1
|
Mzimela NC, Sosibo AM, Ngubane PS, Khathi A. Investigation into changes in inflammatory and immune cell markers in pre-diabetic patients from Durban, South Africa. J Immunotoxicol 2024; 21:2290282. [PMID: 38099331 DOI: 10.1080/1547691x.2023.2290282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The prevalence of pre-diabetes is increasing in rapidly urbanizing cities, especially in individuals aged 25 - 45 years old. Studies also indicate that this condition is associated with aberrant immune responses that are also influenced by environmental factors. This study sought to investigate changes in the concentration of immune cells and select inflammatory markers in patients with pre-diabetes in Durban, South Africa. Blood samples collected from King Edward Hospital, after obtaining ethics approval, were divided into non-diabetic (ND), pre-diabetic (PD) and type 2 diabetic (T2D) using ADA criteria. In each sample, the concentration of immune cells and select inflammatory markers were determined. The results showed a significant increase in eosinophil and basophil levels in the PD group as compared to the ND group. Compared to ND, the PD and T2D groups had significant increases in serum TNFα, CD40L and fibrinogen concentrations. Additionally, there were decreases in serum CRP, IL-6, and P-selectin in the PD group while these markers increased in the T2D group. These findings were indicative of immune activation and highlight the impact of pre-diabetes in this population. More studies are recommended with a higher number of samples that are stratified by gender and represent the gender ratio in the city.
Collapse
Affiliation(s)
- Nomusa Christina Mzimela
- School of Laboratory Medicine and Medical Science, College of Health Sciences
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Andile Khathi
- School of Laboratory Medicine and Medical Science, College of Health Sciences
| |
Collapse
|
2
|
Dai Y, Mao S, Zang X, Ge H, Feng J, Wang Y, Qi X, Yang L, Zhou Q, Wang X. RTP4 Enhances Corneal HSV-1 Infection in Mice With Type 2 Diabetes Mellitus. Invest Ophthalmol Vis Sci 2024; 65:36. [PMID: 39312222 PMCID: PMC11423950 DOI: 10.1167/iovs.65.11.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Purpose The purpose of this study was to investigate whether corneal lesions in mice with type 2 diabetes mellitus (T2D) infected with herpes simplex virus (HSV)-1 are more severe, and to elucidate the specific underlying mechanism. Methods The corneas of control mice and T2D mice induced by a high-fat diet combined with streptozotocin were infected with the HSV-1 Mckrae strain to assess corneal infection, opacity, and HSV-1 replication. RNA sequencing of the corneal epithelium from wild-type and db/db mice (a genetic T2D mouse model) was conducted to identify the key gene affecting T2D infection. Immunofluorescence staining was performed on corneal sections from T2D mice and patients with T2D. The effect of small interfering RNA (siRNA) knockdown on corneal HSV-1 infection was evaluated in both in vitro and in vivo models. Results T2D mice exhibited a more severe infection phenotype following HSV-1 infection, characterized by augmented corneal opacity scores, elevated viral titers, and transcripts compared to control mice. Transcriptome analysis of corneal epithelium revealed a hyperactive viral response in T2D mice, highlighting the differentially expressed gene Rtp4 (encoding receptor transporter protein 4). Receptor transporter protein 4 (RTP4) expression was enhanced in the corneal epithelium of T2D mice and patients with T2D. Virus binding assays demonstrated that RTP4 facilitated HSV-1 binding to human corneal epithelial cells. Silencing RTP4 alleviated HSV-1 infection in both in vitro and in vivo T2D models. Conclusions The findings indicate that elevated RTP4 exacerbates HSV-1 infection by enhancing its binding to corneal epithelial cells, whereas Rtp4 knockdown mitigated corneal lesions in T2D mice. This implies RTP4 as a potential target for intervention in diabetic HSV-1 infection.
Collapse
MESH Headings
- Animals
- Herpesvirus 1, Human/physiology
- Herpesvirus 1, Human/genetics
- Mice
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/genetics
- Keratitis, Herpetic/virology
- Keratitis, Herpetic/metabolism
- Keratitis, Herpetic/pathology
- Mice, Inbred C57BL
- Diabetes Mellitus, Experimental/virology
- Epithelium, Corneal/virology
- Epithelium, Corneal/metabolism
- Epithelium, Corneal/pathology
- Humans
- Virus Replication/physiology
- Membrane Transport Proteins/genetics
- Male
- Disease Models, Animal
Collapse
Affiliation(s)
- Yunhai Dai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shilan Mao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Xinyi Zang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Hongqi Ge
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yalin Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| |
Collapse
|
3
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2695-x. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
4
|
Taylor R. Understanding the cause of type 2 diabetes. Lancet Diabetes Endocrinol 2024; 12:664-673. [PMID: 39038473 DOI: 10.1016/s2213-8587(24)00157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/24/2024]
Abstract
Type 2 diabetes has long been thought to have heterogenous causes, even though epidemiological studies uniformly show a tight relationship with overnutrition. The twin cycle hypothesis postulated that interaction of self-reinforcing cycles of fat accumulation inside the liver and pancreas, driven by modest but chronic positive calorie balance, could explain the development of type 2 diabetes. This hypothesis predicted that substantial weight loss would bring about a return to the non-diabetic state, permitting observation of the pathophysiology determining the transition. These changes were postulated to reflect the basic mechanisms of causation in reverse. A series of studies over the past 15 years has elucidated these underlying mechanisms. Together with other research, the interaction of environmental and genetic factors has been clarified. This knowledge has led to successful implementation of a national programme for remission of type 2 diabetes. This Review discusses the paucity of evidence for heterogeneity in causes of type 2 diabetes and summarises the in vivo pathophysiological changes, which cause this disease of overnutrition. Type 2 diabetes has a homogenous cause expressed in genetically heterogenous individuals.
Collapse
Affiliation(s)
- Roy Taylor
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Assaggaf H, El Hachlafi N, Elbouzidi A, Taibi M, Alnasser SM, Bendaif H, Aalilou Y, Qasem A, Attar A, Bouyahya A, Ardianto C, Ming LC, Goh KW, Fikri-Benbrahim K, Mrabti HN. Exploring the antidiabetic and anti-inflammatory potential of Lavandula officinalis essential oil: In vitro and in silico insights. Heliyon 2024; 10:e34135. [PMID: 39170293 PMCID: PMC11336354 DOI: 10.1016/j.heliyon.2024.e34135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/29/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
Medicinal plants have been utilized for centuries in traditional medicine systems worldwide, providing a rich source of bioactive compounds with diverse biological activities. Lavandula officinalis, a member of the Lamiaceae family, has been recognized for its multifaceted pharmacological activities. In this current investigation, our primary objective was to scrutinize the in vitro inhibitory potential of L. officinalis essential oil (LOEO) against alpha-amylase and alpha-glucosidase, with the aim of understanding its antidiabetic effects. Additionally, the assay encompassed tyrosinase and lipoxygenase (LOX) to assess its anti-inflammatory attributes. Unraveling the underlying molecular mechanisms of these activities prompted an in-silico study. The purpose was to establish correlations between in-vitro observations and computational insights derived from molecular docking, which forecasts the interaction of LOEO molecules with their respective targets, alongside ADMET prediction. The Gas Chromatography-Mass Spectrometry (GC-MS) analysis allow to identify eighteen compounds, with the dominance of L-camphor (43.12 %), 1,8-cineole (34.27 %) and borneol (8.60 %) in LOEO. The antidiabetic evaluation revealed that LOEO exhibited noteworthy inhibitory activity against both α-amylase and α-glucosidase, displaying IC50 values of 3.14 ± 0.05 mg/mL and 2.07 ± 0.03 mg/mL, respectively. The subsequent in-silico study highlighted the particularly strong binding affinity of (E)-Farnesene, with a binding score of -7.4 kcal/mol for alpha-glucosidase, while Germacrene D displayed the highest affinity among the ligands (-7.9 kcal/mol) for the alpha-amylase target. Furthermore, the investigation into in vitro anti-inflammatory activity unveiled LOEO efficacy against tyrosinase (IC50 = 42.74 μg/mL) and LOX (IC50 = 11.58 ± 0.07 μg/mL). The in-silico analysis echoed these findings, indicating α-Cadinene's notable binding affinity of 6 kcal/mol with tyrosinase and α-Cedrene's binding score of -6.5 kcal/mol for LOX. Impressively, for both COX-1 and COX-2, α-Cedrene exhibited significant binding affinities of -7.6 and -7.3 kcal/mol, respectively. The convergence between the in vitro and in silico outcomes underscores the potential of LOEO and its constituent compounds as potent inhibitors targeting both diabetes and the inflammatory processes.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
- Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Hajar Bendaif
- Laboratoire des Ressources Naturelles et Environnement, Faculté Polydisciplinaire de Taza, Morocco
| | - Youssra Aalilou
- Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ammar Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, BE1410, Brunei Darussalam
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Kawtar Fikri-Benbrahim
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques Casablanca, Casablanca, 20250, Morocco
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez, 30000, Morocco
| |
Collapse
|
6
|
Han Y, Wang Y, Li S, Sato K, Yamagishi S. Exploration of the shared pathways and common biomarker in adamantinomatous craniopharyngioma and type 2 diabetes using integrated bioinformatics analysis. PLoS One 2024; 19:e0304404. [PMID: 38848397 PMCID: PMC11161051 DOI: 10.1371/journal.pone.0304404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Craniopharyngiomas are rare tumors of the central nervous system that typically present with symptoms such as headache and visual impairment, and those reflecting endocrine abnormalities, which seriously affect the quality of life of patients. Patients with craniopharyngiomas are at higher cardiometabolic risk, defined as conditions favoring the development of type 2 diabetes and cardiovascular disease. However, the underlying common pathogenic mechanisms of craniopharyngiomas and type 2 diabetes are not clear. Especially due to the difficulty of conducting in vitro or in vivo experiments on craniopharyngioma, we thought the common pathway analysis between craniopharyngioma and type 2 diabetes based on bioinformatics is a powerful and feasible method. In the present study, using public datasets (GSE94349, GSE68015, GSE38642 and GSE41762) obtained from the GEO database, the gene expression associated with adamantinomatous craniopharyngioma, a subtype of craniopharyngioma, and type 2 diabetes were analyzed using a bioinformatic approach. We found 11 hub genes using a protein-protein interaction network analysis. Of these, seven (DKK1, MMP12, KRT14, PLAU, WNT5B, IKBKB, and FGF19) were also identified by least absolute shrinkage and selection operator analysis. Finally, single-gene validation and receptor operating characteristic analysis revealed that four of these genes (MMP12, PLAU, KRT14, and DKK1) may be involved in the common pathogenetic mechanism of adamantinomatous craniopharyngioma and type 2 diabetes. In addition, we have characterized the differences in immune cell infiltration that characterize these two diseases, providing a reference for further research.
Collapse
Affiliation(s)
- Yibo Han
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yong Wang
- Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuo Li
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
7
|
El-Araby RE, Tu Q, Xie Y, Aboushousha T, Li Z, Xu X, Zhu ZX, Dong LQ, Chen J. Adiponectin mRNA Conjugated with Lipid Nanoparticles Specifically Targets the Pathogenesis of Type 2 Diabetes. Aging Dis 2024:AD.2024.0162. [PMID: 38916734 DOI: 10.14336/ad.2024.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Type 2 diabetes (T2D) is a widespread health condition both in the United States and around the world, with insulin resistance playing a critical role in its development. Effective treatment strategies are essential for managing T2D and mitigating associated risks. Adiponectin (APN), secreted by adipocytes, exhibits an inverse correlation with obesity-related adiposity, and its levels are negatively associated with insulin resistance and body mass index. This study aimed to enhance endogenous APN levels in a diet-induced obese (DIO) mouse model using lipid nanoparticles (LNP) as safe delivery agents for APN mRNA conjugates. The results indicate that APN-mRNA-LNP administration successfully induced APN synthesis in various tissues, including muscle, liver, kidney, pancreas, and adipose cells. This induction was associated with several positive outcomes, such as preventing diet-induced body weight gain, improving hyperglycemia by promoting Glut-4 expression, alleviating diabetic nephropathy symptoms by blocking the EGFR pathway, and reducing pro-inflammatory cytokine production. In addition, the treatment demonstrated enhanced insulin sensitivity by activating DGKd and inhibiting PKCε. This resulted in reactivation of insulin receptors in insulin target tissues and stimulation of insulin secretion from pancreatic beta cells. The findings of the present study highlight the potential of APN-mRNA-LNP-based nucleic acid therapy as a treatment for type 2 diabetes, offering a comprehensive approach to addressing its complexities.
Collapse
Affiliation(s)
- Rady E El-Araby
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
- Theodor Bilharz Research Institute, Ministry of scientific Research, Cairo, Egypt
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Ying Xie
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Tarek Aboushousha
- Theodor Bilharz Research Institute, Ministry of scientific Research, Cairo, Egypt
| | - Zhongyu Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Zoe X Zhu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Lily Q Dong
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
- Department of Genetics, Molecular and Cellular Biology, Tufts University School of Medicine, and Graduate School of Biomedical Sciences. 136 Harrison Ave, M&;ampV 811, Boston, MA 02111, USA
| |
Collapse
|
8
|
Ahuja A, Zboinski E, das S, Zhu X, Ma Q, Xie Y, Tu Q, Chen J. Antidiabetic features of AdipoAI, a novel AdipoR agonist. Cell Biochem Funct 2024; 42:e3910. [PMID: 38269524 PMCID: PMC10811407 DOI: 10.1002/cbf.3910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
Adiponectin is an antidiabetic endogenous adipokine that plays a protective role against the unfavorable metabolic sequelae of obesity. Recent evidence suggests a sinister link between hypoadiponectinemia and development of insulin resistance/type 2 diabetes (T2D). Adiponectin's insulin-sensitizing property is mediated through the specific adiponectin receptors R1 and R2, which activate the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR) α pathways. AdipoAI is a novel synthetic analogue of endogenous adiponectin with possibly similar pharmacological effects. Thus, there is a need of orally active small molecules that activate Adipoq subunits, and their downstream signaling, which could ameliorate obesity related type 2 diabetes. In the study we aim to investigate the effects of AdipoAI on obesity and T2D. Through in-vitro and in-vivo analyses, we investigated the antidiabetic potentials of AdipoAI and compared it with AdipoRON, another orally active adiponectin receptors agonist. Our results showed that in-vitro treatment of AdipoAI (0-5 µM) increased adiponectin receptor subunits AdipoR1/R2 with increase in AMPK and APPL1 protein expression in C2C12 myotubes. Similarly, in-vivo, oral administration of AdipoAI (25 mg/kg) observed similar effects as that of AdipoRON (50 mg/kg) with improved control of blood glucose and insulin sensitivity in diet-induced obesity (DIO) mice models. Further, AdipoAI significantly reduced epididymal fat content with decrease in inflammatory markers and increase in PPAR-α and AMPK levels and exhibited hepatoprotective effects in liver. Further, AdipoAI and AdipoRON also observed similar results in adipose tissue. Thus, our results suggest that low doses of orally active small molecule agonist of adiponectin AdipoAI can be a promising therapeutic target for obesity and T2D.
Collapse
Affiliation(s)
- Akash Ahuja
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Elissa Zboinski
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Siddhartha das
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Xiaofang Zhu
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Qian Ma
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
- Department of General Dentistry, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Ying Xie
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qisheng Tu
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Jake Chen
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
- Dept. of Developmental, Molecular and Chemical Biology, Tufts School of Medicine; Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Mahmoud M, Abdel-Rasheed M. Influence of type 2 diabetes and obesity on adipose mesenchymal stem/stromal cell immunoregulation. Cell Tissue Res 2023; 394:33-53. [PMID: 37462786 PMCID: PMC10558386 DOI: 10.1007/s00441-023-03801-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 10/07/2023]
Abstract
Type 2 diabetes (T2D), associated with obesity, represents a state of metabolic inflammation and oxidative stress leading to insulin resistance and progressive insulin deficiency. Adipose-derived stem cells (ASCs) are adult mesenchymal stem/stromal cells identified within the stromal vascular fraction of adipose tissue. These cells can regulate the immune system and possess anti-inflammatory properties. ASCs are a potential therapeutic modality for inflammatory diseases including T2D. Patient-derived (autologous) rather than allogeneic ASCs may be a relatively safer approach in clinical perspectives, to avoid occasional anti-donor immune responses. However, patient characteristics such as body mass index (BMI), inflammatory status, and disease duration and severity may limit the therapeutic utility of ASCs. The current review presents human ASC (hASC) immunoregulatory mechanisms with special emphasis on those related to T lymphocytes, hASC implications in T2D treatment, and the impact of T2D and obesity on hASC immunoregulatory potential. hASCs can modulate the proliferation, activation, and functions of diverse innate and adaptive immune cells via direct cell-to-cell contact and secretion of paracrine mediators and extracellular vesicles. Preclinical studies recommend the therapeutic potential of hASCs to improve inflammation and metabolic indices in a high-fat diet (HFD)-induced T2D disease model. Discordant data have been reported to unravel intact or detrimentally affected immunomodulatory functions of ASCs, isolated from patients with obesity and/or T2D patients, in vitro and in vivo. Numerous preconditioning strategies have been introduced to potentiate hASC immunomodulation; they are also discussed here as possible options to potentiate the immunoregulatory functions of hASCs isolated from patients with obesity and T2D.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
10
|
Prausmüller S, Weidenhammer A, Heitzinger G, Spinka G, Goliasch G, Arfsten H, Abdel Mawgoud R, Gabler C, Strunk G, Hengstenberg C, Hülsmann M, Bartko PE, Pavo N. Obesity in heart failure with preserved ejection fraction with and without diabetes: risk factor or innocent bystander? Eur J Prev Cardiol 2023; 30:1247-1254. [PMID: 37210596 DOI: 10.1093/eurjpc/zwad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is a condition that commonly coexists with type 2 diabetes mellitus (T2DM) and obesity. Whether the obesity-related survival benefit generally observed in HFpEF extends to individuals with concomitant T2DM is unclear. This study sought to examine the prognostic role of overweight and obesity in a large cohort of HFpEF with and without T2DM. METHODS AND RESULTS This large-scale cohort study included patients with HFpEF enrolled between 2010 and 2020. The relationship between body mass index (BMI), T2DM, and survival was assessed. A total of 6744 individuals with HFpEF were included, of which 1702 (25%) had T2DM. Patients with T2DM had higher BMI values (29.4 kg/m2 vs. 27.1 kg/m2, P < 0.001), higher N-terminal pro-brain natriuretic peptide values (864 mg/dL vs. 724 mg/dL, P < 0.001), and a higher prevalence of numerous risk factors/comorbidities than those without T2DM. During a median follow-up time of 47 months (Q1-Q3: 20-80), 2014 (30%) patients died. Patients with T2DM had a higher incidence of fatal events compared with those without T2DM, with a mortality rate of 39.2% and 26.7%, respectively (P < 0.001). In the overall cohort, using the BMI category 22.5-24.9 kg/m2 as the reference group, the unadjusted hazard ratio (HR) for all-cause death was increased in patients with BMI <22.5 kg/m2 [HR: 1.27 (confidence interval 1.09-1.48), P = 0.003] and decreased in BMI categories ≥25 kg/m2. After multivariate adjustment, BMI remained significantly inversely associated with survival in non-T2DM, whereas survival was unaltered at a wide range of BMI in patients with T2DM. CONCLUSION Among the various phenotypes of HFpEF, the T2DM phenotype is specifically associated with a greater disease burden. Higher BMI is linked to improved survival in HFpEF overall, while this effect neutralises in patients with concomitant T2DM. Advising BMI-based weight targets and weight loss may be pursued with different intensity in the management of HFpEF, particularly in the presence of T2DM.
Collapse
Affiliation(s)
- Suriya Prausmüller
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Annika Weidenhammer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Gregor Heitzinger
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Georg Spinka
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Georg Goliasch
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Henrike Arfsten
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Ramy Abdel Mawgoud
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Cornelia Gabler
- IT Systems and Communications, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Guido Strunk
- Complexity Research, Schönbrunner Straße 32, Vienna 1050, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Martin Hülsmann
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Philipp E Bartko
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Noemi Pavo
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| |
Collapse
|
11
|
Bendaya I, Ben Jemaa A, Sahraoui G, Kharrat M, Sdiri W, Oueslati R. Immunometabolism mRNA expression phenotypes and reprogramming of CD14 in T2DM with or without CVD. Int Immunopharmacol 2023; 122:110665. [PMID: 37487262 DOI: 10.1016/j.intimp.2023.110665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND/AIM Type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD) have a significant impact on the expression of genes in peripheral blood mononuclear cells (PBMCs). The primary objective of this study was to investigate the role of two signaling pathways, STAT1/6, and two important modulators of immunometabolism, leptin and PPARs, in the development of T2DM with and without CVD. Furthermore, the study aimed to assess the correlation between these factors and the dynamics of CD14 in PBMCs. This research was conducted within the context of a growing body of literature on the complex pathophysiology of T2DM and its association with CVD. Prior studies have indicated that T2DM is characterized by an imbalance in immunometabolism and the involvement of various signaling pathways. MATERIALS AND METHODS Blood samples were collected from a total of 47 subjects, including 7 healthy volunteers, 20 individuals diagnosed with diabetes and cardiovascular disease (D.CVD) and another 20 individuals diagnosed with diabetes only (D). PBMCs were isolated from these samples, and the expression levels of leptin, PPARγ, PPARα, and CD14 genes were measured using Real-Time PCR. RESULTS The most relevant result showed that diabetic patients with CVD had significantly higher levels of leptin expression, which was positively correlated with STAT1 (r = 0.7497, p = 0.0001). On the other hand, diabetic patients without CVD had elevated PPARγ expression, which was strongly correlated with STAT6 (r = 0.8437, p = 0.0001). Interestingly, we found a significant increase in the PPARγ/ PPARα ratio in the D.CVD group compared to the D group (4.273 ± 0.9531; 7.52 ± 3.556, p = 0.0479). Moreover, CD14 expression was significantly reduced in this group compared to diabetic patients without CVD. CONCLUSION These findings suggested that the immunometabolic imbalance in T2DM was driven by a STAT1/Leptin phenotype in diabetic patients with CVD and by a STAT6/PPARγ phenotype in diabetic patients without CVD. Taking into account STAT1/Leptin and STAT6/PPARγ profiling could help clinicians identify novel therapeutic targets for T2DM and other related diseases.
Collapse
Affiliation(s)
- Imen Bendaya
- Unit of Immunology and Microbiology Environmental and Carcinogenesis [IMEC], Faculty of Sciences of Bizerte, Zarzouna7021, University of Carthage, Bizerte, Tunisia.
| | - Awatef Ben Jemaa
- Unit of Immunology and Microbiology Environmental and Carcinogenesis [IMEC], Faculty of Sciences of Bizerte, Zarzouna7021, University of Carthage, Bizerte, Tunisia; Department of Biology, Faculty of science of Gafsa ,University of Gafsa, Gafsa, Tunisia
| | - Ghada Sahraoui
- Department of Pathology, Salah Azaeiz Institute, Bab Saadoun 1006 Tunis, Tunis, Tunisia
| | - Maher Kharrat
- Laboratory of Human Genetics, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wissem Sdiri
- Department of Cardiology, University Hospital Habib Bougatfa of Bizerte, Bizerte, Tunisia
| | - Ridha Oueslati
- Unit of Immunology and Microbiology Environmental and Carcinogenesis [IMEC], Faculty of Sciences of Bizerte, Zarzouna7021, University of Carthage, Bizerte, Tunisia
| |
Collapse
|
12
|
Zhao M, Xie Y, Gao W, Li C, Ye Q, Li Y. Diabetes mellitus promotes susceptibility to periodontitis-novel insight into the molecular mechanisms. Front Endocrinol (Lausanne) 2023; 14:1192625. [PMID: 37664859 PMCID: PMC10469003 DOI: 10.3389/fendo.2023.1192625] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetes mellitus is a main risk factor for periodontitis, but until now, the underlying molecular mechanisms remain unclear. Diabetes can increase the pathogenicity of the periodontal microbiota and the inflammatory/host immune response of the periodontium. Hyperglycemia induces reactive oxygen species (ROS) production and enhances oxidative stress (OS), exacerbating periodontal tissue destruction. Furthermore, the alveolar bone resorption damage and the epigenetic changes in periodontal tissue induced by diabetes may also contribute to periodontitis. We will review the latest clinical data on the evidence of diabetes promoting the susceptibility of periodontitis from epidemiological, molecular mechanistic, and potential therapeutic targets and discuss the possible molecular mechanistic targets, focusing in particular on novel data on inflammatory/host immune response and OS. Understanding the intertwined pathogenesis of diabetes mellitus and periodontitis can explain the cross-interference between endocrine metabolic and inflammatory diseases better, provide a theoretical basis for new systemic holistic treatment, and promote interprofessional collaboration between endocrine physicians and dentists.
Collapse
Affiliation(s)
- Mingcan Zhao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuandong Xie
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Wenjia Gao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Chunwang Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Qiang Ye
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yi Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Bikbova G, Oshitari T, Bikbov M. Diabetic Neuropathy of the Retina and Inflammation: Perspectives. Int J Mol Sci 2023; 24:ijms24119166. [PMID: 37298118 DOI: 10.3390/ijms24119166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
A clear connection exists between diabetes and atherosclerotic cardiovascular disease. Consequently, therapeutic approaches that target both diseases are needed. Clinical trials are currently underway to explore the roles of obesity, adipose tissue, gut microbiota, and pancreatic beta cell function in diabetes. Inflammation plays a key role in diabetes pathophysiology and associated metabolic disorders; thus, interest has increased in targeting inflammation to prevent and control diabetes. Diabetic retinopathy is known as a neurodegenerative and vascular disease that occurs after some years of poorly controlled diabetes. However, increasing evidence points to inflammation as a key figure in diabetes-associated retinal complications. Interconnected molecular pathways, such as oxidative stress, and the formation of advanced glycation end-products, are known to contribute to the inflammatory response. This review describes the possible mechanisms of the metabolic changes in diabetes that involve inflammatory pathways.
Collapse
Affiliation(s)
- Guzel Bikbova
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan
- Ufa Eye Research Institute, Pushkin Street 90, Ufa 450077, Russia
| | - Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan
- Department of Ophthalmology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan
| | - Mukharram Bikbov
- Ufa Eye Research Institute, Pushkin Street 90, Ufa 450077, Russia
| |
Collapse
|
14
|
Nisar A, Jagtap S, Vyavahare S, Deshpande M, Harsulkar A, Ranjekar P, Prakash O. Phytochemicals in the treatment of inflammation-associated diseases: the journey from preclinical trials to clinical practice. Front Pharmacol 2023; 14:1177050. [PMID: 37229273 PMCID: PMC10203425 DOI: 10.3389/fphar.2023.1177050] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Advances in biomedical research have demonstrated that inflammation and its related diseases are the greatest threat to public health. Inflammatory action is the pathological response of the body towards the external stimuli such as infections, environmental factors, and autoimmune conditions to reduce tissue damage and improve patient comfort. However, when detrimental signal-transduction pathways are activated and inflammatory mediators are released over an extended period of time, the inflammatory process continues and a mild but persistent pro-inflammatory state may develop. Numerous degenerative disorders and chronic health issues including arthritis, diabetes, obesity, cancer, and cardiovascular diseases, among others, are associated with the emergence of a low-grade inflammatory state. Though, anti-inflammatory steroidal, as well as non-steroidal drugs, are extensively used against different inflammatory conditions, they show undesirable side effects upon long-term exposure, at times, leading to life-threatening consequences. Thus, drugs targeting chronic inflammation need to be developed to achieve better therapeutic management without or with a fewer side effects. Plants have been well known for their medicinal use for thousands of years due to their pharmacologically active phytochemicals belonging to diverse chemical classes with a number of these demonstrating potent anti-inflammatory activity. Some typical examples include colchicine (alkaloid), escin (triterpenoid saponin), capsaicin (methoxy phenol), bicyclol (lignan), borneol (monoterpene), and quercetin (flavonoid). These phytochemicals often act via regulating molecular mechanisms that synergize the anti-inflammatory pathways such as increased production of anti-inflammatory cytokines or interfere with the inflammatory pathways such as to reduce the production of pro-inflammatory cytokines and other modulators to improve the underlying pathological condition. This review describes the anti-inflammatory properties of a number of biologically active compounds derived from medicinal plants, and their mechanisms of pharmacological intervention to alleviate inflammation-associated diseases. The emphasis is given to information on anti-inflammatory phytochemicals that have been evaluated at the preclinical and clinical levels. Recent trends and gaps in the development of phytochemical-based anti-inflammatory drugs have also been included.
Collapse
Affiliation(s)
- Akib Nisar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Vyavahare
- Shatayu Ayurved and Research Centre, Solapur, Maharashtra, India
| | - Manasi Deshpande
- Department of Dravyagun Vigyan, College of Ayurved, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Abhay Harsulkar
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
- Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, University Health Sciences Center, New Orleans, LA, United States
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
15
|
Role of Innate Immune Cells in Chronic Diabetic Wounds. J Indian Inst Sci 2023. [DOI: 10.1007/s41745-022-00355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
16
|
Affiliation(s)
- Rebecca A. Keogh
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, Colorado, United States of America
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
17
|
Mzimela NC, Sosibo AM, Ngubane PS, Khathi A. The changes that occur in the immune system during immune activation in pre-diabetic patients of all ethnicities, from the age of 25- to 45-years: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e30903. [PMID: 36595749 PMCID: PMC9794255 DOI: 10.1097/md.0000000000030903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pre-diabetes is an intermediate state between normoglycaemia and type 2 diabetes (T2D). This condition has been shown to be asymptomatic thus making it hard to investigate the changes that occur in the body during this state. Recent findings stipulate that in this state, there are changes that are often associated with T2D. These include changes in concentration of immune cells and inflammatory markers. This systematic review will provide a synthesis of the data that is available reporting on the changes in the concentration of immune cells and selected markers during prediabetes. It will also give clarity of the variation of the complications of the condition among the various demographic groups. METHODS The assembly of this systematic review was through strict adherance to the PRISMA 2020 guidelines for reporting systematic reviews. This systematic review has been registered with the International Prospective Registry of Systematic Reviews (PROSPERO), registration number "CRD42020184828" dated 05-07-2020). In this systematic review, published clinical studies articles that involve observational reports, whether it is case-control, cross-sectional, and comparative cross-sectional will be used. Cohort study designs that involve normal/non-diabetic and pre-diabetes reports will be used in this systematic review and meta-analysis. Clinical MeSH headings to search on MEDLINE, COCHRANE library, EMBASE, and ICTRP and African Journal Online will be a tool used to achieve the required report. Reviewers (NCM, AMS, and AK) will screen all the results and select the studies that will be eligible by guidance according to eligibility criteria. Downs and Black Checklist will be used to check the risk of bias and then for meta-analysis Review Manager v5.4 Forrest plot will be used. Additionally, the Forrest plot will also be used for sensitivity analysis. The strength of evidence will then be assessed using the Grading of Recommendations Assessment, Development, and Evaluation approach. RESULTS Only 4 reports were eligible and risk of bias checked. The results indicated the outcomes even though there were only few reports. DISCUSSION AND CONCLUSION This systematic review will give an indication on the available data on this research area and lay a foundation for future studies.
Collapse
Affiliation(s)
- Nomusa Christina Mzimela
- School of Laboratory Medicine and Medical Science, College of Health Sciences, University of Kwa-Zulu Natal, Durban, South Africa
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Nomusa Christina Mzimela, Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa (e-mail: )
| | - Aubrey Mbulelo Sosibo
- School of Laboratory Medicine and Medical Science, College of Health Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| | - Phikelelani Siphosethu Ngubane
- School of Laboratory Medicine and Medical Science, College of Health Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Science, College of Health Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| |
Collapse
|
18
|
Herrera-Martínez AD, Herrero-Aguayo V, Pérez-Gómez JM, Gahete MD, Luque RM. Inflammasomes: Cause or consequence of obesity-associated comorbidities in humans. Obesity (Silver Spring) 2022; 30:2351-2362. [PMID: 36415999 DOI: 10.1002/oby.23581] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Inflammasomes are multiprotein intracellular complexes composed of innate immune system receptors and sensors; they activate the inflammatory cascade in response to infectious microbes and/or molecules derived from host proteins. Because of cytokine secretion, inflammasomes can induce amplified systemic responses, its dysregulation can exacerbate symptoms in infectious diseases, and it has been related to the development of autoimmune diseases, inflammatory disorders, and even cancer. Obesity is associated with a chronic low-grade inflammation, in which circulating proinflammatory cytokines are elevated. Some publications describe changes in inflammation markers as a consequence of obesity, but others suggest that chronic inflammation might cause obesity (e.g., C-reactive protein): these assumptions reflect the difficulty of identifying the appropriate role of inflammation as cause or consequence of obesity and its related complications. Obesity is recognized as a clinical risk factor for developing cardiovascular diseases including atherosclerosis, metabolic syndrome, insulin resistance, and diabetes mellitus. Changes in the expression of inflammasomes are described in some of these obesity-related complications, and moreover, its modulation might exert a beneficial effect in some cases. Despite some contradictory results, most publications suggest a promising clinical effect based on in vitro and in vivo experiments. In this review, we summarized recent publications about inflammasome dysregulation in humans and its relationship with obesity-related comorbidities.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| |
Collapse
|
19
|
Ennis CS, Llevenes P, Qiu Y, Dries R, Denis GV. The crosstalk within the breast tumor microenvironment in type II diabetes: Implications for cancer disparities. Front Endocrinol (Lausanne) 2022; 13:1044670. [PMID: 36531496 PMCID: PMC9751481 DOI: 10.3389/fendo.2022.1044670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity-driven (type 2) diabetes (T2D), the most common metabolic disorder, both increases the incidence of all molecular subtypes of breast cancer and decreases survival in postmenopausal women. Despite this clear link, T2D and the associated dysfunction of diverse tissues is often not considered during the standard of care practices in oncology and, moreover, is treated as exclusion criteria for many emerging clinical trials. These guidelines have caused the biological mechanisms that associate T2D and breast cancer to be understudied. Recently, it has been illustrated that the breast tumor microenvironment (TME) composition and architecture, specifically the surrounding cellular and extracellular structures, dictate tumor progression and are directly relevant for clinical outcomes. In addition to the epithelial cancer cell fraction, the breast TME is predominantly made up of cancer-associated fibroblasts, adipocytes, and is often infiltrated by immune cells. During T2D, signal transduction among these cell types is aberrant, resulting in a dysfunctional breast TME that communicates with nearby cancer cells to promote oncogenic processes, cancer stem-like cell formation, pro-metastatic behavior and increase the risk of recurrence. As these cells are non-malignant, despite their signaling abnormalities, data concerning their function is never captured in DNA mutational databases, thus we have limited insight into mechanism from publicly available datasets. We suggest that abnormal adipocyte and immune cell exhaustion within the breast TME in patients with obesity and metabolic disease may elicit greater transcriptional plasticity and cellular heterogeneity within the expanding population of malignant epithelial cells, compared to the breast TME of a non-obese, metabolically normal patient. These challenges are particularly relevant to cancer disparities settings where the fraction of patients seen within the breast medical oncology practice also present with co-morbid obesity and metabolic disease. Within this review, we characterize the changes to the breast TME during T2D and raise urgent molecular, cellular and translational questions that warrant further study, considering the growing prevalence of T2D worldwide.
Collapse
Affiliation(s)
- Christina S. Ennis
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| | - Pablo Llevenes
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Yuhan Qiu
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Ruben Dries
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, United States
| | - Gerald V. Denis
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Shipley Prostate Cancer Research Professor, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
20
|
Provost G, Lavoie FB, Larbi A, Ng TP, Ying CTT, Chua M, Fulop T, Cohen AA. Novel approach to analysis of the immune system using an ungated model of immune surface marker abundance to predict health outcomes. Immun Ageing 2022; 19:35. [PMID: 35927749 PMCID: PMC9351261 DOI: 10.1186/s12979-022-00291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022]
Abstract
AbstractTraditionally, the immune system is understood to be divided into discrete cell types that are identified via surface markers. While some cell type distinctions are no doubt discrete, others may in fact vary on a continum, and even within discrete types, differences in surface marker abundance could have functional implications. Here we propose a new way of looking at immune data, which is by looking directly at the values of the surface markers without dividing the cells into different subtypes. To assess the merit of this approach, we compared it with manual gating using cytometry data from the Singapore Longitudinal Aging Study (SLAS) database. We used two different neural networks (one for each method) to predict the presence of several health conditions. We found that the model built using raw surface marker abundance outperformed the manual gating one and we were able to identify some markers that contributed more to the predictions. This study is intended as a brief proof-of-concept and was not designed to predict health outcomes in an applied setting; nonetheless, it demonstrates that alternative methods to understand the structure of immune variation hold substantial progress.
Collapse
|
21
|
Evaluation of Major Constituents of Medicinally Important Plants for Anti-Inflammatory, Antidiabetic and AGEs Inhibiting Properties: In Vitro and Simulatory Evidence. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196715. [PMID: 36235251 PMCID: PMC9571302 DOI: 10.3390/molecules27196715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Diabetes mellitus (DM) is a global health concern that is associated with several micro- and macrovascular complications. We evaluated several important medicinal plant constituents, including polyphenols and flavonoids, for α-glucosidase inhibition, AGEs’ inhibitory activities using oxidative and no-oxidative assays, the inhibition of protein cross link formation, 15-lipoxydenase inhibition and molecular docking. The molecular docking studies showed high binding energies of flavonoids for transcriptional regulars 1IK3, 3TOP and 4F5S. In the α-glucosidase inhibition assay, a significant inhibition was noted for quercitrin (IC50 7.6 µg/mL) and gallic acid (IC50 8.2 µg/mL). In the AGEs inhibition assays, quercetin showed significant results in both non-oxidative and (IC50 0.04 mg/mL) and oxidative assays (IC50 0.051 mg/mL). Furthermore, quercitrin showed inhibitory activity in the non-oxidative (IC50 0.05 mg/mL) and oxidative assays (IC50 0.34 mg/mL). A significant inhibition of protein cross link formation was observed by SDS-PAGE analysis. Quercitrin (65%) and quercetin (62%) showed significant inhibition of 15-lipoxygenase. It was thus concluded that flavonoids and other polyphenols present in plant extracts can be effective in management of diabetes and allied co-morbidities.
Collapse
|
22
|
Bharath LP, Hart SN, Nikolajczyk BS. T-cell Metabolism as Interpreted in Obesity-associated Inflammation. Endocrinology 2022; 163:6657752. [PMID: 35932471 PMCID: PMC9756079 DOI: 10.1210/endocr/bqac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/19/2022]
Abstract
The appreciation of metabolic regulation of T-cell function has exploded over the past decade, as has our understanding of how inflammation fuels comorbidities of obesity, including type 2 diabetes. The likelihood that obesity fundamentally alters T-cell metabolism and thus chronic obesity-associated inflammation is high, but studies testing causal relationships remain underrepresented. We searched PubMed for key words including mitochondria, obesity, T cell, type 2 diabetes, cristae, fission, fusion, redox, and reactive oxygen species to identify foundational and more recent studies that address these topics or cite foundational work. We investigated primary papers cited by reviews found in these searches and highlighted recent work with >100 citations to illustrate the state of the art in understanding mechanisms that control metabolism and thus function of various T-cell subsets in obesity. However, "popularity" of a paper over the first 5 years after publication cannot assess long-term impact; thus, some likely important work with fewer citations is also highlighted. We feature studies of human cells, supplementing with studies from animal models that suggest future directions for human cell research. This approach identified gaps in the literature that will need to be filled before we can estimate efficacy of mitochondria-targeted drugs in clinical trials to alleviate pathogenesis of obesity-associated inflammation.
Collapse
Affiliation(s)
- Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA 01845, USA
| | - Samantha N Hart
- Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Barbara S Nikolajczyk
- Correspondence: Barbara S. Nikolajczyk, PhD, Healthy Kentucky Research Bldg. Rm. 217, 760 Press Ave, Lexington, KY 40536, USA.
| |
Collapse
|
23
|
Golec M, Konka A, Fronczek M, Zembala-John J, Chrapiec M, Wystyrk K, Kasperczyk S, Brzoza Z, Bułdak RJ. The Antibody Response to the BNT162b2 mRNA COVID-19 Booster in Healthcare Workers: Association between the IgG Antibody Titers and Anthropometric and Body Composition Parameters. Vaccines (Basel) 2022; 10:1638. [PMID: 36298503 PMCID: PMC9611156 DOI: 10.3390/vaccines10101638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Research shows that in most people, two-dose vaccination helps to shape the humoral response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Further studies are required to learn about the vaccine's effectiveness after boosting. METHODS We conducted a prospective study among 103 healthcare workers (HCWs) from a regional multi-specialty hospital vaccinated with three doses of the BNT162b2 vaccine. We compared their immunoglobulin G (IgG) titers 14 days after the second dose with those 21 days after the booster. We also compared their anthropometric and body composition parameters with IgG concentrations at the same time points. RESULTS Twenty-one days after the booster, all study participants were seropositive. Their mean IgG antibody titers were significantly lower than 14 days after the second dose (158.94 AU/mL ± 90.34 AU/mL vs. 505.79 AU/mL ± 367.16 AU/mL). Post-booster Spearman's correlation analysis showed a significantly weak correlation between the IgG antibody titer and parameters related to muscle tissue and adipose tissue (including body fat mass). CONCLUSIONS The BNT162b2 booster stimulates the humoral response to a lesser extent than the two-dose BNT162b2 primary vaccination. The adipose and muscle tissue parameters show a weak positive correlation with the SARS-CoV-2 IgG antibody titers.
Collapse
Affiliation(s)
- Marlena Golec
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Adam Konka
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Martyna Fronczek
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, H. Jordana 38, 41-808 Zabrze, Poland
| | - Joanna Zembala-John
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
- Department of Medicine and Environmental Epidemiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, H. Jordana 19, 41-808 Zabrze, Poland
- Silesian Center for Heart Diseases in Zabrze, M. Curie-Skłodowskiej 9, 41-800 Zabrze, Poland
| | - Martyna Chrapiec
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Karolina Wystyrk
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, H. Jordana 19, 41-808 Zabrze, Poland
| | - Zenon Brzoza
- Department of Internal Diseases, Allergology, Endocrinology and Gastroenterology, Institute of Medical Sciences, University of Opole, Al. W. Witosa 26, 40-451 Opole, Poland
| | - Rafał Jakub Bułdak
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
24
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
25
|
Quincey A, Mohan S, Edderkaoui B. Monocyte Chemotactic Proteins Mediate the Effects of Hyperglycemia in Chondrocytes: In Vitro Studies. Life (Basel) 2022; 12:life12060836. [PMID: 35743867 PMCID: PMC9224901 DOI: 10.3390/life12060836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Chemokines are secreted by a large variety of cells. They are involved in controlling cell trafficking, maturation, and differentiation. However, the specific responses and effects of chemokines on specific skeletal cell types under high glucose conditions have not been investigated. Chondrocytes play an important role in osteoarthritis and fracture healing. Delayed fracture healing is one of the major health complications caused by diabetes, so the goal of this study was to evaluate the response of several chemokines to high glucose conditions in chondrocyte cells and analyze their role in the catabolic effect of hyperglycemia. ATDC5 chondrocytes were cultured in normal and high glucose media, and mRNA expression levels of several chemokines and chondrocyte differentiation markers were quantified. Bindarit, a specific inhibitor of monocyte chemotactic proteins (MCPs), was used to determine the role of MCPs in mediating the effects of high glucose conditions in chondrocyte cells. High glucose treatment upregulated the expression of three Mcps, as well as the expression of matrix metalloproteinase 13 (Mmp13) and Osteocalcin (Oc). Furthermore, bindarit treatment downregulated Mmp13 and Oc but upregulated Collagen 2 (Col2) mRNA levels in chondrocytes treated with high glucose. Moreover, treatment of chondrocytes with ascorbic acid reduced the effect of high glucose conditions on the expression of chemokines and Mmps. These data together suggest that MCPs mediate the catabolic effect of high glucose in chondrocytes.
Collapse
Affiliation(s)
- Adam Quincey
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare Systems, Loma Linda, CA 92357, USA; (A.Q.); (S.M.)
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare Systems, Loma Linda, CA 92357, USA; (A.Q.); (S.M.)
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA
| | - Bouchra Edderkaoui
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare Systems, Loma Linda, CA 92357, USA; (A.Q.); (S.M.)
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Correspondence:
| |
Collapse
|
26
|
Erfidan S, Dede S, Usta A, Yüksek V, Çetin S. The effect of quinoa (Chenopodium quinoa) on apoptotic, autophagic, antioxidant and inflammation markers in glucocorticoid-induced insulin resistance in rats. Mol Biol Rep 2022; 49:6509-6516. [PMID: 35618936 DOI: 10.1007/s11033-022-07479-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Insulin resistance plays an important role in predicting type 2 diabetes that may develops. This study was planned in order to investigate the beneficial effects of quinoa (Chenopodium quinoa) use in glucocorticoid induced-insulin resistance. METHODS AND RESULTS Forty-two rats were used as the material (experimental) groups: the control group (C), the quinoa-administered group (Q), the insulin resistance-created group (IR), the IR + metformin group (IM), the IR + quinoa for treatment group (IQ) and the quinoa + IR for prophylaxis group (QI). Blood glucose, insulin levels and HOMA-IR were found to be highest (p < 0.05) in the IR group (p < 0.05). Glucose levels decreased significantly with the administration of quinoa and approached the levels of the control, but the insulin levels and the HOMA-IR did not significantly change. It was also observed that other biochemical parameters (ALT, AST, ALP, total cholesterol, total protein, urea and creatinine) changed significantly in the IR group and approached the levels of the control group with the administration of quinoa. Apoptotic (BCL2 5, BAX 9, CAS 3), autophagic (SQSTM1 7, ATG5) and inflammation (IL-1β, TNF-α) genes were upregulated by 5-11-fold in the IR group. In the groups in which quinoa was administered for treatment and protection, all these genes were found to be upregulated to a lower extent than the IR group. Antioxidant genes (GPX1, SOD1) increased by nine to tenfold in the quinoa groups. CONCLUSION As a result, after administration of quinoa, it was determined that the glucose level increased due to experimental insulin resistance and the liver and kidney damage indicators decreased. It was determined that quinoa (Chenopodium quinoa) had significant beneficial effects on biochemical parameters and apoptotic, autophagic, antioxidant and inflammatory markers in experimental glucocorticoid-induced insulin resistance.
Collapse
Affiliation(s)
- Siber Erfidan
- Health Sciences Institute, Van Yuzuncu Yil University, Van, Turkey
| | - Semiha Dede
- Biochemistry Department, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Ayşe Usta
- Faculty of Science, Van Yuzuncu Yil University, Van, Turkey
| | - Veysel Yüksek
- Ozalp Regional High School, Van Yuzuncu Yil University, Van, Turkey
| | - Sedat Çetin
- Biochemistry Department, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
27
|
Klisic A, Radoman Vujacic I, Munjas J, Ninic A, Kotur-Stevuljevic J. Micro-ribonucleic acid modulation with oxidative stress and inflammation in patients with type 2 diabetes mellitus - a review article. Arch Med Sci 2022; 18:870-880. [PMID: 35832702 PMCID: PMC9266798 DOI: 10.5114/aoms/146796] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
In parallel with the rapid growth of obesity, there is also an increase in the prevalence of type 2 diabetes mellitus (T2D) worldwide. Due to its complications, cardiovascular diseases are the leading cause of death in those patients. In the last two decades, special attention has been given to oxidative stress and inflammation, as the underlying mechanisms related to T2D occurrence and progression. Moreover, micro-ribonucleic acids (miRNAs) as new genetic biomarkers take an important place in the investigation of different metabolic pathways of insulin signaling. In this review article, we discuss microRNA modulation with oxidative stress and inflammation in patients with T2D. Better insight into the novel potential therapeutic targets for treatment of diabetes and its complications is of utmost importance for public health.
Collapse
Affiliation(s)
- Aleksandra Klisic
- Primary Health Care Center, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Irena Radoman Vujacic
- Clinical Center of Montenegro, Department of Internal Medicine, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ana Ninic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Kotur-Stevuljevic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Magee MJ, Khakharia A, Gandhi NR, Day CL, Kornfeld H, Rhee MK, Phillips LS. Increased Risk of Incident Diabetes Among Individuals With Latent Tuberculosis Infection. Diabetes Care 2022; 45:880-887. [PMID: 35168250 PMCID: PMC9016736 DOI: 10.2337/dc21-1687] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/23/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE In cross-sectional U.S. studies, patients with diabetes had twice the prevalence of latent tuberculosis infection (LTBI) compared with those without diabetes. However, whether LTBI contributes to diabetes risk is unknown. We used longitudinal data to determine if LTBI is associated with increased diabetes incidence. RESEARCH DESIGN AND METHODS We conducted a retrospective cohort study among U.S. Veterans receiving care in the Veterans Health Administration from 2000 to 2015. Eligibility included all patients without preexisting diabetes who received a tuberculin skin test (TST) or interferon-γ release assay (IGRA). We excluded patients with a history of active TB and those diagnosed with diabetes before or within 2 years after LTBI testing. Patients were followed until diabetes diagnosis, death, or 2015. LTBI was defined as TST or IGRA positive. Incident diabetes was defined by use of ICD-9 codes in combination with a diabetes drug prescription. RESULTS Among 574,113 eligible patients, 5.3% received both TST/IGRA, 79.1% received TST only, and 15.6% received IGRA only. Overall, 6.6% had LTBI, and there were 2,535,149 person-years (PY) of follow-up after LTBI testing (median 3.2 years). The diabetes incidence rate (per 100,000 PY) was greater in patients with LTBI compared with those without (1,012 vs. 744; hazard ratio [HR] 1.4 [95% CI 1.3-1.4]). Increased diabetes incidence persisted after adjustment for covariates (adjusted HR [aHR] 1.2 [95% CI 1.2-1.3]) compared with those without LTBI. Among patients with LTBI, diabetes incidence was similar in those treated for LTBI compared with those who were not treated (aHR 1.0 [95% CI 0.9-1.1]). CONCLUSIONS Comprehensive longitudinal data indicate that LTBI is associated with increased diabetes incidence. These results have implications for people with LTBI, ∼25% of the global population.
Collapse
Affiliation(s)
- Matthew J. Magee
- Departments of Global Health and Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- School of Public Health, Georgia State University, Atlanta, GA
| | - Anjali Khakharia
- Atlanta VA Medical Center, Decatur, GA
- Department of Medicine and Geriatrics, Emory University School of Medicine, Atlanta, GA
| | - Neel R. Gandhi
- Departments of Global Health and Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Cheryl L. Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory University, Atlanta, GA
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Mary K. Rhee
- Atlanta VA Medical Center, Decatur, GA
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Lawrence S. Phillips
- Atlanta VA Medical Center, Decatur, GA
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
29
|
Hoopes EK, D'Agata MN, Berube FR, Ranadive SM, Patterson F, Farquhar WB, Edwards DG, Witman MA. Consistency where it counts: Sleep regularity is associated with circulating white blood cell count in young adults. Brain Behav Immun Health 2021; 13:100233. [PMID: 34589748 PMCID: PMC8474608 DOI: 10.1016/j.bbih.2021.100233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 02/24/2021] [Indexed: 02/09/2023] Open
Abstract
Background Sleep irregularity is predictive of poor health outcomes, and particularly those of cardiometabolic origins. The immune system is implicated in the pathogenesis of cardiometabolic diseases, however the relation between sleep regularity and immune cell profile is unclear. Methods and results Forty-two healthy young adults (20 ± 2 years) completed 14 days of 24-h wrist actigraphy followed by a morning blood sample to evaluate circulating white blood cells (WBC) and subtypes (neutrophils, lymphocytes, monocytes). Sleep regularity was operationalized as the standard deviation (SD) of nightly sleep duration and SD of sleep onset time. Every 60-min increase in sleep duration SD was associated with an estimated 2.7 ± 0.60 x103 cells/μL (p<0.001) increase in total WBC count, while every 60-min increase in sleep onset SD was associated with an estimated 2.4 ± 0.60 x103 cells/μL (p<0.001) increase in WBCs. Sleep duration SD was also associated with lymphocyte count (11.5 ± 3.8 cells/μL per 1-min increase, p<0.01), while sleep onset SD was associated with neutrophil (34.7 ± 9.8 cells/μL per 1-min increase, p<0.01) and monocyte counts (3.0 ± 0.9 cells/μL per 1-min increase, p<0.01). Sleep regularity metrics remained significantly associated with WBCs in a series of regressions which adjusted for sex, body mass index, resting blood pressure, mean sleep duration, physical activity, dietary sodium, and alcohol consumption. Conclusions Unfavorable associations between irregular sleep patterns and circulating immune cells are apparent in young adulthood. These findings contribute to the growing body of evidence suggesting that consistent sleep schedules are an important dimension of sleep and circadian health and may reduce excess chronic disease risk. Young adults with irregular sleep patterns have higher total white blood cell count. Sleep irregularity is also associated with neutrophils, lymphocytes, and monocytes. Associations remain significant after adjusting for several key confounders. Consistent sleep patterns may assist in preventing inflammatory-mediated diseases.
Collapse
Affiliation(s)
- Elissa K Hoopes
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Michele N D'Agata
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Felicia R Berube
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Freda Patterson
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Melissa A Witman
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
30
|
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev 2021; 174:87-113. [PMID: 33484736 PMCID: PMC8217111 DOI: 10.1016/j.addr.2021.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is a group of diseases characterized by high blood glucose levels due to patients' inability to produce sufficient insulin. Current interventions often require implants that can detect and correct high blood glucose levels with minimal patient intervention. However, these implantable technologies have not reached their full potential in vivo due to the foreign body response and subsequent development of fibrosis. Therefore, for long-term function of implants, modulating the initial immune response is crucial in preventing the activation and progression of the immune cascade. This review discusses the different molecular mechanisms and cellular interactions involved in the activation and progression of foreign body response (FBR) and fibrosis, specifically for implants used in diabetes. We also highlight the various strategies and techniques that have been used for immunomodulation and prevention of fibrosis. We investigate how these general strategies have been applied to implants used for the treatment of diabetes, offering insights on how these devices can be further modified to circumvent FBR and fibrosis.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gauree S Chendke
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
31
|
Mzimela NC, Sosibo AM, Ngubane PS, Khathi A. The changes that occur in the immune system during immune activation in pre-diabetic patients of all ethnicities, from the age of 25 to 45 years: a protocol for systematic review and meta-analysis. (Preprint). JMIR Res Protoc 2021; 11:e31619. [DOI: 10.2196/31619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
|
32
|
Eldakhakhny BM, Al Sadoun H, Choudhry H, Mobashir M. In-Silico Study of Immune System Associated Genes in Case of Type-2 Diabetes With Insulin Action and Resistance, and/or Obesity. Front Endocrinol (Lausanne) 2021; 12:641888. [PMID: 33927693 PMCID: PMC8078136 DOI: 10.3389/fendo.2021.641888] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Type-2 diabetes and obesity are among the leading human diseases and highly complex in terms of diagnostic and therapeutic approaches and are among the most frequent and highly complex and heterogeneous in nature. Based on epidemiological evidence, it is known that the patients suffering from obesity are considered to be at a significantly higher risk of type-2 diabetes. There are several pieces of evidence that support the hypothesis that these diseases interlinked and obesity may aggravate the risk(s) of type-2 diabetes. Multi-level unwanted alterations such as (epi-) genetic alterations, changes at the transcriptional level, and altered signaling pathways (receptor, cytoplasmic, and nuclear level) are the major sources that promote several complex diseases, and such a heterogeneous level of complexity is considered as a major barrier in the development of therapeutics. With so many known challenges, it is critical to understand the relationships and the shared causes between type-2 diabetes and obesity, and these are difficult to unravel and understand. For this purpose, we have selected publicly available datasets of gene expression for obesity and type-2 diabetes, have unraveled the genes and the pathways associated with the immune system, and have also focused on the T-cell signaling pathway and its components. We have applied a simplified computational approach to understanding differential gene expression and patterns and the enriched pathways for obesity and type-2 diabetes. Furthermore, we have also analyzed genes by using network-level understanding. In the analysis, we observe that there are fewer genes that are commonly differentially expressed while a comparatively higher number of pathways are shared between them. There are only 4 pathways that are associated with the immune system in case of obesity and 10 immune-associated pathways in case of type-2 diabetes, and, among them, only 2 pathways are commonly altered. Furthermore, we have presented SPNS1, PTPN6, CD247, FOS, and PIK3R5 as the overexpressed genes, which are the direct components of TCR signaling.
Collapse
Affiliation(s)
- Basmah Medhat Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hadeel Al Sadoun
- Stem Cell Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Cancer and Mutagenesis Unit, Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Mobashir
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Jeon HH, Yu Q, Witek L, Lu Y, Zhang T, Stepanchenko O, Son VJ, Spencer E, Oshilaja T, Shin MK, Alawi F, Coelho PG, Graves DT. Clinical application of a FOXO1 inhibitor improves connective tissue healing in a diabetic minipig model. Am J Transl Res 2021; 13:781-791. [PMID: 33594326 PMCID: PMC7868841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The forkhead box O1 (FOXO1) transcription factor plays a key role in wound healing process. Recently it has been reported that lineage-specific genetic ablation of FOXO1 significantly improves diabetic wound healing in a mouse model. To investigate the clinical usefulness of these findings, translational preclinical studies with a large animal model are needed. We report for the first time that the local application of a FOXO1 inhibitor (AS1842856) significantly improves connective tissue healing in a preclinical T2DM minipig model, reflected by increased collagen matrix formation, increased myofibroblast numbers, improved angiogenesis, and a shift in cell populations from pro-inflammatory (IL-1β+, TNF-α+ and iNOS+) to pro-healing (CD163+). Our results set up the basis for the clinical application of a FOXO1 antagonist in early diabetic wounds where there is impaired connective tissue healing.
Collapse
Affiliation(s)
- Hyeran H Jeon
- Department of Orthodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Quan Yu
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Orthodontics, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Lukasz Witek
- Biomaterials and Biomimetics, College of Dentistry, New York UniversityNew York, NY, USA
| | - Yongjian Lu
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Stomatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Tianshou Zhang
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Implantology, School and Hospital of Stomatology, Jilin UniversityChangchun, China
| | - Olga Stepanchenko
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Victoria J Son
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Evelyn Spencer
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Temitope Oshilaja
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Min K Shin
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Faizan Alawi
- Department of Basic & Translational Sciences, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Paulo G Coelho
- Biomaterials and Biomimetics, College of Dentistry, New York UniversityNew York, NY, USA
- Hansjörg Wyss Department of Plastic Surgery, Langone Medical Center, New York UniversityNew York, NY, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
34
|
Shen X, Shen X, Li B, Zhu W, Fu Y, Xu R, Du Y, Cheng J, Jiang H. Abnormal macrophage polarization impedes the healing of diabetes-associated tooth sockets. Bone 2021; 143:115618. [PMID: 32858254 DOI: 10.1016/j.bone.2020.115618] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023]
Abstract
Patients with poorly controlled type 2 diabetes mellitus (T2DM) often experience delayed tooth extraction socket (TES) healing. Delayed healing is often associated with an aberrant inflammatory response orchestrated by either M1 pro-inflammatory or M2 anti-inflammatory macrophages. However, the precise mechanism for the attenuated TES healing remains unclear. Here we used diet-induced T2DM mice as a model to study TES. Compared with the control group, the T2DM group showed delayed TES healing and diminished expression of osteogenic and angiogenic genetic profiles. Meanwhile, we detected a more inflammatory profile, with more M1 macrophages and TNF-α expression and less M2 macrophages and PPARγ expression, in TES in the T2DM group when compared to control mice. In vitro co-culture models showed that M1 macrophages inhibited the osteogenic capacity of bone marrow stromal cells and the angiogenic capacity of endothelial cells while M2 macrophages showed an opposite effect. In addition, we constructed a gelatin/β-TCP scaffold with IL-4 to induce macrophage transformation towards M2 polarization. In vitro analyses of the hybrid scaffold revealed sustained release of IL-4 and a phenotype switch to M2 macrophages. Finally, we demonstrated that sustained IL-4 release significantly increased expression of osteogenic and angiogenic genetic profiles and improved TES healing in T2DM mice. Together, we report that increased M1 and decreased M2 macrophage polarization may be responsible for delayed TES healing in T2DM patients through abnormal expression of TNF-α and PPARγ. This imbalance negatively influences osteogenesis and angiogenesis, two of the most important biological factors in bone wound healing. Enhancing M2 macrophage polarization with IL-4 delivery system may represent a potential strategy for promoting the healing of TES in T2DM patients.
Collapse
Affiliation(s)
- Xiang Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, China; Department of Stomatology, Affiliated Hospital of Nantong University, China
| | - Xin Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, China
| | - Bang Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, China
| | - Weiwen Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, China
| | - Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, China.
| |
Collapse
|
35
|
Mai Y, Peng S, Li H, Gao Y, Lai Z. NOD-like receptor signaling pathway activation: A potential mechanism underlying negative effects of benzo(α)pyrene on zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108935. [PMID: 33161151 DOI: 10.1016/j.cbpc.2020.108935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/11/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Benzo(α)pyrene (BaP) is one of typical polycyclic aromatic hydrocarbons (PAHs) in aquatic environments and has been shown to cause toxic effects to aquatic animals. Although the negative effects of BaP have been investigated, the potential toxic mechanisms remain uncharacterized. To explore the potential mechanisms mediating the toxic effects of BaP, zebrafish (Danio rerio) were exposed to BaP for 15 days and the toxic effects of BaP in zebrafish liver were investigated using physiological and transcriptomic analyses. After 15-day BaP exposure, zebrafish liver exhibited abnormalities including increased cytoplasmic vacuolation, inflammatory cell infiltration, swelled nuclei and irregular pigmentation. BaP exposure also induced oxidative stress to the liver of zebrafish. Transcriptomic profiles revealed 5129 differentially expressed genes (DEGs) after 15-days of BaP exposure, and the vast majority of DEGs were up-regulated under BaP treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggest that genes related to immune response were significantly dysregulated. Furthermore, the nucleotide-binding, oligomerization domain (NOD)-like receptor signaling pathway was significantly enriched and most of the genes in this pathway exhibited enhanced expression after BaP exposure. These results partially explained the mechanisms underlying the toxic effects of BaP on zebrafish liver. In conclusion, BaP has the potential to induce physiological responses in zebrafish liver through altering associated genes.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China
| | - Songyao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China
| | - Yuan Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China; Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, People's Republic of China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, People's Republic of China.
| |
Collapse
|
36
|
Kang M, Thalji G, Huang CC, Shirazi S, Lu Y, Ravindran S, Cooper LF. Macrophage Control of Incipient Bone Formation in Diabetic Mice. Front Cell Dev Biol 2021; 8:596622. [PMID: 33569378 PMCID: PMC7868429 DOI: 10.3389/fcell.2020.596622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Both soft and hard tissue wound healing are impaired in diabetes. Diabetes negatively impacts fracture healing, bone regeneration and osseointegration of endosseous implants. The complex physiological changes associated with diabetes often manifest in immunological responses to wounding and repair where macrophages play a prominent role in determining outcomes. We hypothesized that macrophages in diabetes contribute toward impaired osseous wound healing. To test this hypothesis, we compared osseous wound healing in the mouse calvaria defect model using macrophages from C57BL/6J and db/db mice to direct osseous repair in both mouse strains. Initial analyses revealed that db/db mice macrophages showed an inflamed phenotype in its resting state. Incipient bone regeneration evaluated by μCT indicated that bone regeneration was relatively impaired in the db/db mouse calvaria and in the calvaria of C57BL/6J mice supplemented with db/db macrophages. Furthermore, osteogenic differentiation of mouse mesenchymal stem cells was negatively impacted by conditioned medium from db/db mice compared to C57BL/6J mice. Moreover, miR-Seq analysis revealed an altered miRNA composition in db/db macrophages with up regulated pro-inflammatory miRNAs and down regulated anti-inflammatory miRNAs. Overall, this study represents a direct step toward understanding macrophage-mediated regulation of osseous bone regeneration and its impairment in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Miya Kang
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Ghadeer Thalji
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Chun-Chieh Huang
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Yu Lu
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Lyndon F Cooper
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
37
|
Paccosi S, Pala L, Cresci B, Silvano A, Cecchi M, Caporale R, Maria Rotella C, Parenti A. Insulin resistance and obesity affect monocyte-derived dendritic cell phenotype and function. Diabetes Res Clin Pract 2020; 170:108528. [PMID: 33157116 DOI: 10.1016/j.diabres.2020.108528] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
AIM Cardiovascular disease (CVD) is prevalent in women after menopause, which may be associated with obesity, insulin resistance and metaflammation. Despite the recognized role of immunological mechanisms in vascular remodeling, the role of dendritic cells (DCs) is still unclear. The aim was to characterize monocyte-derived DCs (Mo-DC) in post-menopausal patients with type 2 diabetes (T2DM) and obese woman, without clinical manifestations of atherosclerosis. METHODS Obese post-menopausal women with or without T2DM were enrolled and were compared to age-matched healthy women. DCs obtained from patients were phenotypically and functionally characterized by flow cytometry and mixed lymphocyte reaction. MRNA integrins expression was assessed by real time RT-PCR; circulating fetuin-A and adiponectin levels were measured by ELISA. RESULTS Phenotypic dysregulation of Mo-DC reported was related to a defective allogenic lymphocyte stimulation and to an increased mRNA of CD11c, CD18 and DC-SIGN/CD209 which regulate their adhesion to vascular wall cells. Fetuin-A and adiponectin levels were significantly altered and negatively correlated. Hyperglycaemia significantly impaired CD14+ transdifferentiation into Mo-DC. CONCLUSIONS These data show a dysfunction of Mo-DCs obtained from precursors isolated from T2DM obese post-menopausal woman without any documented clinical CV event. Association of obesity to diabetes seems to worsen DC's phenotype and function and increase vascular inflammation.
Collapse
Affiliation(s)
- Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Laura Pala
- Diabetology, Careggi University Hospital, Florence, Italy
| | - Barbara Cresci
- Diabetology, Careggi University Hospital, Florence, Italy
| | - Angela Silvano
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Marta Cecchi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Roberto Caporale
- Cytofluorimetry and Immunotherapy Diagnostic Center, Careggi University Hospital, Florence, Italy
| | - Carlo Maria Rotella
- Department of Biomedical Clinical and Experimental Sciences, Endocrine Unit, University of Florence, Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy.
| |
Collapse
|
38
|
Ubiquitin fold modifier 1 activates NF-κB pathway by down-regulating LZAP expression in the macrophage of diabetic mouse model. Biosci Rep 2020; 40:221481. [PMID: 31829413 PMCID: PMC6944655 DOI: 10.1042/bsr20191672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory response is closely related with the development of many serious health problems worldwide including diabetes mellitus (DM). Ubiquitin-fold modifer 1 (Ufm1) is a newly discovered ubiquitin-like protein, while its function remains poorly investigated, especially in inflammatory response and DM. In the present study, we analyzed the role of Ufm1 on inflammatory response in DM, and found that the proinflammatory cytokine levels (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β) and Ufm1 expression were highly increased both in the peritoneal macrophages of db/db mice and Raw264.7 cells induced by lipopolysaccharide (LPS). Western blot and luciferase reporter assay showed that NF-κB pathway was obviously activated in macrophages and the expression of LZAP, an inhibitor of NF-κB pathway, was down-regulated. With the LZAP knockdown plasmid and activation plasmid, we demonstrated that NF-κB/p65 activation was inhibited by LZAP in macrophages. The interaction of Ufm1 and LZAP was further proved with co-immunoprecipitation assay in HEK293 and Raw264.7 cells. The LZAP expression was also related with the presence of Ufm1 demonstrated by Ufm1 knockdown plasmid and activation plasmid. Besides that, we finally proved that the expression and activation of Ufm1 induced by LPS were regulated by JNK/ATF2 and JNK/c-Jun pathway with the use of SP600125. In conclusion, the present study demonstrated that Ufm 1 could activate NF-κB pathway by down-regulating LZAP in macrophage of diabetes, and its expression and activation were regulated by JNK/ATF2 and c-Jun pathway.
Collapse
|
39
|
Fagninou A, Nekoua MP, Sossou D, Moutairou K, Fievet N, Yessoufou A. Th2-Immune Polarizing and Anti-Inflammatory Properties of Insulin Are Not Effective in Type 2 Diabetic Pregnancy. J Immunol Res 2020; 2020:2038746. [PMID: 32626786 PMCID: PMC7312550 DOI: 10.1155/2020/2038746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The implication of the immune system in the physiopathology of pregnancy complicated by diabetes has been reported. Here, we investigated the effects of insulin treatment on the frequencies of immune cell subpopulations as well as T cell-derived cytokines in type 2 diabetic (T2D) pregnancy compared to gestational diabetes mellitus (GDM). METHODS Fifteen (15) women with GDM, twenty (20) insulin-treated T2D pregnant women, and twenty-five (25) pregnant controls were selected. Immune cell subpopulation frequencies were determined in blood using flow cytometry. The proliferative capacity of T cells was performed, and serum and cell culture supernatant cytokine levels were also quantified. RESULTS The frequencies of total CD3+ and CD4+ T cells and nonclassical monocytes significantly increased in insulin-treated T2D pregnant women compared to pregnant controls. The proportions of CD4+ T cells as well as B cells were significantly higher in women with GDM than in pregnant controls. GDM was associated with high frequencies of total CD3+ and CD4+ T cells and B cell expansion, suggesting a concomitant activation of cellular and humoral immunity. Concomitantly, Th1/Th2 ratio, determined as IFN-γ/IL-4, was shifted towards Th1 phenotype in women with GDM and insulin-treated T2D pregnant women. Besides, isolated T cells elicited similar proliferative capacity in the three groups of women. Insulin-treated T2D pregnant women and women with GDM exhibited a low serum IL-10 level, without any change in the number of Treg cells. CONCLUSION Our study showed that, despite insulin treatment, pregnant women with T2D displayed a proinflammatory status consistent with high proportions of CD3+ and CD4+ T cells, upregulation of Th1 cytokines, and low IL-10 production, suggesting a reduced immune-suppressive activity of regulatory T cells. However, GDM, although associated with proinflammatory status, has shown increased humoral immunity consistent with high proportion of CD19+ B cells. Thus, the lack of response to insulin in diabetes during pregnancy and clinical implications of these immunological parameters deserves further investigations.
Collapse
Affiliation(s)
- Adnette Fagninou
- Faculty of Sciences and Technology (FAST), University of Abomey-Calavi, Institute of Applied Biomedical Sciences (ISBA), Laboratory of Cell Biology and Physiology, 01 BP 526 Cotonou, Benin
| | - Magloire Pandoua Nekoua
- Faculty of Sciences and Technology (FAST), University of Abomey-Calavi, Institute of Applied Biomedical Sciences (ISBA), Laboratory of Cell Biology and Physiology, 01 BP 526 Cotonou, Benin
| | - Darius Sossou
- Center for Study and Research on Malaria Associated with Pregnancy and Childhood (CERPAGE) and IRD-UMR261, Cotonou, Benin
| | - Kabirou Moutairou
- Faculty of Sciences and Technology (FAST), University of Abomey-Calavi, Institute of Applied Biomedical Sciences (ISBA), Laboratory of Cell Biology and Physiology, 01 BP 526 Cotonou, Benin
| | - Nadine Fievet
- Center for Study and Research on Malaria Associated with Pregnancy and Childhood (CERPAGE) and IRD-UMR261, Cotonou, Benin
| | - Akadiri Yessoufou
- Faculty of Sciences and Technology (FAST), University of Abomey-Calavi, Institute of Applied Biomedical Sciences (ISBA), Laboratory of Cell Biology and Physiology, 01 BP 526 Cotonou, Benin
| |
Collapse
|
40
|
Hank T, Sandini M, Qadan M, Weniger M, Ciprani D, Li A, Ferrone CR, Warshaw AL, Lillemoe KD, Fernández-Del Castillo C. Diabetes mellitus is associated with unfavorable pathologic features, increased postoperative mortality, and worse long-term survival in resected pancreatic cancer. Pancreatology 2020; 20:125-131. [PMID: 31706821 DOI: 10.1016/j.pan.2019.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The risk of pancreatic ductal adenocarcinoma (PDAC) is increased in patients with diabetes mellitus (DM), particularly in those with new-onset DM. However, the impact of DM on outcomes following pancreatic surgery is not fully understood. We sought to explore the effects of DM on post-resection outcomes in patients undergoing either upfront resection or following neoadjuvant treatment (NAT). METHODS Resections for PDAC between 2007 and 2016 were identified from a prospectively-maintained database. Data on demographics, pathology, and perioperative outcomes were compared between patients with or without DM. Survival analysis was performed using Kaplan-Meier curves and adjusted for confounders by a Cox-proportional hazards model. RESULTS 662 patients were identified, of whom 277 (41.8%) had DM. Diabetics were more likely to be male, had higher BMI, and higher ASA-scores. At pathology, DM was associated with larger tumors (30 vs. 26 mm; p = 0.041), higher rates of lymph-node involvement (69% vs. 59%; p = 0.031) and perineural invasion (88% vs. 82%; p = 0.026). Despite having similar rates of complications, diabetics experienced higher 30-day mortality (3.2% vs. 0.8%; p = 0.019). Median overall survival was worse in diabetic patients (18 vs. 34 months; p < 0.001); this effect was more pronounced in patients with NAT (18 vs. 54 months; p < 0.001). At multivariate analysis, DM was confirmed as an independent predictor of post-resection survival. CONCLUSION DM is a common comorbidity in PDAC and is associated with unfavorable pathology, as well as worse postoperative and oncologic outcomes. The blunted effect on survival is more pronounced in patients who undergo resection following NAT.
Collapse
Affiliation(s)
- Thomas Hank
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marta Sandini
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maximilian Weniger
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Debora Ciprani
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Annie Li
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew L Warshaw
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Keith D Lillemoe
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
41
|
Purnamasari D, Khumaedi AI, Soeroso Y, Marhamah S. The influence of diabetes and or periodontitis on inflammation and adiponectin level. Diabetes Metab Syndr 2019; 13:2176-2182. [PMID: 31235154 DOI: 10.1016/j.dsx.2019.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/21/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND In Indonesia, most of diabetic patients had periodontitis and 75.3% of them had severe periodontitis. Previous study found that hyperglycemia and or local inflammation (such as periodontitis) modulated systemic pro-inflammatory and anti-inflammatory cytokines. AIMS This study aimed to investigate the effect of DM and or periodontitis on systemic cytokines and adipocytokines levels. METHODS AND MATERIALS A total of 57 participants with age of 29-71 years were recruited for this study. We divided them into three groups; DM-periodontitis (n = 22), periodontitis without DM (n = 16) and control (n = 19). All participants underwent physical examinations (BMI, WC, periodontal status examination) and laboratory examinations (FBG, fasting insulin, CRP, adiponektin, leptin, TNF-α and IL-10). RESULTS The proportion of severe periodontitis were higher in DM-periodontitis group compared to periodontitis without DM (77.3% vs 6.2%). DM-periodontitis group had lower adiponectin levels than that of periodontitis without DM group [5860.78 ± 4182.40 vs 9553.13 ± 6794.73; p = 0.046]. TNF-α/IL-10 ratio was significantly higher in the periodontitis without DM compared to control group [1.96 (1.68-2.32) vs 1.55 (1.27-1.85); p = 0.015]. CONCLUSION Local inflammation such as periodontitis, elevated systemic inflammatory markers (TNF-α/IL-10 ratio). Meanwhile chronic hyperglycemia alter adipocytokines level. The changes of systemic inflammation among diabetic group had not been shown yet in this study since some antidiabetic and antilipid drugs possess anti-inflammtory effect. Age, WC and FBG correlated with severe periodontitis. Adiponectin, leptin, TNF-α and IL-10 levels did not correlated with severe periodontitis.
Collapse
Affiliation(s)
- Dyah Purnamasari
- Division of Endocrinology, Departement of Internal Medicine, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Indonesia.
| | - Anandhara I Khumaedi
- Departement of Internal Medicine, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Indonesia.
| | - Yuniarti Soeroso
- Department of Periodontia, Dentistry Unit, Cipto Mangunkusumo Hospital, Indonesia.
| | - Siti Marhamah
- Department of Periodontia, Dentistry Unit, Cipto Mangunkusumo Hospital, Indonesia.
| |
Collapse
|
42
|
Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, Deftereos S, Tousoulis D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur Cardiol 2019; 14:50-59. [PMID: 31131037 PMCID: PMC6523054 DOI: 10.15420/ecr.2018.33.1] [Citation(s) in RCA: 682] [Impact Index Per Article: 136.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a complex metabolic disorder affecting the glucose status of the human body. Chronic hyperglycaemia related to diabetes is associated with end organ failure. The clinical relationship between diabetes and atherosclerotic cardiovascular disease is well established. This makes therapeutic approaches that simultaneously target diabetes and atherosclerotic disease an attractive area for research. The majority of people with diabetes fall into two broad pathogenetic categories, type 1 or type 2 diabetes. The role of obesity, adipose tissue, gut microbiota and pancreatic beta cell function in diabetes are under intensive scrutiny with several clinical trials to have been completed while more are in development. The emerging role of inflammation in both type 1 and type 2 diabetes (T1D and T1D) pathophysiology and associated metabolic disorders, has generated increasing interest in targeting inflammation to improve prevention and control of the disease. After an extensive review of the possible mechanisms that drive the metabolic pattern in T1D and T2D and the inflammatory pathways that are involved, it becomes ever clearer that future research should focus on a model of combined suppression for various inflammatory response pathways.
Collapse
Affiliation(s)
- Sotirios Tsalamandris
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Alexios S Antonopoulos
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Evangelos Oikonomou
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - George-Aggelos Papamikroulis
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Georgia Vogiatzi
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Spyridon Papaioannou
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Spyros Deftereos
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Dimitris Tousoulis
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| |
Collapse
|
43
|
Lyu M, Zheng Y, Jia L, Zheng Y, Liu Y, Lin Y, Di P. Genome-wide DNA-methylation profiles in human bone marrow mesenchymal stem cells on titanium surfaces. Eur J Oral Sci 2019; 127:196-209. [PMID: 30791149 DOI: 10.1111/eos.12607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
The characteristics of titanium (Ti) have been shown to influence dental implant fixation. Treatment of surfaces using the sandblasted, large-grit, acid-etched (SLA) method is widely used to provide effective osseointegration. However, the DNA methylation-associated mechanism by which SLA surface treatment affects osseointegration of human bone marrow mesenchymal stem cells (hBMSCs) remains elusive. Genome-wide methylation profiling of hBMSCs on SLA-treated and machined smooth Ti was performed using Illumina Infinium Methylation EPIC BeadChip at day 7 of osteogenic induction. In total, 2,846 CpG sites were differentially methylated in the SLA group compared with the machined group. Of these sites, 1,651 (covering 1,066 genes) were significantly hypermethylated and 1,195 (covering 775 genes) were significantly hypomethylated. Thirty significant enrichment pathways were observed, with Wnt signaling being the most significant. mRNA expression was identified by microarray and combined with DNA-methylation profiles. Thirty-seven genes displayed negative association between mRNA expression and DNA-methylation level, with the osteogenesis-related genes insulin-like growth factor 2 (IGF2) and carboxypeptidase X, M14 Family Member 2 (CPXM2) showing significant up-regulation and down-regulation, respectively. In summary, our results demonstrate differences between SLA-treated and machined surfaces in their effects on genome-wide DNA methylation and enrichment of osteogenic pathways in hBMSCs. We provide novel insights into genes and pathways affected by SLA treatment in hBMSCs at the molecular level.
Collapse
Affiliation(s)
- Mingyue Lyu
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Zheng
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yanping Liu
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ye Lin
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ping Di
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
44
|
Mzimela NC, Ngubane PS, Khathi A. The changes in immune cell concentration during the progression of pre-diabetes to type 2 diabetes in a high-fat high-carbohydrate diet-induced pre-diabetic rat model. Autoimmunity 2019; 52:27-36. [PMID: 30776930 DOI: 10.1080/08916934.2019.1575820] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pre-diabetes is a long-lasting condition that precedes type 2 diabetes (T2D). T2D has been shown to suppress the immune response. However, it remains unclear if immune activation occurs before the onset of T2D during the progression of the pre-diabetic state. This study sought to characterize the changes in general immunity occurring during the progression from pre-diabetes to T2D. Male rats were fed a high-fat high-carbohydrate diet for 20 weeks (pre-diabetes induction period) and kept on the same diet being monitored for a further 12 weeks (experimental period). Blood was collected for haemocytometer analysis on week 0, 4, 8, and 12 of the experimental period after which the animals were sacrificed. Plasma was collected from centrifuged blood for ELISA (TNF-α, CRP, P-selectin, CD40 L, fibrinogen, and IL-6). Blood neutrophils percentage significantly decreased at week 12 possibly due to recruited neutrophils migrating to an inflamed area such as visceral adipose tissue as further observed. Due to hyperglycaemia, there was significant increase in blood lymphocytes percentage at week 12. Blood monocytes percentage significantly increased at week 12. Monocytes recruited and circulated in blood due to hyperglycaemia for glucose uptake to decrease it from circulation. Blood eosinophils percentage significantly decreased at week 12. Eosinophils migrated to inflamed areas such as visceral adipose tissue as further observed. Blood basophils percentage significantly increased due to their recruitment and activation. TNF-α, CRP, and IL-6 increased significantly after 12 weeks. There was also upregulation of fibrinogen, P-selectin, and CD40L. The results of this study show that there are changes in immune cells concentration and that immune cells such as neutrophils and eosinophils migrate to inflamed areas such as adipose tissue. There is also upregulation of various inflammatory cytokines. Based on these findings, immune activation begins during the pre-diabetic state as there is upregulation of inflammatory markers.
Collapse
Affiliation(s)
- Nomusa Christina Mzimela
- a Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| | - Phikelelani Siphosethu Ngubane
- a Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| | - Andile Khathi
- a Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| |
Collapse
|
45
|
Zhuang Y, Zhang J, Li Y, Gu H, Zhao J, Sun Y, Wang R, Zhang C, Chen W, Weng J, Qi L, Lu H, Zhang J, Liu Q, He Y, Xu X. B Lymphocytes Are Predictors of Insulin Resistance in Women with Gestational Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2019; 19:358-366. [PMID: 30621567 PMCID: PMC7040503 DOI: 10.2174/1871530319666190101130300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/12/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
Backgroud: The present study aimed to investigate the association between immune cells and gestational diabetes mellitus (GDM) and identify a reasonable predictor of insulin resistance in women with GDM. OBJECTIVE The clinical and biochemical characteristics of 124 women with GDM and 168 healthy pregnant women were compared. METHODS The percentage of immune cells in the blood of the subjects was analyzed by flow cytometry. Pearson's correlation analysis revealed the correlation between the percentage of B lymphocytes and insulin resistance. A cutoff point was determined for the percentage of B lymphocytes, based on insulin resistance, using receiver operating characteristic (ROC) curves. RESULTS Compared to the healthy pregnant women, the percentages of B lymphocytes and IgA produced by B-cells were significantly different in women with GDM. The percentage of B lymphocytes was positively related to insulin resistance.The number of 14.05% of B lymphocytes was an optimal cutoff point that predicted the insulin resistance in women with GDM. CONCLUSION The percentage of B lymphocytes was positively associated with insulin resistance, and hence, might serve as an appropriate predictor of insulin resistance in women with GDM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yinyan He
- Address correspondence to this author at the Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Shanghai 200080, China; Tel: +86-21-63240090-3071; E-mail:
| | | |
Collapse
|
46
|
de Candia P, Prattichizzo F, Garavelli S, De Rosa V, Galgani M, Di Rella F, Spagnuolo MI, Colamatteo A, Fusco C, Micillo T, Bruzzaniti S, Ceriello A, Puca AA, Matarese G. Type 2 Diabetes: How Much of an Autoimmune Disease? Front Endocrinol (Lausanne) 2019; 10:451. [PMID: 31333589 PMCID: PMC6620611 DOI: 10.3389/fendo.2019.00451] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/21/2019] [Indexed: 01/12/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by a progressive status of chronic, low-grade inflammation (LGI) that accompanies the whole trajectory of the disease, from its inception to complication development. Accumulating evidence is disclosing a long list of possible "triggers" of inflammatory responses, many of which are promoted by unhealthy lifestyle choices and advanced age. Diabetic patients show an altered number and function of immune cells, of both innate and acquired immunity. Reactive autoantibodies against islet antigens can be detected in a subpopulation of patients, while emerging data are also suggesting an altered function of specific T lymphocyte populations, including T regulatory (Treg) cells. These observations led to the hypothesis that part of the inflammatory response mounting in T2D is attributable to an autoimmune phenomenon. Here, we review recent data supporting this framework, with a specific focus on both tissue resident and circulating Treg populations. We also propose that selective interception (or expansion) of T cell subsets could be an alternative avenue to dampen inappropriate inflammatory responses without compromising immune responses.
Collapse
Affiliation(s)
- Paola de Candia
- IRCCS MultiMedica, Milan, Italy
- *Correspondence: Paola de Candia
| | | | - Silvia Garavelli
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
- Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Francesca Di Rella
- Dipartimento di Senologia, Oncologia Medica, IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Maria Immacolata Spagnuolo
- Dipartimento di Scienze Mediche Traslazionali, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Alessandra Colamatteo
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Clorinda Fusco
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Teresa Micillo
- Dipartimento di Biologia, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Antonio Ceriello
- IRCCS MultiMedica, Milan, Italy
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Annibale A. Puca
- IRCCS MultiMedica, Milan, Italy
- Dipartimento di Medicina e Chirurgia, Università di Salerno, Baronissi, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- Giuseppe Matarese
| |
Collapse
|
47
|
Magee MJ, Salindri AD, Gujral UP, Auld SC, Bao J, Haw JS, Lin HH, Kornfeld H. Convergence of non-communicable diseases and tuberculosis: a two-way street? Int J Tuberc Lung Dis 2018; 22:1258-1268. [PMID: 30355404 PMCID: PMC6281291 DOI: 10.5588/ijtld.18.0045] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The intersection of tuberculosis (TB) with non-communicable diseases (NCDs), including diabetes mellitus (DM), chronic lung disease (CLD), and cardiovascular disease (CVD), has emerged as a critical clinical and public health challenge. Rapidly expanding NCD epidemics threaten TB control in low- and middle-income countries, where the prevention and treatment of TB disease remain a great burden. However, to date, the notion that TB may adversely impact NCD risk and severity has not been well explored. This review summarizes biomedical hypotheses, findings from animal models, and emerging epidemiologic data related to the progression of DM, CLD and CVD during and after active TB disease. We conclude that there is sufficient empirical evidence to justify a greater research emphasis on the syndemic interaction between TB and NCD.
Collapse
Affiliation(s)
- Matthew J Magee
- Division of Epidemiology and Biostatistics, Georgia State University
| | - Argita D Salindri
- Division of Epidemiology and Biostatistics, Georgia State University
| | - Unjali P Gujral
- Global Diabetes Research Center, Rollins School of Public Health, Emory University
| | - Sara C Auld
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine
| | - Jing Bao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - J Sonya Haw
- Division of Endocrinology, Metabolism and Lipids, Emory University School of Medicine
| | | | - H Kornfeld
- Department of Medicine, University of Massachusetts Medical School
| |
Collapse
|
48
|
Abbasi MA, Hassan M, Ur-Rehman A, Siddiqui SZ, Hussain G, Shah SAA, Ashraf M, Shahid M, Seo SY. 2-Furoic piperazide derivatives as promising drug candidates of type 2 diabetes and Alzheimer's diseases: In vitro and in silico studies. Comput Biol Chem 2018; 77:72-86. [PMID: 30245349 DOI: 10.1016/j.compbiolchem.2018.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023]
Abstract
The heterocyclic compounds have been extensively reported for their bioactivity potential. The current research work reports the synthesis of some new multi-functional derivatives of 2-furoic piperazide (1; 1-(2-furoyl)piperazine). The synthesis was initiated by reacting the starting compound 1 with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) in a basic, polar and protic medium to obtain the parent sulfonamide 3 which was then treated with different electrophiles, 4a-g, in a polar and aprotic medium to acquire the designed molecules, 5a-g. These convergent derivatives were evaluated for their inhibitory potential against α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Acarbose was used as a reference standard for α-glucosidase inhibition while eserine for AChE and BChE inhibition. Some of the synthesized compounds were identified as promising inhibitors of these three enzymes and their bioactivity potentials were also supported by molecular docking study. The most active compounds among the synthetic analogues might be helpful in drug discovery and development for the treatment of type 2 diabetes and Alzhiemer's diseases.
Collapse
Affiliation(s)
- Muhammad Athar Abbasi
- College of Natural Science, Department of Biological Sciences, Kongju National University, Gongju, 32588, South Korea; Department of Chemistry, Government College University, Lahore, 54000, Pakistan.
| | - Mubashir Hassan
- College of Natural Science, Department of Biological Sciences, Kongju National University, Gongju, 32588, South Korea
| | - Aziz Ur-Rehman
- Department of Chemistry, Government College University, Lahore, 54000, Pakistan
| | | | - Ghulam Hussain
- Department of Chemistry, Government College University, Lahore, 54000, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy and Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Level 9, FF3, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sung Yum Seo
- College of Natural Science, Department of Biological Sciences, Kongju National University, Gongju, 32588, South Korea.
| |
Collapse
|
49
|
Wang X, Ma A, Han X, Chan L, Liang H, Litifu A, Xue F. T Cell Profile was Altered in Pulmonary Tuberculosis Patients with Type 2 Diabetes. Med Sci Monit 2018; 24:636-642. [PMID: 29385117 PMCID: PMC5801605 DOI: 10.12659/msm.905651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Studies have suggested that type 2 diabetes (T2D) increases the risk of active pulmonary tuberculosis (TB) infection. T2D might exacerbate TB severity and adversely impact the treatment of TB patients by suppressing the immune response of TB. However, how the immune cell profiles are changed in Chinese TB patients with coincident of T2D compared with TB patients without T2D is still unclear. Material/Methods To explore the immune cell profile alteration in TB patients with T2D, we collected blood samples from 46 TB patients with or without T2D and measured the profiles of T cell subsets. Results We found TB patients with coincident of T2D had higher percentages of Th2 and Th17 cells after TB antigens stimulation, while they had unchanged Th1 cells and decreased CD8+ cytotoxic T cells compared to TB patients without T2D. However, no significant difference in baseline percentages of these T cells subsets was observed. Conclusions T2D has important impacts on regulating anti-TB immunity by increasing Th2 and Th17 cell differentiation, but reducing the activity of CD8+ T cells. Our study supports the need to perform longitudinal studies to evaluate the roles of immunological interaction between T2D and TB in TB development.
Collapse
Affiliation(s)
- Xianhua Wang
- The Institute of Human Nutrition, Medical College of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Aiguo Ma
- The Institute of Human Nutrition, Medical College of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Xiuxia Han
- The Institute of Human Nutrition, Medical College of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Lei Chan
- The Institute of Human Nutrition, Medical College of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Hui Liang
- The Institute of Human Nutrition, Medical College of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Aishan Litifu
- Department of Respiratory Medicine, Xinjiang Uygur Autonomous Region Chest Hospital, Urumqi, Xinjiang, China (mainland)
| | - Feng Xue
- Department of Tuberculosis, The Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
50
|
Andreone L, Gimeno ML, Perone MJ. Interactions Between the Neuroendocrine System and T Lymphocytes in Diabetes. Front Endocrinol (Lausanne) 2018; 9:229. [PMID: 29867762 PMCID: PMC5966545 DOI: 10.3389/fendo.2018.00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
It is well established that there is a fine-tuned bidirectional communication between the immune and neuroendocrine tissues in maintaining homeostasis. Several types of immune cells, hormones, and neurotransmitters of different chemical nature are involved as communicators between organs. Apart of being key players of the adaptive arm of the immune system, it has been recently described that T lymphocytes are involved in the modulation of metabolism of several tissues in health and disease. Diabetes may result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Herein, we discuss accumulating data regarding the role of the adaptive arm of the immune system in the pathogenesis of diabetes; including the action of several hormones and neurotransmitters influencing on central and peripheral T lymphocytes development and maturation, particularly under the metabolic burden triggered by diabetes. In addition, we comment on the role of T-effector lymphocytes in adipose and liver tissues during diabetes, which together enhances pancreatic β-cell stress aggravating the disease.
Collapse
|