , New Zealand
| | - Narin Osman
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Peter J Little
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| |
Collapse
|
37
|
Lamming DW. Diminished mTOR signaling: a common mode of action for endocrine longevity factors. SPRINGERPLUS 2014; 3:735. [PMID: 25674466 PMCID: PMC4320218 DOI: 10.1186/2193-1801-3-735] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/07/2014] [Indexed: 12/12/2022]
Abstract
Since the initial observation that a calorie-restricted (CR) diet can extend rodent lifespan, many genetic and pharmaceutical interventions that also extend lifespan in mammals have been discovered. The mechanism by which CR and these other interventions extend lifespan is the subject of significant debate and research. One proposed mechanism is that CR promotes longevity by increasing insulin sensitivity, but recent findings that dissociate longevity and insulin sensitivity cast doubt on this hypothesis. These findings can be reconciled if longevity is promoted not via increased insulin sensitivity, but instead via decreased PI3K/Akt/mTOR pathway signaling. This review presents a unifying hypothesis that explains the lifespan-extending effects of a variety of genetic mutations and pharmaceutical interventions and points towards new molecular pathways which may also be leveraged to promote healthy aging.
Collapse
Affiliation(s)
- Dudley W Lamming
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin USA ; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin USA
| |
Collapse
|