1
|
Jiang M, Yang Y, Niu L, Li P, Chen Y, Liao P, Wang Y, Zheng J, Chen F, He H, Li H, Chen X. MiR-125b-5p modulates the function of regulatory T cells in tumor microenvironment by targeting TNFR2. J Immunother Cancer 2022; 10:jitc-2022-005241. [PMID: 36319063 PMCID: PMC9628696 DOI: 10.1136/jitc-2022-005241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Tumor necrosis factor receptor type 2 (TNFR2) is primarily expressed by CD4+FoxP3+ regulatory T cells (Tregs), especially those present in tumor microenvironment. There is compelling evidence that TNFR2 plays a crucial role in the activation, expansion, and phenotypic stability of Tregs and promotes tumor immune evasion. Understanding of epigenetic regulation of TNFR2 expression in Tregs may help device a novel strategy in cancer immunotherapy. METHODS MiR-125b-5p-overexpressing or knockdown murine CD4 T cells and Tregs were constructed, and the effect of miR-125b-5p on Tregs proliferation, suppressive function and TNFR2 expression were examined. In vivo antitumor efficacy of Ago-125b-5p (miR-125b-5p agomir) was evaluated in MC38 tumor bearing mice, and tumor-infiltrating Tregs and CD8+ cytotoxic T lymphocytes (CTLs) were analyzed. RNA-seq analysis was applied to reveal the genes and signaling pathways regulated by miR-125b-5p in Tregs. RESULTS In this study, we found that TNFR2 was a direct target of miR-125b-5p. Overexpression of miR-125b-5p decreased the proportion of Tregs and their expression of TNFR2 and consequently inhibited its proliferation and suppressive function by regulating the metabolism-related signaling pathways. Moreover, in colon cancer bearing mice, the administration of Ago-125b-5p markedly inhibited the tumor growth, which was associated with reduction of Tregs and increase of IFNγ+CD8+ T cells in tumor environment. Furthermore, in human colon adenocarcinoma patients, we verified that miR-125b-5p expression was downregulated, and low levels of miR-125b-5p were associated with poor prognosis. Interestingly, the expression of miR-125b-5p and TNFR2 were negatively correlated. CONCLUSIONS Our study for the first time found that the expression of TNFR2 by Tregs was regulated by miR-125b-5p. Our results showed that miR-125b-5p had the capacity to inhibit the expression of TNFR2 and immunosuppressive activity of Tregs and consequently enhanced the antitumor efficacy. This property of miR-125b-5p may be therapeutically harnessed in the treatment of human cancers.
Collapse
Affiliation(s)
- Mengmeng Jiang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Yang Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Liling Niu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China,National Clinical Research Center for Cancer, Tianjin, China
| | - Ping Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Yibo Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Ping Liao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Yifei Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Jingbin Zheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Fengyang Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Huanhuan He
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China,National Clinical Research Center for Cancer, Tianjin, China
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China,Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau, China,MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, China
| |
Collapse
|
2
|
Guo K, Ma S. The Immune System in Transfusion-Related Acute Lung Injury Prevention and Therapy: Update and Perspective. Front Mol Biosci 2021; 8:639976. [PMID: 33842545 PMCID: PMC8024523 DOI: 10.3389/fmolb.2021.639976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
As an initiator of respiratory distress, transfusion-related acute lung injury (TRALI) is regarded as one of the rare complications associated with transfusion medicine. However, to date, the pathogenesis of TRALI is still unclear, and specific therapies are unavailable. Understanding the mechanisms of TRALI may promote the design of preventive and therapeutic strategies. The immune system plays vital roles in reproduction, development and homeostasis. Sterile tissue damage, such as physical trauma, ischemia, or reperfusion injury, induces an inflammatory reaction that results in wound healing and regenerative mechanisms. In other words, in addition to protecting against pathogens, the immune response may be strongly associated with TRALI prevention and treatment through a variety of immunomodulatory strategies to inhibit excessive immune system activation. Immunotherapy based on immune cells or immunological targets may eradicate complications. For example, IL-10 therapy is a promising therapeutic strategy to explore further. This review will focus on ultramodern advances in our understanding of the potential role of the immune system in TRALI prevention and treatment.
Collapse
Affiliation(s)
- Kai Guo
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shuxuan Ma
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
3
|
Ragni E, Papait A, Perucca Orfei C, Silini AR, Colombini A, Viganò M, Libonati F, Parolini O, de Girolamo L. Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-miRNAs: Anti-inflammatory and regenerative features for musculoskeletal tissues. Stem Cells Transl Med 2021; 10:1044-1062. [PMID: 33656805 PMCID: PMC8235131 DOI: 10.1002/sctm.20-0390] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Human amniotic membrane‐derived mesenchymal stromal cells (hAMSCs) are easily obtained in large quantities and free from ethical concerns. Promising therapeutic results for both hAMSCs and their secreted factors (secretome) were described by several in vitro and preclinical studies, often for treatment of orthopedic disorders such as osteoarthritis (OA) and tendinopathy. For clinical translation of the hAMSC secretome as cell‐free therapy, a detailed characterization of hAMSC‐secreted factors is mandatory. Herein, we tested the presence of 200 secreted factors and 754 miRNAs in extracellular vesicles (EVs). Thirty‐seven cytokines/chemokines were identified at varying abundance, some of which involved in both chemotaxis and homeostasis of inflammatory cells and in positive remodeling of extracellular matrix, often damaged in tendinopathy and OA. We also found 336 EV‐miRNAs, 51 of which accounted for more than 95% of the genetic message. A focused analysis based on miRNAs related to OA and tendinopathy showed that most abundant EV‐miRNAs are teno‐ and chondro‐protective, able to induce M2 macrophage polarization, inhibit inflammatory T cells, and promote Treg. Functional analysis on IL‐1β treated tenocytes and chondrocytes resulted in downregulation of inflammation‐associated genes. Overall, presence of key regulatory molecules and miRNAs explain the promising therapeutic results of hAMSCs and their secretome for treatment of musculoskeletal conditions and are a groundwork for similar studies in other pathologies. Furthermore, identified molecules will pave the way for future studies aimed at more sharply predicting disease‐targeted clinical efficacy, as well as setting up potency and release assays to fingerprint clinical‐grade batches of whole secretome or purified components.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.,Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Francesca Libonati
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| |
Collapse
|
4
|
Xie H, Wu L, Chen X, Gao S, Li H, Yuan Y, Liang J, Wang X, Wang S, Xu C, Chu L, Zhan B, Zhou R, Yang X. Schistosoma japonicum Cystatin Alleviates Sepsis Through Activating Regulatory Macrophages. Front Cell Infect Microbiol 2021; 11:617461. [PMID: 33718268 PMCID: PMC7943722 DOI: 10.3389/fcimb.2021.617461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Multi-organ failure caused by the inflammatory cytokine storm induced by severe infection is the major cause of death for sepsis. Sj-Cys is a cysteine protease inhibitor secreted by Schistosoma japonicum with strong immunomodulatory functions on host immune system. Our previous studies have shown that treatment with Sj-Cys recombinant protein (rSj-Cys) attenuated inflammation caused by sepsis. However, the immunological mechanism underlying the immunomodulation of Sj-Cys for regulating inflammatory diseases is not yet known. In this study, we investigated the effect of Sj-Cys on the macrophage M2 polarization and subsequent therapeutic effect on sepsis. The rSj-Cys was expressed in yeast Pichia pastoris. Incubation of mouse bone marrow-derived macrophages (BMDMs) with yeast-expressed rSj-Cys significantly activated the polarization of macrophages to M2 subtype characterized by the expression of F4/80+ CD206+ with the elated secretion of IL-10 and TGF-β. Adoptive transfer of rSj-Cys treated BMDMs to mice with sepsis induced by cecal ligation and puncture (CLP) significantly improved their survival rates and the systemic clinical manifestations of sepsis compared with mice receiving non-treated normal BMDMs. The therapeutic effect of Sj-Cys-induced M2 macrophages on sepsis was also reflected by the reduced pathological damages in organs of heart, lung, liver and kidney and reduced serological levels of tissue damage-related ALT, AST, BUN and Cr, associated with downregulated pro-inflammatory cytokines (IFN-gamma and IL-6) and upregulated regulatory anti-inflammatory cytokines (IL-10 and TGF-β). Our results demonstrated that Sj-Cys is a strong immunomodulatory protein with anti-inflammatory features through activating M2 macrophage polarization. The findings of this study suggested that Sj-Cys itself or Sj-Cys-induced M2 macrophages could be used as therapeutic agents in the treatment of sepsis or other inflammatory diseases.
Collapse
Affiliation(s)
- Hong Xie
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Lingqin Wu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xingzhi Chen
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Shifang Gao
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Yuan Yuan
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Jinbao Liang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Shuying Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Changyan Xu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Liang Chu
- Department of General Surgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Rui Zhou
- Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases of Bengbu Medical College, Bengbu, China
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| |
Collapse
|
5
|
Foley CL, Al Remeithi SS, Towe CT, Dauber A, Backeljauw PF, Tyzinski L, Kumar AR, Hwa V. Developmental Adaptive Immune Defects Associated with STAT5B Deficiency in Three Young Siblings. J Clin Immunol 2021; 41:136-146. [PMID: 33090292 PMCID: PMC7854992 DOI: 10.1007/s10875-020-00884-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023]
Abstract
Patients with rare homozygous mutations in signal transducer and activator of transcription 5B (STAT5B) develop immunodeficiency resulting in chronic eczema, chronic infections, autoimmunity, and chronic lung disease. STAT5B-deficient patients are typically diagnosed in the teenage years, limiting our understanding of the development of associated phenotypic immune abnormalities. We report the first detailed chronological account of post-natal immune dysfunction associated with STAT5B deficiency in humans. Annual immunophenotyping of three siblings carrying a novel homozygous nonsense mutation in STAT5B was carried out over 4 years between the ages of 7 months to 8 years. All three siblings demonstrated consistent B cell hyperactivity including elevated IgE levels and autoantibody production, associated with diagnoses of atopy and autoimmunity. Total T cell levels in each sibling remained normal, with regulatory T cells decreasing in the oldest sibling. Interestingly, a skewing toward memory T cells was identified, with the greatest changes in CD8+ effector memory T cells. These results suggest an importance of STAT5B in B cell function and naïve versus memory T cell survival. Progressive dysregulation of FOXP3+ regulatory T cells and CD8+ memory T cell subsets reveal a crucial role of STAT5B in T cell homeostasis. The early diagnosis and focused immune evaluations of these three young STAT5B-deficient siblings support an important role of STAT5B in adaptive immune development and function.
Collapse
Affiliation(s)
- Corinne L Foley
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sareea S Al Remeithi
- Division of Endocrinology, Department of PediatricsSheikh Khalifa Medical City, Abu Dhabi, UAE
| | - Christopher T Towe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Philippe F Backeljauw
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leah Tyzinski
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ashish R Kumar
- Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Janyst M, Kaleta B, Janyst K, Zagożdżon R, Kozlowska E, Lasek W. Comparative Study of Immunomodulatory Agents to Induce Human T Regulatory (Treg) Cells: Preferential Treg-Stimulatory Effect of Prednisolone and Rapamycin. Arch Immunol Ther Exp (Warsz) 2020; 68:20. [PMID: 32533319 PMCID: PMC7292810 DOI: 10.1007/s00005-020-00582-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/18/2020] [Indexed: 11/29/2022]
Abstract
T regulatory (Treg) cells play a critical role in the maintenance of self-tolerance, as well as in inhibition of inflammation and exaggerated immune response against exogenous antigens. They develop in the thymus (tTreg cells) but also may be generated at the peripheral tissues, including tumor microenvironment (pTreg cells), or induced in vitro in the presence of transforming growth factor (TGF)-β (iTreg cells). Since tTreg cells constitute a minor fraction of peripheral blood lymphocytes in physiological conditions, an alternative way to obtain high number of functional Treg cells for therapeutic purposes is their generation in vitro from conventional T cells. In our studies, we compared effectiveness of several pharmacological agents with suggested immunomodulatory effects on Treg development (rapamycin, prednisolone, inosine pranobex, glatiramer acetate, sodium butyrate, and atorvastatin) to optimize Treg-inducing protocols. All but one (atorvastatin) immunomodulators augmented induction of polyclonal Treg cells in cultures. They were effective both in increasing the number of CD4+CD25highFoxp3high cells and Foxp3 expression. Rapamycin and prednisolone were found the most effective. Both drugs prolonged also phenotypic stability of Treg cells and induced fully active Treg cells in a functional assay. In the assay, prednisolone appeared superior versus rapamycin. The results, on the one hand, may be helpful in planning optimal protocols for generation of Treg cells for clinical application and, on the other hand, shed some light on mechanisms of the immunomodulatory activity of some tested agents observed in vivo.
Collapse
Affiliation(s)
- Michał Janyst
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Janyst
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Kozlowska
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Witold Lasek
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
7
|
Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun 2020; 109:102438. [PMID: 32184036 DOI: 10.1016/j.jaut.2020.102438] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are evolutionally conserved, single-stranded RNAs that regulate gene expression at the posttranscriptional level by disrupting translation. MiRNAs are key players in variety of biological processes that regulate the differentiation, development and activation of immune cells in both innate and adaptive immunity. The disruption and dysfunction of miRNAs can perturb the immune response, stimulate the release of inflammatory cytokines and initiate the production of autoantibodies, and contribute to the pathogenesis of autoimmune diseases, including systemic lupus erythmatosus (SLE), rheumatoid arthritis (RA), primary biliary cholangitis (PBC), and multiple sclerosis (MS). Accumulating studies demonstrate that miRNAs, which can be collected by noninvasive methods, have the potential to be developed as diagnostic and therapeutic biomarkers, the discovery and validation of which is essential for the improvement of disease diagnosis and clinical monitoring. Recently, with the development of detection tools, such as microarrays and NGS (Next Generation Sequencing), large amounts of miRNAs have been identified and suggest a critical role in the pathogenesis of autoimmune diseases. Several miRNAs associated diagnostic biomarkers have been developed and applied clinically, though the pharmaceutical industry is still facing challenges in commercialization and drug delivery. The development of miRNAs is less advanced for autoimmune diseases compared with cancer. However, drugs that target miRNAs have been introduced as candidates and adopted in clinical trials. This review comprehensively summarizes the differentially expressed miRNAs in several types of autoimmune diseases and discusses the role and the significance of miRNAs in clinical management. The study of miRNAs in autoimmunity promises to provide novel and broad diagnostic and therapeutic strategies for a clinical market that is still in its infancy.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical, Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
8
|
Carneiro-Sampaio M, Moreira-Filho CA, Bando SY, Demengeot J, Coutinho A. Intrauterine IPEX. Front Pediatr 2020; 8:599283. [PMID: 33330291 PMCID: PMC7714920 DOI: 10.3389/fped.2020.599283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
IPEX is one of the few Inborn Errors of Immunity that may manifest in the fetal period, and its intrauterine forms certainly represent the earliest human autoimmune diseases. Here, we review the clinical, histopathologic, and genetic findings from 21 individuals in 11 unrelated families, with nine different mutations, described as cases of intrauterine IPEX. Recurrent male fetal death (multigenerational in five families) due to hydrops in the midsemester of pregnancy was the commonest presentation (13/21). Noteworthy, in the affected families, there were only fetal- or perinatal-onset cases, with no affected individuals presenting milder forms with later-life manifestation. Most alive births were preterm (5/6). Skin desquamation and intrauterine growth restriction were observed in part of the cases. Fetal ultrasonography showed hyperechoic bowel or dilated bowel loops in the five cases with available imaging data. Histopathology showed multi-visceral infiltrates with T lymphocytes and other cells, including eosinophils, the pancreas being affected in most of the cases (11/21) and as early as at 18 weeks of gestational age. Regarding the nine FOXP3 mutations found in these cases, six determine protein truncation and three predictably impair protein function. Having found distinct presentations for the same FOXP3 mutation in different families, we resorted to the mouse system and showed that the scurfy mutation also shows divergent severity of phenotype and age of death in C57BL/6 and BALB/c backgrounds. We also reviewed age-of-onset data from other monogenic Tregopathies leading to IPEX-like phenotypes. In monogenic IPEX-like syndromes, the intrauterine onset was only observed in two kindreds with IL2RB mutations, with two stillbirths and two premature neonates who did not survive. In conclusion, intrauterine IPEX cases seem to constitute a particular IPEX subgroup, certainly with the most severe clinical presentation, although no strict mutation-phenotype correlations could be drawn for these cases.
Collapse
Affiliation(s)
- Magda Carneiro-Sampaio
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Moreira-Filho
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvia Yumi Bando
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
9
|
Sun XM, Guo K, Hao CY, Zhan B, Huang JJ, Zhu X. Trichinella spiralis Excretory-Secretory Products Stimulate Host Regulatory T Cell Differentiation through Activating Dendritic Cells. Cells 2019; 8:cells8111404. [PMID: 31703440 PMCID: PMC6912532 DOI: 10.3390/cells8111404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/05/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023] Open
Abstract
Trichinella spiralis maintains chronic infections within its host, involving a variety of immunomodulatory properties, the mechanisms of which have not been completely elucidated. In this study, we found that T. spiralis infection induced strong regulatory T cell responses through parasite excretory-secretory (ES) products, characterized by increase of CD4+CD25+Foxp3+ and CD4+CD25-Foxp3+ Treg cells accompanied by high levels of IL-10 and TGF-β. T. spiralis adult worm excretory-secretory products (AES) and muscle larvae excretory-secretory products (MES) were both able to activate BMDCs in vitro to facilitate their maturation and to create regulatory cytokines IL-10 and TGF-β. The T. spiralis AES- and MES-pulsed dendritic cells (DCs) possessed abilities not only to present antigens to sensitized CD4+ T cell to stimulate their proliferation but also to induce naive CD4+ T cells to differentiate to Treg cells secreting IL-10 and TGF-β. The passive transfer of T. spiralis AES- and MES-pulsed bone marrow-derived dendritic cells (BMDCs) conferred the naive mice to acquire the differentiation of Treg cells. T. spiralis AES possesses a better ability to induce Treg cells than did MES, although the latter has the ability to induce CD4+CD25-Foxp3+ Treg cells. The results obtained in this study suggested that T. spiralis ES products stimulate the differentiation of host Treg cells possibly through activating dendritic cells to create a regulatory environment that benefits the survival of the parasite in the host.
Collapse
Affiliation(s)
- Xi-Meng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Kai Guo
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chun-Yue Hao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing-Jing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Correspondence:
| |
Collapse
|
10
|
Hadfield JM, Bowdridge EC, Holásková I, Elsasser TH, Dailey RA. Breed-specific differences in the immune response to lipopolysaccharide in ewes. J Anim Sci 2018; 96:4220-4228. [PMID: 30107562 DOI: 10.1093/jas/sky288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
Innate immune response to a lipopolysaccharide (LPS) challenge varies among sheep breeds. How different breeds respond to bacterial infections impacts management practices of sheep producers. Hence, clinical response, acute-phase response, and gene expression of pro- and anti-inflammatory markers in peripheral white blood cells (WBCs) were examined after an LPS challenge in Dorset and Suffolk ewes. Ewes received either PBS or 2.5 µg/kg LPS (i.v.) 4 to 5 d after onset of synchronized estrus. Blood was collected via jugular venipuncture intermittently for 24 h to determine WBC counts. Rectal temperatures and observations of behavioral/physical appearances were recorded hourly. After LPS, WBCs decreased the first hour (P = 0.0001) and rectal temperatures (P < 0.0001) increased through 4 h; both returned toward normal 6 h after challenge. Suffolk ewes exhibited greater changes in temperature (P = 0.03) and behavioral/physical responses (P < 0.0001) than Dorset ewes and had an enhanced acute-phase response demonstrated by increased concentrations of plasma haptoglobin (P = 0.04), as well as cortisol concentrations (P = 0.03). Real-time PCR was completed on buffy coat homogenates for expression of pro-inflammatory [CXCL8, IL-6, interferon gamma (IFNG), complement component 3 (C3), toll-like receptor 4 (TLR4), prostaglandin synthase 2 (PTGS2)] and anti-inflammatory [IL-10, superoxide dismutase 2 (SOD2), forkhead box P3 (FOXP3), peroxisome proliferator-activated receptor gamma (PPARG), mannose receptor C type 1 (MRC1), transforming growth factor β (TGFβ)] genes. After LPS treatment, gene expressions increased for CXCL8 (P = 0.0003), TLR4 (P = 0.004), SOD2 (P < 0.0001), and C3 (P = 0.003), while PPARG (P = 0.006) and MRC1 (P = 0.003) decreased. Overall, Dorset ewes had greater expression of TLR4 (P = 0.003), IL-10 (P = 0.045), PPARG (P = 0.002), FOXP3 (P = 0.001), and SOD2 (P = 0.0002), whereas Suffolk ewes had greater expression of IL-6 (P = 0.0007), IFNG (P = 0.02), PTGS2 (P = 0.0002), and C3 (P = 0.008). Suffolk ewes also displayed greater expression of IL-6 (P = 0.002) and C3 (P = 0.0004) in response to LPS. In conclusion, differences in gene expression may explain the enhanced inflammatory response in Suffolk ewes and may predispose Suffolk ewes to be more responsive to bacterial infection than Dorset ewes.
Collapse
Affiliation(s)
- Jessalyn M Hadfield
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV
| | - Elizabeth C Bowdridge
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV
| | - Ida Holásková
- West Virginia Agriculture and Forestry Experiment Station, Morgantown, WV
| | - Ted H Elsasser
- Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, USDA, Beltsville, MD
| | - Robert A Dailey
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV
| |
Collapse
|
11
|
The Imbalance of FOXP3/GATA3 in Regulatory T Cells from the Peripheral Blood of Asthmatic Patients. J Immunol Res 2018; 2018:3096183. [PMID: 30013989 PMCID: PMC6022336 DOI: 10.1155/2018/3096183] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
Background Treg cells play an important role in the pathogenic progress of asthma. Objective To address the alterations of Treg cells in asthma. Methods Proliferation-and function-associated markers of Treg cells along with the percentage of Treg cells producing some cytokine from asthmatics and healthy subjects were analyzed by flow cytometry. Besides, the expressions of USP21 and PIM2 in Treg cells were measured by cell immunochemistry after Treg cells were sorted. Results Treg cells from asthmatic patients showed lower proliferation activity and were more likely to be apoptotic. These cells expressed lower levels of GITR, CTLA-4, Nrp-1, and IL-10 compared to those from the healthy control. Th2-like Treg cells increased in asthmatic patients, while the percentage of IFN-r+ Treg cells was similar between two groups. Moreover, the percentage of IL-4+ Treg cells is related to the asthma control. Treg cells from asthmatic patients expressed more FOXP3 as well as GATA3; the expression level of GATA3 negatively correlated with FEV1%pred. Increased expressions of USP21 and PIM2 in Treg cells from asthmatic patients were found. Conclusion Treg cells decreased in asthmatic patients, with an impaired immunosupression function and a Th2-like phenotype, which may be due to overexpression of GATA3 and FOXP3, regulated by USP21 and PIM2, respectively.
Collapse
|
12
|
Hippen KL, Loschi M, Nicholls J, MacDonald KPA, Blazar BR. Effects of MicroRNA on Regulatory T Cells and Implications for Adoptive Cellular Therapy to Ameliorate Graft-versus-Host Disease. Front Immunol 2018; 9:57. [PMID: 29445371 PMCID: PMC5797736 DOI: 10.3389/fimmu.2018.00057] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 01/15/2023] Open
Abstract
Regulatory T cells (Tregs) are key mediators of the immune system. MicroRNAs (miRNAs) are a family of ~22 nucleotide non-coding RNAs that are processed from longer precursors by the RNases Drosha and Dicer. miRNA regulates protein expression posttranscriptionally through mRNA destabilization or translational silencing. A critical role for miRNA in Treg function was initially discovered when both Dicer and Drosha knockout (KO) mice were found to develop a fatal autoimmune disease phenotypically similar to Foxp3 KO mice.
Collapse
Affiliation(s)
- Keli L Hippen
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Michael Loschi
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Jemma Nicholls
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Kelli P A MacDonald
- The Antigen Presentation and Immunoregulation Laboratory and Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, University of Minnesota Cancer Center, Brisbane, QLD, Australia
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| |
Collapse
|
13
|
Palomares O, Akdis M, Martín-Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev 2017; 278:219-236. [DOI: 10.1111/imr.12555] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oscar Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - Mar Martín-Fontecha
- Department of Organic Chemistry; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| |
Collapse
|
14
|
Lee PW, Severin ME, Lovett-Racke AE. TGF-β regulation of encephalitogenic and regulatory T cells in multiple sclerosis. Eur J Immunol 2017; 47:446-453. [PMID: 28102541 DOI: 10.1002/eji.201646716] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/01/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022]
Abstract
Transforming growth factor beta (TGF-β) is a pleiotropic cytokine that has been shown to influence the differentiation and function of T cells. The role that TGF-β plays in immune-mediated disease, such as multiple sclerosis (MS), has become a major area of investigation since CD4+ T cells appear to be a major mediator of autoimmunity. This review provides an analysis of the literature on the role that TGF-β plays in the generation and regulation of encephalitogenic and regulatory T cells (Treg) in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, as well as in T cells of MS patients. Since TGF-β plays a major role in the development and function of both CD4+ effector and Treg, which are defective in MS patients, recent studies have found potential mechanisms to explain the basis for these T-cell defects to establish a foundation for potentially modulating TGF-β signaling to restore normal T-cell function in MS patients.
Collapse
Affiliation(s)
- Priscilla W Lee
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Mary E Severin
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Severin ME, Lee PW, Liu Y, Selhorst AJ, Gormley MG, Pei W, Yang Y, Guerau-de-Arellano M, Racke MK, Lovett-Racke AE. MicroRNAs targeting TGFβ signalling underlie the regulatory T cell defect in multiple sclerosis. Brain 2016; 139:1747-61. [PMID: 27190026 DOI: 10.1093/brain/aww084] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/05/2016] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor beta (TGFβ) signalling is critical for regulatory T cell development and function, and regulatory T cell dysregulation is a common observation in autoimmune diseases, including multiple sclerosis. In a comprehensive miRNA profiling study of patients with multiple sclerosis naïve CD4 T cells, 19 differentially expressed miRNAs predicted to target the TGFβ signalling pathway were identified, leading to the hypothesis that miRNAs may be responsible for the regulatory T cell defect observed in patients with multiple sclerosis. Patients with multiple sclerosis had reduced levels of TGFβ signalling components in their naïve CD4 T cells. The differentially expressed miRNAs negatively regulated the TGFβ pathway, resulting in a reduced capacity of naïve CD4 T cells to differentiate into regulatory T cells. Interestingly, the limited number of regulatory T cells, that did develop when these TGFβ-targeting miRNAs were overexpressed, were capable of suppressing effector T cells. As it has previously been demonstrated that compromising TGFβ signalling results in a reduced regulatory T cell repertoire insufficient to control autoimmunity, and patients with multiple sclerosis have a reduced regulatory T cell repertoire, these data indicate that the elevated expression of multiple TGFβ-targeting miRNAs in naïve CD4 T cells of patients with multiple sclerosis impairs TGFβ signalling, and dampens regulatory T cell development, thereby enhancing susceptibility to developing multiple sclerosis.
Collapse
Affiliation(s)
- Mary E Severin
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Priscilla W Lee
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Yue Liu
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Amanda J Selhorst
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew G Gormley
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Wei Pei
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yuhong Yang
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mireia Guerau-de-Arellano
- Health and Rehabilitation Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael K Racke
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
16
|
Grygorowicz MA, Biernacka M, Bujko M, Nowak E, Rymkiewicz G, Paszkiewicz-Kozik E, Borycka IS, Bystydzienski Z, Walewski J, Markowicz S. Human regulatory T cells suppress proliferation of B lymphoma cells. Leuk Lymphoma 2016; 57:1903-20. [DOI: 10.3109/10428194.2015.1121260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Prins JR, Zhang B, Schjenken JE, Guerin LR, Barry SC, Robertson SA. Unstable Foxp3+ regulatory T cells and altered dendritic cells are associated with lipopolysaccharide-induced fetal loss in pregnant interleukin 10-deficient mice. Biol Reprod 2015. [PMID: 26224007 DOI: 10.1095/biolreprod.115.128694] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maternal interleukin (IL) 10 deficiency elevates susceptibility to fetal loss induced by the model Toll-like receptor agonist lipopolysaccharide, but the mechanisms are not well elucidated. Here, we show that Il10 null mutant (Il10(-/-)) mice exhibit altered local T cell responses in pregnancy, exhibiting pronounced hyperplasia in para-aortic lymph nodes draining the uterus with >6-fold increased CD4(+) and CD8(+) T cells compared with wild-type controls. Among these CD4(+) cells, Foxp3(+) T regulatory (Treg) cells were substantially enriched, with 11-fold higher numbers at Day 9.5 postcoitum. Lymph node hypertrophy in Il10(-/-) mice was associated with more activated phenotypes in dendritic cells and macrophages, with elevated expression of MHCII, scavenger receptor, and CD80. Affymetrix microarray revealed an altered transcriptional profile in Treg cells from pregnant Il10(-/-) mice, with elevated expression of Ctse (cathepsin E), Il1r1, Il12rb2, and Ifng. In vitro, Il10(-/-) Treg cells showed reduced steady-state Foxp3 expression, and polyclonal stimulation caused greater loss of Foxp3 and reduced capacity to suppress IL17 in CD4(+)Foxp3(-) T cells. We conclude that despite a substantially expanded Treg cell pool, the diminished stability of Treg cells, increased numbers of effector T cells, and altered phenotypes in dendritic cells and macrophages in pregnancy all potentially confer vulnerability to inflammation-induced fetal loss in Il10(-/-) mice. These findings suggest that IL10 has a pivotal role in facilitating robust immune protection of the fetus from inflammatory challenge and that IL10 deficiency could contribute to human gestational disorders in which altered T cell responses are implicated.
Collapse
Affiliation(s)
- Jelmer R Prins
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bihong Zhang
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Leigh R Guerin
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Simon C Barry
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Inflammation negatively regulates FOXP3 and regulatory T-cell function via DBC1. Proc Natl Acad Sci U S A 2015; 112:E3246-54. [PMID: 26060310 DOI: 10.1073/pnas.1421463112] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Forkhead box P3 (FOXP3)-positive Treg cells are crucial for maintaining immune homeostasis. FOXP3 cooperates with its binding partners to elicit Treg cells' signature and function, but the molecular mechanisms underlying the modulation of the FOXP3 complex remain unclear. Here we report that Deleted in breast cancer 1 (DBC1) is a key subunit of the FOXP3 complex. We found that DBC1 interacts physically with FOXP3, and depletion of DBC1 attenuates FOXP3 degradation in inflammatory conditions. Treg cells from Dbc1-deficient mice were more resistant to inflammation-mediated abrogation of Foxp3 expression and function and delayed the onset and severity of experimental autoimmune encephalomyelitis and colitis in mice. These findings establish a previously unidentified mechanism regulating FOXP3 stability during inflammation and reveal a pathway for potential therapeutic modulation and intervention in inflammatory diseases.
Collapse
|
19
|
Mendoza E, Tokarev K, Düring DN, Retamosa EC, Weiss M, Arpenik N, Scharff C. Differential coexpression of FoxP1, FoxP2, and FoxP4 in the Zebra Finch (Taeniopygia guttata) song system. J Comp Neurol 2015; 523:1318-40. [PMID: 25556631 DOI: 10.1002/cne.23731] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 11/07/2022]
Abstract
Heterozygous disruptions of the Forkhead transcription factor FoxP2 impair acquisition of speech and language. Experimental downregulation in brain region Area X of the avian ortholog FoxP2 disrupts song learning in juvenile male zebra finches. In vitro, transcriptional activity of FoxP2 requires dimerization with itself or with paralogs FoxP1 and FoxP4. Whether this is the case in vivo is unknown. To provide the means for future functional studies we cloned FoxP4 from zebra finches and compared regional and cellular coexpression of FoxP1, FoxP2, and FoxP4 mRNA and protein in brains of juvenile and adult male zebra finches. In the telencephalic song nuclei HVC, RA, and Area X, the three investigated FoxPs were either expressed alone or occurred in specific combinations with each other, as shown by double in situ hybridization and triple immunohistochemistry. FoxP1 and FoxP4 but not FoxP2 were expressed in RA and in the HVCRA and HVCX projection neurons. In Area X and the surrounding striatum the density of neurons expressing all three FoxPs together or FoxP1 and FoxP4 together was significantly higher than the density of neurons expressing other combinations. Interestingly, the proportions of Area X neurons expressing particular combinations of FoxPs remained constant at all ages. In addition, FoxP-expressing neurons in adult Area X express dopamine receptors 1A, 1B, and 2. Together, these data provide the first evidence that Area X neurons can coexpress all avian FoxP subfamily members, thus allowing for a variety of regulatory possibilities via heterodimerization that could impact song behavior in zebra finches.
Collapse
Affiliation(s)
- Ezequiel Mendoza
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Araya N, Sato T, Ando H, Tomaru U, Yoshida M, Coler-Reilly A, Yagishita N, Yamauchi J, Hasegawa A, Kannagi M, Hasegawa Y, Takahashi K, Kunitomo Y, Tanaka Y, Nakajima T, Nishioka K, Utsunomiya A, Jacobson S, Yamano Y. HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells. J Clin Invest 2014; 124:3431-42. [PMID: 24960164 PMCID: PMC4109535 DOI: 10.1172/jci75250] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/08/2014] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is linked to multiple diseases, including the neuroinflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T cell leukemia/lymphoma. Evidence suggests that HTLV-1, via the viral protein Tax, exploits CD4+ T cell plasticity and induces transcriptional changes in infected T cells that cause suppressive CD4+CD25+CCR4+ Tregs to lose expression of the transcription factor FOXP3 and produce IFN-γ, thus promoting inflammation. We hypothesized that transformation of HTLV-1-infected CCR4+ T cells into Th1-like cells plays a key role in the pathogenesis of HAM/TSP. Here, using patient cells and cell lines, we demonstrated that Tax, in cooperation with specificity protein 1 (Sp1), boosts expression of the Th1 master regulator T box transcription factor (T-bet) and consequently promotes production of IFN-γ. Evaluation of CSF and spinal cord lesions of HAM/TSP patients revealed the presence of abundant CD4+CCR4+ T cells that coexpressed the Th1 marker CXCR3 and produced T-bet and IFN-γ. Finally, treatment of isolated PBMCs and CNS cells from HAM/TSP patients with an antibody that targets CCR4+ T cells and induces cytotoxicity in these cells reduced both viral load and IFN-γ production, which suggests that targeting CCR4+ T cells may be a viable treatment option for HAM/TSP.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal/therapeutic use
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- Cell Line
- Cytotoxicity, Immunologic
- Female
- Gene Products, tax/immunology
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/pathogenicity
- Humans
- Immunotherapy
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Male
- Middle Aged
- Paraparesis, Tropical Spastic/genetics
- Paraparesis, Tropical Spastic/immunology
- Paraparesis, Tropical Spastic/virology
- Receptors, CCR4/antagonists & inhibitors
- Receptors, CCR4/immunology
- Receptors, CCR4/metabolism
- Sp1 Transcription Factor/immunology
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/virology
- Th1 Cells/immunology
- Th1 Cells/virology
- Viral Load/immunology
Collapse
Affiliation(s)
- Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Hitoshi Ando
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Utano Tomaru
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Mari Yoshida
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Ariella Coler-Reilly
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Junji Yamauchi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Atsuhiko Hasegawa
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Mari Kannagi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Yasuhiro Hasegawa
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Katsunori Takahashi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Yasuo Kunitomo
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuetsu Tanaka
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Toshihiro Nakajima
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Kusuki Nishioka
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Atae Utsunomiya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Jacobson
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Pathology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan. Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan. Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan. Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan. Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. Institute of Medical Science and Center for Clinical Research, Tokyo Medical University, Tokyo, Japan. Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan. Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β. Genes Immun 2014; 15:511-20. [PMID: 25056447 DOI: 10.1038/gene.2014.45] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 01/04/2023]
Abstract
The prevalence of allergic diseases has significantly increased in industrialized countries. Allergen-specific immunotherapy (AIT) remains as the only curative treatment. The knowledge about the mechanisms underlying healthy immune responses to allergens, the development of allergic reactions and restoration of appropriate immune responses to allergens has significantly improved over the last decades. It is now well-accepted that the generation and maintenance of functional allergen-specific regulatory T (Treg) cells and regulatory B (Breg) cells are essential for healthy immune responses to environmental proteins and successful AIT. Treg cells comprise different subsets of T cells with suppressive capacity, which control the development and maintenance of allergic diseases by various ways of action. Molecular mechanisms of generation of Treg cells, the identification of novel immunological organs, where this might occur in vivo, such as tonsils, and related epigenetic mechanisms are starting to be deciphered. The key role played by the suppressor cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β produced by functional Treg cells during the generation of immune tolerance to allergens is now well established. Treg and Breg cells together have a role in suppression of IgE and induction of IgG4 isotype allergen-specific antibodies particularly mediated by IL-10. Other cell types such as subsets of dendritic cells, NK-T cells and natural killer cells producing high levels of IL-10 may also contribute to the generation of healthy immune responses to allergens. In conclusion, better understanding of the immune regulatory mechanisms operating at different stages of allergic diseases will significantly help the development of better diagnostic and predictive biomarkers and therapeutic interventions.
Collapse
|
22
|
Chen L, Ma H, Hu H, Gao L, Wang X, Ma J, Gao Q, Liu B, Zhou G, Liang C. Special role of Foxp3 for the specifically altered microRNAs in Regulatory T cells of HCC patients. BMC Cancer 2014; 14:489. [PMID: 25000974 PMCID: PMC4099493 DOI: 10.1186/1471-2407-14-489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/04/2014] [Indexed: 12/17/2022] Open
Abstract
Background Regulatory T cells (Tregs) exhibit functional abnormalities in the context of hepatocellular carcinoma (HCC). The microRNAs (miRNAs) are identified as the key modulators in Tregs. This study was to explore whether the expression profiles of miRNAs of Tregs were different in HCC-activated Tregs and whether Foxp3 had special effects on them. Methods We isolated HCC-activated Tregs from mice bearing HCC and compared the expression profiles of miRNAs between HCC-activated Tregs and control Tregs by microarray. RNA interference against Foxp3 was also performed through transfection of synthetic siRNAs to Tregs for analyzing the effect of Foxp3 on the expression of miRNAs. Tregs isolated from HCC patients (n = 12) and healthy controls (n = 7) were used for validation of the differentially expressed miRNAs. Finally, bioinformatic analysis was applied to infer their possible roles. Results We found nine specifically altered miRNAs in HCC-activated Tregs from the murine model. After transfection with siRNAs against Foxp3, control Tregs showed obvious reduction of Foxp3 and five miRNAs were significantly changed; HCC-activated Tregs exhibited a slight reduction of Foxp3 with three miRNAs significantly changed. Tregs from HCC patients and healthy controls finally confirmed the up-regulation of four miRNAs (hsa-miR-182-5p, hsa-miR-214-3p, hsa-miR-129-5p and hsa-miR-30b-5p). Following bioinformatic analysis suggested these altered miRNAs would target eight important signaling pathways that could affect the functions of Tregs. Conclusions Our studies provided the first evidence that Tregs in HCC had the specifically altered expression of miRNAs, which was affected by Foxp3. These results are useful both in finding new biomarkers and in further exploring the functions of Tregs in HCC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chunmin Liang
- Lab of Tumor Immunology, Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, 200032 Shanghai, PR China.
| |
Collapse
|
23
|
Ziai S, Coriati A, Gauthier MS, Rabasa-Lhoret R, Richter MV. Could T cells be involved in lung deterioration and hyperglycemia in cystic fibrosis? Diabetes Res Clin Pract 2014; 105:22-9. [PMID: 24731255 DOI: 10.1016/j.diabres.2014.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/20/2014] [Accepted: 03/03/2014] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis-related diabetes (CFRD) is the most frequent complication of cystic fibrosis (CF) and associated with increased mortality. Why patients have an accelerated loss of lung function before the diagnosis of CFRD remains poorly understood. We reported that patients with or without CFRD had increased glucose excursions when compared to healthy peers. Studies have demonstrated that patients with CF have increased glucose fluctuations and hyperglycemia and that this may affect the clinical course of CF and lead to lymphocyte dysfunction. T-helper 17 (Th17) lymphocytes produce and secrete the pro-inflammatory cytokine IL-17. The Th17 pathway is involved in CF lung inflammation, β-cell destruction in type 1 diabetes (T1D) and Th17 cells of patients with type 2 diabetes have increased production of IL-17 when compared to healthy peers. Also, regulatory T-cells (Tregs) have been shown to be dysfunctional and produce IL-17 in T1D. Furthermore, vitamin D can affect inflammation in CF, diabetes and the differentiation of lymphocytes. In this review, we discuss the potential roles of hyperglycemia on Th17 cells, Tregs and IL-17 as a potential cause for accelerated lung function decline before CFRD and how this could be modulated by vitamin D or by directly intervening in the IL-17A pathway.
Collapse
Affiliation(s)
- S Ziai
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - A Coriati
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - M-S Gauthier
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - R Rabasa-Lhoret
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada; Montreal Diabetes Research Centre (MDRC), Montréal, Québec, Canada; Cystic Fibrosis Clinic, Centre Hospitalier de l'Université de Montréal (CHUM) & CHUM Research Center (CR-CHUM), Montréal, Québec, Canada
| | - M V Richter
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
24
|
Involvement of lymphocytes in asthma and allergic diseases: a genetic point of view. Curr Opin Allergy Clin Immunol 2014; 13:500-6. [PMID: 23974678 DOI: 10.1097/aci.0b013e328364ea3a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The activation and regulation of lymphocytes play a central role in asthmatic inflammation. It is increasingly recognized that diverse panels of lymphocyte lineages and cytokine profiles are involved in the asthmatic phenotypes. In this review, we discuss the advances in the gene variants associated with the regulation of lymphocytes and relevant cytokines underlying asthma and allergic diseases. We also discuss the current evidence about the epigenetic regulation of lymphocyte differentiation and the interaction with environment. RECENT FINDINGS Many genetic variants in asthma are functionally associated with lymphocytes and relevant cytokines. Interleukin (IL)-2RB is important in the homeostasis of T regulatory cells (Tregs) through effects from IL-2. IL-18R1 and ST2/IL-1RL1 drive the T helper 1 and 2 inflammation via the ligands of their encoding receptors. Novel genes, like orosomucoid 1-like 3/gasdermin-like gene and taste receptor type 2 members are being explored for their roles in T-cell activation. T-cell lineages are epigenetically regulated by de novo methyltransferases, histone methylase, CD44 and microRNA. Environmental factors such as second-hand smoke and ambient air pollution modify Tregs differentiation significantly. SUMMARY Plenty of genetic loci of lymphocyte regulation provide us a deeper insight into the asthma pathogenesis. Future challenge is to define genetic drivers in asthma phenotypes to provide therapeutic targets.
Collapse
|
25
|
Liao H, Yang DH. CD4 +CD25 +Foxp3 + Treg cells and liver transplant tolerance. Shijie Huaren Xiaohua Zazhi 2014; 22:1226-1234. [DOI: 10.11569/wcjd.v22.i9.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several subgroups of regulatory T (Treg) cells play crucial roles in both induction and maintenance of immune tolerance to self-antigens and alloantigens. The most extensively and comprehensively studied regulatory T cell subgroup is CD4+CD25+Foxp3+ Treg cells. Numerous studies indicate that insufficiency or dysfunction of CD4+CD25+Foxp3+ Treg cells is responsible for the development of many autoimmune diseases and rejections after organ transplantation. Therefore, harnessing CD4+CD25+Foxp3+ Treg cells may provide a promising approach for inducing and maintaining liver transplant tolerance. In this review, we will focus on the history and classification of regulatory T cells, the mechanisms by which regulatory T cells induce transplant tolerance and their roles in liver transplant tolerance.
Collapse
|
26
|
Li R, Yang J, Yang J, Fu W, Jiang H, Du J, Zhang C, Xi H, Hou J. Depression in older patients with advanced colorectal cancer is closely connected with immunosuppressive acidic protein. Metab Brain Dis 2014; 29:87-92. [PMID: 23975537 DOI: 10.1007/s11011-013-9429-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/13/2013] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) is one of the most common tumors. CRC patients are susceptible to suffering from depression. Whether the immune system of CRC patients with depression is impaired or stimulated is controversial. Possible reasons for this conflict are the involvement of confounding factors, such as the age of the patient, the stage of the CRC and the types of treatment in previous studies. To demonstrate clearly the relationship between depression and the immune system in the context of CRC, the present study included only older patients with advanced CRC who received only chemotherapy, and the study adopted immunosuppressive acidic protein (IAP) as an immune parameter for the first time. A total of 56 older patients with advanced CRC completed the Zung Self-Rating Depression Scale (SDS) and were divided into two groups according to SDS scores. The patients exhibiting depression were treated with fluoxetine until their symptoms remitted. The serum levels of IAP and the percentages of CD3-positive (CD3+), CD4+, CD8+ T lymphocytes and CD56+ natural killer (NK) cells and Neutrophil-lymphocyte ratio (NLR) were calculated at the time of enrollment and once the symptoms remitted. Correlation analyses revealed that the SDS score was positively associated with serum IAP levels but negatively associated with CD3 and CD4 levels. Among the depressed and non-depressed patients, serum IAP levels and the percentages of CD3 and CD4 cells were dramatically different. After the depression symptoms were treated, the IAP levels dramatically decreased, while the levels of CD3, CD4, CD8 and CD56 were unchanged. All of above suggested that IAP was closely correlated with depression and might be a relatively objective parameter for predicting depression.
Collapse
Affiliation(s)
- Rong Li
- Myeloma and Lymphoma Center, Department of Hematology, Chang Zheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kelada S, Sethupathy P, Okoye IS, Kistasis E, Czieso S, White SD, Chou D, Martens C, Ricklefs SM, Virtaneva K, Sturdevant DE, Porcella SF, Belkaid Y, Wynn TA, Wilson MS. miR-182 and miR-10a are key regulators of Treg specialisation and stability during Schistosome and Leishmania-associated inflammation. PLoS Pathog 2013; 9:e1003451. [PMID: 23825948 PMCID: PMC3695057 DOI: 10.1371/journal.ppat.1003451] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022] Open
Abstract
A diverse suite of effector immune responses provide protection against various pathogens. However, the array of effector responses must be immunologically regulated to limit pathogen- and immune-associated damage. CD4+Foxp3+ regulatory T cells (Treg) calibrate immune responses; however, how Treg cells adapt to control different effector responses is unclear. To investigate the molecular mechanism of Treg diversity we used whole genome expression profiling and next generation small RNA sequencing of Treg cells isolated from type-1 or type-2 inflamed tissue following Leishmania major or Schistosoma mansoni infection, respectively. In-silico analyses identified two miRNA “regulatory hubs” miR-10a and miR-182 as critical miRNAs in Th1- or Th2-associated Treg cells, respectively. Functionally and mechanistically, in-vitro and in-vivo systems identified that an IL-12/IFNγ axis regulated miR-10a and its putative transcription factor, Creb. Importantly, reduced miR-10a in Th1-associated Treg cells was critical for Treg function and controlled a suite of genes preventing IFNγ production. In contrast, IL-4 regulated miR-182 and cMaf in Th2-associed Treg cells, which mitigated IL-2 secretion, in part through repression of IL2-promoting genes. Together, this study indicates that CD4+Foxp3+ cells can be shaped by local environmental factors, which orchestrate distinct miRNA pathways preserving Treg stability and suppressor function. The diversity of pathogens that the immune system encounters are controlled by a diverse suite of immunological effector responses. Preserving a well-controlled protective immune response is essential. Too vigorous an effector response can be as damaging as too little. Regulatory T cells (Treg) calibrate immune responses; however, how Treg cells adapt to control the diverse suite of effector responses is unclear. In this study we investigated the molecular identity of regulatory T cells that control distinct effector immune responses against two discrete pathogens, an intracellular parasitic protozoa, Leishmania major, and an extracellular helminth parasite, Schitsosoma mansoni. The two Treg populations studied were phenotypically and functionally different. We identified molecular pathways that influence this diversity and more specifically, we identified that two miRNAs (miR-182 and miR-10a) act as “regulatory hubs” critically controlling distinct properties within each Treg population. This is the first study identifying the upstream molecular pathways controlling Treg cell specialization and provides a new platform of Treg cell manipulation to fine-tune their function.
Collapse
Affiliation(s)
- Samir Kelada
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Praveen Sethupathy
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Isobel S. Okoye
- Division of Molecular Immunology, MRC, National Institute for Medical Research, London, United Kingdom
| | - Eleni Kistasis
- Division of Molecular Immunology, MRC, National Institute for Medical Research, London, United Kingdom
| | - Stephanie Czieso
- Division of Molecular Immunology, MRC, National Institute for Medical Research, London, United Kingdom
| | - Sandra D. White
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, Bethesda, Maryland, United States of America
| | - David Chou
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, Bethesda, Maryland, United States of America
| | - Craig Martens
- Research Technologies Section, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Stacy M. Ricklefs
- Research Technologies Section, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Kimmo Virtaneva
- Research Technologies Section, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Dan E. Sturdevant
- Research Technologies Section, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Stephen F. Porcella
- Research Technologies Section, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Yasmine Belkaid
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, Bethesda, Maryland, United States of America
| | - Thomas A. Wynn
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, Bethesda, Maryland, United States of America
| | - Mark S. Wilson
- Division of Molecular Immunology, MRC, National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Sethi A, Kulkarni N, Sonar S, Lal G. Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance. Front Genet 2013; 4:8. [PMID: 23386861 PMCID: PMC3560369 DOI: 10.3389/fgene.2013.00008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/10/2013] [Indexed: 01/28/2023] Open
Abstract
Gene expression is tightly regulated in a tuneable, cell-specific and time-dependent manner. Recent advancement in epigenetics and non-coding RNA (ncRNA) revolutionized the concept of gene regulation. In order to regulate the transcription, ncRNA can promptly response to the extracellular signals as compared to transcription factors present in the cells. microRNAs (miRNAs) are ncRNA (~22 bp) encoded in the genome, and present as intergenic or oriented antisense to neighboring genes. The strategic location of miRNA in coding genes helps in the coupled regulation of its expression with host genes. miRNA together with complex machinery called RNA-induced silencing complex (RISC) interacts with target mRNA and degrade the mRNA or inhibits the translation. CD4 T cells play an important role in the generation and maintenance of inflammation and tolerance. Cytokines and chemokines present in the inflamed microenvironment controls the differentiation and function of various subsets of CD4 T cells [Th1, Th2, Th17, and regulatory CD4 T cells (Tregs)]. Recent studies suggest that miRNAs play an important role in the development and function of all subsets of CD4 T cells. In current review, we focused on how various miRNAs are regulated by cell's extrinsic and intrinsic signaling, and how miRNAs affect the transdifferentiation of subsets of CD4 T cell and controls their plasticity during inflammation and tolerance.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The cutaneous surface is exposed to a myriad of encounters with chemicals, allergens and microbes. Nevertheless, it withstands these environmental assaults without overt inflammation. We will discuss the role of T regulatory cells in a situation where this tissue homeostasis fails - cutaneous allergy, in particular contact hypersensitivity. RECENT FINDINGS Immune regulation is a complex process that is mediated by many cellular players. T regulatory cells have risen to particular prominence as potent immunosuppressors because their absence results in inflammation including skin allergy. Recent findings revealed that T regulatory cells comprise a heterogeneous group of subpopulations with specialized homing capabilities and suppressor functions. The stability of the T regulatory cell subset in proinflammatory microenvironments is controversially discussed. In addition, it has recently been shown that mechanisms by which T regulatory cells exert their immunosuppressive functions can be adopted by pathogenic effector T cells in certain situations. SUMMARY In cutaneous allergy, immunoregulatory mechanisms are dysfunctional. The cellular players comprise classical T regulatory cells as well as effector T cells with regulatory activities. Understanding their role in skin homeostasis and the mechanisms by which their regulatory functions are abrogated will yield novel therapeutic targets for the treatment of cutaneous allergies.
Collapse
|
30
|
TNFα induced FOXP3–NFκB interaction dampens the tumor suppressor role of FOXP3 in gastric cancer cells. Biochem Biophys Res Commun 2013. [DOI: 10.1016/j.bbrc.2012.11.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Heiber JF, Geiger TL. Context and location dependence of adaptive Foxp3(+) regulatory T cell formation during immunopathological conditions. Cell Immunol 2012; 279:60-5. [PMID: 23089195 DOI: 10.1016/j.cellimm.2012.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/29/2012] [Accepted: 09/12/2012] [Indexed: 02/07/2023]
Abstract
Circulating Foxp3(+) regulatory T cells (Treg) may arise in the thymus (natural Treg, nTreg) or through the adaptive upregulation of Foxp3 after T cell activation (induced Treg, iTreg). In this brief review, we explore evidence for the formation and function of iTreg during pathologic conditions. Determining the ontogeny and function of Treg populations has relied on the use of manipulated systems in which either iTreg or nTreg are absent, or lineage tracing of T cell clones through repertoire analyses. iTreg appear particularly important at mucosal interfaces. iTreg can also ameliorate tissue-specific autoimmunity and are a prominent source of tumor-infiltrating Treg in some models. However, under many conditions, including in CNS autoimmunity, diabetes, and some tumor systems, iTreg formation appears limited. The immunological contribution of iTreg is thus highly context dependent. Deciphering immune parameters responsible for iTreg formation and their role in modulating pathologic immune responses will be important.
Collapse
Affiliation(s)
- Joshua F Heiber
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
32
|
Schaue D, Xie MW, Ratikan JA, McBride WH. Regulatory T cells in radiotherapeutic responses. Front Oncol 2012; 2:90. [PMID: 22912933 PMCID: PMC3421147 DOI: 10.3389/fonc.2012.00090] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/20/2012] [Indexed: 12/31/2022] Open
Abstract
Radiation therapy (RT) can extend its influence in cancer therapy beyond what can be attributed to in-field cytotoxicity by modulating the immune system. While complex, these systemic effects can help tip the therapeutic balance in favor of treatment success or failure. Engagement of the immune system is generally through recognition of damage-associated molecules expressed or released as a result of tumor and normal tissue radiation damage. This system has evolved to discriminate pathological from physiological forms of cell death by signaling "danger." The multiple mechanisms that can be evoked include a shift toward a pro-inflammatory, pro-oxidant microenvironment that can promote maturation of dendritic cells and, in cancer treatment, the development of effector T cell responses to tumor-associated antigens. Control over these processes is exerted by regulatory T cells (Tregs), suppressor macrophages, and immunosuppressive cytokines that act in consort to maintain tolerance to self, limit tissue damage, and re-establish tissue homeostasis. Unfortunately, by the time RT for cancer is initiated the tumor-host relationship has already been sculpted in favor of tumor growth and against immune-mediated mechanisms for tumor regression. Reversing this situation is a major challenge. However, recent data show that removal of Tregs can tip the balance in favor of the generation of radiation-induced anti-tumor immunity. The clinical challenge is to do so without excessive depletion that might precipitate serious autoimmune reactions and increase the likelihood of normal tissue complications. The selective modulation of Treg biology to maintain immune tolerance and control of normal tissue damage, while releasing the "brakes" on anti-tumor immune responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for cancer.
Collapse
Affiliation(s)
- Dörthe Schaue
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles Los Angeles, CA, USA
| | | | | | | |
Collapse
|