1
|
Flowers S, Petronella BA, McQueney MS, Fanelli B, Eisenberg W, Uveges A, Roden AL, Salowe S, Bommireddy V, Letourneau JJ, Huang CY, Beasley JR. A novel TREX1 inhibitor, VB-85680, upregulates cellular interferon responses. PLoS One 2024; 19:e0305962. [PMID: 39178223 PMCID: PMC11343403 DOI: 10.1371/journal.pone.0305962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 08/25/2024] Open
Abstract
Activation of the cGAS-STING pathway plays a key role in the innate immune response to cancer through Type-1 Interferon (IFN) production and T cell priming. Accumulation of cytosolic double-stranded DNA (dsDNA) within tumor cells and dying cells is recognized by the DNA sensor cyclic GMP-AMP synthase (cGAS) to create the secondary messenger cGAMP, which in turn activates STING (STimulator of INterferon Genes), resulting in the subsequent expression of IFN-related genes. This process is regulated by Three-prime Repair EXonuclease 1 (TREX1), a 3' → 5' exonuclease that degrades cytosolic dsDNA, thereby dampening activation of the cGAS-STING pathway, which in turn diminishes immunostimulatory IFN secretion. Here, we characterize the activity of VB-85680, a potent small-molecule inhibitor of TREX1. We first demonstrate that VB-85680 inhibits TREX1 exonuclease activity in vitro in lysates from both human and mouse cell lines. We then show that treatment of intact cells with VB-85680 results in activation of downstream STING signaling, and activation of IFN-stimulated genes (ISGs). THP1-Dual™ cells cultured under low-serum conditions exhibited an enhanced ISG response when treated with VB-85680 in combination with exogenous DNA. Collectively, these findings suggest the potential of a TREX1 exonuclease inhibitor to work in combination with agents that generate cytosolic DNA to enhance the acquisition of the anti-tumor immunity widely associated with STING pathway activation.
Collapse
Affiliation(s)
- Stephen Flowers
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Brenda A. Petronella
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Michael S. McQueney
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Barbara Fanelli
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Warren Eisenberg
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Albert Uveges
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Allison L. Roden
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Scott Salowe
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Venu Bommireddy
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Jeffrey J. Letourneau
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Chia-Yu Huang
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - James R. Beasley
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| |
Collapse
|
2
|
Samavati SF, Yarani R, Kiani S, HoseinKhani Z, Mehrabi M, Levitte S, Primavera R, Chetty S, Thakor AS, Mansouri K. Therapeutic potential of exosomes derived from mesenchymal stem cells for treatment of systemic lupus erythematosus. J Inflamm (Lond) 2024; 21:20. [PMID: 38867277 PMCID: PMC11170788 DOI: 10.1186/s12950-024-00381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/14/2024] [Indexed: 06/14/2024] Open
Abstract
Autoimmune diseases are caused by an imbalance in the immune system, producing autoantibodies that cause inflammation leading to tissue damage and organ dysfunction. Systemic Lupus Erythematosus (SLE) is one of the most common autoimmune diseases and a major contributor to patient morbidity and mortality. Although many drugs manage the disease, curative therapy remains elusive, and current treatment regimens have substantial side effects. Recently, the therapeutic potential of exosomes has been extensively studied, and novel evidence has been demonstrated. A direct relationship between exosome contents and their ability to regulate the immune system, inflammation, and angiogenesis. The unique properties of extracellular vesicles, such as biomolecule transportation, biodegradability, and stability, make exosomes a promising treatment candidate for autoimmune diseases, particularly SLE. This review summarizes the structural features of exosomes, the isolation/purification/quantification method, their origin, effect, immune regulation, a critical consideration for selecting an appropriate source, and their therapeutic mechanisms in SLE.
Collapse
Affiliation(s)
- Shima Famil Samavati
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Sara Kiani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh HoseinKhani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Steven Levitte
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Shashank Chetty
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Elghiriani MA, Naga SS, Hameed IA, Elgohary IE, Mansour AR. The role of online hemodiafiltration with endogenous reinfusion in the treatment of systemic lupus erythematosus activity resistant to conventional therapy. FRONTIERS IN NEPHROLOGY 2024; 4:1269852. [PMID: 38586116 PMCID: PMC10995452 DOI: 10.3389/fneph.2024.1269852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/05/2024] [Indexed: 04/09/2024]
Abstract
Introduction Lupus is a diverse autoimmune disease with autoantibody formation. Lupus nephritis carries a grave prognosis. Complement involvement, namely, C1q deficiency, is linked to activity and renal involvement and could help in their assessment. LN therapies include plasma exchange, immune adsorption, and probably hemodiafiltration with online endogenous reinfusion (HFR), together with traditional immunosuppressive therapies. Aim The aim of this study was to evaluate the role of HFR in improving signs and symptoms of systemic lupus erythematosus (SLE) activity and laboratory parameters in cases not responding to traditional immunosuppressive therapy. Settings and design A controlled clinical study was conducted on 60 patients with lupus from Group A that was subdivided into two groups: cases 1 (47 patients), those who received traditional medical treatment, and cases 2 (13 patients), those who underwent HFR in addition to medical treatment. Group B consisted of two subgroups: control 1, composed of 20 healthy age- and sex-matched volunteers, and control 2, consisting of 10 cases with different glomerular diseases other than lupus. Methods and materials Serum C1q was determined before and after the HFR as well as induction by medical treatment. Disease activity was assessed using SLEDAI-2K with a responder index of 50; quality of life was assessed using SLEQOL v2, and HFR was performed for the non-responder group. Results C1q was lower in cases. It can efficiently differentiate between SLE patients and healthy controls with a sensitivity of 81.67% and a specificity of 90%. It can also efficiently differentiate between SLE patients and the control 2 group (non-lupus patients with renal glomerular disease) with a sensitivity of 83.33% and a specificity of 100%. C1q was more consumed in proliferative lupus, and correlated with anti-ds DNA, C3, and C4. Conclusions C1q efficiently discriminates lupus patients and correlates with proliferative forms. HFR might ameliorate lupus activity and restore C1q.
Collapse
Affiliation(s)
- Mohammed A. Elghiriani
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Salah S. Naga
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ibtessam A. Hameed
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Iman E. Elgohary
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amal R. Mansour
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
5
|
Webber D, Cao J, Dominguez D, Gladman DD, Knight A, Levy DM, Liao F, Ng L, Paterson AD, Touma Z, Wither J, Urowitz M, Silverman ED, Hiraki LT. Genetics of osteonecrosis in children and adults with systemic lupus erythematosus. Rheumatology (Oxford) 2023; 62:3205-3212. [PMID: 36651668 DOI: 10.1093/rheumatology/kead016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Genetics plays an important role in SLE risk, as well as osteonecrosis (ON), a significant and often debilitating complication of SLE. We aimed to identify genetic risk loci for ON in people with childhood-onset (cSLE) and adult-onset (aSLE) SLE. METHODS We enrolled participants from two tertiary care centres who met classification criteria for SLE. Participants had prospectively collected clinical data and were genotyped on a multiethnic array. Un-genotyped single nucleotide polymorphisms (SNPs) were imputed, and ancestry was inferred using principal components (PCs). Our outcome was symptomatic ON confirmed by imaging. We completed time-to-ON and logistic regression of ON genome-wide association studies (GWASs) with covariates for sex, age of SLE diagnosis, five PCs for ancestry, corticosteroid use and selected SLE manifestations. We conducted separate analyses for cSLE and aSLE and meta-analysed results using inverse-variance weighting. Genome-wide significance was P < 5 × 10-8. RESULTS The study included 940 participants with SLE, 87% female and 56% with cSLE. ON was present in 7.6% (n = 71). Median age of SLE diagnosis was 16.9 years (interquartile range [IQR]: 13.5, 29.3), with median follow-up of 8.0 years (IQR: 4.2, 15.7). Meta-GWAS of cSLE and aSLE time-to-ON of 4 431 911 SNPs identified a significant Chr.2 SNP, rs34118383 (minor allele frequency = 0.18), intronic to WIPF1 (hazard ratio = 3.2 [95% CI: 2.2, 4.8]; P = 1.0 × 10-8). CONCLUSION We identified an intronic WIPF1 variant associated with a 3.2 times increased hazard for ON (95% CI: 2.2, 4.8; P = 1.0 × 10-8) during SLE follow-up, independent of corticosteroid exposure. The effect of the SNP on time-to-ON was similar in cSLE and aSLE. This novel discovery represents a potential ON risk locus. Our results warrant replication.
Collapse
Affiliation(s)
- Declan Webber
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jingjing Cao
- Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Daniela Dominguez
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dafna D Gladman
- Schroeder Arthritis Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andrea Knight
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Deborah M Levy
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Fangming Liao
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lawrence Ng
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Andrew D Paterson
- Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zahi Touma
- Schroeder Arthritis Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Joan Wither
- Schroeder Arthritis Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Murray Urowitz
- Schroeder Arthritis Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Earl D Silverman
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Linda T Hiraki
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Vazzana KM, Musolf AM, Bailey-Wilson JE, Hiraki LT, Silverman ED, Scott C, Dalgard CL, Hasni S, Deng Z, Kaplan MJ, Lewandowski LB. Transmission disequilibrium analysis of whole genome data in childhood-onset systemic lupus erythematosus. Genes Immun 2023; 24:200-206. [PMID: 37488248 PMCID: PMC10529982 DOI: 10.1038/s41435-023-00214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
Childhood-onset systemic lupus erythematosus (cSLE) patients are unique, with hallmarks of Mendelian disorders (early-onset and severe disease) and thus are an ideal population for genetic investigation of SLE. In this study, we use the transmission disequilibrium test (TDT), a family-based genetic association analysis that employs robust methodology, to analyze whole genome sequencing data. We aim to identify novel genetic associations in an ancestrally diverse, international cSLE cohort. Forty-two cSLE patients and 84 unaffected parents from 3 countries underwent whole genome sequencing. First, we performed TDT with single nucleotide variant (SNV)-based (common variants) using PLINK 1.9, and gene-based (rare variants) analyses using Efficient and Parallelizable Association Container Toolbox (EPACTS) and rare variant TDT (rvTDT), which applies multiple gene-based burden tests adapted for TDT, including the burden of rare variants test. Applying the GWAS standard threshold (5.0 × 10-8) to common variants, our SNV-based analysis did not return any genome-wide significant SNVs. The rare variant gene-based TDT analysis identified many novel genes significantly enriched in cSLE patients, including HNRNPUL2, a DNA repair protein, and DNAH11, a ciliary movement protein, among others. Our approach identifies several novel SLE susceptibility genes in an ancestrally diverse childhood-onset lupus cohort.
Collapse
Affiliation(s)
- Kathleen M Vazzana
- Lupus Genomics and Global Health Disparities Unit, Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Anthony M Musolf
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, 22124, USA
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, 22124, USA
| | - Linda T Hiraki
- Division of Rheumatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Earl D Silverman
- Division of Rheumatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Christiaan Scott
- Paediatric Rheumatology, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - Clifton L Dalgard
- The American Genome Center, Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Sarfaraz Hasni
- Clinical Program, Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zuoming Deng
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura B Lewandowski
- Lupus Genomics and Global Health Disparities Unit, Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Wu S, Chen J, Teo BHD, Wee SYK, Wong MHM, Cui J, Chen J, Leong KP, Lu J. The axis of complement C1 and nucleolus in antinuclear autoimmunity. Front Immunol 2023; 14:1196544. [PMID: 37359557 PMCID: PMC10288996 DOI: 10.3389/fimmu.2023.1196544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Antinuclear autoantibodies (ANA) are heterogeneous self-reactive antibodies that target the chromatin network, the speckled, the nucleoli, and other nuclear regions. The immunological aberration for ANA production remains partially understood, but ANA are known to be pathogenic, especially, in systemic lupus erythematosus (SLE). Most SLE patients exhibit a highly polygenic disease involving multiple organs, but in rare complement C1q, C1r, or C1s deficiencies, the disease can become largely monogenic. Increasing evidence point to intrinsic autoimmunogenicity of the nuclei. Necrotic cells release fragmented chromatins as nucleosomes and the alarmin HMGB1 is associated with the nucleosomes to activate TLRs and confer anti-chromatin autoimmunogenecity. In speckled regions, the major ANA targets Sm/RNP and SSA/Ro contain snRNAs that confer autoimmunogenecity to Sm/RNP and SSA/Ro antigens. Recently, three GAR/RGG-containing alarmins have been identified in the nucleolus that helps explain its high autoimmunogenicity. Interestingly, C1q binds to the nucleoli exposed by necrotic cells to cause protease C1r and C1s activation. C1s cleaves HMGB1 to inactive its alarmin activity. C1 proteases also degrade many nucleolar autoantigens including nucleolin, a major GAR/RGG-containing autoantigen and alarmin. It appears that the different nuclear regions are intrinsically autoimmunogenic by containing autoantigens and alarmins. However, the extracellular complement C1 complex function to dampen nuclear autoimmunogenecity by degrading these nuclear proteins.
Collapse
Affiliation(s)
- Shan Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Junjie Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Heng Dennis Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Seng Yin Kelly Wee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ming Hui Millie Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhou Cui
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Khai Pang Leong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jinhua Lu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Li W, Guan X, Wang Y, Lv Y, Wu Y, Yu M, Sun Y. Cuproptosis-related gene identification and immune infiltration analysis in systemic lupus erythematosus. Front Immunol 2023; 14:1157196. [PMID: 37313407 PMCID: PMC10258330 DOI: 10.3389/fimmu.2023.1157196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of tolerance to self-antigen, autoantibody production, and abnormal immune response. Cuproptosis is a recently reported cell death form correlated with the initiation and development of multiple diseases. This study intended to probe cuproptosis-related molecular clusters in SLE and constructed a predictive model. Methods We analyzed the expression profile and immune features of cuproptosis-related genes (CRGs) in SLE based on GSE61635 and GSE50772 datasets and identified core module genes associated with SLE occurrence using the weighted correlation network analysis (WGCNA). We selected the optimal machine-learning model by comparing the random forest (RF) model, support vector machine (SVM) model, generalized linear model (GLM), and the extreme gradient boosting (XGB) model. The predictive performance of the model was validated by nomogram, calibration curve, decision curve analysis (DCA), and external dataset GSE72326. Subsequently, a CeRNA network based on 5 core diagnostic markers was established. Drugs targeting core diagnostic markers were acquired using the CTD database, and Autodock vina software was employed to perform molecular docking. Results Blue module genes identified using WGCNA were highly related to SLE initiation. Among the four machine-learning models, the SVM model presented the best discriminative performance with relatively low residual and root-mean-square error (RMSE) and high area under the curve (AUC = 0.998). An SVM model was constructed based on 5 genes and performed favorably in the GSE72326 dataset for validation (AUC = 0.943). The nomogram, calibration curve, and DCA validated the predictive accuracy of the model for SLE as well. The CeRNA regulatory network includes 166 nodes (5 core diagnostic markers, 61 miRNAs, and 100 lncRNAs) and 175 lines. Drug detection showed that D00156 (Benzo (a) pyrene), D016604 (Aflatoxin B1), D014212 (Tretinoin), and D009532 (Nickel) could simultaneously act on the 5 core diagnostic markers. Conclusion We revealed the correlation between CRGs and immune cell infiltration in SLE patients. The SVM model using 5 genes was selected as the optimal machine learning model to accurately evaluate SLE patients. A CeRNA network based on 5 core diagnostic markers was constructed. Drugs targeting core diagnostic markers were retrieved with molecular docking performed.
Collapse
Affiliation(s)
- Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaoran Guan
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yong Wang
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lv
- College of Life Science, Yantai University, Yantai, China
| | - Yuyong Wu
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Min Yu
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
9
|
Sun X, Liu Z, Li Z, Zeng Z, Peng W, Zhu J, Zhao J, Zhu C, Zeng C, Stearrett N, Crandall KA, Bachali P, Grammer AC, Lipsky PE. Abnormalities in intron retention characterize patients with systemic lupus erythematosus. Sci Rep 2023; 13:5141. [PMID: 36991079 PMCID: PMC10060252 DOI: 10.1038/s41598-023-31890-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Regulation of intron retention (IR), a form of alternative splicing, is a newly recognized checkpoint in gene expression. Since there are numerous abnormalities in gene expression in the prototypic autoimmune disease systemic lupus erythematosus (SLE), we sought to determine whether IR was intact in patients with this disease. We, therefore, studied global gene expression and IR patterns of lymphocytes in SLE patients. We analyzed RNA-seq data from peripheral blood T cell samples from 14 patients suffering from systemic lupus erythematosus (SLE) and 4 healthy controls and a second, independent data set of RNA-seq data from B cells from16 SLE patients and 4 healthy controls. We identified intron retention levels from 26,372 well annotated genes as well as differential gene expression and tested for differences between cases and controls using unbiased hierarchical clustering and principal component analysis. We followed with gene-disease enrichment analysis and gene-ontology enrichment analysis. Finally, we then tested for significant differences in intron retention between cases and controls both globally and with respect to specific genes. Overall decreased IR was found in T cells from one cohort and B cells from another cohort of patients with SLE and was associated with increased expression of numerous genes, including those encoding spliceosome components. Different introns within the same gene displayed both up- and down-regulated retention profiles indicating a complex regulatory mechanism. These results indicate that decreased IR in immune cells is characteristic of patients with active SLE and may contribute to the abnormal expression of specific genes in this autoimmune disease.
Collapse
Affiliation(s)
- Xiaoqian Sun
- Computer Science Department, George Washington University, Washington, DC, 20052, USA
| | - Zhichao Liu
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Zongzhu Li
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Zhouhao Zeng
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Weiqun Peng
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Jun Zhu
- Mokobio Biotechnology R&D Center, 1445 Research Blvd, Suite 150, Rockville, MD, 20850, USA
| | - Joel Zhao
- Walt Whitman High School, Bethesda, MD, 20817, USA
| | | | - Chen Zeng
- Physics Department, George Washington University, Washington, DC, 20052, USA.
| | - Nathaniel Stearrett
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA.
| | - Prathyusha Bachali
- RILITE Research Institute and AMPEL BioSolutions, 250 W Main St, Ste 300, Charlottesville, VA, 22902, USA
| | - Amrie C Grammer
- RILITE Research Institute and AMPEL BioSolutions, 250 W Main St, Ste 300, Charlottesville, VA, 22902, USA
| | - Peter E Lipsky
- RILITE Research Institute and AMPEL BioSolutions, 250 W Main St, Ste 300, Charlottesville, VA, 22902, USA.
| |
Collapse
|
10
|
Bhargava R, Li H, Tsokos GC. Pathogenesis of lupus nephritis: the contribution of immune and kidney resident cells. Curr Opin Rheumatol 2023; 35:107-116. [PMID: 35797522 DOI: 10.1097/bor.0000000000000887] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Lupus nephritis is associated with significant mortality and morbidity. We lack effective therapeutics and biomarkers mostly because of our limited understanding of its complex pathogenesis. We aim to present an overview of the recent advances in the field to gain a deeper understanding of the underlying cellular and molecular mechanisms involved in lupus nephritis pathogenesis. RECENT FINDINGS Recent studies have identified distinct roles for each resident kidney cell in the pathogenesis of lupus nephritis. Podocytes share many elements of innate and adaptive immune cells and they can present antigens and participate in the formation of crescents in coordination with parietal epithelial cells. Mesangial cells produce pro-inflammatory cytokines and secrete extracellular matrix contributing to glomerular fibrosis. Tubular epithelial cells modulate the milieu of the interstitium to promote T cell infiltration and formation of tertiary lymphoid organs. Modulation of specific genes in kidney resident cells can ward off the effectors of the autoimmune response including autoantibodies, cytokines and immune cells. SUMMARY The development of lupus nephritis is multifactorial involving genetic susceptibility, environmental triggers and systemic inflammation. However, the role of resident kidney cells in the development of lupus nephritis is becoming more defined and distinct. More recent studies point to the restoration of kidney resident cell function using cell targeted approaches to prevent and treat lupus nephritis.
Collapse
Affiliation(s)
- Rhea Bhargava
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard, Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
11
|
Lin PC, Liang CS, Tsai CK, Tsai SJ, Chen TJ, Bai YM, Chen MH. Associations of a family history of lupus with the risks of lupus and major psychiatric disorders in first-degree relatives. QJM 2022; 115:813-821. [PMID: 35758635 DOI: 10.1093/qjmed/hcac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Genetic factors link psychiatric disorders, particularly major depressive disorder (MDD), bipolar disorder, and obsessive-compulsive disorder (OCD), with systemic lupus erythematosus (SLE). Additionally, maternal SLE is a risk factor for long-term developmental problems, particularly learning disabilities, attention disorders, autism spectrum disorder (ASD) and speech disorders, in children. AIM We aimed to determine whether first-degree relatives (FDRs) of patients with SLE have increased risks of SLE and major psychiatric disorders. DESIGN AND METHODS Using the Taiwan National Health Insurance Research Database, we recruited 40 462 FDRs of patients with SLE as well as 161 848 matched controls. The risks of major psychiatric disorders, including schizophrenia, bipolar disorder, OCD, MDD, ASD and attention-deficit/hyperactivity disorder (ADHD), were assessed. RESULTS The FDRs of patients with SLE had higher risks of SLE (reported as the adjusted relative risk and 95% confidence interval: 14.54; 12.19-17.34), MDD (1.23; 1.12-1.34), ADHD (1.60; 1.55-1.65), OCD (1.41; 1.14-1.74) and bipolar disorder (1.18; 1.01-1.38) compared with controls. Specifically, male FDRs of patients with SLE had higher risks of SLE and bipolar disorder, whereas female FDRs of patients with SLE had higher risks of MDD and OCD. Differences in the familial relationship (i.e. parents, children, siblings and twins) were consistently associated with higher risks of these disorders compared with controls. CONCLUSIONS The FDRs of patients with SLE had higher risks of SLE, MDD, ADHD, OCD and bipolar disorder than the controls.
Collapse
Affiliation(s)
- P-C Lin
- From the Beitou Branch, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, No. 60, Xinmin Rd., Beitou Dist., Taipei City 11243, Taiwan
| | - C-S Liang
- From the Beitou Branch, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, No. 60, Xinmin Rd., Beitou Dist., Taipei City 11243, Taiwan
| | - C-K Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei City 11490, Taiwan
| | - S-J Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei City 11217, Taiwan
- Department of Psychiatry, College of Medicine, National Yang-Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei City 11221, Taiwan
- Institute of Brain Sciences, National Yang-Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei City 11221, Taiwan
| | - T-J Chen
- Department of Family Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei City 11217, Taiwan
- Institute of Hospital and Health Care Administration, National Yang-Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei City 11221, Taiwan
- Digital Medicine Center, National Yang-Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei City 11221, Taiwan
| | - Y-M Bai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei City 11217, Taiwan
- Department of Psychiatry, College of Medicine, National Yang-Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei City 11221, Taiwan
- Institute of Brain Sciences, National Yang-Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei City 11221, Taiwan
| | - M-H Chen
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei City 11217, Taiwan
- Department of Psychiatry, College of Medicine, National Yang-Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei City 11221, Taiwan
- Institute of Brain Sciences, National Yang-Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei City 11221, Taiwan
| |
Collapse
|
12
|
Jin T, Huang W, Cao F, Yu X, Guo S, Ying Z, Xu C. Causal association between systemic lupus erythematosus and the risk of dementia: A Mendelian randomization study. Front Immunol 2022; 13:1063110. [PMID: 36569847 PMCID: PMC9773372 DOI: 10.3389/fimmu.2022.1063110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction It is well-documented that systemic lupus erythematosus (SLE) is associated with dementia. However, the genetic causality of this association remains unclear. Mendelian randomization (MR) was used to investigate the potential causal relationship between SLE and dementia risk in the current study. Methods We selected 45 single nucleotide polymorphisms (SNPs) associated with SLE from publicly available genome-wide association studies (GWAS). Summary level statistics were obtained from the dementia GWAS database. MR estimates were performed using the inverse variance weighted (IVW) method, MR-Egger method and weighted median (WM) method. Cochran's Q test, the intercept of MR-Egger, MR-Pleiotropy Residual Sum and Outlier method, leave-one-out analysis and funnel plot were applied for sensitivity analyses. Results No significant causal association was found between SLE and any type of dementia, including Alzheimer's disease, vascular dementia, frontotemporal dementia, and dementia with Lewy bodies. These findings were robust across several sensitivity analyses. Conclusion Overall, our findings do not support a causal association between SLE and dementia risk.
Collapse
Affiliation(s)
- Tianyu Jin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Huang
- Rheumatism and Immunity Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fangzheng Cao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Yu
- Alberta institute, Wenzhou Medical University, Wenzhou, China
| | - Shunyuan Guo
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhenhua Ying
- Rheumatism and Immunity Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,*Correspondence: Chao Xu, ; Zhenhua Ying,
| | - Chao Xu
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,*Correspondence: Chao Xu, ; Zhenhua Ying,
| |
Collapse
|
13
|
Matzinger P. Autoimmunity: Are we asking the right question? Front Immunol 2022; 13:864633. [PMID: 36405714 PMCID: PMC9671104 DOI: 10.3389/fimmu.2022.864633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/20/2022] [Indexed: 09/07/2023] Open
Abstract
For decades, the main question immunologists have asked about autoimmunity is "what causes a break in self-tolerance?" We have not found good answers to that question, and I believe we are still so ignorant because it's the wrong question. Rather than a break in self-tolerance, I suggest that many autoimmune diseases might be due to defects in normal tissue physiology.
Collapse
Affiliation(s)
- Polly Matzinger
- Ghost Lab, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|
14
|
Li H, Boulougoura A, Endo Y, Tsokos GC. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun 2022; 132:102870. [PMID: 35872102 DOI: 10.1016/j.jaut.2022.102870] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of immune tolerance and sustained production of autoantibodies. Multiple and profound T cell abnormalities in SLE are intertwined with disease expression. Both numerical and functional disturbances have been reported in main CD4+ T helper cell subsets including Th1, Th2, Th17, regulatory, and follicular helper cells. SLE CD4+ T cells are known to provide help to B cells, produce excessive IL-17 but insufficient IL-2, and infiltrate tissues. In the absence of sufficient amounts of IL-2, regulatory T cells, do not function properly to constrain inflammation. A complicated series of early signaling defects and aberrant activation of kinases and phosphatases result in complex cell phenotypes by altering the metabolic profile and the epigenetic landscape. All main metabolic pathways including glycolysis, glutaminolysis and oxidative phosphorylation are altered in T cells from lupus prone mice and patients with SLE. SLE CD8+ cytotoxic T cells display reduced cytolytic activity which accounts for higher rates of infection and the sustenance of autoimmunity. Further, CD8+ T cells in the context of rheumatic diseases lose the expression of CD8, acquire IL-17+CD4-CD8- double negative T (DNT) cell phenotype and infiltrate tissues. Herein we present an update on these T cell abnormalities along with underlying mechanisms and discuss how these advances can be exploited therapeutically. Novel strategies to correct these aberrations in T cells show promise for SLE treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Afroditi Boulougoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yushiro Endo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Jadidi N, Alesaeidi S, Arab F, Pakzad B, Siasi E, Esmaeilzadeh E. miRNA-binding site polymorphism in IL-15RA gene in rheumatoid arthritis and systemic lupus erythematosus: correlation with disease risk and clinical characteristics. Clin Rheumatol 2022; 41:3487-3494. [PMID: 35857215 DOI: 10.1007/s10067-022-06298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION/OBJECTIVES MiRSNPs may interfere with mRNA stability through effects on microRNAs (miRNAs)-mRNA interactions via direct changes in miRNA binding site or effect on the secondary structure of this region and changes in accessibility of this region to miRNAs. Studies have confirmed that an elevated level of interleukin-15 receptor alpha (IL-15RA) has an important role in the pathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). In the present study, for the first time, we aimed to evaluate the possible correlation between a miRSNP, rs2296135, in IL-15RA gene with the risk of SLE and RA. METHODS In this case-control study, 100 SLE patients, 100 RA patients, and 110 healthy participants were enrolled to assess rs2296135 genotypes with real-time PCR high-resolution melting method. RESULTS According to our findings, AA genotype and A allele of rs2296135 were considerably associated with enhanced risk of RA (for AA genotype, OR = 2.29; 95% CI [1.06-5.02]; for A allele, OR = 1.65; 95% CI [1.10-2.48]). However, this common variant was not significantly correlated with SLE risk in population under study. Stratification analysis in the RA group verified that patients with the A allele had considerably higher serum concentrations of C-reactive protein (CRP) (P < 0.001). In SLE subjects, the frequency of arthritis (P: 0.021) and renal involvement (P: 0.025) in patients with A allele was significantly higher than in other SLE individuals. CONCLUSION The current study proposes a substantial association between rs2296135 polymorphism in IL-15RA gene with augmented risk of RA and some clinical characteristics in RA and SLE patients.
Collapse
Affiliation(s)
- Nilofar Jadidi
- Department of Genetics, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.,Department of Biology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samira Alesaeidi
- Rheumatology and Internal Medicine, Rheumatology Research Center, Amir-Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Arab
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Pakzad
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Elham Siasi
- Department of Genetics, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Emran Esmaeilzadeh
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran. .,Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran.
| |
Collapse
|
16
|
Choi MY, Costenbader KH. Understanding the Concept of Pre-Clinical Autoimmunity: Prediction and Prevention of Systemic Lupus Erythematosus: Identifying Risk Factors and Developing Strategies Against Disease Development. Front Immunol 2022; 13:890522. [PMID: 35720390 PMCID: PMC9203849 DOI: 10.3389/fimmu.2022.890522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/04/2022] [Indexed: 12/27/2022] Open
Abstract
There is growing evidence that preceding the diagnosis or classification of systemic lupus erythematosus (SLE), patients undergo a preclinical phase of disease where markers of inflammation and autoimmunity are already present. Not surprisingly then, even though SLE management has improved over the years, many patients will already have irreversible disease-related organ damage by time they have been diagnosed with SLE. By gaining a greater understanding of the pathogenesis of preclinical SLE, we can potentially identify patients earlier in the disease course who are at-risk of transitioning to full-blown SLE and implement preventative strategies. In this review, we discuss the current state of knowledge of SLE preclinical pathogenesis and propose a screening and preventative strategy that involves the use of promising biomarkers of early disease, modification of lifestyle and environmental risk factors, and initiation of preventative therapies, as examined in other autoimmune diseases such as rheumatoid arthritis and type 1 diabetes.
Collapse
Affiliation(s)
- May Y Choi
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, McCaig Institute for Bone and Joint Health, Calgary, AB, Canada
| | - Karen H Costenbader
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Mathew J, Padiyar S, Manwatkar A, Ganapati A, Roy S. Overlap of IgG4-Related disease with autoimmune rheumatic diseases: Report of 2 cases and review of literature. INDIAN JOURNAL OF RHEUMATOLOGY 2022. [DOI: 10.4103/injr.injr_265_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Hong SM, Chen W, Feng J, Dai D, Shen N. Novel Mutations in ACP5 and SAMHD1 in a Patient With Pediatric Systemic Lupus Erythematosus. Front Pediatr 2022; 10:885006. [PMID: 35633950 PMCID: PMC9136231 DOI: 10.3389/fped.2022.885006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The study of genetic predisposition to pediatric systemic lupus erythematosus (pSLE) has brought new insights into the pathophysiology of SLE, as it is hypothesized that genetic predisposition is greater in children. Furthermore, identifying genetic variants and linking disrupted genes to abnormal immune pathways and clinical manifestations can be beneficial for both diagnosis and treatment. Here, we identified genetic alterations in a patient with childhood-onset SLE and analyzed the immunological mechanisms behind them to support future diagnosis, prognosis, and treatment. METHODS Whole exome sequencing (WES) was adopted for genetic analysis of a patient with childhood-onset SLE. Gene mutations were confirmed by Sanger sequencing. Clinical data of this patient were collected and summarized. Ingenuity Pathway Analysis was used to provide interacting genes of the perturbed genes. Online Enrichr tool and Cytoscape software were used to analysis the related pathways of these genes. RESULTS We present a case of a 2-year-old girl who was diagnosed with idiopathic thrombocytopenic purpura (ITP) and SLE. The patient was characterized by cutaneous bleeding spots on both lower extremities, thrombocytopenia, decreased serum complements levels, increased urinary red blood cells, and positive ANA and dsDNA. The patient was treated with methylprednisolone and mycophenolate, but clinical remission could not be achieved. The genomic analysis identified three novel mutations in this pSLE patient, a double-stranded missense mutation in ACP5 (c.1152G>T and c.420G>A) and a single-stranded mutation in SAMHD1 (c.1423G>A). Bioinformatic analysis showed that these two genes and their interacting genes are enriched in the regulation of multiple immune pathways associated with SLE, including cytokine signaling and immune cell activation or function. Analysis of the synergistic regulation of these two genes suggests that abnormalities in the type I interferon pathway caused by genetic variants may contribute to the pathogenesis of SLE. CONCLUSION The combined complexity of polymorphisms in the coding regions of ACP5 and SAMHD1 influences the susceptibility to SLE. Alterations in these genes may lead to abnormalities in the type I interferon pathway. Our study extends the spectrum of mutations in the ACP5 and SAMHD1 genes. The identification of these mutations could aid in the diagnosis of SLE with genetic counseling and suggest potential precise treatments for specific pathways.
Collapse
Affiliation(s)
- Soon-Min Hong
- Shanghai Institute of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Chen
- Department of Pediatrics, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Feng
- Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dai Dai
- Shanghai Institute of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
19
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Younes ST, Showmaker K, Johnson AC, Garrett MR, Ryan MJ. Single cell RNA sequencing reveals ferritin as a key mediator of autoimmune pre-disposition in a mouse model of systemic lupus erythematosus. Sci Rep 2021; 11:24245. [PMID: 34930978 PMCID: PMC8688484 DOI: 10.1038/s41598-021-03649-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a devastating autoimmune disorder characterized by failure of self-tolerance with resultant production of autoreactive antibodies. The etiology of this syndrome is complex, involving perturbations in immune cell signaling and development. The NZBWF1 mouse spontaneously develops a lupus-like syndrome and has been widely used as a model of SLE for over 60 years. The NZBWF1 model represents the F1 generation of a cross between New Zealand Black (NZB) and New Zealand White (NZW) mice. In order to better understand the factors that contribute to the development of autoimmunity, single cell RNA sequencing was conducted using the bone marrow from female NZBWF1 mice prior to the development of overt disease. The results were contrasted with single cell RNA sequencing results from the two parental strains. The expected findings of B cell abundance and upregulation, and evidence of interferon signaling were validated in this model. In addition, several novel areas of inquiry were identified. Most notably, the data showed a marked upregulation of the ferritin light chain across all cell types in the NZBWF1 mice compared to parental controls. This data can serve as a gene expression atlas of all hematopoietic cells in the NZBWF1 bone marrow prior to the development of autoimmunity.
Collapse
Affiliation(s)
| | - Kurt Showmaker
- Department of Pharmacology and Experimental Therapeutics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ashley C Johnson
- Department of Pharmacology and Experimental Therapeutics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael R Garrett
- Department of Pharmacology and Experimental Therapeutics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael J Ryan
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA.
| |
Collapse
|
21
|
Toll-like Receptor Signaling Inhibitory Peptide Improves Inflammation in Animal Model and Human Systemic Lupus Erythematosus. Int J Mol Sci 2021; 22:ijms222312764. [PMID: 34884569 PMCID: PMC8657918 DOI: 10.3390/ijms222312764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptors (TLRs) play a major role in the innate immune system. Several studies have shown the regulatory effects of TLR-mediated pathways on immune and inflammatory diseases. Dysregulated functions of TLRs within the endosomal compartment, including TLR7/9 trafficking, may cause systemic lupus erythematosus (SLE). TLR signaling pathways are fine-tuned by Toll/interleukin-1 receptor (TIR) domain-containing adapters, leading to interferon (IFN)-α production. This study describes a TLR inhibitor peptide 1 (TIP1) that primarily suppresses the downstream signaling mediated by TIR domain-containing adapters in an animal model of lupus and patients with SLE. The expression of most downstream proteins of the TLR7/9/myeloid differentiation factor 88 (MyD88)/IFN regulatory factor 7 signaling was downregulated in major tissues such as the kidney, spleen, and lymph nodes of treated mice. Furthermore, the pathological analysis of the kidney tissue confirmed that TIP1 could improve inflammation in MRL/lpr mice. TIP1 treatment downregulated many downstream proteins associated with TLR signaling, such as MyD88, interleukin-1 receptor-associated kinase, tumor necrosis factor receptor-associated factor 6, and IFN-α, in the peripheral blood mononuclear cells of patients with SLE. In conclusion, our data suggest that TIP1 can serve as a potential candidate for the treatment of SLE.
Collapse
|
22
|
Soteros BM, Sia GM. Complement and microglia dependent synapse elimination in brain development. WIREs Mech Dis 2021; 14:e1545. [PMID: 34738335 PMCID: PMC9066608 DOI: 10.1002/wsbm.1545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/31/2023]
Abstract
Synapse elimination, also known as synaptic pruning, is a critical step in the maturation of neural circuits during brain development. Mounting evidence indicates that the complement cascade of the innate immune system plays an important role in synapse elimination. Studies indicate that excess synapses during development are opsonized by complement proteins and subsequently phagocytosed by microglia which expresses complement receptors. The process is regulated by diverse molecular signals, including complement inhibitors that affect the activation of complement, as well as signals that affect microglial recruitment and activation. These signals may promote or inhibit the removal of specific sets of synapses during development. The complement-microglia system has also been implicated in the pathogenesis of several developmental brain disorders, suggesting that the dysregulation of mechanisms of synapse pruning may underlie the specific circuitry defects in these diseases. Here, we review the latest evidence on the molecular and cellular mechanisms of complement-dependent and microglia-dependent synapse elimination during brain development, and highlight the potential of this system as a therapeutic target for developmental brain disorders. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Stem Cells and Development Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Breeanne M Soteros
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gek Ming Sia
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
23
|
Ha E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin Immunopathol 2021; 44:29-46. [PMID: 34731289 DOI: 10.1007/s00281-021-00900-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a polygenic chronic autoimmune disease leading to multiple organ damage. A large heritability of up to 66% is estimated in SLE, with roughly 180 reported susceptibility loci that have been identified mostly by genome-wide association studies (GWASs) and account for approximately 30% of genetic heritability. A vast majority of risk variants reside in non-coding regions, which makes it quite challenging to interpret their functional implications in the SLE-affected immune system, suggesting the importance of understanding cell type-specific epigenetic regulation around SLE GWAS variants. The latest genetic studies have been highly fruitful as several dozens of SLE loci were newly discovered in the last few years and many loci have come to be understood in systemic approaches integrating GWAS signals with other biological resources. In this review, we summarize SLE-associated genetic variants in both the major histocompatibility complex (MHC) and non-MHC loci, examining polygenetic risk scores for SLE and their associations with clinical features. Finally, variant-driven pathogenetic functions underlying genetic associations are described, coupled with discussion about challenges and future directions in genetic studies on SLE.
Collapse
Affiliation(s)
- Eunji Ha
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea. .,Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea.
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea. .,Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Szumilas N, Corneth OBJ, Lehmann CHK, Schmitt H, Cunz S, Cullen JG, Chu T, Marosan A, Mócsai A, Benes V, Zehn D, Dudziak D, Hendriks RW, Nitschke L. Siglec-H-Deficient Mice Show Enhanced Type I IFN Responses, but Do Not Develop Autoimmunity After Influenza or LCMV Infections. Front Immunol 2021; 12:698420. [PMID: 34497606 PMCID: PMC8419311 DOI: 10.3389/fimmu.2021.698420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Siglec-H is a DAP12-associated receptor on plasmacytoid dendritic cells (pDCs) and microglia. Siglec-H inhibits TLR9-induced IFN-α production by pDCs. Previously, it was found that Siglec-H-deficient mice develop a lupus-like severe autoimmune disease after persistent murine cytomegalovirus (mCMV) infection. This was due to enhanced type I interferon responses, including IFN-α. Here we examined, whether other virus infections can also induce autoimmunity in Siglec-H-deficient mice. To this end we infected Siglec-H-deficient mice with influenza virus or with Lymphocytic Choriomeningitis virus (LCMV) clone 13. With both types of viruses we did not observe induction of autoimmune disease in Siglec-H-deficient mice. This can be explained by the fact that both types of viruses are ssRNA viruses that engage TLR7, rather than TLR9. Also, Influenza causes an acute infection that is rapidly cleared and the chronicity of LCMV clone 13 may not be sufficient and may rather suppress pDC functions. Siglec-H inhibited exclusively TLR-9 driven type I interferon responses, but did not affect type II or type III interferon production by pDCs. Siglec-H-deficient pDCs showed impaired Hck expression, which is a Src-family kinase expressed in myeloid cells, and downmodulation of the chemokine receptor CCR9, that has important functions for pDCs. Accordingly, Siglec-H-deficient pDCs showed impaired migration towards the CCR9 ligand CCL25. Furthermore, autoimmune-related genes such as Klk1 and DNase1l3 are downregulated in Siglec-H-deficient pDCs as well. From these findings we conclude that Siglec-H controls TLR-9-dependent, but not TLR-7 dependent inflammatory responses after virus infections and regulates chemokine responsiveness of pDCs.
Collapse
Affiliation(s)
- Nadine Szumilas
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Heike Schmitt
- First Department of Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Svenia Cunz
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jolie G Cullen
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Talyn Chu
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Anita Marosan
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Attila Mócsai
- Semmelweis University School of Medicine, Budapest, Hungary
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
25
|
Lea-Henry TN, Chuah A, Stanley M, Athanasopoulos V, Starkey MR, Christiadi D, Kitching AR, Cook MC, Andrews TD, Vinuesa CG, Walters GD, Jiang SH. Increased burden of rare variants in genes of the endosomal Toll-like receptor pathway in patients with systemic lupus erythematosus. Lupus 2021; 30:1756-1763. [PMID: 34266320 DOI: 10.1177/09612033211033979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To compare the frequency of rare variants in genes of the pathophysiologically relevant endosomal Toll-like receptor (eTLR) pathway and any quantifiable differences in variant rarity, predicted deleteriousness, or molecular proximity in patients with systemic lupus erythematosus (SLE) and healthy controls. PATIENTS AND METHODS 65 genes associated with the eTLR pathway were identified by literature search and pathway analysis. Using next generation sequencing techniques, these were compared in two randomised cohorts of patients with SLE (n = 114 and n = 113) with 197 healthy controls. Genetically determined ethnicity was used to normalise minor allele frequencies (MAF) for the identified genetic variants and these were then compared by their frequency: rare (MAF < 0.005), uncommon (MAF 0.005-0.02), and common (MAF >0.02). This was compared to the results for 65 randomly selected genes. RESULTS Patients with SLE are more likely to carry a rare nonsynonymous variant affecting proteins within the eTLR pathway than healthy controls. Furthermore, individuals with SLE are more likely to have multiple rare variants in this pathway. There were no differences in rarity, Combined Annotation Dependent Depletion (CADD) score, or molecular proximity for rare eTLR pathway variants. CONCLUSIONS Rare non-synonymous variants are enriched in patients with SLE in the eTLR pathway. This supports the hypothesis that SLE arises from several rare variants of relatively large effect rather than many common variants of small effect.
Collapse
Affiliation(s)
- Tom N Lea-Henry
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Aaron Chuah
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Maurice Stanley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, China
| | - Malcolm R Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Daniel Christiadi
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia
| | - A Richard Kitching
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,Centre for Inflammatory Diseases, 439191Monash University Department of Medicine, Monash University Department of Medicine, Clayton, VIC, Australia.,Department of Nephrology, Monash Health, Clayton, VIC, Australia.,Department of Paediatric Nephrology. Monash Health, Clayton, VIC, Australia
| | - Matthew C Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, China
| | - Thomas D Andrews
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, China
| | - Giles D Walters
- Department of Renal Medicine, 34381Canberra Hospital, The Canberra Hospital, Garran, ACT, Australia
| | - Simon H Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, China.,Department of Renal Medicine, 34381Canberra Hospital, The Canberra Hospital, Garran, ACT, Australia
| |
Collapse
|
26
|
Koo M. Systemic Lupus Erythematosus Research: A Bibliometric Analysis over a 50-Year Period. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137095. [PMID: 34281030 PMCID: PMC8295925 DOI: 10.3390/ijerph18137095] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
Bibliometric analysis is a well-established approach to quantitatively assess scholarly productivity. However, there have been few assessments of research productivity on systemic lupus erythematosus (SLE) to date. The aim of this study was to analyze global research productivity through original articles published in journals indexed by the Web of Science from 1971 to 2020. Bibliometric data was obtained from the Science Citation Index Expanded in the Web of Science Core Collection database. Only original articles published between 1971 and 2020 on SLE were included in the analysis. Over the 50-year period, publication production in SLE research has steadily increased with a mean annual growth rate of 8.0%. A total of 44,967 articles published in 3435 different journals were identified. The journal Lupus published the largest number of articles (n = 3371; 8.0%). A total of 148 countries and regions contributed to the articles. The global productivity ranking was led by the United States (n = 11,244, 25.0%), followed by China (n = 4893, 10.9%). A three-field plot showed that the Oklahoma Medical Research Foundation and the Johns Hopkins University together contributed 18.5% of all articles from the United States. A co-occurrence network analysis revealed five highly connected clusters of SLE research. In conclusion, this bibliometric analysis provided a comprehensive overview of the status of SLE research, which could enable a better understanding of the development in this field in the past 50 years.
Collapse
Affiliation(s)
- Malcolm Koo
- Graduate Institute of Long-term Care, Tzu Chi University of Science and Technology, Hualien City, Hualien 970046, Taiwan; ; Tel.: +886-3-857-2158 (ext. 2206)
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| |
Collapse
|
27
|
Zaki MES, Abdelsalam M, Bassiouni SARAK, Osman A. Gene Polymorphism of XRCC1 in Systemic Lupus Erythematous. Open Rheumatol J 2021. [DOI: 10.2174/1874312902115010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
There are debates about the role of the X-ray repair cross-complementation group 1 (XRCC1) Arg399Gln gene in the pathogenesis of Systemic Lupus Erythematosus (SLE).
Methods:
The study was a case-control study carried out on 100 recently diagnosed SLE patients compared to 100 control subjects. The study of XRCC1 Arg399Gln polymorphism was performed by a polymerase chain reaction and restriction fragment length polymorphism.
Results and Discussion:
A higher frequency of ‘G’ allele in SLE (38.5%) versus control (32%) was noticed; however, this difference was not statistically significant (p = 0.174). Besides, a slightly higher frequency of G/G genotype was found in SLE (22%) vs. control (12%); again, this difference was not statistically significant (p = 0.157). A statistically significantly higher proportion of arthritis, serositis, and thrombocytopenia was observed in the A/A genotype (p = 0.010, 0.032, and 0.036, respectively). Furthermore, we noticed a statistically significant lower hemoglobin level in G/G genotype (p = 0.027). Otherwise, there was no statistically significant difference between the three genotypes regarding other parameters: photosensitivity, malar rash, oral ulceration, ANA, anti-dsDNA antibody, anemia, leucopenia, neurologic manifestations, and all lab parameters except hemoglobin level. Similar results were reported previously.
According to genotype, in the study of Clinical and laboratory parameters in SLE patients, a statistically significantly higher proportion of arthritis, serositis, and thrombocytopenia was observed in the A/A genotype (p =0 .01, 0.032, and 0.036 respectively). Furthermore, we noticed a statistically significant lower hemoglobin level in G/G genotype (p = 0.027). These findings suggest a pathogenic connection between the seriousness of the defective DNA repair and the autoimmune severity; such connection is consistent with that found in several murine models. Additionally, negative regulation of the genes encoding the proteins involved in the NER pathway in SLE patients, specifically and XPC, has been found previously.
Conclusion:
The present study highlights the higher insignificant increase of G allele and GG genotype of XRCC1 399 gene in patients with SLE compared to healthy control. This increase was significantly associated with anemia in patients, which may reflect the aggravation of environmental risk factors to SLE associated with the reduced repair of DNA. Further longitudinal studies are required to validate the present findings.
Collapse
|
28
|
Dai R, Wang Z, Ahmed SA. Epigenetic Contribution and Genomic Imprinting Dlk1-Dio3 miRNAs in Systemic Lupus Erythematosus. Genes (Basel) 2021; 12:680. [PMID: 34062726 PMCID: PMC8147206 DOI: 10.3390/genes12050680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease that afflicts multiple organs, especially kidneys and joints. In addition to genetic predisposition, it is now evident that DNA methylation and microRNAs (miRNAs), the two major epigenetic modifications, are critically involved in the pathogenesis of SLE. DNA methylation regulates promoter accessibility and gene expression at the transcriptional level by adding a methyl group to 5' cytosine within a CpG dinucleotide. Extensive evidence now supports the importance of DNA hypomethylation in SLE etiology. miRNAs are small, non-protein coding RNAs that play a critical role in the regulation of genome expression. Various studies have identified the signature lupus-related miRNAs and their functional contribution to lupus incidence and progression. In this review, the mutual interaction between DNA methylation and miRNAs regulation in SLE is discussed. Some lupus-associated miRNAs regulate DNA methylation status by targeting the DNA methylation enzymes or methylation pathway-related proteins. On the other hand, DNA hyper- and hypo-methylation are linked with dysregulated miRNAs expression in lupus. Further, we specifically discuss the genetic imprinting Dlk1-Dio3 miRNAs that are subjected to DNA methylation regulation and are dysregulated in several autoimmune diseases, including SLE.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA 24061, USA;
| | | | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
29
|
Piga M, Arnaud L. The Main Challenges in Systemic Lupus Erythematosus: Where Do We Stand? J Clin Med 2021; 10:E243. [PMID: 33440874 PMCID: PMC7827672 DOI: 10.3390/jcm10020243] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an immune-mediated multi-systemic disease characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite significant advances in the understanding of the pathophysiology and optimization of medical care, patients with SLE still have significant mortality and carry a risk of progressive organ damage accrual and reduced health-related quality of life. New tools allow earlier classification of SLE, whereas tailored early intervention and treatment strategies targeted to clinical remission or low disease activity could offer the opportunity to reduce damage, thus improving long-term outcomes. Nevertheless, the early diagnosis of SLE is still an unmet need for many patients. Further disentangling the SLE susceptibility and complex pathogenesis will allow to identify more accurate biomarkers and implement new ways to measure disease activity. This could represent a major step forward to find new trials modalities for developing new drugs, optimizing the use of currently available therapeutics and minimizing glucocorticoids. Preventing and treating comorbidities in SLE, improving the management of hard-to-treat manifestations including management of SLE during pregnancy are among the remaining major unmet needs. This review provides insights and a research agenda for the main challenges in SLE.
Collapse
Affiliation(s)
- Matteo Piga
- Rheumatology Unit, AOU University Clinic and University of Cagliari, 09042 Cagliari, Italy;
| | - Laurent Arnaud
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
- Centre National de Références des Maladies Systémiques et Auto-immunes Rares Est Sud-Ouest (RESO), 67000 Strasbourg, France
| |
Collapse
|
30
|
Some Common SNPs of the T-Cell Homeostasis-Related Genes Are Associated with Multiple Sclerosis, but Not with the Clinical Manifestations of the Disease, in the Polish Population. J Immunol Res 2020; 2020:8838014. [PMID: 33224992 PMCID: PMC7673932 DOI: 10.1155/2020/8838014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Multiple sclerosis (MS) is an autoimmune disease, and genetic factors play an important role in its pathogenesis and progression. The aim of our study was to evaluate the frequencies of alleles and genetic variants of the T-cell homeostasis-related genes, in subjects with MS, as well as to investigate the association with MS clinical manifestations and disability. Methods 94 subjects with MS and 160 healthy individuals have been genotyped for seven common single-nucleotide variants in IL-2RA, CTLA4, CD40, and PADI4 genes. The ages of onset, duration of the disease, and clinical condition of the MS subjects were analysed. We used the Chi2 test confirmed with Fisher's exact test for statistical analysis. Results The frequency of allele T and CT/TT genotypes (rs7093069) in the IL2RA gene, as well as the T allele and CT/TT genotypes in rs12722598, were significantly higher in the control group. The significant differences between studied groups we also found for the G allele and GG/GA genotypes of rs3087243 in CTLA4 gene, which were more common among the control group. The heterozygous genotype TC (rs1883832) of CD40 gene was more common in the control subjects, and the frequency of the alleles and genotypes in the rs1748033 of the PADI4 gene did not differ between the studied groups. Between the studied genotypes, we did not observe any significant differences in the age of onset and duration of disease, including sex stratification. Conclusion Our results highlight the protective role of some of the T-cell homeostasis-related genetic variants in MS development, but not in its clinical manifestation.
Collapse
|
31
|
Takanashi S, Hanaoka H, Ota Y, Kaneko Y, Takeuchi T. An Overlapping Case of IgG4-related Disease and Klinefelter Syndrome with Lupus-like Serological and Neurological Features: A Case Report and Literature Review. Intern Med 2020; 59:2601-2609. [PMID: 32581168 PMCID: PMC7662046 DOI: 10.2169/internalmedicine.4888-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 01/13/2023] Open
Abstract
A 46-year-old man with Klinefelter syndrome (KS) presented with obliterative phlebitis of the lower legs with a deteriorated renal function, and elevated serum alkaline phosphatase and ataxia levels. Examinations demonstrated tubulointerstitial nephritis, obliterative phlebitis and lymphadenopathy with IgG4+ plasma cell infiltrate and sclerosing cholangitis. Although the serological profile and central nerve system involvement were compatible for systemic lupus erythematosus (SLE), a definite diagnosis of SLE was difficult to make. IgG4-related disease (IgG4-RD) with KS was finally diagnosed, and high dose prednisolone with intravenous cyclophosphamide was initiated and thereafter the patient demonstrated a prompt improvement. This is the first known case demonstrating overlapping IgG4-RD with lupus-like serological and neurological features in a patient with KS, thus highlighting the pathogenic role with the genomic background for IgG4-RD and SLE.
Collapse
Affiliation(s)
- Satoshi Takanashi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Japan
| | - Hironari Hanaoka
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Japan
| | - Yuichiro Ota
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Japan
| |
Collapse
|
32
|
Zervou MI, Andreou A, Matalliotakis M, Spandidos DA, Goulielmos GN, Eliopoulos EE. Association of the DNASE1L3 rs35677470 polymorphism with systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis: Structural biological insights. Mol Med Rep 2020; 22:4492-4498. [PMID: 33173951 PMCID: PMC7646740 DOI: 10.3892/mmr.2020.11547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/30/2020] [Indexed: 01/29/2023] Open
Abstract
Although genome-wide association studies (GWAS) have identified hundreds of autoimmune disease-associated loci, much of the genetics underlying these diseases remains unknown. In an attempt to identify potential causal variants, previous studies have determined that the rs35677470 missense variant of the Deoxyribonuclease I-like 3 (DNASE1L3) gene was associated with the development of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and systemic sclerosis (SSc). DNase1L3 is a member of the human DNase I family, representing a nuclease that cleaves double-stranded DNA during apoptosis and serving a role in the development of autoimmune diseases. The present study aimed to determine the role of the rs35677470 variant at the DNASE1L3 gene leading to the R206C mutation in SLE, RA and SSc. The underlying mechanism potentially affecting protein structure loss of function was also assessed. DNASE1L3 evolution was investigated to define conservation elements in the protein sequence. Additionally, 3D homology modeling and in silico mutagenesis was performed to localize the polymorphism under investigation. Evolutionary analysis revealed heavily conserved sequence elements among species, indicating structural/functional importance. In silico mutagenesis and 3D protein structural analysis also demonstrated the potentially varied impact of the DNASE1L3 (rs35677470) single nucleotide polymorphism (SNP), providing an explanation for its effect on the R206C variant. Structural analysis demonstrated that the rs35677470 SNP encodes a non-conservative amino acid variation, R206C, which disrupted the conserved electrostatic network holding secondary protein structure elements in position. Specifically, the R206 to E170 interaction forming part of a salt bridge network stabilizing two α-helices was interrupted, thereby affecting the molecular architecture. Previous studies on the effect of this SNP in Caucasian populations demonstrated lower DNAse1L3 activity levels, which is consistent with the current results. The present study comprehensively evaluated the shared autoimmune locus of DNASE1L3 (rs35677470), which produced an inactive form of DNaseIL3. Furthermore, structural analysis explained the potential role of the produced mutation by modifying the placement of structural elements and consequently introducing disorder in protein folding, affecting biological function.
Collapse
Affiliation(s)
- Maria I Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Athena Andreou
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Michail Matalliotakis
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Elias E Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
33
|
Wu WC, Song SJ, Zhang Y, Li X. Role of Extracellular Vesicles in Autoimmune Pathogenesis. Front Immunol 2020; 11:579043. [PMID: 33072123 PMCID: PMC7538611 DOI: 10.3389/fimmu.2020.579043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases are conditions that emerge from abnormal immune responses to natural parts of the body. Extracellular vesicles (EVs) are membranous structures found in almost all types of cells. Because EVs often transport “cargo” between cells, their ability to crosstalk may be an important communication pathway within the body. The pathophysiological role of EVs is increasingly recognized in autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, Type 1 diabetes, and autoimmune thyroid disease. EVs are considered as biomarkers of these diseases. This article outlines existing knowledge on the biogenesis of EVs, their role as messegers in cellular communication and the function in T/B cell differentiation and maturation, and focusing on their potential application in autoimmune diseases.
Collapse
Affiliation(s)
- Wen-Cheng Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Sheng-Jiao Song
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
34
|
Polić A, Običan SG. Pregnancy in systemic lupus erythematosus. Birth Defects Res 2020; 112:1115-1125. [PMID: 32902202 DOI: 10.1002/bdr2.1790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/05/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a chronic illness that often affects women of reproductive age. The objectives of this article are to review the impact of SLE on pregnancy and current management strategies, including commonly used therapies. METHODS We conducted a review of available literature on the clinical course of SLE, diagnosis, management and pregnancy complications. RESULTS SLE has a variable clinical course characterized by flares and periods of remission and can present unique challenges in the management of obstetric patients. Pregnancy in patients with SLE is associated with multiple risks, including fetal loss, preterm birth, fetal growth restriction, and hypertensive disease. With advancements in disease treatment, many women have favorable pregnancy outcomes, but appropriate preconception counseling and disease management remain important tools in reducing complications. CONCLUSION Given the implications SLE can have on women of reproductive age and in pregnancy, understanding the disease course and management is important in order to optimize pregnancy outcomes.
Collapse
Affiliation(s)
- Aleksandra Polić
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sarah G Običan
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
35
|
The preliminary association study of osteopontin 707 C/T polymorphism with systemic lupus erythematosus in a Polish population. Postepy Dermatol Alergol 2020; 37:190-194. [PMID: 32489353 PMCID: PMC7262818 DOI: 10.5114/ada.2019.83499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a chronic autoimmune disease caused by genetic, environmental, and still unknown factors which lead to deregulation of the immune system. Osteopontin (OPN) is a multifunctional glycoprotein, expressed in various cell types, and found to play key roles in immunity. OPN and variants of the OPN gene are involved in inflammatory conditions, however, their role in SLE are controversial. Aim To investigate the frequency of single nucleotide polymorphism (SNP) rs1126616 (707 C/T) variants in the OPN gene and its associations with SLE manifestations in Polish patients. Material and methods The study population consisted of 83 SLE patients and 100 gender-, age- and ethnically matched healthy controls. DNA was extracted from whole blood samples using the standard procedure. Genotyping was performed by real-time polymerase chain reaction (RT-PCR). The association between clinical features of SLE and 707 C/T genotypes was determined. Results The mutant (CT, TT) genotypes were observed more frequently than the wild-type (CC) genotype in SLE patients compared to controls (p = 0.037). However, no association between 707 C/T variants and SLE clinical manifestations or laboratory parameters was found. Conclusions The present data suggest that CT and TT genotypes of OPN 707 C/T SNP are associated with a higher SLE risk, but do not affect the clinical course of the disease in the Polish population.
Collapse
|
36
|
Xie QM, Lou QY, Huang SW, Hu HQ, Li SS, Zhang M, Sun XX, Xu JH, Jiang SQ, Liu SX, Xu SQ, Cai J, Liu S, Pan FM, Tao JH, Qian L, Wang CH, Liang CM, Huang HL, Pan HF, Su H, Zou YF. Hsp70 Gene Polymorphisms Are Associated With Disease Susceptibility and HRQOL Improvement in Chinese Han Population With Systemic Lupus Erythematosus. J Clin Rheumatol 2020; 26:134-141. [PMID: 32453286 DOI: 10.1097/rhu.0000000000000986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study is to investigate whether heat shock protein 70 (Hsp70) gene polymorphisms are implicated in systemic lupus erythematous (SLE) susceptibility, the efficacy of glucocorticoids (GCs) treatment, and improvement of health-related quality of life. METHODS A total of 499 SLE patients and 499 controls were included in a case-control study, and 468 SLE patients treated with GCs for 12 weeks were involved in a follow-up study. Patients who completed the 12-week follow-up were divided into GCs-sensitive and GCs-insensitive group by using the SLE disease activity index. The SF-36 was used to evaluate the health-related quality of life of SLE patients, and genotyping was performed by improved multiplex ligation detection reaction. RESULTS rs2075800 was associated with SLE susceptibility (adjusted odds ratio [ORadj], 1.437; 95% confidence interval [CI], 1.113-1.855; Padj = 0.005; PBH = 0.020 by dominant model; ORadj, 1.602; 95% CI, 1.072-2.395; Padj = 0.022; PBH = 0.029 by TT vs CC model; ORadj = 1.396; 95% CI = 1.067-1.826; Padj = 0.015; PBH = 0.029 by TC vs CC model). In the follow-up study, rs2075799 was associated with the improvement in mental health (p = 0.004, PBH = 0.044), but we failed to find any association between the efficacy of GCs and Hsp70 gene polymorphisms. CONCLUSIONS Hsp70 gene polymorphisms may be associated with susceptibility to SLE and improvement of mental health in Chinese Han population.
Collapse
Affiliation(s)
- Qiao-Mei Xie
- From the Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University
- The Key Laboratory of Anhui Medical Autoimmune Diseases
| | - Qiu-Yue Lou
- From the Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University
- The Key Laboratory of Anhui Medical Autoimmune Diseases
| | - Shun-Wei Huang
- From the Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University
- The Key Laboratory of Anhui Medical Autoimmune Diseases
| | | | - Su-Su Li
- From the Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University
- The Key Laboratory of Anhui Medical Autoimmune Diseases
| | - Man Zhang
- From the Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University
- The Key Laboratory of Anhui Medical Autoimmune Diseases
| | - Xiu-Xiu Sun
- From the Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University
- The Key Laboratory of Anhui Medical Autoimmune Diseases
| | - Jian-Hua Xu
- Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University
| | | | - Sheng-Xiu Liu
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University
| | - Sheng-Qian Xu
- Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University
| | - Jing Cai
- Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University
| | - Shuang Liu
- Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University
| | - Fa-Ming Pan
- From the Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University
- The Key Laboratory of Anhui Medical Autoimmune Diseases
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital
| | - Long Qian
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University
| | - Chun-Huai Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University
| | - Chun-Mei Liang
- Departments of Laboratory Medicine, School of Public Health
| | - Hai-Liang Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- From the Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University
- The Key Laboratory of Anhui Medical Autoimmune Diseases
| | - Hong Su
- From the Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University
- The Key Laboratory of Anhui Medical Autoimmune Diseases
| | - Yan-Feng Zou
- From the Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University
- The Key Laboratory of Anhui Medical Autoimmune Diseases
| |
Collapse
|
37
|
Jiang SH, Stanley M, Vinuesa CG. Rare genetic variants in systemic autoimmunity. Immunol Cell Biol 2020; 98:490-499. [PMID: 32315078 DOI: 10.1111/imcb.12339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023]
Abstract
Autoimmune disease is a substantial cause of morbidity and is strongly influenced by genetic risk. Extensive efforts have characterized the overall genetic basis of many autoimmune diseases, typically by investigation of common variants. While these common variants have modest effects and may cumulatively predispose to disease, it is also increasingly apparent that rare variants have significantly greater effect on phenotype and are likely to contribute to autoimmune disease. Recent advances have illustrated the next fundamental step in elucidating the genetic basis of autoimmunity, moving beyond association to demonstrate the functional consequences of these variants.
Collapse
Affiliation(s)
- Simon H Jiang
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, ACT, 2601, Australia.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Acton, ACT, 2601, Australia.,Department of Renal Medicine, The Canberra Hospital, Garran, ACT, 2601, Australia
| | - Maurice Stanley
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, ACT, 2601, Australia.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Acton, ACT, 2601, Australia
| | - Carola G Vinuesa
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, ACT, 2601, Australia.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Acton, ACT, 2601, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, 200333, China
| |
Collapse
|
38
|
Webber D, Cao J, Dominguez D, Gladman DD, Levy DM, Ng L, Paterson AD, Touma Z, Urowitz MB, Wither JE, Silverman ED, Hiraki LT. Association of systemic lupus erythematosus (SLE) genetic susceptibility loci with lupus nephritis in childhood-onset and adult-onset SLE. Rheumatology (Oxford) 2020; 59:90-98. [PMID: 31236574 DOI: 10.1093/rheumatology/kez220] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/08/2019] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE LN is one of the most common and severe manifestations of SLE. Our aim was to test the association of SLE risk loci with LN risk in childhood-onset SLE (cSLE) and adult-onset SLE (aSLE). METHODS Two Toronto-based tertiary care SLE cohorts included cSLE (diagnosed <18 years) and aSLE patients (diagnosed ⩾18 years). Patients met ACR and/or SLICC SLE criteria and were genotyped on the Illumina Multi-Ethnic Global Array or Omni1-Quad arrays. We identified those with and without biopsy-confirmed LN. HLA and non-HLA additive SLE risk-weighted genetic risk scores (GRSs) were tested for association with LN risk in logistic models, stratified by cSLE/aSLE and ancestry. Stratified effect estimates were meta-analysed. RESULTS Of 1237 participants, 572 had cSLE (41% with LN) and 665 had aSLE (30% with LN). Increasing non-HLA GRS was significantly associated with increased LN risk [odds ratio (OR) = 1.26; 95% CI 1.09, 1.46; P = 0.0006], as was increasing HLA GRS in Europeans (OR = 1.55; 95% CI 1.07, 2.25; P = 0.03). There was a trend for stronger associations between both GRSs and LN risk in Europeans with cSLE compared with aSLE. When restricting cases to proliferative LN, the magnitude of these associations increased for both the non-HLA (OR = 1.30; 95% CI 1.10, 1.52; P = 0.002) and HLA GRS (OR = 1.99; 95% CI 1.29, 3.08; P = 0.002). CONCLUSION We observed an association between known SLE risk loci and LN risk in children and adults with SLE, with the strongest effect observed among Europeans with cSLE. Future studies will include SLE-risk single nucleotide polymorphisms specific to non-European ancestral groups and validate findings in an independent cohort.
Collapse
Affiliation(s)
- Declan Webber
- Division of Rheumatology, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Jingjing Cao
- Genetics & Genome Biology, Research Institute, SickKids Hospital, Toronto, Canada
| | - Daniela Dominguez
- Division of Rheumatology, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Dafna D Gladman
- Krembil Research Institute, Toronto Western Hospital, Toronto, Canada
| | - Deborah M Levy
- Division of Rheumatology, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Lawrence Ng
- Division of Rheumatology, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Andrew D Paterson
- Genetics & Genome Biology, Research Institute, SickKids Hospital, Toronto, Canada
| | - Zahi Touma
- Krembil Research Institute, Toronto Western Hospital, Toronto, Canada
| | - Murray B Urowitz
- Krembil Research Institute, Toronto Western Hospital, Toronto, Canada
| | - Joan E Wither
- Krembil Research Institute, Toronto Western Hospital, Toronto, Canada
| | - Earl D Silverman
- Division of Rheumatology, Department of Pediatrics, University of Toronto, Toronto, Canada.,Division of Translational Medicine Research Institute, Toronto, Canada
| | - Linda T Hiraki
- Division of Rheumatology, Department of Pediatrics, University of Toronto, Toronto, Canada.,Child Health Evaluative Sciences, Research Institute, SickKids Hospital, Toronto, Canada
| |
Collapse
|
39
|
Ogunrinde E, Zhou Z, Luo Z, Alekseyenko A, Li QZ, Macedo D, Kamen DL, Oates JC, Gilkeson GS, Jiang W. A Link Between Plasma Microbial Translocation, Microbiome, and Autoantibody Development in First-Degree Relatives of Systemic Lupus Erythematosus Patients. Arthritis Rheumatol 2019; 71:1858-1868. [PMID: 31106972 PMCID: PMC6817371 DOI: 10.1002/art.40935] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is characterized by the production of antibodies against self antigens. However, the events underlying autoantibody formation in SLE remain unclear. This study was undertaken to investigate the role of plasma autoantibody levels, microbial translocation, and the microbiome in SLE. METHODS Plasma samples from 2 cohorts, one with 18 unrelated healthy controls and 18 first-degree relatives and the other with 19 healthy controls and 21 SLE patients, were assessed for autoantibody levels by autoantigen microarray analysis, measurement of lipopolysaccharide (LPS) levels by Limulus amebocyte assay, and determination of microbiome composition by microbial 16S ribosomal DNA sequencing. RESULTS First-degree relatives and SLE patients exhibited increased plasma autoantibody levels compared to their control groups. Parents and children of lupus patients exhibited elevated plasma LPS levels compared to controls (P = 0.02). Plasma LPS levels positively correlated with plasma anti-double-stranded DNA IgG levels in first-degree relatives (r = 0.51, P = 0.03), but not in SLE patients. Circulating microbiome analysis revealed that first-degree relatives had significantly reduced microbiome diversity compared to their controls (observed species, P = 0.004; Chao1 index, P = 0.005), but this reduction was not observed in SLE patients. The majority of bacteria that were differentially abundant between unrelated healthy controls and first-degree relatives were in the Firmicutes phylum, while differences in bacteria from several phyla were identified between healthy controls and SLE patients. Bacteria in the Paenibacillus genus were the only overlapping differentially abundant bacteria in both cohorts, and were reduced in first-degree relatives (adjusted P [Padj ] = 2.13 × 10-12 ) and SLE patients (Padj = 0.008) but elevated in controls. CONCLUSIONS These results indicate a possible role of plasma microbial translocation and microbiome composition in influencing autoantibody development in SLE.
Collapse
Affiliation(s)
- Elizabeth Ogunrinde
- Department of Microbiology and Immunology, Medical
University of South Carolina, Charleston, SC, USA, 29425
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater
Fish, College of Life Sciences, Hunan Normal University, Changsha, China,
410081
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical
University of South Carolina, Charleston, SC, USA, 29425
| | - Alexander Alekseyenko
- Program for Human Microbiome Research, Biomedical
Informatics Center, Department of Public Health Sciences, Department of Oral Health
Sciences, Medical University of South Carolina, Charleston, SC, USA, 29425
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University
of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
75390
| | - Danielle Macedo
- Neuropharmacology Laboratory, Drug Research and Development
Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade
Federal do Ceará, Fortaleza, CE, Brazil
| | - Diane L. Kamen
- Division of Rheumatology, Department of Medicine, Medical
University of South Carolina, Charleston, SC, USA, 29425
| | - Jim C. Oates
- Division of Rheumatology, Department of Medicine, Medical
University of South Carolina, Charleston, SC, USA, 29425
- Ralph H. Johnson VA Medical Center, Medical Service,
Charleston, SC, USA 29401
| | - Gary S. Gilkeson
- Division of Rheumatology, Department of Medicine, Medical
University of South Carolina, Charleston, SC, USA, 29425
- Ralph H. Johnson VA Medical Center, Medical Service,
Charleston, SC, USA 29401
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical
University of South Carolina, Charleston, SC, USA, 29425
- Division of Infectious Diseases, Department of Medicine,
Medical University of South Carolina, Charleston, SC, USA, 29425
| |
Collapse
|
40
|
Chyuan IT, Tzeng HT, Chen JY. Signaling Pathways of Type I and Type III Interferons and Targeted Therapies in Systemic Lupus Erythematosus. Cells 2019; 8:cells8090963. [PMID: 31450787 PMCID: PMC6769759 DOI: 10.3390/cells8090963] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
Type I and type III interferons (IFNs) share several properties in common, including the induction of signaling pathways, the activation of gene transcripts, and immune responses, against viral infection. Recent advances in the understanding of the molecular basis of innate and adaptive immunity have led to the re-examination of the role of these IFNs in autoimmune diseases. To date, a variety of IFN-regulated genes, termed IFN signature genes, have been identified. The expressions of these genes significantly increase in systemic lupus erythematosus (SLE), highlighting the role of type I and type III IFNs in the pathogenesis of SLE. In this review, we first discussed the signaling pathways and the immunoregulatory roles of type I and type III IFNs. Next, we discussed the roles of these IFNs in the pathogenesis of autoimmune diseases, including SLE. In SLE, IFN-stimulated genes induced by IFN signaling contribute to a positive feedback loop of autoimmunity, resulting in perpetual autoimmune inflammation. Based on this, we discussed the use of several specific IFN blocking strategies using anti-IFN-α antibodies, anti-IFN-α receptor antibodies, and IFN-α-kinoid or downstream small molecules, which intervene in Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways, in clinical trials for SLE patients. Hopefully, the development of novel regimens targeting IFN signaling pathways will shed light on promising future therapeutic applications for SLE patients.
Collapse
Affiliation(s)
- I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Hong-Tai Tzeng
- Institute for translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33375, Taiwan.
| |
Collapse
|
41
|
Celhar T, Lu HK, Benso L, Rakhilina L, Lee HY, Tripathi S, Zharkova O, Ong WY, Yasuga H, Au B, Marlier D, Lim LHK, Thamboo TP, Mudgett JS, Mackey MF, Zaller DM, Connolly JE, Fairhurst AM. TLR7 Protein Expression in Mild and Severe Lupus-Prone Models Is Regulated in a Leukocyte, Genetic, and IRAK4 Dependent Manner. Front Immunol 2019; 10:1546. [PMID: 31354711 PMCID: PMC6636428 DOI: 10.3389/fimmu.2019.01546] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
The global increase in autoimmunity, together with the emerging autoimmune-related side effects of cancer immunotherapy, have furthered a need for understanding of immune tolerance and activation. Systemic lupus erythematosus (SLE) is the archetypical autoimmune disease, affecting multiple organs, and tissues. Studying SLE creates knowledge relevant not just for autoimmunity, but the immune system in general. Murine models and patient studies have provided increasing evidence for the innate immune toll like receptor-7 (TLR7) in disease initiation and progression. Here, we demonstrated that the kinase activity of the TLR7-downstream signaling molecule, interleukin-1 receptor associated kinase 4 (IRAK4), is essential for mild and severe autoimmune traits of the Sle1 and Sle1-TLR7 transgenic (Sle1Tg7) murine models, respectively. Elimination of IRAK4 signaling prevented all pathological traits associated with murine lupus, including splenomegaly with leukocyte expansion, detectable circulating antinuclear antibodies and glomerulonephritis, in both Sle1 and Sle1Tg7 mice. The expansion of germinal center B cells and increased effector memory T cell phenotypes that are typical of lupus-prone strains, were also prevented with IRAK4 kinase elimination. Analysis of renal leukocyte infiltrates confirmed our earlier findings of an expanded conventional dendritic cell (cDC) within the kidneys of nephritic mice, and this was prevented with IRAK4 kinase elimination. Analysis of TLR7 at the protein level revealed that the expression in immune cells is dependent on the TLR7-transgene itself and/or autoimmune disease factors in a cell-specific manner. Increased TLR7 protein expression in renal macrophages and cDCs correlated with disease parameters such as blood urea nitrogen (BUN) levels and the frequency of leukocytes infiltrating the kidney. These findings suggest that controlling the level of TLR7 or downstream signaling within myeloid populations may prevent chronic inflammation and severe nephritis.
Collapse
Affiliation(s)
- Teja Celhar
- Singapore Immunology Network, ASTAR, Singapore, Singapore
| | - Hao Kim Lu
- Singapore Immunology Network, ASTAR, Singapore, Singapore
| | - Lia Benso
- Merck & Co., Inc., Boston, MA, United States
| | | | - Hui Yin Lee
- Singapore Immunology Network, ASTAR, Singapore, Singapore.,Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
| | - Shubhita Tripathi
- Singapore Immunology Network, ASTAR, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olga Zharkova
- Singapore Immunology Network, ASTAR, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Yee Ong
- Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
| | - Hiroko Yasuga
- Singapore Immunology Network, ASTAR, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Bijin Au
- Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
| | | | - Lina Hsiu Kim Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | - John E Connolly
- Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Anna-Marie Fairhurst
- Singapore Immunology Network, ASTAR, Singapore, Singapore.,Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
42
|
Matta B, Barnes BJ. Coordination between innate immune cells, type I IFNs and IRF5 drives SLE pathogenesis. Cytokine 2019; 132:154731. [PMID: 31130331 DOI: 10.1016/j.cyto.2019.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease which affects multiple organs. The type I interferon (IFN) gene signature and circulating autoantibodies are hallmarks of SLE. Plasmacytoid dendritic cells (pDCs) are considered the main producers of type I IFN and production is modulated by multiple other immune cell types. In SLE, essentially every immune cell type is dysregulated and aberrant deregulation is thought to be due, in part, to direct or indirect exposure to IFN. Genetic variants within or around the transcription factor interferon regulatory factor 5 (IRF5) associate with SLE risk. Elevated IFNα activity was detected in the sera of SLE patients carrying IRF5 risk polymorphisms who were positive for either anti-RNA binding protein (anti-RBP) or anti-double-stranded DNA (anti-dsDNA) autoantibodies. Neutrophils are also an important source of type I IFNs and are found in abundance in human blood. Neutrophil extracellular traps (NETs) are considered a potential source of antigenic trigger in SLE that can lead to type I IFN gene induction, as well as increased autoantibody production. In this review, we will focus on immune cell types that produce type I IFNs and/or are affected by type I IFN in SLE. In addition, we will discuss potential inducers of endogenous type I IFN production in SLE. Last, we will postulate how the different immune cell populations may be affected by an IRF5-SLE risk haplotype.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA; Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
| |
Collapse
|
43
|
Jiang SH, Athanasopoulos V, Ellyard JI, Chuah A, Cappello J, Cook A, Prabhu SB, Cardenas J, Gu J, Stanley M, Roco JA, Papa I, Yabas M, Walters GD, Burgio G, McKeon K, Byers JM, Burrin C, Enders A, Miosge LA, Canete PF, Jelusic M, Tasic V, Lungu AC, Alexander SI, Kitching AR, Fulcher DA, Shen N, Arsov T, Gatenby PA, Babon JJ, Mallon DF, de Lucas Collantes C, Stone EA, Wu P, Field MA, Andrews TD, Cho E, Pascual V, Cook MC, Vinuesa CG. Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat Commun 2019; 10:2201. [PMID: 31101814 PMCID: PMC6525203 DOI: 10.1038/s41467-019-10242-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/25/2019] [Indexed: 11/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease. It is thought that many common variant gene loci of weak effect act additively to predispose to common autoimmune diseases, while the contribution of rare variants remains unclear. Here we describe that rare coding variants in lupus-risk genes are present in most SLE patients and healthy controls. We demonstrate the functional consequences of rare and low frequency missense variants in the interacting proteins BLK and BANK1, which are present alone, or in combination, in a substantial proportion of lupus patients. The rare variants found in patients, but not those found exclusively in controls, impair suppression of IRF5 and type-I IFN in human B cell lines and increase pathogenic lymphocytes in lupus-prone mice. Thus, rare gene variants are common in SLE and likely contribute to genetic risk. Function-altering variants of immune-related genes cause rare autoimmune syndromes, whereas their contribution to common autoimmune diseases remains uncharacterized. Here the authors show that rare variants of lupus-associated genes are present in the majority of lupus patients and healthy controls, but only the variants found in lupus patients alter gene function.
Collapse
Affiliation(s)
- Simon H Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia. .,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia. .,Department of Renal Medicine, The Canberra Hospital, Garran, 2601, ACT, Australia.
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Julia I Ellyard
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Aaron Chuah
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Genome Informatics Laboratory, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | - Jean Cappello
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Amelia Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Savit B Prabhu
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Paediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India
| | | | - Jinghua Gu
- Baylor Medical Institute, Houston, 77030, Texas, USA
| | - Maurice Stanley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Jonathan A Roco
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Ilenia Papa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | - Mehmet Yabas
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Department of Genetics and Bioengineering, Trakya University, Edirne, 22030, Turkey
| | - Giles D Walters
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Department of Renal Medicine, The Canberra Hospital, Garran, 2601, ACT, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | - Kathryn McKeon
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - James M Byers
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Charlotte Burrin
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | - Anselm Enders
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Lisa A Miosge
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | - Pablo F Canete
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Marija Jelusic
- Department of Paediatric Rheumatology and Immunology, University of Zagreb School of Medicine, Zagreb, 10000, Croatia
| | - Velibor Tasic
- University Children's Hospital, Medical School, Skopje, 1000, Macedonia
| | - Adrian C Lungu
- Department of Pediatric Nephrology, Fundeni Clinical Institute, Bucharest, 022328, Romania
| | - Stephen I Alexander
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Westmead Children's Hospital, Westmead, 2145, NSW, Australia
| | - Arthur R Kitching
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, 3168, VIC, Australia
| | - David A Fulcher
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Department of Immunology, The Canberra Hospital, Garran, 2601, ACT, Australia
| | - Nan Shen
- China Australia Centre for Personalised Immunology, Renji Hospital Shanghai, JiaoTong University Shanghai, Huangpu Qu, 200333, China
| | - Todor Arsov
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,China Australia Centre for Personalised Immunology, Renji Hospital Shanghai, JiaoTong University Shanghai, Huangpu Qu, 200333, China
| | - Paul A Gatenby
- Department of Immunology, The Canberra Hospital, Garran, 2601, ACT, Australia
| | - Jeff J Babon
- Walter and Eliza Hall Institute, Parkville, 3052, VIC, Australia
| | - Dominic F Mallon
- Immunology PathWest Fiona Stanley Hospital, Murdoch, 6150, WA, Australia
| | | | - Eric A Stone
- Research School of Biology and Research School of Finance, Actuarial Studies and Statistics, Acton, 2601, ACT, Australia
| | - Philip Wu
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Australian Phenomics Facility, ANU, Acton, 2601, ACT, Australia
| | - Matthew A Field
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Genome Informatics Laboratory, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | - Thomas D Andrews
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Genome Informatics Laboratory, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,National Computational Infrastructure, ANU, Acton, 2601, ACT, Australia
| | - Eun Cho
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Genome Informatics Laboratory, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | | | - Matthew C Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Department of Immunology, The Canberra Hospital, Garran, 2601, ACT, Australia.,China Australia Centre for Personalised Immunology, Renji Hospital Shanghai, JiaoTong University Shanghai, Huangpu Qu, 200333, China
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia. .,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia. .,China Australia Centre for Personalised Immunology, Renji Hospital Shanghai, JiaoTong University Shanghai, Huangpu Qu, 200333, China.
| |
Collapse
|
44
|
Xu J, He Y, Wang J, Li X, Huang L, Li S, Qin X. Influence of the TNFSF4 rs1234315 polymorphism in the susceptibility to systemic lupus erythematosus and rheumatoid arthritis. Hum Immunol 2019; 80:270-275. [DOI: 10.1016/j.humimm.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/09/2023]
|
45
|
Da Silva CAL, Galera MF, Festi RR, Espinosa MM, Fernandes V, Blaskievicz PH, Dias EP. Association of Polymorphisms in the DNA Repair Genes XRCC1 and XRCC3 with Systemic Lupus Erythematosus. Open Rheumatol J 2019. [DOI: 10.2174/1874312901913010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Evidence suggests that DNA damage is implicated in the development of Systemic Lupus Erythematosus (SLE).
Objective:
Investigate the possible association of polymorphisms in the DNA repair genes XRCC1 and XRCC3 with SLE and its clinical and laboratory features.
Methods:
This is a case-control study comparing the polymorphisms in the DNA repair genes XRCC1 and XRCC3 in SLE patients and control individuals. Genotyping for DNA repair genes was performed by polymerase chain reaction-restriction fragment length polymorphism in 76 patients and 82 healthy control individuals.
Results:
Our data indicated that the genotype frequencies in patients with the XRCC1 Arg399Gln and XRCC3 Thr241Met polymorphisms were similar to those observed in the control group (p > 0.05). However, the frequencies of the 399Gln allele (p = 0.023, OR = 0.58, 95% CI = 0.36–0.93) and 241Met allele (p = 0.0039, OR = 0.59, 95% CI = 0.36–0.98) were significantly lower in the patients than those in the control subjects.
Conclusion:
We demonstrated that 399Gln and 241Met alleles may play a protective role in SLE susceptibility.
Collapse
|
46
|
Genetic variants differentially associated with rheumatoid arthritis and systemic lupus erythematosus reveal the disease-specific biology. Sci Rep 2019; 9:2739. [PMID: 30804378 PMCID: PMC6390106 DOI: 10.1038/s41598-019-39132-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
Two rheumatic autoimmune diseases, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), have distinct clinical features despite their genetic similarities. We hypothesized that disease-specific variants exclusively associated with only one disease could contribute to disease-specific phenotypes. We calculated the strength of disease specificity for each variant in each disease against the other disease using summary association statistics reported in the largest genome-wide association studies of RA and SLE. Most of highly disease-specific associations were explained by non-coding variants that were significantly enriched within regulatory regions (enhancers or H3K4me3 histone modification marks) in specific cell or organ types. (e.g., In RA, regulatory T primary cells, CD4+ memory T primary cells, thymus and lung; In SLE, CD19+ B primary cells, mobilized CD34+ primary cells, regulatory T primary cells and monocytes). Consistently, genes in the disease-specific loci were significantly involved in T cell- and B cell-related gene sets in RA and SLE. In summary, this study identified disease-specific variants between RA and SLE, and provided statistical evidence for disease-specific cell types, organ and gene sets that may drive the disease-specific phenotypes.
Collapse
|
47
|
Felten R, Sagez F, Gavand PE, Martin T, Korganow AS, Sordet C, Javier RM, Soulas-Sprauel P, Rivière M, Scher F, Poindron V, Guffroy A, Arnaud L. 10 most important contemporary challenges in the management of SLE. Lupus Sci Med 2019; 6:e000303. [PMID: 30729019 PMCID: PMC6340557 DOI: 10.1136/lupus-2018-000303] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 01/05/2023]
Abstract
From a 1-year survival of less than 50% before the discovery of glucocorticoids to over 90% at 10 years in most dedicated centres, the spectrum of SLE has profoundly evolved. Despite this improvement, several major challenges currently remain. The aim of this review is to analyse what are, according to us, the 10 most important contemporary challenges in the management of SLE. Among those are the need to treat to target to favour disease remission (or low disease activity), limit the use of glucocorticoids, derive more comprehensive tools for the evaluation of disease activity, develop more effective drugs (yielding successful trials), dissect the heterogeneity of the disease both at the molecular and genetic levels, identify relevant biomarkers for individualised treatment, manage fertility and pregnancy, tackle comorbidities such as cardiovascular risk, the prevention of infections and osteoporosis, improve the network of care (from the patients’ perspective), and favour a holistic approach (integrating fatigue, adherence to treatment, physical activity). Altogether, these 10 contemporary challenges in SLE may be considered as a roadmap for those involved in the daily care of patients with SLE, as well as for researchers who may wish to contribute to an improved management of this rare and complex disease.
Collapse
Affiliation(s)
- Renaud Felten
- Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Références des Maladies Systémiques et Autoimmunes Rares Est Sud-Ouest (RESO)-LUPUS, Strasbourg, France
| | - Flora Sagez
- Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Références des Maladies Systémiques et Autoimmunes Rares Est Sud-Ouest (RESO)-LUPUS, Strasbourg, France
| | - Pierre-Edouard Gavand
- Centre National de Références des Maladies Systémiques et Autoimmunes Rares Est Sud-Ouest (RESO)-LUPUS, Strasbourg, France.,Service d'immunologie clinique, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Thierry Martin
- Centre National de Références des Maladies Systémiques et Autoimmunes Rares Est Sud-Ouest (RESO)-LUPUS, Strasbourg, France.,Service d'immunologie clinique, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Anne-Sophie Korganow
- Centre National de Références des Maladies Systémiques et Autoimmunes Rares Est Sud-Ouest (RESO)-LUPUS, Strasbourg, France.,Service d'immunologie clinique, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Christelle Sordet
- Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Références des Maladies Systémiques et Autoimmunes Rares Est Sud-Ouest (RESO)-LUPUS, Strasbourg, France
| | - Rose-Marie Javier
- Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Références des Maladies Systémiques et Autoimmunes Rares Est Sud-Ouest (RESO)-LUPUS, Strasbourg, France
| | - Pauline Soulas-Sprauel
- Centre National de Références des Maladies Systémiques et Autoimmunes Rares Est Sud-Ouest (RESO)-LUPUS, Strasbourg, France.,Service d'immunologie clinique, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Marianne Rivière
- Association Française du Lupus et autres Maladies Auto-Immunes (AFL+), France
| | - Florence Scher
- Service de Pharmacie-Stérilisation, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Vincent Poindron
- Centre National de Références des Maladies Systémiques et Autoimmunes Rares Est Sud-Ouest (RESO)-LUPUS, Strasbourg, France.,Service d'immunologie clinique, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Aurélien Guffroy
- Centre National de Références des Maladies Systémiques et Autoimmunes Rares Est Sud-Ouest (RESO)-LUPUS, Strasbourg, France.,Service d'immunologie clinique, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Laurent Arnaud
- Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Références des Maladies Systémiques et Autoimmunes Rares Est Sud-Ouest (RESO)-LUPUS, Strasbourg, France
| |
Collapse
|
48
|
Smallwood MJ, Nissim A, Knight AR, Whiteman M, Haigh R, Winyard PG. Oxidative stress in autoimmune rheumatic diseases. Free Radic Biol Med 2018; 125:3-14. [PMID: 29859343 DOI: 10.1016/j.freeradbiomed.2018.05.086] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
The management of patients with autoimmune rheumatic diseases such as rheumatoid arthritis (RA) remains a significant challenge. Often the rheumatologist is restricted to treating and relieving the symptoms and consequences and not the underlying cause of the disease. Oxidative stress occurs in many autoimmune diseases, along with the excess production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The sources of such reactive species include NADPH oxidases (NOXs), the mitochondrial electron transport chain, nitric oxide synthases, nitrite reductases, and the hydrogen sulfide producing enzymes cystathionine-β synthase and cystathionine-γ lyase. Superoxide undergoes a dismutation reaction to generate hydrogen peroxide which, in the presence of transition metal ions (e.g. ferrous ions), forms the hydroxyl radical. The enzyme myeloperoxidase, present in inflammatory cells, produces hypochlorous acid, and in healthy individuals ROS and RNS production by phagocytic cells is important in microbial killing. Both low molecular weight antioxidant molecules and antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and peroxiredoxin remove ROS. However, when ROS production exceeds the antioxidant protection, oxidative stress occurs. Oxidative post-translational modifications of proteins then occur. Sometimes protein modifications may give rise to neoepitopes that are recognized by the immune system as 'non-self' and result in the formation of autoantibodies. The detection of autoantibodies against specific antigens, might improve both early diagnosis and monitoring of disease activity. Promising diagnostic autoantibodies include anti-carbamylated proteins and anti-oxidized type II collagen antibodies. Some of the most promising future strategies for redox-based therapeutic compounds are the activation of endogenous cellular antioxidant systems (e.g. Nrf2-dependent pathways), inhibition of disease-relevant sources of ROS/RNS (e.g. isoform-specific NOX inhibitors), or perhaps specifically scavenging disease-related ROS/RNS via site-specific antioxidants.
Collapse
Affiliation(s)
- Miranda J Smallwood
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
| | - Ahuva Nissim
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Annie R Knight
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
| | - Matthew Whiteman
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
| | - Richard Haigh
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK; Department of Rheumatology, Princess Elizabeth Orthopaedic Centre, Royal Devon and Exeter NHS Foundation Trust (Wonford), Exeter EX2 5DW, UK
| | - Paul G Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK.
| |
Collapse
|
49
|
Association of IRF5 gene single nucleotide polymorphism with systemic lupus erythematosus susceptibility in Iranian population. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
50
|
The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene 2018; 668:59-72. [DOI: 10.1016/j.gene.2018.05.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/13/2018] [Indexed: 01/21/2023]
|