1
|
D'Anna Mardero O, Arruti Vázquez N, Coca Robinot JF, Peralta Calvo J, Montaño VE, Vallespín E, Noval Martín S. Review: Clinical findings and genetic characterization of children affected with X-linked retinoschisis in the Spanish population. Eur J Ophthalmol 2024:11206721241305244. [PMID: 39648411 DOI: 10.1177/11206721241305244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
X-linked retinoschisis (XLRS) is an inherited retinal disorder due to mutations in retinoschisin 1, characterized by impaired central vision secondary to parafoveal cystic cavities and visual field loss by splitting through the retinal nerve fibre layer in the peripheral retina. It is the leading cause of juvenile macular degeneration in males, and currently there is no approved treatment but carbonic anhydrase inhibitors can be used. A retrospective review of the medical records of 17 children with confirmed XLRS seen in the Paediatric Ophthalmology Department of La Paz University Hospital from the 1st of January 2009 to the 1st of June of 2023 was conducted. Complete ophthalmological studies, genetic testing and full-field electroretinogram were performed. Topical brinzolamide was given to patients with foveoschisis, adding oral acetazolamide in those who did not improve with topical treatment alone or with very extensive foveoschisis at diagnosis. Surgical treatment was performed in retinal detahment (RD) or in no clearing hemovitreous cases. Mean age at diagnosis was 5,86 years and the most common reason for consultation was strabismus, followed by RD. The most frequently affected retinal later on Optic coherence tomography was the inner nuclear layer and throughout the follow-up we observed a decrease in central macular thickness. We found some genotype-phenotype correlation in our series and more severe phenotypes if the first amino acid of the protein is affected or in frameshift mutations. We found that medical treatment (topical and oral) improves foveoschisis, and that surgery shows poor outcomes, especially in younger patients.
Collapse
Affiliation(s)
- Oriana D'Anna Mardero
- Ophthalmology Department, Hospital Universitario La Paz, Madrid, Spain
- Instituto de investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- European Reference Network on Eye Diseases (ERN-EYE), Madrid, Spain
| | - Natalia Arruti Vázquez
- Ophthalmology Department, Hospital Universitario La Paz, Madrid, Spain
- Instituto de investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- European Reference Network on Eye Diseases (ERN-EYE), Madrid, Spain
| | - Javier Francisco Coca Robinot
- Ophthalmology Department, Hospital Universitario La Paz, Madrid, Spain
- Instituto de investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- European Reference Network on Eye Diseases (ERN-EYE), Madrid, Spain
| | - Jesús Peralta Calvo
- Ophthalmology Department, Hospital Universitario La Paz, Madrid, Spain
- Instituto de investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- European Reference Network on Eye Diseases (ERN-EYE), Madrid, Spain
| | - Victoria Ef Montaño
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), Madrid, Spain
| | - Elena Vallespín
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, Madrid, Spain
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), Madrid, Spain
| | - Susana Noval Martín
- Ophthalmology Department, Hospital Universitario La Paz, Madrid, Spain
- Instituto de investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- European Reference Network on Eye Diseases (ERN-EYE), Madrid, Spain
| |
Collapse
|
2
|
Puertas-Neyra K, Coco-Martin RM, Hernandez-Rodriguez LA, Gobelli D, Garcia-Ferrer Y, Palma-Vecino R, Tellería JJ, Simarro M, de la Fuente MA, Fernandez-Bueno I. Clinical exome analysis and targeted gene repair of the c.1354dupT variant in iPSC lines from patients with PROM1-related retinopathies exhibiting diverse phenotypes. Stem Cell Res Ther 2024; 15:192. [PMID: 38956727 PMCID: PMC11218195 DOI: 10.1186/s13287-024-03804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Inherited retinal dystrophies (IRD) are one of the main causes of incurable blindness worldwide. IRD are caused by mutations in genes that encode essential proteins for the retina, leading to photoreceptor degeneration and loss of visual function. IRD generates an enormous global financial burden due to the lack of understanding of a significant part of its pathophysiology, molecular diagnosis, and the near absence of non-palliative treatment options. Patient-derived induced pluripotent stem cells (iPSC) for IRD seem to be an excellent option for addressing these questions, serving as exceptional tools for in-depth studies of IRD pathophysiology and testing new therapeutic approaches. METHODS From a cohort of 8 patients with PROM1-related IRD, we identified 3 patients carrying the same variant (c.1354dupT) but expressing three different IRD phenotypes: Cone and rod dystrophy (CORD), Retinitis pigmentosa (RP), and Stargardt disease type 4 (STGD4). These three target patients, along with one healthy relative from each, underwent comprehensive ophthalmic examinations and their genetic panel study was expanded through clinical exome sequencing (CES). Subsequently, non-integrative patient-derived iPSC were generated and fully characterized. Correction of the c.1354dupT mutation was performed using CRISPR/Cas9, and the genetic restoration of the PROM1 gene was confirmed through flow cytometry and western blotting in the patient-derived iPSC lines. RESULTS CES revealed that 2 target patients with the c.1354dupT mutation presented monoallelic variants in genes associated with the complement system or photoreceptor differentiation and peroxisome biogenesis disorders, respectively. The pluripotency and functionality of the patient-derived iPSC lines were confirmed, and the correction of the target mutation fully restored the capability of encoding Prominin-1 (CD133) in the genetically repaired patient-derived iPSC lines. CONCLUSIONS The c.1354dupT mutation in the PROM1 gene is associated to three distinct AR phenotypes of IRD. This pleotropic effect might be related to the influence of monoallelic variants in other genes associated with retinal dystrophies. However, further evidence needs to be provided. Future experiments should include gene-edited patient-derived iPSC due to its potential as disease modelling tools to elucidate this matter in question.
Collapse
Affiliation(s)
- Kevin Puertas-Neyra
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Rosa M Coco-Martin
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain.
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS-REI), Inflamación E Inmunopatologia de Organos y Sistemas, Instituto de Salud Carlos III, Valladolid, Spain.
- Centro en Red de Medicina Regenerativa, y Terapia Celular de Castilla y León, Valladolid, Spain.
| | | | - Dino Gobelli
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
- Departamento de Biología Celular, Genética, Histología y Farmacología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Yenisey Garcia-Ferrer
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Raicel Palma-Vecino
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Juan José Tellería
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Maria Simarro
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
- Departamento de Biología Celular, Genética, Histología y Farmacología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Miguel A de la Fuente
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
- Departamento de Biología Celular, Genética, Histología y Farmacología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Ivan Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS-REI), Inflamación E Inmunopatologia de Organos y Sistemas, Instituto de Salud Carlos III, Valladolid, Spain
- Centro en Red de Medicina Regenerativa, y Terapia Celular de Castilla y León, Valladolid, Spain
| |
Collapse
|
3
|
Lin YW, Huang YS, Lin CY, Lin CW, Wu CC, Yang CH, Yang CM, Chen PL, Chen TC. High prevalence of exon-13 variants in USH2A-related retinal dystrophies in Taiwanese population. Orphanet J Rare Dis 2024; 19:238. [PMID: 38879497 PMCID: PMC11179209 DOI: 10.1186/s13023-024-03238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Biallelic pathogenic variants in USH2A lead to Usher syndrome or non-syndromic retinitis pigmentosa, and shown to have geographical and ethnical distribution in previous studies. This study provided a deeper understanding of the detailed clinical features using multimodal imaging, genetic spectrum, and genotype-phenotype correlations of USH2A-related retinal dystrophies in Taiwan. RESULTS In our cohort, the mean age at first visit was 47.66 ± 13.54 years, and the mean age at symptom onset, which was referred to the onset of nyctalopia and/or visual field constriction, was 31.21 ± 15.24 years. Among the variants identified, 23 (50%) were missense, 10 (22%) were splicing variants, 8 (17%) were nonsense, and 5 (11%) were frameshift mutations. The most predominant variant was c.2802T>G, which accounted for 21% of patients, and was located in exon 13. Patients with truncated alleles had significantly earlier symptom onset and seemly poorer disease progression regarding visual acuity, ellipsoid zone line length, and hypofluorescent lesions in the macula than those who had the complete gene. However, the clinical presentation revealed similar progression between patients with and without the c.2802T>G variant. During long-term follow-up, the patients had different ellipsoid zone line progression rates and were almost evenly distributed in the fast, moderate, and slow progression subgroups. Although a younger onset age and a smaller baseline intact macular area was observed in the fast progression subgroup, the results showed no significant difference. CONCLUSIONS This is the first cohort study to provide detailed genetic and longitudinal clinical analyses of patients with USH2A-related retinal dystrophies in Taiwan. The mutated allele frequency in exon 13 was high in Taiwan due to the predominant c.2802T>G variant. Moreover, truncated variants greatly impacted disease progression and determined the length of therapeutic windows. These findings provide insight into the characteristics of candidates for future gene therapies.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Shu Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Chien-Yu Lin
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics, Medical College, National Taiwan University, No. 2, Xuzhou Road, 5F., Taipei, Taiwan.
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd, Taipei, Taiwan.
- Center of Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Zhang H, Wu LZ, Liu ZY, Jin ZB. Patient-derived induced pluripotent stem cells with a MERTK mutation exhibit cell junction abnormalities and aberrant cellular differentiation potential. World J Stem Cells 2024; 16:512-524. [PMID: 38817331 PMCID: PMC11135251 DOI: 10.4252/wjsc.v16.i5.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Human induced pluripotent stem cell (hiPSC) technology is a valuable tool for generating patient-specific stem cells, facilitating disease modeling, and investigating disease mechanisms. However, iPSCs carrying specific mutations may limit their clinical applications due to certain inherent characteristics. AIM To investigate the impact of MERTK mutations on hiPSCs and determine whether hiPSC-derived extracellular vesicles (EVs) influence anomalous cell junction and differentiation potential. METHODS We employed a non-integrating reprogramming technique to generate peripheral blood-derived hiPSCs with and hiPSCs without a MERTK mutation. Chromosomal karyotype analysis, flow cytometry, and immunofluorescent staining were utilized for hiPSC identification. Transcriptomics and proteomics were employed to elucidate the expression patterns associated with cell junction abnormalities and cellular differentiation potential. Additionally, EVs were isolated from the supernatant, and their RNA and protein cargos were examined to investigate the involvement of hiPSC-derived EVs in stem cell junction and differentiation. RESULTS The generated hiPSCs, both with and without a MERTK mutation, exhibited normal karyotype and expressed pluripotency markers; however, hiPSCs with a MERTK mutation demonstrated anomalous adhesion capability and differentiation potential, as confirmed by transcriptomic and proteomic profiling. Furthermore, hiPSC-derived EVs were involved in various biological processes, including cell junction and differentiation. CONCLUSION HiPSCs with a MERTK mutation displayed altered junction characteristics and aberrant differentiation potential. Furthermore, hiPSC-derived EVs played a regulatory role in various biological processes, including cell junction and differentiation.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ling-Zi Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Zhen-Yu Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
5
|
Zheng Y, Chen S. Transcriptional precision in photoreceptor development and diseases - Lessons from 25 years of CRX research. Front Cell Neurosci 2024; 18:1347436. [PMID: 38414750 PMCID: PMC10896975 DOI: 10.3389/fncel.2024.1347436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
The vertebrate retina is made up of six specialized neuronal cell types and one glia that are generated from a common retinal progenitor. The development of these distinct cell types is programmed by transcription factors that regulate the expression of specific genes essential for cell fate specification and differentiation. Because of the complex nature of transcriptional regulation, understanding transcription factor functions in development and disease is challenging. Research on the Cone-rod homeobox transcription factor CRX provides an excellent model to address these challenges. In this review, we reflect on 25 years of mammalian CRX research and discuss recent progress in elucidating the distinct pathogenic mechanisms of four CRX coding variant classes. We highlight how in vitro biochemical studies of CRX protein functions facilitate understanding CRX regulatory principles in animal models. We conclude with a brief discussion of the emerging systems biology approaches that could accelerate precision medicine for CRX-linked diseases and beyond.
Collapse
Affiliation(s)
- Yiqiao Zheng
- Molecular Genetics and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Saint Louis, MO, United States
- Department of Ophthalmology and Visual Sciences, Saint Louis, MO, United States
| | - Shiming Chen
- Molecular Genetics and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Saint Louis, MO, United States
- Department of Ophthalmology and Visual Sciences, Saint Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
6
|
Sahin I, Erdem HB, Bahsi T, Saat H. Expanding the Genotype-Phenotype Correlations and Mutational Spectrum in Inherited Retinal Diseases: Novel and Recurrent Mutations. Cureus 2024; 16:e53742. [PMID: 38465142 PMCID: PMC10920963 DOI: 10.7759/cureus.53742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Background Inherited retinal diseases (IRD) represent a prominent etiology of visual impairment on a global scale. The lack of a clear definition of the etiology and genotypic spectrum of IRD is attributed to the significant genetic variability seen. Additionally, there is a scarcity of available data about the correlations between genotypes and phenotypes in this context. This study aimed to clarify the range of mutations and the associations between genotypes and phenotypes in IRD. Methods This cohort consists of 223 patients who have been diagnosed with a range of retinal illnesses, such as retinitis pigmentosa (RP), Stargardt (STGD)/STGD-like disease, Usher syndrome, and Leber congenital amaurosis (LCA). The validation of each mutation and its pathogenicity was conducted by bioinformatics analysis, Sanger sequencing-based co-segregation testing, and computational assessment. The link between genotype and phenotype was analyzed in all patients who possessed mutations as described in the recommendations established by the American College of Medical Genetics. Results A total of 223 cases, comprising Turkish and Syrian families, were examined, revealing the presence of 175 distinct mutations in the IRD gene. Among these mutations, 58 were identified as unique, indicating that they had not been previously reported. A total of 119 mutations were identified to be likely pathogenic, while 104 mutations were classified as pathogenic. The study identified patterns of heredity, namely autosomal recessive, dominant, and X-linked inheritance. Conclusions The findings of this study broaden the clinical and molecular aspects of IRD and further enhance our understanding of its complex nature. The discovery of previously unknown relationships between genetic variations and observable traits, as well as the wide range of genetic variants associated with IRD, significantly contributes to our existing understanding of the diverse phenotypic and genotypic characteristics of IRD. This new information will prove invaluable in facilitating accurate clinical diagnoses as well as personalized therapeutic interventions for individuals affected by IRD.
Collapse
Affiliation(s)
- Ibrahim Sahin
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, BHR
- Department of Medical Genetics, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, TUR
| | - Haktan B Erdem
- Department of Medical Genetics, Ankara Etlik City Hospital, Ankara, TUR
| | - Taha Bahsi
- Department of Medical Genetics, Ankara Etlik City Hospital, Ankara, TUR
| | - Hanife Saat
- Department of Medical Genetics, Ankara Etlik City Hospital, Ankara, TUR
| |
Collapse
|
7
|
Liu Q, Liu J, Guo M, Sung TC, Wang T, Yu T, Tian Z, Fan G, Wu W, Higuchi A. Comparison of retinal degeneration treatment with four types of different mesenchymal stem cells, human induced pluripotent stem cells and RPE cells in a rat retinal degeneration model. J Transl Med 2023; 21:910. [PMID: 38098048 PMCID: PMC10720187 DOI: 10.1186/s12967-023-04785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Retinal degeneration (RD) is a group of disorders on irreversible vision loss. Multiple types of stem cells were used in clinical trials for RD treatment. However, it remains unknown what kinds of stem cells are most effective for the treatment. Therefore, we investigated the subretinal transplantation of several types of stem cells, human adipose-derived stem cells (hADSCs), amniotic fluid stem cells (hAFSCs), bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), induced pluripotent stem cell (hiPSC), and hiPSC-derived retinal pigment epithelium (RPE) cells for protection effects, paracrine effects and treatment efficiency in an RD disease model rats. METHODS The generation and characterization of these stem cells and hiPSC-derived RPE cells were performed before transplantation. The stem cells or hiPSC-derived RPE cell suspension labelled with CellTracker Green to detect transplanted cells were delivered into the subretinal space of 3-week-old RCS rats. The control group received subretinal PBS injection or non-injection. A series of detections including fundus photography, optomotor response (OMR) evaluations, light-dark box testing, electroretinography (ERG), and hematoxylin and eosin (HE) staining of retinal sections were conducted after subretinal injection of the cells. RESULTS Each stem cell, hiPSC-derived RPE cell or PBS (blank experiment) was successfully transplanted into at least six RCS rats subretinally. Compared with the control rats, RCS rats subjected to subretinal transplantation of any stem cells except hiPSCs showed higher ERG waves (p < 0.05) and quantitative OMR (qOMR) index values (hADSCs: 1.166, hAFSCs: 1.249, hBMSCs: 1.098, hDPSCs: 1.238, hiPSCs: 1.208, hiPSC-RPE cells: 1.294, non-injection: 1.03, PBS: 1.06), which indicated better visual function, at 4 weeks post-injection. However, only rats that received hiPSC-derived RPE cells maintained their visual function at 8 weeks post-injection (p < 0.05). The outer nuclear layer thickness observed in histological sections after HE staining showed the same pattern as the ERG and qOMR results. CONCLUSIONS Compared to hiPSC-derived RPE cells, adult and fetal stem cells yielded improvements in visual function for up to 4 weeks post-injection; this outcome was mainly based on the paracrine effects of several types of growth factors secreted by the stem cells. Patients with RD will benefit from the stem cell therapy.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Minmei Guo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan.
| |
Collapse
|
8
|
Masek M, Bachmann-Gagescu R. Control of protein and lipid composition of photoreceptor outer segments-Implications for retinal disease. Curr Top Dev Biol 2023; 155:165-225. [PMID: 38043951 DOI: 10.1016/bs.ctdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.
Collapse
Affiliation(s)
- Markus Masek
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; University Research Priority Program AdaBD, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Toms M, Ward N, Moosajee M. Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3): Role in Retinal Development and Disease. Genes (Basel) 2023; 14:1325. [PMID: 37510230 PMCID: PMC10379133 DOI: 10.3390/genes14071325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
NR2E3 is a nuclear hormone receptor gene required for the correct development of the retinal rod photoreceptors. Expression of NR2E3 protein in rod cell precursors suppresses cone-specific gene expression and, in concert with other transcription factors including NRL, activates the expression of rod-specific genes. Pathogenic variants involving NR2E3 cause a spectrum of retinopathies, including enhanced S-cone syndrome, Goldmann-Favre syndrome, retinitis pigmentosa, and clumped pigmentary retinal degeneration, with limited evidence of genotype-phenotype correlations. A common feature of NR2E3-related disease is an abnormally high number of cone photoreceptors that are sensitive to short wavelength light, the S-cones. This characteristic has been supported by mouse studies, which have also revealed that loss of Nr2e3 function causes photoreceptors to develop as cells that are intermediate between rods and cones. While there is currently no available cure for NR2E3-related retinopathies, there are a number of emerging therapeutic strategies under investigation, including the use of viral gene therapy and gene editing, that have shown promise for the future treatment of patients with NR2E3 variants and other inherited retinal diseases. This review provides a detailed overview of the current understanding of the role of NR2E3 in normal development and disease, and the associated clinical phenotypes, animal models, and therapeutic studies.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Natasha Ward
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
10
|
Neuhann TM, Neuhann L. [Human genetic diagnostics in hereditary eye diseases : What does the ophthalmologist need to know]. DIE OPHTHALMOLOGIE 2023:10.1007/s00347-023-01878-6. [PMID: 37266672 DOI: 10.1007/s00347-023-01878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
Hereditary eye disorders can affect all ocular structures and can be accompanied by structural malformations (e.g. coloboma) or functional disorders (e.g. retinal dystrophy). Ocular phenotypes can also be the presenting symptom of many complex syndromic disorders. The majority of hereditary eye disorders are extremely heterogeneous but can be routinely diagnosed by modern high-throughput sequencing technologies. Molecular testing is highly important not only in in the evaluation of differential diagnoses but is also of increasing relevance due to individual treatment options.
Collapse
Affiliation(s)
- Teresa M Neuhann
- MGZ - Medizinisch genetisches Zentrum, Bayerstr. 3-5, 80335, München, Deutschland.
| | - Lukas Neuhann
- MVZ Prof. Neuhann, Helene-Weber-Allee 19, 80637, München, Deutschland
| |
Collapse
|
11
|
Schlottmann PG, Luna JD, Labat N, Yadarola MB, Bainttein S, Esposito E, Ibañez A, Barbaro EI, Álvarez Mendiara A, Picotti CP, Chirino Misisian A, Andreussi L, Gras J, Capalbo L, Visotto M, Dipierri JE, Alcoba E, Fernández Gabrielli L, Ávila S, Aucar ME, Martin DM, Ormaechea GJ, Inga ME, Francone AA, Charles M, Zompa T, Pérez PJ, Lotersztein V, Nuova PJ, Canonero IB, Mahroo OA, Michaelides M, Arno G, Daich Varela M. Nationwide genetic analysis of more than 600 families with inherited eye diseases in Argentina. NPJ Genom Med 2023; 8:8. [PMID: 37217489 DOI: 10.1038/s41525-023-00352-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
This study corresponds to the first large-scale genetic analysis of inherited eye diseases (IED) in Argentina and describes the comprehensive genetic profile of a large cohort of patients. Medical records of 22 ophthalmology and genetics services throughout 13 Argentinian provinces were analyzed retrospectively. Patients with a clinical diagnosis of an ophthalmic genetic disease and a history of genetic testing were included. Medical, ophthalmological and family history was collected. A total of 773 patients from 637 families were included, with 98% having inherited retinal disease. The most common phenotype was retinitis pigmentosa (RP, 62%). Causative variants were detected in 379 (59%) patients. USH2A, RPGR, and ABCA4 were the most common disease-associated genes. USH2A was the most frequent gene associated with RP, RDH12 early-onset severe retinal dystrophy, ABCA4 Stargardt disease, PROM1 cone-rod dystrophy, and BEST1 macular dystrophy. The most frequent variants were RPGR c.1345 C > T, p.(Arg449*) and USH2A c.15089 C > A, p.(Ser5030*). The study revealed 156/448 (35%) previously unreported pathogenic/likely pathogenic variants and 8 possible founder mutations. We present the genetic landscape of IED in Argentina and the largest cohort in South America. This data will serve as a reference for future genetic studies, aid diagnosis, inform counseling, and assist in addressing the largely unmet need for clinical trials to be conducted in the region.
Collapse
Affiliation(s)
| | - José D Luna
- Centro Privado de Ojos Romagosa SA, Córdoba, Argentina
| | - Natalia Labat
- Centro Privado de Ojos Romagosa SA, Córdoba, Argentina
| | | | | | - Evangelina Esposito
- University Clinic Reina Fabiola, Córdoba, Córdoba, Argentina
- Catholic University of Cordoba, Cordoba, Argentina
| | - Agustina Ibañez
- University Clinic Reina Fabiola, Córdoba, Córdoba, Argentina
- Catholic University of Cordoba, Cordoba, Argentina
| | | | | | | | | | | | | | | | - Mauro Visotto
- Instituto Oftalmológico Trelew, Trelew, Chubut, Argentina
| | | | - Emilio Alcoba
- Hospital Materno Infantil Dr Héctor Quintana, Jujuy, Argentina
| | | | - Silvia Ávila
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Río Negro, Argentina
| | | | | | | | - M Eugenia Inga
- Organización Medica de Investigación, Buenos Aires, Argentina
| | | | | | - Tamara Zompa
- Charles Centro Oftalmológico, Buenos Aires, Argentina
| | | | | | - Pedro J Nuova
- Ocularyb Oftalmoclinica, Yerba Buena, Tucumán, Argentina
| | | | - Omar A Mahroo
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Gavin Arno
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Malena Daich Varela
- Moorfields Eye Hospital, London, UK.
- UCL Institute of Ophthalmology, University College London, London, UK.
| |
Collapse
|
12
|
Kocaaga A, Aköz İÖ, Demir NU, Paksoy B. Identification of novel variants in retinitis pigmentosa genes by whole-exome sequencing. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20221073. [PMID: 37222315 DOI: 10.1590/1806-9282.20221073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE Retinitis pigmentosa is an inherited degenerative disorder causing severe retinal dystrophy and visual impairment, mainly with onset in the first or second decades. The next-generation sequencing has become an efficient tool to identify disease-causing mutations in retinitis pigmentosa. The aim of this retrospective study was to investigate novel gene variants and evaluate the utility of whole-exome sequencing in patients with retinitis pigmentosa. METHODS The medical records of 20 patients with retinitis pigmentosa at Eskişehir City Hospital between September 2019 and February 2022 were analyzed retrospectively. Peripheral venous blood was obtained, followed by the extraction of genomic DNAs. The medical and ophthalmic histories were collected, and ophthalmological examinations were performed. Whole-exome sequencing was performed to determine the genetic etiology of the patients. RESULTS The proportion of genetically solved cases was 75% (15/20) in the patients with retinitis pigmentosa. Molecular genetic testing identified 13 biallelic and 4 monoallelic mutations in known retinitis pigmentosa genes, including 11 novel variants. According to in silico prediction tools, nine variants were predicted as pathogenic or possibly pathogenic. We identified six previously reported mutations to be associated with retinitis pigmentosa. The age of onset of the patients ranged from 3 to 19, with a mean age of onset of 11.6. All patients had a loss of central vision. CONCLUSION As the first study of the application of whole-exome sequencing among patients with retinitis pigmentosa in a Turkish cohort, our results may contribute to the characterization of the spectrum of variants related to retinitis pigmentosa in the Turkish population. Future population-based studies will enable us to reveal the detailed genetic epidemiology of retinitis pigmentosa.
Collapse
Affiliation(s)
- Ayca Kocaaga
- Eskişehir City Hospital, Department of Medical Genetics - Eskişehir, Turkey
| | - İrem Öztürk Aköz
- Eskişehir City Hospital, Department of Ophthalmology - Eskişehir, Turkey
| | - Nihal Ulus Demir
- Eskişehir City Hospital, Department of Ophthalmology - Eskişehir, Turkey
| | - Bariş Paksoy
- Antalya Eğitim ve Araştırma Hastanesi, Department of Medical Genetics - Antalya, Turkey
| |
Collapse
|
13
|
Zhu T, Li H, Wei X, Li W, Sun Z, Sui R. Novel homozygous variant in ARL2BP associated with retinitis pigmentosa, situs inversus, and male infertility in a Chinese patient. Clin Genet 2023; 103:472-477. [PMID: 36507858 DOI: 10.1111/cge.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
ARL2BP is a ciliary gene associated with multiple ciliopathy phenotypes. On comprehensive clinical examinations using molecular methods, we identified a Chinese patient from a consanguineous family carrying a novel homozygous variant c.22_23delAG (p.S8Lfs*10) in ARL2BP, presenting with retinitis pigmentosa (RP), situs inversus totalis, and oligozoospermia. Situs inversus and male infertility have never been reported in the same patient with ARL2BP variants; therefore, this a novel ARL2BP-associated phenotypic triad of RP, situs inversus, and male infertility. Moreover, this patient likely had olfactory dysfunction susceptibility and presented with anosmia. We found reduced patient-derived fibroblast proliferation and ciliary length. Our findings expand the genotypic spectrum and reveal abnormal cell proliferation and ciliogenesis in ARL2BP-associated patients.
Collapse
Affiliation(s)
- Tian Zhu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xing Wei
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuyi Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Hussain HMJ, Wang M, Huang A, Schmidt R, Qian X, Yang P, Marra M, Li Y, Pennesi ME, Chen R. Novel Pathogenic Mutations Identified from Whole-Genome Sequencing in Unsolved Cases of Patients Affected with Inherited Retinal Diseases. Genes (Basel) 2023; 14:447. [PMID: 36833373 PMCID: PMC9956865 DOI: 10.3390/genes14020447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a diverse set of visual disorders that collectively represent a major cause of early-onset blindness. With the reduction in sequencing costs in recent years, whole-genome sequencing (WGS) is being used more frequently, particularly when targeted gene panels and whole-exome sequencing (WES) fail to detect pathogenic mutations in patients. In this study, we performed mutation screens using WGS for a cohort of 311 IRD patients whose mutations were undetermined. A total of nine putative pathogenic mutations in six IRD patients were identified, including six novel mutations. Among them, four were deep intronic mutations that affected mRNA splicing, while the other five affected protein-coding sequences. Our results suggested that the rate of resolution of unsolved cases via targeted gene panels and WES can be further enhanced with WGS; however, the overall improvement may be limited.
Collapse
Affiliation(s)
- Hafiz Muhammad Jafar Hussain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Austin Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan Schmidt
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xinye Qian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Molly Marra
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark E. Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Sangermano R, Galdikaité-Braziené E, Bujakowska KM. Non-syndromic Retinal Degeneration Caused by Pathogenic Variants in Joubert Syndrome Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:173-182. [PMID: 37440031 DOI: 10.1007/978-3-031-27681-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Inherited retinal degenerations (IRDs) are a group of genetic disorders characterized by progressive dysfunction and loss of photoreceptors. IRDs are classified as non-syndromic or syndromic, depending on whether retinal degeneration manifests alone or in combination with other associated symptoms. Joubert syndrome (JBTS) is a genetically and clinically heterogeneous disorder affecting the central nervous system and other organs and tissues, including the neuroretina. To date, 39 genes have been associated with JBTS, a majority of which encode structural or functional components of the primary cilium, a specialized sensory organelle present in most post-mitotic cells, including photoreceptors. The use of whole exome and IRD panel next-generation sequencing in routine diagnostics of non-syndromic IRD cases led to the discovery of pathogenic variants in JBTS genes that cause photoreceptor loss without other syndromic features. Here, we recapitulate these findings, describing the JBTS gene defects leading to non-syndromic IRDs.
Collapse
Affiliation(s)
- Riccardo Sangermano
- Ocular Genomics Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Egle Galdikaité-Braziené
- Ocular Genomics Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Hessenberger M, Haddad S, Obermair GJ. Pathophysiological Roles of Auxiliary Calcium Channel α 2δ Subunits. Handb Exp Pharmacol 2023; 279:289-316. [PMID: 36598609 DOI: 10.1007/164_2022_630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
α2δ proteins serve as auxiliary subunits of voltage-gated calcium channels, which are essential components of excitable cells such as skeletal and heart muscles, nerve cells of the brain and the peripheral nervous system, as well as endocrine cells. Over the recent years, α2δ proteins have been identified as critical regulators of synaptic functions, including the formation and differentiation of synapses. These functions require signalling mechanisms which are partly independent of calcium channels. Hence, in light of these features it is not surprising that the genes encoding for the four α2δ isoforms have recently been linked to neurological and neurodevelopmental disorders including epilepsy, autism spectrum disorders, schizophrenia, and depressive and bipolar disorders. Despite the increasing number of identified disease-associated mutations, the underlying pathophysiological mechanisms are only beginning to emerge. However, a thorough understanding of the pathophysiological role of α2δ proteins ideally serves two purposes: first, it will contribute to our understanding of general pathological mechanisms in synaptic disorders. Second, it may support the future development of novel and specific treatments for brain disorders. In this context, it is noteworthy that the antiepileptic and anti-allodynic drugs gabapentin and pregabalin both act via binding to α2δ proteins and are among the top sold drugs for treating neuropathic pain. In this book chapter, we will discuss recent developments in our understanding of the functions of α2δ proteins, both as calcium channel subunits and as independent regulatory entities. Furthermore, we present and summarize recently identified and likely pathogenic mutations in the genes encoding α2δ proteins and discuss potential underlying pathophysiological consequences at the molecular and structural level.
Collapse
Affiliation(s)
- Manuel Hessenberger
- Division Physiology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sabrin Haddad
- Division Physiology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald J Obermair
- Division Physiology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria.
| |
Collapse
|
17
|
The Diagnostic Yield of Next Generation Sequencing in Inherited Retinal Diseases: A Systematic Review and Meta-analysis. Am J Ophthalmol 2022; 249:57-73. [PMID: 36592879 DOI: 10.1016/j.ajo.2022.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Accurate genotyping of individuals with inherited retinal diseases (IRD) is essential for patient management and identifying suitable candidates for gene therapies. This study evaluated the diagnostic yield of next generation sequencing (NGS) in IRDs. DESIGN Systematic review and meta-analysis. METHODS This systematic review was prospectively registered (CRD42021293619). Ovid MEDLINE and Ovid Embase were searched on 6 June 2022. Clinical studies evaluating the diagnostic yield of NGS in individuals with IRDs were eligible for inclusion. Risk of bias assessment was performed. Studies were pooled using a random...effects inverse variance model. Sources of heterogeneity were explored using stratified analysis, meta-regression, and sensitivity analysis. RESULTS This study included 105 publications from 28 countries. Most studies (90 studies) used targeted gene panels. The diagnostic yield of NGS was 61.3% (95% confidence interval: 57.8-64.7%; 51 studies) in mixed IRD phenotypes, 58.2% (51.6-64.6%; 41 studies) in rod-cone dystrophies, 57.7% (46.8-68.3%; eight studies) in macular and cone/cone-rod dystrophies, and 47.6% (95% CI: 41.0-54.3%; four studies) in familial exudative vitreoretinopathy. For mixed IRD phenotypes, a higher diagnostic yield was achieved pooling studies published between 2018-2022 (64.2% [59.5-68.7%]), studies using exome sequencing (73.5% [58.9-86.1%]), and studies using the American College of Medical Genetics variant interpretation standards (65.6% [60.8-70.4%]). CONCLUSION The current diagnostic yield of NGS in IRDs is between 52-74%. The certainty of the evidence was judged as low or very low. A key limitation of the current evidence is the significant heterogeneity between studies. Adoption of standardized reporting guidelines could improve confidence in future meta-analyses.
Collapse
|
18
|
Genotypic and phenotypic profiles of EYS gene-related retinitis pigmentosa: a retrospective study. Sci Rep 2022; 12:21494. [PMID: 36513702 PMCID: PMC9748023 DOI: 10.1038/s41598-022-26017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Retinitis pigmentosa (RP) affects 1:5000 individuals worldwide. Interestingly, variations in 271 RP-related genes are indicated to vary among populations. We aimed to evaluate the genetic prevalence and phenotypic profiles of Thai patients with RP. The clinical and whole exome sequencing data of 125 patients suggestive of inherited retinal diseases (IRD), particularly non-syndromic RP, were assessed. We found a total of 258 variants (63% of which remained unavailable in the ClinVar database) in 91 IRD-associated genes. Among the detected genes, the eyes shut homolog (EYS) gene showed the highest prevalence. We also provide insights into the genotypic, baseline, and follow-up clinical presentations of seven patients with disease-causing EYS variations. This study could provide comprehension of the prevalence of RP-related genes involved in the Asian population. It might also provide information to establish advanced and personalised therapy for RP in the Thai population.
Collapse
|
19
|
Chien Y, Hsiao YJ, Chou SJ, Lin TY, Yarmishyn AA, Lai WY, Lee MS, Lin YY, Lin TW, Hwang DK, Lin TC, Chiou SH, Chen SJ, Yang YP. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20:511. [DOI: 10.1186/s12951-022-01717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractInherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.
Collapse
|
20
|
Suga A, Yoshitake K, Minematsu N, Tsunoda K, Fujinami K, Miyake Y, Kuniyoshi K, Hayashi T, Mizobuchi K, Ueno S, Terasaki H, Kominami T, Nao-I N, Mawatari G, Mizota A, Shinoda K, Kondo M, Kato K, Sekiryu T, Nakamura M, Kusuhara S, Yamamoto H, Yamamoto S, Mochizuki K, Kondo H, Matsushita I, Kameya S, Fukuchi T, Hatase T, Horiguchi M, Shimada Y, Tanikawa A, Yamamoto S, Miura G, Ito N, Murakami A, Fujimaki T, Hotta Y, Tanaka K, Iwata T. Genetic characterization of 1210 Japanese pedigrees with inherited retinal diseases by whole-exome sequencing. Hum Mutat 2022; 43:2251-2264. [PMID: 36284460 DOI: 10.1002/humu.24492] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/18/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023]
Abstract
Inherited retinal diseases (IRDs) comprise a phenotypically and genetically heterogeneous group of ocular disorders that cause visual loss via progressive retinal degeneration. Here, we report the genetic characterization of 1210 IRD pedigrees enrolled through the Japan Eye Genetic Consortium and analyzed by whole exome sequencing. The most common phenotype was retinitis pigmentosa (RP, 43%), followed by macular dystrophy/cone- or cone-rod dystrophy (MD/CORD, 13%). In total, 67 causal genes were identified in 37% (448/1210) of the pedigrees. The first and second most frequently mutated genes were EYS and RP1, associated primarily with autosomal recessive (ar) RP, and RP and arMD/CORD, respectively. Examinations of variant frequency in total and by phenotype showed high accountability of a frequent EYS missense variant (c.2528G>A). In addition to the two known EYS founder mutations (c.4957dupA and c.8805C>G) of arRP, we observed a frequent RP1 variant (c.5797C>T) in patients with arMD/CORD.
Collapse
Affiliation(s)
- Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Laboratory of Aquatic Molecular Biology and Biotechnology, Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Minematsu
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kaoru Fujinami
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | | | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroko Terasaki
- Nagoya University, Institutes of Innovation for Future Society, Nagoya, Japan
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhisa Nao-I
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Go Mawatari
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Mizota
- Department of Ophthalmology, Teikyo University School of Medicine, Teikyo, Japan
| | - Kei Shinoda
- Department of Ophthalmology, Teikyo University School of Medicine, Teikyo, Japan.,Department of Ophthalmology, Saitama Medical University, Iruma-gun, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kumiko Kato
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tetsuju Sekiryu
- Department of Ophthalmology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sentaro Kusuhara
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | - Kiyofumi Mochizuki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shuhei Kameya
- Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Takeo Fukuchi
- Division of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tetsuhisa Hatase
- Division of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | - Yoshiaki Shimada
- Department of Ophthalmology, Fujita Health University, Fujita, Japan
| | - Atsuhiro Tanikawa
- Department of Ophthalmology, Fujita Health University, Fujita, Japan
| | - Shuichi Yamamoto
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Gen Miura
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nana Ito
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Takuro Fujimaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan.,Kohinata Eye Clinic, Tokyo, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Koji Tanaka
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Chiyoda-ku, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| |
Collapse
|
21
|
Wang J, Xiao X, Li S, Jiang H, Sun W, Wang P, Zhang Q. Landscape of pathogenic variants in six pre-mRNA processing factor genes for retinitis pigmentosa based on large in-house data sets and database comparisons. Acta Ophthalmol 2022; 100:e1412-e1425. [PMID: 35138024 DOI: 10.1111/aos.15104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Variants in six genes encoding pre-mRNA processing factors (PRPFs) are a common cause of autosomal dominant retinitis pigmentosa (ADRP). This study aims to determine the characteristics of potential pathogenic variants (PPVs) in the six genes. METHODS Variants in six PRPF genes were identified from in-house exome sequencing data. PPVs were identified based on comparative bioinformatics analysis, clinical phenotypes and the ACMG/AMP guidelines. The features of PPVs were revealed by comparative analysis of in-house data set, gnomAD and previously published literature. RESULTS Totally, 36 heterozygous PPVs, including 19 novels, were detected from 45 families, which contributed to 4.4% (45/1019) of RP cases. These PPVs were distributed in PRPF31 (17/45, 37.8%), SNRNP200 (12/45, 26.7%), PRPF8 (10/45, 22.2%) and PRPF3 (6/45, 13.3%) but not in PRPF6 or PRPF4. Different types of PPVs were predominant in different PRPF genes, such as loss-of-function variants in PRPF31 and missense variants in the five remaining genes. The clustering of PPVs in specific regions was observed in SNRNP200, PRPF8 and PRPF3. The pathogenicity for certain classes of variants in these genes, such as loss-of-function variants in PRPF6 and missense variants in PRPF31 and PRPF4, requires careful consideration and further validation. The predominant fundus changes were early macular involvement, widespread RPE atrophy and pigmentation in the mid- and far-peripheral retina. CONCLUSION Systemic comparative analysis may shed light on the characterization of PPVs in these genes. Our findings provide a brief landscape of PPVs in PRPF genes and the associated phenotypes and emphasize the careful classification of pathogenicity for certain types of variants that warrant further characterization.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hongmei Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Depleted Calcium Stores and Increased Calcium Entry in Rod Photoreceptors of the Cacna2d4 Mouse Model of Cone-Rod Dystrophy RCD4. Int J Mol Sci 2022; 23:ijms232113080. [DOI: 10.3390/ijms232113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Unidentified pathogenetic mechanisms and genetic and clinical heterogeneity represent critical factors hindering the development of treatments for inherited retinal dystrophies. Frameshift mutations in Cacna2d4, which codes for an accessory subunit of voltage-gated calcium channels (VGCC), cause cone-rod dystrophy RCD4 in patients, but the underlying mechanisms remain unknown. To define its pathogenetic mechanisms, we investigated the impact of a Cacna2d4 frameshift mutation on the electrophysiological profile and calcium handling of mouse rod photoreceptors by patch-clamp recordings and calcium imaging, respectively. In mutant (MUT) rods, the dysregulation of calcium handling extends beyond the reduction in calcium entry through VGCC and surprisingly involves internal calcium stores’ depletion and upregulation of calcium entry via non-selective cationic channels (CSC). The similar dependence of CSC on basal calcium levels in WT and MUT rods suggests that the primary defect in MUT rods lies in defective calcium stores. Calcium stores’ depletion, leading to upregulated calcium and sodium influx via CSC, represents a novel and, so far, unsuspected consequence of the Cacna2d4 mutation. Blocking CSC may provide a novel strategy to counteract the well-known pathogenetic mechanisms involved in rod demise, such as the reticulum stress response and calcium and sodium overload due to store depletion.
Collapse
|
23
|
Effects and Prognosis of Cataract Surgery in Patients with Retinitis Pigmentosa. Ophthalmol Ther 2022; 11:1975-1989. [PMID: 36057888 DOI: 10.1007/s40123-022-00563-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION Cataract extraction could improve visual acuity (VA) for patients with retinitis pigmentosa (RP), while the surgery may increase photoreceptor degeneration through light damage. In this study, we conducted a systematic review and meta-analysis to investigate the effectiveness and prediction of VA after cataract surgery in patients with RP. METHODS We comprehensively extracted data from literature of available studies with quality control processing. Improvement of VA before and after cataract surgery of different durations of follow-up and different structural integrity of the preoperative macular ellipsoid zone (EZ) in patients with RP were compared. VA was measured by the logarithm of the minimum angle of resolution (logMAR). RESULTS Sixteen studies were subjected to analysis. Postoperative VA was significantly improved versus preoperative, with a mean difference (MD) of 0.57 [95% confidence interval (CI) 0.45, 0.69], and a fixed-effect model was applied during follow-up durations of 1 day to 1 month (I2 = 0%). Similarly, for follow-up durations of 1-3 months, 3-6 months, and 6-12 months, postoperative VAs were all better than preoperative values, with MDs of 0.36 (95% CI 0.31, 0.41), 0.35 (95% CI 0.23, 0.46), and 0.22 (95% CI 0.14, 0.30) (I2 < 50%). For follow-up duration of 1-5 years, the random-effect model was applied for higher heterogeneity (I2 = 81%), with an MD of 0.26 (95% CI 0.09, 0.43). There was no significant difference in the improvement of the EZ-invisible group, with an MD of 0.27 (95% CI - 0.17, 0.70) (I2 = 82%). There were significant differences between EZ-abnormal and EZ-normal groups in preoperative and postoperative VA, with MDs of 0.56 (95% CI 0.27, 0.85) and 0.46 (95% CI 0.27, 0.65) (I2 > 50%). CONCLUSIONS Cataract surgery could improve VA for patients with RP during long-term follow-up, and the surgery is not recommended for patients with invisible preoperative macular EZ. However, further studies are required to address the problem of excessive light exposure to the degenerated retina in patients with RP with the cataract removed. The study protocol was registered on the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42022340165).
Collapse
|
24
|
Liang Y, Tan F, Sun X, Cui Z, Gu J, Mao S, Chan HF, Tang S, Chen J. Aberrant Retinal Pigment Epithelial Cells Derived from Induced Pluripotent Stem Cells of a Retinitis Pigmentosa Patient with the PRPF6 Mutation. Int J Mol Sci 2022; 23:ijms23169049. [PMID: 36012314 PMCID: PMC9409096 DOI: 10.3390/ijms23169049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Pre-mRNA processing factors (PRPFs) are vital components of the spliceosome and are involved in the physiological process necessary for pre-mRNA splicing to mature mRNA. As an important member, PRPF6 mutation resulting in autosomal dominant retinitis pigmentosa (adRP) is not common. Recently, we reported the establishment of an induced pluripotent stem cells (iPSCs; CSUASOi004-A) model by reprogramming the peripheral blood mononuclear cells of a PRPF6-related adRP patient, which could recapitulate a consistent disease-specific genotype. In this study, a disease model of retinal pigment epithelial (RPE) cells was generated from the iPSCs of this patient to further investigate the underlying molecular and pathological mechanisms. The results showed the irregular morphology, disorganized apical microvilli and reduced expressions of RPE-specific genes in the patient’s iPSC-derived RPE cells. In addition, RPE cells carrying the PRPF6 mutation displayed a decrease in the phagocytosis of fluorescein isothiocyanate-labeled photoreceptor outer segments and exhibited impaired cell polarity and barrier function. This study will benefit the understanding of PRPF6-related RPE cells and future cell therapy.
Collapse
Affiliation(s)
- Yuqin Liang
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
| | - Feng Tan
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
| | - Xihao Sun
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
| | - Zekai Cui
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
| | - Jianing Gu
- Aier Eye Institute, Changsha 410015, China
| | | | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
- Correspondence: (S.T.); (J.C.); Tel.: +86-139-2510-0123 (S.T.); +86-186-7583-9029 (J.C.)
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China
- Correspondence: (S.T.); (J.C.); Tel.: +86-139-2510-0123 (S.T.); +86-186-7583-9029 (J.C.)
| |
Collapse
|
25
|
Su BN, Shen RJ, Liu ZL, Li Y, Jin ZB. Global spectrum of USH2A mutation in inherited retinal dystrophies: Prompt message for development of base editing therapy. Front Aging Neurosci 2022; 14:948279. [PMID: 36034145 PMCID: PMC9399374 DOI: 10.3389/fnagi.2022.948279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023] Open
Abstract
Purpose Mutation in the USH2A gene is the most common cause of inherited retinal dystrophy (IRD), including non-syndromic retinitis pigmentosa (RP) and Usher syndrome II (USH2). Gene editing and therapy targeting USH2A, especially the hotspot region, would benefit a large proportion of IRD patients. In this study, we comprehensively analyzed the genetic spectrum of the USH2A gene, aiming to identify global hot spot mutations in USH2A-related IRDs and differences in hot spot regions across continents. Materials and methods A retrospective USH2A-related IRD study was conducted, including our IRD cohort, and reported USH2A studies worldwide. Results A total of 3,972 mutated USH2A alleles of approximately 1,935 patients were collected from 33 cohort studies worldwide, containing 102 alleles of 51 patients in our IRD cohort. Mutations in exon 13 were the most common, reaching 18.4% globally and a higher frequency of 22% in America, 19.2% in Europe, and a lower 12% in East Asia. Pathogenic mutations that affected 10 of the 72 exons of USH2A, exon 2, exon 13, exon 41–43, exon 50, exon 54, exon 57, exon 61, and exon 63 in total were responsible for half of global USH2A mutant alleles. With base editors including adenine base editor (ABE), cytidine base editor (CBE), and glycosylase base editor (GBE), 76.3% of single nucleotide variations (SNVs) and 58% of all mutations in USH2A are correctable. Meantime, four novel pathogenic mutations were revealed in our IRD cohort, p. (Val1130Cysfs*72), p. (Ala2139fs*14), p. (Gly4139Arg), and p. (Val4166Cysfs*7). Conclusion In this study, we revealed four novel mutations, expanding the spectrum of USH2A mutations, and importantly presented global hotspot exons and mutations of USH2A as well as the proportion of SNVs that can be restored by different base editors, providing a perspective for exploring high-efficiency and broader-reaching gene editing and gene therapies.
Collapse
Affiliation(s)
- Bing-Nan Su
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Ren-Juan Shen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Zhuo-Lin Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Yang Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
- *Correspondence: Zi-Bing Jin,
| |
Collapse
|
26
|
Tanner A, Chan HW, Schiff E, Mahroo OM, Pulido JS. Exploring the mutational landscape of genes associated with inherited retinal disease using large genomic datasets: identifying loss of function intolerance and outlying propensities for missense changes. BMJ Open Ophthalmol 2022; 7:bmjophth-2022-001079. [PMID: 36161854 PMCID: PMC9422814 DOI: 10.1136/bmjophth-2022-001079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/18/2022] [Indexed: 11/11/2022] Open
Abstract
Background Large databases permit quantitative description of genes in terms of intolerance to loss of function (‘haploinsufficiency’) and prevalence of missense variants. We explored these parameters in inherited retinal disease (IRD) genes. Methods IRD genes (from the ‘RetNet’ resource) were classified by probability of loss of function intolerance (pLI) using online Genome Aggregation Database (gnomAD) and DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (DECIPHER) databases. Genes were identified having pLI ≥0.9 together with one or both of the following: upper bound of CI <0.35 for observed to expected (o/e) ratio of loss of function variants in the gnomAD resource; haploinsufficiency score <10 in the DECIPHER resource. IRD genes in which missense variants appeared under-represented or over-represented (Z score for o/e ratio of <−2.99 or >2.99, respectively) were also identified. The genes were evaluated in the gene ontology Protein Analysis THrough Evolutionary Relationships (PANTHER) resource. Results Of 280 analysed genes, 39 (13.9%) were predicted loss of function intolerant. A greater proportion of X-linked than autosomal IRD genes fulfilled these criteria, as expected. Most autosomal genes were associated with dominant disease. PANTHER analysis showed >100 fold enrichment of spliceosome tri-snRNP complex assembly. Most encoded proteins were longer than the median length in the UniProt database. Fourteen genes (11 of which were in the ‘haploinsufficient’ group) showed under-representation of missense variants. Six genes (SAMD11, ALMS1, WFS1, RP1L1, KCNV2, ADAMTS18) showed over-representation of missense variants. Conclusion A minority of IRD-associated genes appear to be ‘haploinsufficient’. Over-representation of spliceosome pathways was observed. When interpreting genetic tests, variants found in genes with over-representation of missense variants should be interpreted with caution.
Collapse
|
27
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
28
|
Nelson TS, Simpson C, Dyka F, Dinculescu A, Smith WC. A Modified Arrestin1 Increases Lactate Production in the Retina and Slows Retinal Degeneration. Hum Gene Ther 2022; 33:695-707. [PMID: 35081746 PMCID: PMC9347377 DOI: 10.1089/hum.2021.272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucose metabolism in the retina is carefully orchestrated, with glucose being delivered to photoreceptors from the choroidal circulation through the retinal pigmented epithelium (RPE). In photoreceptors, glucose is processed principally by aerobic glycolysis, from which the lactate byproduct is provided to the RPE and Müller glia for their energetic needs. In this study, we utilize a modified arrestin1 protein to enhance the glycolytic output of lactate from rod photoreceptors through disinhibition of enolase1 activity with the goal being to use this increased lactate production as a gene-agnostic approach to slowing retinal degeneration. Mouse arrestin1 with E362G/D363G amino acid substitutions (referred to as "ArrGG") was packaged into AAV and tested for safety and for efficacy in increasing retinal lactate production. Overexpression of ArrGG in C57BL/6J mice did not result in any detectable changes in either electroretinogram (ERG) function or photoreceptor survival as measured by outer nuclear layer (ONL) thickness. However, mouse retinas expressing ArrGG showed a ∼25% increase in the rate of lactate secretion. Therefore, AAV-ArrGG was delivered intravitreally to heterozygous P23H rhodopsin knockin mice (RhoP23H/+) to determine if enhancing glycolysis in photoreceptors can slow retinal degeneration in this animal model of retinitis pigmentosa. We found that the expression of ArrGG in these mice slowed the decline of both scotopic and photopic ERG function. Correspondingly, there was significant preservation of ONL thickness in RhoP23H/+ mice treated with ArrGG compared with controls. In conclusion, our studies show that expressing ArrGG in C57BL/6J mouse retina results in an increase in lactate production, consistent with an upregulation of glycolysis. In the P23H rhodopsin model of retinitis pigmentosa, the expression of ArrGG led to significant preservation of photoreceptor function and slowing of retinal degeneration. These findings suggest that enhancing glycolysis by targeting increased enolase1 activity with a modified arrestin1 in photoreceptors may offer a therapeutic approach to slowing retinal degeneration.
Collapse
Affiliation(s)
- Tiffany S Nelson
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Chiab Simpson
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Frank Dyka
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - W Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
29
|
Ganapathi M, Thomas-Wilson A, Buchovecky C, Dharmadhikari A, Barua S, Lee W, Ruan MZC, Soucy M, Ragi S, Tanaka J, Clark LN, Naini AB, Liao J, Mansukhani M, Tsang S, Jobanputra V. Clinical exome sequencing for inherited retinal degenerations at a tertiary care center. Sci Rep 2022; 12:9358. [PMID: 35672425 PMCID: PMC9174483 DOI: 10.1038/s41598-022-13026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Inherited retinal degenerations are clinically and genetically heterogeneous diseases characterized by progressive deterioration of vision. This study aimed at assessing the diagnostic yield of exome sequencing (ES) for an unselected cohort of individuals with hereditary retinal disorders. It is a retrospective study of 357 unrelated affected individuals, diagnosed with retinal disorders who underwent clinical ES. Variants from ES were filtered, prioritized, and classified using the ACMG recommendations. Clinical diagnosis of the individuals included rod-cone dystrophy (60%), macular dystrophy (20%), cone-rod dystrophy (9%), cone dystrophy (4%) and other phenotypes (7%). Majority of the cases (74%) were singletons and 6% were trios. A confirmed molecular diagnosis was obtained in 24% of cases. In 6% of cases, two pathogenic variants were identified with phase unknown, bringing the potential molecular diagnostic rate to ~ 30%. Including the variants of uncertain significance (VUS), potentially significant findings were reported in 57% of cases. Among cases with a confirmed molecular diagnosis, variants in EYS, ABCA4, USH2A, KIZ, CERKL, DHDDS, PROM1, NR2E3, CNGB1, ABCC6, PRPH2, RHO, PRPF31, PRPF8, SNRNP200, RP1, CHM, RPGR were identified in more than one affected individual. Our results support the utility of clinical ES in the diagnosis of genetically heterogeneous retinal disorders.
Collapse
Affiliation(s)
- Mythily Ganapathi
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Amanda Thomas-Wilson
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Christie Buchovecky
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Avinash Dharmadhikari
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Subit Barua
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Winston Lee
- Department of Ophthalmology, Columbia University, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Merry Z C Ruan
- College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Megan Soucy
- Department of Ophthalmology, Columbia University, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Sara Ragi
- Department of Ophthalmology, Columbia University, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Joy Tanaka
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Lorraine N Clark
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Ali B Naini
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Jun Liao
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Mahesh Mansukhani
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Stephen Tsang
- Department of Ophthalmology, Columbia University, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- Jonas Children's Vision Care, Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative-Departments of Ophthalmology, Biomedical Engineering, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vaidehi Jobanputra
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Precision Genomics Laboratory, Columbia University Irving Medical Center, 701 West 168th St., HHSC 1412, New York, NY, 10032, USA.
| |
Collapse
|
30
|
Wang J, Wang Y, Jiang Y, Li X, Xiao X, Li S, Jia X, Sun W, Wang P, Zhang Q. Autosomal Dominant Retinitis Pigmentosa-Associated TOPORS Protein Truncating Variants Are Exclusively Located in the Region of Amino Acid Residues 807 to 867. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 35579903 PMCID: PMC9123486 DOI: 10.1167/iovs.63.5.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Heterozygous truncating variants of TOPORS have been reported to cause autosomal dominant retinitis pigmentosa (adRP). The purpose of this study was to investigate whether all heterozygous truncating variants, including copy number variants (CNVs), are pathogenic. Methods TOPORS truncating variants were collected and reviewed through an in-house dataset and existing databases. Individuals with truncating variants underwent ophthalmological evaluation. Results Six truncating variants were detected in seven families. Three N-terminus truncating variants were detected in three families without RP, and the other three were identified in four unrelated families with typical RP. Based on the in-house dataset and published literature, 17 truncating variants were identified in 47 families with RP. All RP-associated truncating alleles, except one, were distributed in the last exon of TOPORS and clustered in amino acid residues 807 to 867 (46/47, 97.9%). Conversely, in the gnomAD database, only one truncating allele (1/27, 3.7%) was in this region, and the others were outside (26/27, 96.3%), suggesting that the pathogenic truncating variants were significantly clustered in residues 807 to 867 (χ2 = 65.6, P = 1.1 × 10–17). Additionally, three CNVs involving the N-terminus of TOPORS were recorded in control populations but were absent in affected patients. Conclusions This study suggests that all pathogenic truncating variants of TOPORS were clustered in residues 807 to 867, whereas the truncating variants outside this region and the CNVs involving the N-terminus were not associated with RP. A dominant-negative effect, rather than haploinsufficiency, is speculated to be the underlying pathogenesis. These findings provide valuable information for interpreting variation in TOPORS and other genes in similar situations, especially for CNVs.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
31
|
He K, Zhou Y, Li N. Mutations of TOPORS identified in families with retinitis pigmentosa. Ophthalmic Genet 2022; 43:371-377. [PMID: 35254173 DOI: 10.1080/13816810.2022.2039721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kaiwen He
- Department of Ophthalmology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, China 100045
| | - Yunyu Zhou
- Department of Ophthalmology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, China 100045
| | - Ningdong Li
- Department of Ophthalmology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, China 100045
| |
Collapse
|
32
|
Testa F, Murro V, Signorini S, Colombo L, Iarossi G, Parmeggiani F, Falsini B, Salvetti AP, Brunetti-Pierri R, Aprile G, Bertone C, Suppiej A, Romano F, Karali M, Donati S, Melillo P, Sodi A, Quaranta L, Rossetti L, Buzzonetti L, Chizzolini M, Rizzo S, Staurenghi G, Banfi S, Azzolini C, Simonelli F. RPE65-Associated Retinopathies in the Italian Population: A Longitudinal Natural History Study. Invest Ophthalmol Vis Sci 2022; 63:13. [PMID: 35129589 PMCID: PMC8822366 DOI: 10.1167/iovs.63.2.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose To investigate the course of inherited retinal degenerations (IRD) due to mutations in the RPE65 gene. Methods This longitudinal multicentric retrospective chart-review study was designed to collect best corrected visual acuity (BCVA), Goldman visual field, optical coherence tomography (OCT), and electroretinography (ERG) measurements. The data, including imaging, were collected using an electronic clinical research form and were reviewed at a single center to improve consistency. Results From an overall cohort of 60 Italian patients with RPE65-associated IRD, 43 patients (mean age, 27.8 ± 19.7 years) were included and showed a mean BCVA of 2.0 ± 1.0 logMAR. Time-to-event analysis revealed a median age of 33.8 years and 41.4 years to reach low vision and blindness based on BCVA, respectively. ERG (available for 34 patients) showed undetectable responses in most patients (26; 76.5%). OCT (available for 31 patients) revealed epiretinal membranes in five patients (16.1%). Central foveal thickness significantly decreased with age at a mean annual rate of −0.6%/y (P = 0.044). We identified 43 different variants in the RPE65 gene in the entire cohort. Nine variants were novel. Finally, to assess genotype-phenotype correlations, patients were stratified according to the number of RPE65 loss-of-function (LoF) alleles. Patients without LoF variants showed significantly (P < 0.05) better BCVA compared to patients with one or two LoF alleles. Conclusions We described the natural course of RPE65-associated IRD in an Italian cohort showing for the first time a specific genotype-phenotype association. Our findings can contribute to a better management of RPE65-associated IRD patients.
Collapse
Affiliation(s)
- Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vittoria Murro
- Eye Clinic, Neuromuscolar and Sense Organs Department, Careggi University Hospital, Florence, Italy
| | - Sabrina Signorini
- Developmental Neuro-ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Leonardo Colombo
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù IRCCS Children's Hospital, Rome, Italy
| | - Francesco Parmeggiani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy.,ERN-EYE Network-Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Padova, Italy
| | - Benedetto Falsini
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Paola Salvetti
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giorgia Aprile
- Developmental Neuro-ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Bertone
- Department of Surgical and Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Agnese Suppiej
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Romano
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Marianthi Karali
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Simone Donati
- Unit of Ophthalmology, Azienda Socio-Sanitaria Territoriale (ASST) Dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Paolo Melillo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Andrea Sodi
- Eye Clinic, Neuromuscolar and Sense Organs Department, Careggi University Hospital, Florence, Italy
| | - Luciano Quaranta
- Department of Surgical and Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Luca Rossetti
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Luca Buzzonetti
- Department of Ophthalmology, Bambino Gesù IRCCS Children's Hospital, Rome, Italy
| | - Marzio Chizzolini
- ERN-EYE Network-Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Padova, Italy
| | - Stanislao Rizzo
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Claudio Azzolini
- Unit of Ophthalmology, Azienda Socio-Sanitaria Territoriale (ASST) Dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
33
|
Zhou Y, Tian W, Jiang X, Yang H, Jiang Z, Li X, Jiang D, Sun K, Yang Y, Liu W, Zhu X. Deletion of Asrgl1 Leads to Photoreceptor Degeneration in Mice. Front Cell Dev Biol 2022; 9:783547. [PMID: 35118070 PMCID: PMC8805730 DOI: 10.3389/fcell.2021.783547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
The asparaginase and isoaspartyl peptidase 1 (ASRGL1) is an L-asparaginase and beta-aspartyl peptidase enzyme that may be involved in the formation of L-aspartate, a neurotransmitter that can operate as an excitatory neurotransmitter in some brain regions. Although variants in ASRGL1 have been reported in retinitis pigmentosa (RP) patients, the in vivo functions and mechanisms of ASRGL in RP remains unknown due to the lack of suitable disease models. To explore the role of ASRGL in RP, we generated an Asrgl1 knockout mouse model (Asrgl1 KO) using the CRISPR/Cas9 technique. Asrgl1 ablation in mice led to an attenuated electroretinogram (ERG) response around 8 months. The thickness of the outer nuclei layer (ONL) started to decrease around 9 months in Asrgl1 KO mice and gradually intensified at 12 and 15 months. Immunostaining revealed thinner inner segment (IS) and thinner outer segment (OS) as well as the progressive degeneration of rod and cone cells in Asrgl1 KO mice. One hundred forty-nine transcriptional differentially expressed genes (DEGs) were found by RNA-seq in Asrgl1 KO retina. These DEGs were linked to a number of biological processes that were considerably enriched, including gastrointestinal disease and organismal injury and abnormalities. By analysis of canonical pathways, glucocorticoid receptor signaling was the most significant canonical pathway altered in Asrgl1 KO retina. Several molecules, including NFE2L2, IL-4, Foxp3, and Fos, were in the central nodes of the interaction network in Asrgl1 KO retina. In summary, our study provided a knockout mouse model for a better understanding of the molecular mechanism for ASRGL1-related RP.
Collapse
Affiliation(s)
- Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yu Zhou, ; Wenjing Liu, ; Xianjun Zhu,
| | - Wanli Tian
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xiaoyan Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Huining Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xiao Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Dan Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Kuanxiang Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Wenjing Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yu Zhou, ; Wenjing Liu, ; Xianjun Zhu,
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- Department of Ophthalmology, First People’s Hospital of Shangqiu, Shangqiu, China
- *Correspondence: Yu Zhou, ; Wenjing Liu, ; Xianjun Zhu,
| |
Collapse
|
34
|
Yu M, Bouhenni R, Kurup SK, He W. Editorial: Genetic Mutations Associated With Ocular Diseases. Front Cell Dev Biol 2022; 9:815522. [PMID: 35004704 PMCID: PMC8741275 DOI: 10.3389/fcell.2021.815522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Minzhong Yu
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States.,Department of Ophthalmology, University Hospitals, Case Western Reserve University, Cleveland, OH, United States
| | - Rachida Bouhenni
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States.,The Vision Center, Akron Children's Hospital, Akron, OH, United States
| | - Shree K Kurup
- Department of Ophthalmology, University Hospitals, Case Western Reserve University, Cleveland, OH, United States
| | - Wei He
- Department of Ophthalmology, He Eye Specialist Hospital, He University, Shenyang, China
| |
Collapse
|
35
|
Xu Z, Liao X, Li N, Zhou H, Li H, Zhang Q, Hu K, Yang P, Hou S. A Single-Cell Transcriptome Atlas of the Human Retinal Pigment Epithelium. Front Cell Dev Biol 2022; 9:802457. [PMID: 34977041 PMCID: PMC8718768 DOI: 10.3389/fcell.2021.802457] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human retinal pigment epithelium cells are arranged in a monolayer that plays an important supporting role in the retina. Although the heterogeneity of specific retinal cells has been well studied, the diversity of hRPE cells has not been reported. Here, we performed a single-cell RNA sequencing on 9,302 hRPE cells from three donors and profiled a transcriptome atlas. Our results identified two subpopulations that exhibit substantial differences in gene expression patterns and functions. One of the clusters specifically expressed ID3, a macular retinal pigment epithelium marker. The other cluster highly expressed CRYAB, a peripheral RPE marker. Our results also showed that the genes associated with oxidative stress and endoplasmic reticulum stress were more enriched in the macular RPE. The genes related to light perception, oxidative stress and lipid metabolism were more enriched in the peripheral RPE. Additionally, we provided a map of disease-related genes in the hRPE and highlighted the importance of the macular RPE and peripheral RPE clusters P4 and P6 as potential therapeutic targets for retinal diseases. Our study provides a transcriptional landscape for the human retinal pigment epithelium that is critical to understanding retinal biology and disease.
Collapse
Affiliation(s)
- Zongren Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Eye Institute, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xingyun Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Eye Institute, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Na Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Hongxiu Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Eye Institute, Chongqing, China
| | - Hong Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Eye Institute, Chongqing, China
| | - Qi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Eye Institute, Chongqing, China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Eye Institute, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Eye Institute, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Eye Institute, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
36
|
Karim S, Saharti S, Alganmi N, Mirza Z, Alfares A, Turkistany S, Al-Attas M, Noureldin H, Al Sakkaf K, Abusamra H, Al-Qahtani M, Abuzenadah A. Two Novel Homozygous HPS6 Mutations (Double Mutant) Identified by Whole-Exome Sequencing in a Saudi Consanguineous Family Suspected for Oculocutaneous Albinism. Life (Basel) 2021; 12:life12010014. [PMID: 35054407 PMCID: PMC8779141 DOI: 10.3390/life12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Oculocutaneous albinism (OCA) is an autosomal recessive disorder of low or missing pigmentation in the eyes, hair, and skin. Multiple types of OCA, including Hermansky-Pudlak syndrome 6 (HPS6), are distinguished by their genetic cause and pigmentation pattern. HPS6 is characterized by OCA, nose bleeding due to platelet dysfunction, and lysosome storage defect. To date, 25 disease-associated mutations have been reported in the HPS6 gene. Methods: DNA was extracted from proband, and whole-exome sequencing (WES) was performed using the Illumina NovaSeq platform. Bioinformatic analysis was done with a custom-designed filter pipeline to detect the causative variant. We did Sanger sequencing to confirm the candidate variant and segregation analysis, and protein-based structural analysis to evaluate the functional impact of variants. Result: Proband-based WES identified two novel homozygous mutations in HPS6 (double mutation, c.1136C>A and c.1789delG) in an OCA suspect. Sanger sequencing confirmed the WES results. Although no platelet and/or lysosome storage defect was detected in the patient or family, an oculocutaneous albinism diagnosis was established based on the HPS6 mutations. Structural analysis revealed the transformation of abnormalities at protein level for both nonsense and frameshift mutations in HPS6. Conclusion: To the best of our knowledge, the double mutation in HPS6 (p.Ser379Ter and p.Ala597GlnfsTer16) represents novel pathogenic variants, not described previously, which we report for the first time in the Saudi family. In silico analyses showed a significant impact on protein structure. WES should be used to identify HPS6 and/or other disease-associated genetic variants in Saudi Arabia, particularly in consanguineous families.
Collapse
Affiliation(s)
- Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.-Q.); (A.A.)
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: ; Tel.: +966-557581741
| | - Samah Saharti
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nofe Alganmi
- Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Zeenat Mirza
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- King Fahd Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Alfares
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia;
| | - Shereen Turkistany
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Manal Al-Attas
- Roya Specialized Medical Laboratories, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.-A.); (H.N.); (K.A.S.); (H.A.)
| | - Hend Noureldin
- Roya Specialized Medical Laboratories, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.-A.); (H.N.); (K.A.S.); (H.A.)
| | - Khadega Al Sakkaf
- Roya Specialized Medical Laboratories, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.-A.); (H.N.); (K.A.S.); (H.A.)
| | - Heba Abusamra
- Roya Specialized Medical Laboratories, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.-A.); (H.N.); (K.A.S.); (H.A.)
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.-Q.); (A.A.)
| | - Adel Abuzenadah
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.-Q.); (A.A.)
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- King Fahd Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Roya Specialized Medical Laboratories, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.-A.); (H.N.); (K.A.S.); (H.A.)
| |
Collapse
|
37
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
38
|
Villanueva-Mendoza C, Tuson M, Apam-Garduño D, de Castro-Miró M, Tonda R, Trotta JR, Marfany G, Valero R, Cortés-González V, Gonzàlez-Duarte R. The Genetic Landscape of Inherited Retinal Diseases in a Mexican Cohort: Genes, Mutations and Phenotypes. Genes (Basel) 2021; 12:genes12111824. [PMID: 34828430 PMCID: PMC8624043 DOI: 10.3390/genes12111824] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
In this work, we aimed to provide the genetic diagnosis of a large cohort of patients affected with inherited retinal dystrophies (IRDs) from Mexico. Our data add valuable information to the genetic portrait in rare ocular diseases of Mesoamerican populations, which are mostly under-represented in genetic studies. A cohort of 144 unrelated probands with a clinical diagnosis of IRD were analyzed by next-generation sequencing using target gene panels (overall including 346 genes and 65 intronic sequences). Four unsolved cases were analyzed by whole-exome sequencing (WES). The pathogenicity of new variants was assessed by in silico prediction algorithms and classified following the American College of Medical Genetics and Genomics (ACMG) guidelines. Pathogenic or likely pathogenic variants were identified in 105 probands, with a final diagnostic yield of 72.9%; 17 cases (11.8%) were partially solved. Eighteen patients were clinically reclassified after a genetic diagnostic test (17.1%). In our Mexican cohort, mutations in 48 genes were found, with ABCA4, CRB1, RPGR and USH2A as the major contributors. Notably, over 50 new putatively pathogenic variants were identified. Our data highlight cases with relevant clinical and genetic features due to mutations in the RAB28 and CWC27 genes, enrich the novel mutation repertoire and expand the IRD landscape of the Mexican population.
Collapse
Affiliation(s)
| | - Miquel Tuson
- DBGen Ocular Genomics, 08028 Barcelona, Spain; (M.T.); (M.d.C.-M.); (G.M.)
| | - David Apam-Garduño
- Asociación para Evitar la Ceguera en México, Mexico City 04030, Mexico; (C.V.-M.); (D.A.-G.)
| | | | - Raul Tonda
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain; (R.T.); (J.R.T.)
| | - Jean Remi Trotta
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain; (R.T.); (J.R.T.)
| | - Gemma Marfany
- DBGen Ocular Genomics, 08028 Barcelona, Spain; (M.T.); (M.d.C.-M.); (G.M.)
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Rebeca Valero
- DBGen Ocular Genomics, 08028 Barcelona, Spain; (M.T.); (M.d.C.-M.); (G.M.)
- Correspondence: (R.V.); (V.C.-G.); (R.G.-D.)
| | - Vianney Cortés-González
- Asociación para Evitar la Ceguera en México, Mexico City 04030, Mexico; (C.V.-M.); (D.A.-G.)
- Correspondence: (R.V.); (V.C.-G.); (R.G.-D.)
| | - Roser Gonzàlez-Duarte
- DBGen Ocular Genomics, 08028 Barcelona, Spain; (M.T.); (M.d.C.-M.); (G.M.)
- Correspondence: (R.V.); (V.C.-G.); (R.G.-D.)
| |
Collapse
|
39
|
Shi J, Xu K, Hu JP, Xie Y, Zhang X, Zhang XH, Jin ZB, Li Y. Clinical Features and Natural History in a Cohort of Chinese Patients with RPE65-Associated Inherited Retinal Dystrophy. J Clin Med 2021; 10:jcm10225229. [PMID: 34830511 PMCID: PMC8625455 DOI: 10.3390/jcm10225229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
RPE65-associated inherited retinal dystrophy (RPE65-IRD) is an early-onset retinal degeneration. The aim of this study was to describe the clinical features and natural course of this disease in a Chinese patient cohort with RPE65 biallelic variants. Thirty patients from 29 unrelated families with biallelic disease-causing RPE65 variants underwent full ophthalmic examinations. Thirteen were followed up over time. An additional 57 Chinese cases from 49 families were retrieved from the literature to analyze the relationship between best-corrected visual acuity (BCVA) and age. Our 30 patients presented age-dependent phenotypic characteristics. Multiple white dots were a clinical feature of young patients, while maculopathy, epiretinal membrane, and bone spicules were common in adult patients. Among the 84 patients, BCVA declined with age in a nonlinear, positive-acceleration relationship (p < 0.001). All patients older than 40 years met the WHO standard for low vision. Longitudinal observation revealed a slower visual acuity loss in patients younger than 20 years than those in their third or fourth decade of life. Our study detailed the clinical features and natural course of disease in Chinese patients with RPE65-IRD. Our results indicated that these patients have a relatively stable BCVA in childhood and adolescence, but eyesight deteriorates rapidly in the third decade of life. These findings may facilitate the implementation of gene therapy in China.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zi-Bing Jin
- Correspondence: (Z.-B.J.); (Y.L.); Tel.: +86-10-58-265-915 (Y.L.); Fax: +86-10-65-288-561 (Z.-B.J.); +65-130-796 (Y.L.)
| | - Yang Li
- Correspondence: (Z.-B.J.); (Y.L.); Tel.: +86-10-58-265-915 (Y.L.); Fax: +86-10-65-288-561 (Z.-B.J.); +65-130-796 (Y.L.)
| |
Collapse
|
40
|
Yang J, Zhou L, Ouyang J, Xiao X, Sun W, Li S, Zhang Q. Genotype-Phenotype Analysis of RPGR Variations: Reporting of 62 Chinese Families and a Literature Review. Front Genet 2021; 12:600210. [PMID: 34745198 PMCID: PMC8565807 DOI: 10.3389/fgene.2021.600210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose RPGR is the most common cause of X-linked retinitis pigmentosa (RP), of which female carriers are also frequently affected. The aim of the current study was to explore the RPGR variation spectrum and associated phenotype based on the data from our lab and previous studies. Methods Variants in RPGR were selected from exome sequencing data of 7,092 probands with different eye conditions. The probands and their available family members underwent comprehensive ocular examinations. Similar data were collected from previous reports through searches in PubMed, Web of Science, and Google Scholar. Systematic analyses of genotypes, phenotypes and their correlations were performed. Results A total of 46 likely pathogenic variants, including nine missense and one in-frame variants in RCC1-like domain and 36 truncation variants, in RPGR were detected in 62 unrelated families in our in-house cohort. In addition, a total of 585 variants, including 491 (83.9%) truncation variants, were identified from the literature. Systematic analysis of variants from our in-house dataset, literature, and gnomAD suggested that most of the pathogenic variants of RPGR were truncation variants while pathogenic missense and in-frame variants were enriched in the RCC1-like domain. Phenotypic variations were present between males and female carriers, including more severe refractive error but better best corrected visual acuity (BCVA) in female carriers than those in males. The male patients showed a significant reduction of BCVA with increase of age and males with exon1-14 variants presented a better BCVA than those with ORF15 variants. For female carriers, the BCVA also showed significant reduction with increase of age, but BCVA in females with exon1-14 variants was not significant difference compared with those with ORF15 variants. Conclusion Most pathogenic variants of RPGR are truncations. Missense and in-frame variants located outside of the RCC1-like domain might be benign and the pathogenicity criteria for these variants should be considered with greater caution. The BCVA and refractive error are different between males and female carriers. Increase of age and location of variants in ORF15 contribute to the reduction of BCVA in males. These results are valuable for understanding genotypes and phenotypes of RPGR.
Collapse
Affiliation(s)
- Junxing Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Dai H, Zhang Y, Li R, Li Y, Li G. Genotype and Ocular Phenotype in Sixteen Chinese Patients with Bietti Corneoretinal Crystalline Dystrophy. Curr Eye Res 2021; 47:436-442. [PMID: 34724870 DOI: 10.1080/02713683.2021.1995004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate CYP4V2 gene variants and ocular clinical characteristics of Bietti corneoretinal crystalline dystrophy in China so as to provide more references for genotype and phenotype of BCD. METHODS Sixteen Chinese probands were recruited in Beijing Tongren Hospital in a retrospective study. All patients underwent CYP4V2 gene detection and ophthalmic clinical examinations. RESULTS CYP4V2 gene variants were detected in all patients. Eight variants were identified, and the most common one was c.802-8_810del17bpinsGC. Onset age of BCD was from 12 to 44 years, and the first symptoms mostly were decreased visual acuity or night blindness. Corneal crystalline depositions were observed in all patients and were found not only in epithelium and superficial stroma near the limbus but also in corneal endothelium. OCT showed atrophy of RPE in all patients, outer retinal tubulation in ten patients, macular edema in four patients, macular hole in three patients with one accompanied with retinal detachment, and choroidal neovascularization in one patient. CONCLUSION CYP4V2 gene variants were detected in all patients consistent with the genetic locus homogeneity of BCD, and c.802-8_810del17bpinsGC was the most common mutation. Corneal crystalline depositions were observed in all patients, which may be features of BCD and helpful for the diagnosis of BCD patients, especially those in the advanced stage without typical fundus crystalline depositions or without gene detection. However, considerable phenotypic variability was detected. Corneal crystalline deposits were observed not only in epithelium and superficial stroma but also in endothelium, which has not been reported before. This may provide further evidence for the variable phenotypic expression between affected individuals.
Collapse
Affiliation(s)
- Hehua Dai
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Ruyi Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yuyu Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Genlin Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| |
Collapse
|
42
|
Kim YN, Kim YJ, Seol CA, Seo EJ, Lee JY, Yoon YH. Genetic Profile and Associated Characteristics of 150 Korean Patients with Retinitis Pigmentosa. J Ophthalmol 2021; 2021:5067271. [PMID: 34721897 PMCID: PMC8553513 DOI: 10.1155/2021/5067271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/31/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) shows great diversity between genotypes and phenotypes, and it is important to identify the causative genes. This study aimed to analyze the molecular profiles, associated ocular characteristics, and progression of RP in Korean patients. METHODS All the genetic variants in patients with RP, identified using targeted next-generation sequencing (NGS) with a panel of 88 RP-related genes between November 2018 and November 2019, were retrospectively reviewed. All the patients underwent comprehensive ophthalmological evaluations, and their clinical and family histories were recorded. The best-corrected visual acuity (BCVA) deterioration and photoreceptor disruption progression rates were determined based on the major causative mutational genes using nonlinear mixed models, and the differences among them were investigated using the interaction effect. RESULTS Among the 144 probands, 82 variants in 24 causative genes were identified in 77 families (53.5%). Most of the RP cases were associated with autosomal recessive variants (N = 64 (44.4%)), followed by autosomal dominant (N = 10 (6.9%)) and X-linked variants (N = 3 (2.1%)). The four most frequently affected genes were EYS (N = 15 (10.4%)), USH2A (N = 12 (8.3%)), PDE6B (N = 9 (6.3%)), and RP1 (N = 8 (5.6%)). Epiretinal membranes and cystoid macular edema were frequently noted in the patients with USH2A (75.0%) and PDE6B (50.0%) variants, respectively. During the follow-up period, the BCVA and photoreceptor disruption changes were significantly different among the patients carrying the four common causative genes (P=0.014 and 0.034, resp.). Patients with PDE6B variants showed faster BCVA changes (0.2 LogMAR/10 years), and those with USH2A variants showed the fastest ellipsoid zone disruptions (-170.4 µm/year). CONCLUSION In conclusion, our genetic analysis using targeted NGS provides information about the prevalence of RP-associated mutations in Korean patients. Delineating clinical characteristics according to genetic variations may help clinicians identify subtype features and predict the clinical course of RP.
Collapse
Affiliation(s)
- You Na Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yoon Jeon Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | | | - Eul-Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Young Hee Yoon
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
43
|
Biswas P, Villanueva AL, Soto-Hermida A, Duncan JL, Matsui H, Borooah S, Kurmanov B, Richard G, Khan SY, Branham K, Huang B, Suk J, Bakall B, Goldberg JL, Gabriel L, Khan NW, Raghavendra PB, Zhou J, Devalaraja S, Huynh A, Alapati A, Zawaydeh Q, Weleber RG, Heckenlively JR, Hejtmancik JF, Riazuddin S, Sieving PA, Riazuddin SA, Frazer KA, Ayyagari R. Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis. PLoS Genet 2021; 17:e1009848. [PMID: 34662339 PMCID: PMC8589175 DOI: 10.1371/journal.pgen.1009848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/12/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
| | - Adda L. Villanueva
- Retina and Genomics Institute, Yucatán, México
- Laboratoire de Diagnostic Moleculaire, Hôpital Maisonneuve Rosemont, Montreal, Quebec, Canada
| | - Angel Soto-Hermida
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Jacque L. Duncan
- Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Berzhan Kurmanov
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | | | - Shahid Y. Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kari Branham
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Bonnie Huang
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - John Suk
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Benjamin Bakall
- Ophthalmology, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, United States of America
| | - Jeffrey L. Goldberg
- Byers Eye Institute, Stanford, Palo Alto, California, United States of America
| | - Luis Gabriel
- Genetics and Ophthalmology, Genelabor, Goiânia, Brazil
| | - Naheed W. Khan
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Pongali B. Raghavendra
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
- School of Regenerative Medicine, Manipal University, Bengaluru, Karnataka, India
| | - Jason Zhou
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Sindhu Devalaraja
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Andrew Huynh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Akhila Alapati
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Qais Zawaydeh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Richard G. Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - John R. Heckenlively
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Paul A. Sieving
- National Eye Institute, Bethesda, Maryland, United States of America
- Ophthalmology & Vision Science, UC Davis Medical Center, California, United States of America
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly A. Frazer
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, Rady Children’s Hospital, Division of Genome Information Sciences, San Diego, California, United States of America
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
44
|
Lopez-Rodriguez R, Lantero E, Blanco-Kelly F, Avila-Fernandez A, Martin Merida I, Del Pozo-Valero M, Perea-Romero I, Zurita O, Jiménez-Rolando B, Swafiri ST, Riveiro-Alvarez R, Trujillo-Tiebas MJ, Carreño Salas E, García-Sandoval B, Corton M, Ayuso C. RPE65-related retinal dystrophy: Mutational and phenotypic spectrum in 45 affected patients. Exp Eye Res 2021; 212:108761. [PMID: 34492281 DOI: 10.1016/j.exer.2021.108761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Biallelic pathogenic RPE65 variants are related to a spectrum of clinically overlapping inherited retinal dystrophies (IRD). Most affected individuals progress to severe disease, with 50% of patients becoming legally blind by 20 years of age. Deeper knowledge of the mutational spectrum and the phenotype-genotype correlation in RPE65-related IRD is needed. PATIENTS AND METHODS Forty-five affected subjects from 27 unrelated families with a clinical diagnosis of RPE65-related IRD were included. Clinical evaluation consisted of self-reported ophthalmological history and objective ophthalmological examination. Patients' genotype was classified according to variant class (truncating or missense) or to variant location at different protein domains. The main phenotypic outcome measure was age at onset (AAO) of symptomatic disease and a Kaplan-Meier analysis of disease symptom event-free survival was performed. RESULTS Twenty-nine different RPE65 variants were identified in our cohort, 7 of them novel. Patients carrying two missense alleles showed a later disease onset than those with 1 or 2 truncating variants (log-rank test p <0.05). While 60% of patients carrying a missense/missense genotype presented symptoms before or during the first year of life, almost all patients with at least 1 truncating allele (91%) had an AAO ≤1 year (p <0.05). CONCLUSION Our findings suggest an association between the type of RPE65 variant carried and AAO. These findings provide useful data on RPE65-associated IRD phenotypes and may help improve clinical and therapeutic management of these patients.
Collapse
Affiliation(s)
- Rosario Lopez-Rodriguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Esther Lantero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Almudena Avila-Fernandez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Inmaculada Martin Merida
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Marta Del Pozo-Valero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Irene Perea-Romero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Olga Zurita
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Belén Jiménez-Rolando
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital (FJD), Madrid, Spain
| | - Saoud Tahsin Swafiri
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - María José Trujillo-Tiebas
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Ester Carreño Salas
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital (FJD), Madrid, Spain
| | - Blanca García-Sandoval
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital (FJD), Madrid, Spain
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
45
|
Koschak A, Fernandez-Quintero ML, Heigl T, Ruzza M, Seitter H, Zanetti L. Cav1.4 dysfunction and congenital stationary night blindness type 2. Pflugers Arch 2021; 473:1437-1454. [PMID: 34212239 PMCID: PMC8370969 DOI: 10.1007/s00424-021-02570-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/04/2022]
Abstract
Cav1.4 L-type Ca2+ channels are predominantly expressed in retinal neurons, particularly at the photoreceptor terminals where they mediate sustained Ca2+ entry needed for continuous neurotransmitter release at their ribbon synapses. Cav1.4 channel gating properties are controlled by accessory subunits, associated regulatory proteins, and also alternative splicing. In humans, mutations in the CACNA1F gene encoding for Cav1.4 channels are associated with X-linked retinal disorders such as congenital stationary night blindness type 2. Mutations in the Cav1.4 protein result in a spectrum of altered functional channel activity. Several mouse models broadened our understanding of the role of Cav1.4 channels not only as Ca2+ source at retinal synapses but also as synaptic organizers. In this review, we highlight different structural and functional phenotypes of Cav1.4 mutations that might also occur in patients with congenital stationary night blindness type 2. A further important yet mostly neglected aspect that we discuss is the influence of alternative splicing on channel dysfunction. We conclude that currently available functional phenotyping strategies should be refined and summarize potential specific therapeutic options for patients carrying Cav1.4 mutations. Importantly, the development of new therapeutic approaches will permit a deeper understanding of not only the disease pathophysiology but also the physiological function of Cav1.4 channels in the retina.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium Channel Agonists/pharmacology
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Eye Diseases, Hereditary/genetics
- Eye Diseases, Hereditary/metabolism
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Humans
- Mutation/physiology
- Myopia/genetics
- Myopia/metabolism
- Night Blindness/genetics
- Night Blindness/metabolism
- Retina/drug effects
- Retina/metabolism
- Synapses/drug effects
- Synapses/genetics
- Synapses/metabolism
Collapse
Affiliation(s)
- Alexandra Koschak
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria.
| | - Monica L Fernandez-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Thomas Heigl
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Marco Ruzza
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Hartwig Seitter
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Lucia Zanetti
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| |
Collapse
|
46
|
Generation of two human induced pluripotent stem cell lines from patients with biallelic USH2A variants. Stem Cell Res 2021; 55:102502. [PMID: 34419747 DOI: 10.1016/j.scr.2021.102502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Usher syndrome 2A (USH2A) is one of the most common genes associated with Usher syndrome type II (USH2) and nonsyndromic autosomal recessive retinitis pigmentosa (arRP). Here, we describe the generation and characterization of two human induced pluripotent stem cell (hiPSC) lines from a RP patient with compound heterogeneous USH2A variants and a USH2 patient with homozygous USH2A variant. Blood samples were obtained and peripheral blood mononuclear cells (PBMCs) were reprogrammed using the non-integrative Sendai virus to generate the iPSC lines. The established hiPSC lines retained the disease-associated variants and showed normal karyotype, pluripotency and differentiation capacity.
Collapse
|
47
|
PHENOTYPE-GUIDED GENETIC TESTING OF PEDIATRIC INHERITED RETINAL DISEASE IN THE UNITED ARAB EMIRATES. Retina 2021; 40:1829-1837. [PMID: 31725702 DOI: 10.1097/iae.0000000000002675] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Inherited retinal disease is relatively common in the Arabian Gulf, but details regarding pediatric inherited retinal disease in the region are lacking. The purpose of this study is to report the experience of a regional Ocular Genetics Service with childhood-onset inherited retinal disease in the United Arab Emirates. METHODS Retrospective series of consecutive Emirati patients referred to the Ocular Genetics Service of Cleveland Clinic Abu Dhabi over a 3-year period (2016-2018) who were diagnosed with childhood-onset inherited retinal disease (onset before 16 years old) and underwent diagnostic genetic testing guided by clinical phenotype (single gene, next-generation panel, or exome sequencing). RESULTS Seventy-one probands were identified (38 male and 33 females), the majority of whom were symptomatic with visual problems within the first 5 years of life. All patients had disease causing mutations in 1 of 26 retinal disease genes. Recessive disease was frequently due to homozygous mutations. The most frequently mutated genes (and number of probands) were ABCA4 (14), KCNV2 (8), CRB1 (6), and CNGA3 (5). Recurrent specific gene mutations included ABCA4 p.Gly1961Glu/p.Leu857Pro, KCNV2 p.Glu143*, MERTK p.Cys738Trpfs*32, and RS1 c.52+3A>G. Some probands had mutations in syndromic genes and were confirmed to have extraocular findings. CONCLUSION Phenotype-guided genetic testing had a remarkable yield for this patient population. Recessive disease is often from homozygous mutations. Cone-dominated phenotypes are common. There are apparent founder mutations for several genes that could be used in a targeted genetic testing strategy. Molecular diagnosis is particularly important in affected children when inherited retinal dystrophy could be a sign of syndromic disease as proper earlier diagnosis minimizes potential extraocular morbidity.
Collapse
|
48
|
Liu Y, Zhang JJ, Piao SY, Shen RJ, Ma Y, Xue ZQ, Zhang W, Liu J, Jin ZB, Zhuang WJ. Whole-Exome Sequencing in a Cohort of High Myopia Patients in Northwest China. Front Cell Dev Biol 2021; 9:645501. [PMID: 34222226 PMCID: PMC8250434 DOI: 10.3389/fcell.2021.645501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
High myopia (HM) is one of the leading causes of visual impairment worldwide. In order to expand the myopia gene spectrum in the Chinese population, we investigated genetic mutations in a cohort of 27 families with HM from Northwest China by using whole-exome sequencing (WES). Genetic variations were filtered using bioinformatics tools and cosegregation analysis. A total of 201 candidate mutations were detected, and 139 were cosegregated with the disease in the families. Multistep analysis revealed four missense variants in four unrelated families, including c.904C>T (p.R302C) in CSMD1, c.860G>A (p.R287H) in PARP8, c.G848A (p.G283D) in ADAMTSL1, and c.686A>G (p.H229R) in FNDC3B. These mutations were rare or absent in the Exome Aggregation Consortium (ExAC), 1000 Genomes Project, and Genome Aggregation Database (gnomAD), indicating that they are new candidate disease-causing genes. Our findings not only expand the myopia gene spectrum but also provide reference information for further genetic study of heritable HM.
Collapse
Affiliation(s)
- Yang Liu
- School of Basic Medical Sciences, Third Clinical Medical College of Ningxia Medical University (People’s Hospital of Ningxia Hui Autonomous Region), Yinchuan, China
| | - Jin-Jin Zhang
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Shun-Yu Piao
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Zhong-Qi Xue
- Department of Ophthalmology, Affiliated Hospital of Qingdao Binhai University, Qingdao, China
| | - Wen Zhang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Juan Liu
- School of Basic Medical Sciences, Third Clinical Medical College of Ningxia Medical University (People’s Hospital of Ningxia Hui Autonomous Region), Yinchuan, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Wen-Juan Zhuang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
49
|
Shen RJ, Wang JG, Li Y, Jin ZB. Consanguinity-based analysis of exome sequencing yields likely genetic causes in patients with inherited retinal dystrophy. Orphanet J Rare Dis 2021; 16:278. [PMID: 34130719 PMCID: PMC8204521 DOI: 10.1186/s13023-021-01902-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Consanguineous families have a relatively high prevalence of genetic disorders caused by bi-allelic mutations in recessive genes. This study aims to evaluate the effectiveness and efficiency of a consanguinity-based exome sequencing approach to capturing genetic mutations in inherited retinal dystrophy families with consanguineous marriages. Methods Ten unrelated consanguineous families with a proband affected by inherited retinal dystrophy were recruited in this study. All participants underwent comprehensive ophthalmic examinations. Whole exome sequencing was performed, followed by a homozygote-prior strategy to rapidly filter disease-causing mutations. Bioinformatic prediction of pathogenicity, Sanger sequencing and co-segregation analysis were carried out for further validation. Results In ten consanguineous families, a total of 10 homozygous mutations in 8 IRD genes were identified, including 2 novel mutations, c.1654_1655delAG (p. R552Afs*5) in gene FAM161A in a patient diagnosed with retinitis pigmentosa, and c.830T > C (p.L277P) in gene CEP78 in a patient diagnosed with cone and rod dystrophy. Conclusion The genetic etiology in consanguineous families with IRD were successfully identified using consanguinity-based analysis of exome sequencing data, suggesting that this approach could provide complementary insights into genetic diagnoses in consanguineous families with variant genetic disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01902-5.
Collapse
Affiliation(s)
- Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Jun-Gang Wang
- Department of Ophthalmology, Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yang Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.
| |
Collapse
|
50
|
Xu K, Chen DF, Chang H, Shen RJ, Gao H, Wang XF, Feng ZK, Zhang X, Xie Y, Li Y, Jin ZB. Genotype Profile of Global EYS-Associated Inherited Retinal Dystrophy and Clinical Findings in a Large Chinese Cohort. Front Cell Dev Biol 2021; 9:634220. [PMID: 34178978 PMCID: PMC8226124 DOI: 10.3389/fcell.2021.634220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose The aim of this study was to probe the global profile of the EYS-associated genotype-phenotype trait in the worldwide reported IRD cases and to build a model for predicting disease progression as a reference for clinical consultation. Methods This retrospective study of 420 well-documented IRD cases with mutations in the EYS gene included 39 patients from a genotype-phenotype study of inherited retinal dystrophy (IRD) conducted at the Beijing Institute of Ophthalmology and 381 cases retrieved from global reports. All patients underwent ophthalmic evaluation. Mutations were revealed using next-generation sequencing, followed by Sanger DNA sequencing and real-time quantitative PCR analysis. Multiple regression models and statistical analysis were used to assess the genotype and phenotype characteristics and traits in this large cohort. Results A total of 420 well-defined patients with 841 identified mutations in the EYS gene were successfully obtained. The most common pathogenic variant was a frameshift c.4957dupA (p.S1653Kfs∗2) in exon 26, with an allele frequency of 12.7% (107/841), followed by c.8805C > A (p.Y2935X) in exon 43, with an allele frequency of 5.9% (50/841). Two new hot spots were identified in the Chinese cohort, c.1750G > T (p.E584X) and c.7492G > C (p.A2498P). Several EYS mutation types were identified, with CNV being relatively common. The mean age of onset was 20.54 ± 11.33 (4-46) years. Clinical examinations revealed a typical progression of RPE atrophy from the peripheral area to the macula. Conclusion This large global cohort of 420 IRD cases, with 262 distinct variants, identified genotype-phenotype correlations and mutation spectra with hotspots in the EYS gene.
Collapse
Affiliation(s)
- Ke Xu
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - De-Fu Chen
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haoyu Chang
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Ren-Juan Shen
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Hua Gao
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Fang Wang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhuo-Kun Feng
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaohui Zhang
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Yue Xie
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Yang Li
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| |
Collapse
|