1
|
Tao J, Luo J, Li K, Yang R, Lin Y, Ge J. Comprehensive genetic analysis uncovers the mutational spectrum of MFRP and its genotype-phenotype correlation in a large cohort of Chinese microphthalmia patients. Gene 2024; 926:148647. [PMID: 38848879 DOI: 10.1016/j.gene.2024.148647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
PURPOSE Microphthalmia is a severe congenital ocular disease featured by abnormal ocular development. The aim of this study was to detail the genetic and clinical characteristics of a large cohort of Chinese patients with microphthalmia related to MFRP variants, focusing on uncovering genotype-phenotype correlations. METHODS Fifty microphthalmia patients from 44 unrelated Chinese families were recruited. Whole-exome sequencing (WES) was conducted to analyze the coding regions and adjacent intronic regions of MFRP. Axial lengths (AL) were measured for all probands and available family members. Protein structures of mutations with high frequency in our cohort were predicted. The genotype-phenotype correlations were explored by statistical analysis. RESULTS Sixteen MFRP variants were detected in 17 families, accounting for 38.64 % of all microphthalmia families. There were 9 novel mutations (c.427+1G>C, c.428-2A>C, c.561_575del:p.A188_E192del, c.836G>A:p.C279Y, c.1010_1021del:p.H337_E340del:p.Y479*, c.1516_1517del:p.S506Pfs*66, c.1561T>G:p.C521G, c.1616G>A:p.R539H, and c.1735C>T:p.P579S) and six previously reported variants in MFRP, with p.E496K and p.H337_E340del being highly frequent, found in eight (47.06 %) and two families (11.76 %), respectively. Seven variants (43.75 %) were located in the C-terminal cysteine-rich frizzled-related domain (CRD) (7/16, 43.75 %). Protein prediction implicated p.E496K and p.H337_E340del mutations might lead to a destabilization of the MFRP protein. The average AL of all 42 eyes was 16.02 ± 1.05 mm, and 78.36 % of eyes with AL < 16 mm harbored p.E496K variant. Twenty-six eyes with variant variant had shorter AL than that of the other 16 eyes without this variant (p = 0.006), highlighting a novel genotype-phenotype correlation. CONCLUSIONS In this largest cohort of Chinese patients with microphthalmia, the 9 novel variants, high frequency of p.E496W, and mutation hotspots in CRD reveals unique insights into the MFRP mutation spectrum among Chinese patients, indicating ethnic variability. A new genotype-phenotype correlation that p.E496K variant associated with a shorter AL is unveiled. Our findings enhance the current knowledge of MFRP-associated microphthalmia and provide valuable information for prenatal diagnosis as well as future therapy.
Collapse
Affiliation(s)
- Jing Tao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Jingyi Luo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Runcai Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Yixiu Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
2
|
Hauser BM, Place E, Huckfeldt R, Vavvas DG. A novel homozygous nonsense variant in CABP4 causing stationary cone/rod synaptic dysfunction. Ophthalmic Genet 2024:1-6. [PMID: 39148310 DOI: 10.1080/13816810.2024.2371875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION Variants in the CABP4 gene cause a phenotype to be included in the spectrum of congenital stationary night blindness, though some reports suggest that the clinical abnormalities are more accurately categorized as a synaptic disease of the cones and rods. We report a novel homozygous nonsense variant in CABP4 in a patient complaining of non-progressive reduced visual acuity and photophobia but not nyctalopia. METHODS Complete ocular examination, fundus photographs, autofluorescence, optical coherence tomography, electroretinography, and targeted sequencing of known inherited retinal disease-associated genes. RESULTS A 25-year-old man monitored for 13 years complains of a lifelong history of stable reduced visual acuity (20/150), impaired color vision (1 of 14 plates), small-amplitude nystagmus, and photophobia without nyctalopia. He is also hyperopic (+7D), and his electroretinography shows significantly reduced rod and cone responses. Targeted genetic analysis revealed a novel homozygous variant in the CABP4 gene at c.181C>T, p. (Gln61*) underlying his clinical presentation. CONCLUSIONS A novel variant in CABP4 is associated with stationary cone and rod dysfunction resulting in decreased acuity, color deficit, and photophobia, but not nyctalopia.
Collapse
Affiliation(s)
- Blake M Hauser
- Harvard Medical School Department of Ophthalmology, Retina Service, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Emily Place
- Harvard Medical School Department of Ophthalmology, Retina Service, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Rachel Huckfeldt
- Harvard Medical School Department of Ophthalmology, Retina Service, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Demetrios G Vavvas
- Harvard Medical School Department of Ophthalmology, Retina Service, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Hauser BM, Luo Y, Nathan A, Al-Moujahed A, Vavvas DG, Comander J, Pierce EA, Place EM, Bujakowska KM, Gaiha GD, Rossin EJ. Structure-based network analysis predicts pathogenic variants in human proteins associated with inherited retinal disease. NPJ Genom Med 2024; 9:31. [PMID: 38802398 PMCID: PMC11130145 DOI: 10.1038/s41525-024-00416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Advances in gene sequencing technologies have accelerated the identification of genetic variants, but better tools are needed to understand which are causal of disease. This would be particularly useful in fields where gene therapy is a potential therapeutic modality for a disease-causing variant such as inherited retinal disease (IRD). Here, we apply structure-based network analysis (SBNA), which has been successfully utilized to identify variant-constrained amino acid residues in viral proteins, to identify residues that may cause IRD if subject to missense mutation. SBNA is based entirely on structural first principles and is not fit to specific outcome data, which makes it distinct from other contemporary missense prediction tools. In 4 well-studied human disease-associated proteins (BRCA1, HRAS, PTEN, and ERK2) with high-quality structural data, we find that SBNA scores correlate strongly with deep mutagenesis data. When applied to 47 IRD genes with available high-quality crystal structure data, SBNA scores reliably identified disease-causing variants according to phenotype definitions from the ClinVar database. Finally, we applied this approach to 63 patients at Massachusetts Eye and Ear (MEE) with IRD but for whom no genetic cause had been identified. Untrained models built using SBNA scores and BLOSUM62 scores for IRD-associated genes successfully predicted the pathogenicity of novel variants (AUC = 0.851), allowing us to identify likely causative disease variants in 40 IRD patients. Model performance was further augmented by incorporating orthogonal data from EVE scores (AUC = 0.927), which are based on evolutionary multiple sequence alignments. In conclusion, SBNA can used to successfully identify variants as causal of disease in human proteins and may help predict variants causative of IRD in an unbiased fashion.
Collapse
Affiliation(s)
| | - Yuyang Luo
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Anusha Nathan
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Ahmad Al-Moujahed
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Demetrios G Vavvas
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Jason Comander
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Eric A Pierce
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Emily M Place
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Kinga M Bujakowska
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Gaurav D Gaiha
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth J Rossin
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA.
| |
Collapse
|
4
|
Gwack J, Kim N, Park J. Improving the Yield of Genetic Diagnosis through Additional Genetic Panel Testing in Hereditary Ophthalmic Diseases. Curr Issues Mol Biol 2024; 46:5010-5022. [PMID: 38785568 PMCID: PMC11119902 DOI: 10.3390/cimb46050300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
Numerous hereditary ophthalmic diseases display significant genetic diversity. Consequently, the utilization of gene panel sequencing allows a greater number of patients to receive a genetic diagnosis for their clinical manifestations. We investigated how to improve the yield of genetic diagnosis through additional gene panel sequencing in hereditary ophthalmic diseases. A gene panel sequencing consisting of a customized hereditary retinopathy panel or hereditary retinitis pigmentosa (RP) panel was prescribed and referred to a CAP-accredited clinical laboratory. If no significant mutations associated with hereditary retinopathy and RP were detected in either panel, additional gene panel sequencing was requested for research use, utilizing the remaining panel. After additional gene panel sequencing, a total of 16 heterozygous or homozygous variants were identified in 15 different genes associated with hereditary ophthalmic diseases. Of 15 patients carrying any candidate variants, the clinical symptoms could be tentatively accounted for by genetic mutations in seven patients. However, in the remaining eight patients, given the in silico mutation predictive analysis, variant allele frequency in gnomAD, inheritance pattern, and genotype-phenotype correlation, fully elucidating the clinical manifestations with the identified rare variant was challenging. Our study highlights the utility of gene panel sequencing in achieving accurate diagnoses for hereditary ophthalmic diseases and enhancing the diagnostic yield through additional gene panel sequencing. Thus, gene panel sequencing can serve as a primary tool for the genetic diagnosis of hereditary ophthalmic diseases, even in cases where a single genetic cause is suspected. With a deeper comprehension of the genetic mechanisms underlying these diseases, it becomes feasible.
Collapse
Affiliation(s)
- Jin Gwack
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
| | - Namsu Kim
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Laboratory Medicine, Daejeon St. Mary’s Hospital, Daejeon 34943, Republic of Korea
| |
Collapse
|
5
|
Sangermano R, Gupta P, Price C, Han J, Navarro J, Condroyer C, Place EM, Antonio A, Mukai S, Zanlonghi X, Sahel JA, Duncan JL, Pierce EA, Zeitz C, Audo I, Huckfeldt RM, Bujakowska KM. Coding and non-coding variants in the ciliopathy gene CFAP410 cause early-onset non-syndromic retinal degeneration. RESEARCH SQUARE 2024:rs.3.rs-3871956. [PMID: 38405922 PMCID: PMC10889070 DOI: 10.21203/rs.3.rs-3871956/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Inherited retinal degenerations are blinding genetic disorders characterized by high genetic and phenotypic heterogeneity. The implementation of next-generation sequencing in routine diagnostics, together with advanced clinical phenotyping including multimodal retinal imaging, have contributed to the increase of reports describing novel genotype-phenotype associations and phenotypic expansions. In this study, we describe sixteen families with early-onset non-syndromic retinal degenerations in which affected probands carried rare bi-allelic variants in CFAP410, a ciliary gene previously associated with syndromic recessive Jeune syndrome. The most common retinal phenotypes were cone-rod and rod-cone dystrophies, but the clinical presentations were unified by their early onset as well as the severe impact on central visual function. Twelve variants were detected (three pathogenic, seven likely pathogenic, two of uncertain significance), eight of which were novel. One deep intronic change, c.373+91A>G, led to the creation of a cryptic splice acceptor site in intron four, followed by the inclusion of a 200- base pair pseudoexon and subsequent premature stop codon formation. To our knowledge this is the first likely pathogenic deep-intronic variant identified in this gene. Meta-analysis of all published and novel CFAP410 variants revealed no clear correlation between the severity of the CFAP410-associated phenotypes and the identified causal variants. This is supported by the fact that the frequently encountered missense variant p.(Arg73Pro), often found in syndromic cases, was also associated with non-syndromic retinal degeneration. This study expands the current knowledge of CFAP410-associated ciliopathy by enriching its mutational landscape and supports its association with non-syndromic retinal degeneration.
Collapse
Affiliation(s)
- Riccardo Sangermano
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Priya Gupta
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Cherrell Price
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Julien Navarro
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Emily M. Place
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Shizuo Mukai
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xavier Zanlonghi
- Centre de compétence maladies rares, Service d’Ophtalmologie, CHU Rennes, Rennes, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
- Vision Institute, University of Pittsburgh Medical Center and School of Medicine, Pennsylvania, USA
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Eric A. Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - Rachel M. Huckfeldt
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kinga M. Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Liu X, Dai H, Li G, Jia R, Meng X, Yu S, Yang L, Hong J. Screening copy number variations in 35 unsolved inherited retinal disease families. Hum Genet 2024; 143:197-210. [PMID: 38282009 PMCID: PMC10881639 DOI: 10.1007/s00439-023-02631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
The purpose of this study was to screen Copy Number Variations (CNVs) in 35 unsolved Inherited Retinal Dystrophy (IRD) families. Initially, next generation sequencing, including a specific Hereditary Eye Disease Enrichment Panel or Whole exome sequencing, was employed to screen (likely) pathogenic Single-nucleotide Variants (SNVs) and small Insertions and Deletions (indels) for these cases. All available SNVs and indels were further validated and co-segregation analyses were performed in available family members by Sanger sequencing. If not, after excluding deep intronic variants, Multiplex ligation-dependent probe amplification (MLPA), quantitative fluorescence PCR (QF-PCR) and Sanger sequencing were employed to screen CNVs. We determined that 18 probands who had heterozygous SNVs/indels or whose parents were not consanguineous but had homozygous SNVs/indels in autosomal recessive IRDs genes had CNVs in another allele of these genes, 11 families had disease-causing hemizygous CNVs in X-linked IRD genes, 6 families had (likely) pathogenic heterozygous CNVs in PRPF31 gene. Of 35 families, 33 different CNVs in 16 IRD-associated genes were detected, with PRPF31, EYS and USH2A the most common disease-causing gene in CNVs. Twenty-six and 7 of them were deletion and duplication CNVs, respectively. Among them, 14 CNVs were first reported in this study. Our research indicates that CNVs contribute a lot to IRDs, and screening of CNVs substantially increases the diagnostic rate of IRD. Our results emphasize that MLPA and QF-PCR are ideal methods to validate CNVs, and the novel CNVs reported herein expand the mutational spectrums of IRDs.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Hehua Dai
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Genlin Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, 100730, China
| | - Ruixuan Jia
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Xiang Meng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Shicheng Yu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China.
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
7
|
Sakti DH, Cornish EE, Nash BM, Jamieson RV, Grigg JR. IMPDH1-associated autosomal dominant retinitis pigmentosa: natural history of novel variant Lys314Gln and a comprehensive literature search. Ophthalmic Genet 2023; 44:437-455. [PMID: 37259572 DOI: 10.1080/13816810.2023.2215310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) are causative for RP10 autosomal dominant retinitis pigmentosa (adRP). This study reports a novel variant in a family with IMPDH1-associated retinopathy. We also performed a comprehensive review of all reported IMPDH1 disease causing variants with their associated phenotype. MATERIALS AND METHODS Multimodal imaging and functional studies documented the phenotype including best-corrected visual acuity (BCVA), fundus photograph, fundus autofluorescence (FAF), full field electroretinogram (ffERG), optical coherence tomography (OCT) and visual field (VF) data were collected. A literature search was performed in the PubMed and LOVD repositories. RESULTS We report 3 cases from a 2-generation family with a novel heterozygous likely pathogenic variant p. (Lys314Gln) (exon 10). The ophthalmic phenotype showed diffuse outer retinal atrophy with mild pigmentary changes with sparse pigmentary changes. FAF showed early macular involvement with macular hyperautofluorescence (hyperAF) surrounded by hypoAF. Foveal ellipsoid zone island can be found in the youngest patient but not in the older ones. The literature review identified a further 56 heterozygous, 1 compound heterozygous, and 2 homozygous variant. The heterozygous group included 43 missense, 3 in-frame, 1 nonsense, 2 frameshift, 1 synonymous, and 6 intronic variants. Exon 10 was noted as a hotspot harboring 18 variants. CONCLUSIONS We report a novel IMPDH1 variant. IMPDH1-associated retinopathy presents most frequently in the first decade of life with early macular involvement.
Collapse
Affiliation(s)
- Dhimas H Sakti
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elisa E Cornish
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - John R Grigg
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Comander J, Weigel DiFranco C, Sanderson K, Place E, Maher M, Zampaglione E, Zhao Y, Huckfeldt RM, Bujakowska KM, Pierce E. Natural history of retinitis pigmentosa based on genotype, vitamin A/E supplementation, and an electroretinogram biomarker. JCI Insight 2023; 8:e167546. [PMID: 37261916 PMCID: PMC10445682 DOI: 10.1172/jci.insight.167546] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUNDA randomized clinical trial from 1984 to 1992 indicated that vitamin A supplementation had a beneficial effect on the progression of retinitis pigmentosa (RP), while vitamin E had an adverse effect.METHODSSequencing of banked DNA samples from that trial provided the opportunity to determine whether certain genotypes responded preferentially to vitamin supplementation.RESULTSThe genetic solution rate was 587 out of 765 (77%) of sequenced samples. Combining genetic solutions with electroretinogram outcomes showed that there were systematic differences in severity and progression seen among different genetic subtypes of RP, extending findings made for USH2A, RHO, RPGR, PRPF31, and EYS. Baseline electroretinogram 30-Hz flicker implicit time was an independent, strong predictor of progression rate. Using additional data and baseline implicit time as a predictor, the deleterious effect of vitamin E was still present. Surprisingly, the effect of vitamin A progression in the cohort as a whole was not detectable, with or without data from subsequent trials. Subgroup analyses are also discussed.CONCLUSIONOverall, genetic subtype and implicit time have significant predictive power for a patient's rate of progression, which is useful prognostically. While vitamin E supplementation should still be avoided, these data do not support a generalized neuroprotective effect of vitamin A for all types of RP.TRIAL REGISTRATIONClinicalTrials.gov NCT00000114, NCT00000116, and NCT00346333.FUNDINGFoundation Fighting Blindness and the National Eye Institute: R01 EY012910, R01 EY031036, R01 EY026904, and P30 EY014104.
Collapse
Affiliation(s)
- Jason Comander
- Mass Eye and Ear, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA
| | - Carol Weigel DiFranco
- Mass Eye and Ear, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA
| | - Kit Sanderson
- Mass Eye and Ear, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA
- University of Toronto, Toronto, Ontario, Canada
| | - Emily Place
- Mass Eye and Ear, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Maher
- Mass Eye and Ear, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin Zampaglione
- Mass Eye and Ear, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA
| | - Yan Zhao
- Mass Eye and Ear, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel M. Huckfeldt
- Mass Eye and Ear, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA
| | - Kinga M. Bujakowska
- Mass Eye and Ear, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Pierce
- Mass Eye and Ear, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Lenassi E, Carvalho A, Thormann A, Abrahams L, Arno G, Fletcher T, Hardcastle C, Lopez J, Hunt SE, Short P, Sergouniotis PI, Michaelides M, Webster A, Cunningham F, Ramsden SC, Kasperaviciute D, Fitzpatrick DR, Black GC, Ellingford JM. EyeG2P: an automated variant filtering approach improves efficiency of diagnostic genomic testing for inherited ophthalmic disorders. J Med Genet 2023; 60:810-818. [PMID: 36669873 PMCID: PMC10423522 DOI: 10.1136/jmg-2022-108618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Genomic variant prioritisation is one of the most significant bottlenecks to mainstream genomic testing in healthcare. Tools to improve precision while ensuring high recall are critical to successful mainstream clinical genomic testing, in particular for whole genome sequencing where millions of variants must be considered for each patient. METHODS We developed EyeG2P, a publicly available database and web application using the Ensembl Variant Effect Predictor. EyeG2P is tailored for efficient variant prioritisation for individuals with inherited ophthalmic conditions. We assessed the sensitivity of EyeG2P in 1234 individuals with a broad range of eye conditions who had previously received a confirmed molecular diagnosis through routine genomic diagnostic approaches. For a prospective cohort of 83 individuals, we assessed the precision of EyeG2P in comparison with routine diagnostic approaches. For 10 additional individuals, we assessed the utility of EyeG2P for whole genome analysis. RESULTS EyeG2P had 99.5% sensitivity for genomic variants previously identified as clinically relevant through routine diagnostic analysis (n=1234 individuals). Prospectively, EyeG2P enabled a significant increase in precision (35% on average) in comparison with routine testing strategies (p<0.001). We demonstrate that incorporation of EyeG2P into whole genome sequencing analysis strategies can reduce the number of variants for analysis to six variants, on average, while maintaining high diagnostic yield. CONCLUSION Automated filtering of genomic variants through EyeG2P can increase the efficiency of diagnostic testing for individuals with a broad range of inherited ophthalmic disorders.
Collapse
Affiliation(s)
- Eva Lenassi
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ana Carvalho
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Medical Genetic Unit, Pediatric Hospital, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Anja Thormann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | | | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Tracy Fletcher
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Claire Hardcastle
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | | | - Panagiotis I Sergouniotis
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Andrew Webster
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Simon C Ramsden
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - David R Fitzpatrick
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Graeme C Black
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jamie M Ellingford
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Genomics England Ltd, London, UK
| |
Collapse
|
10
|
Hauser BM, Luo Y, Nathan A, Gaiha GD, Vavvas D, Comander J, Pierce EA, Place EM, Bujakowska KM, Rossin EJ. Structure-based network analysis predicts mutations associated with inherited retinal disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.05.23292247. [PMID: 37461650 PMCID: PMC10350150 DOI: 10.1101/2023.07.05.23292247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
With continued advances in gene sequencing technologies comes the need to develop better tools to understand which mutations cause disease. Here we validate structure-based network analysis (SBNA)1,2 in well-studied human proteins and report results of using SBNA to identify critical amino acids that may cause retinal disease if subject to missense mutation. We computed SBNA scores for genes with high-quality structural data, starting with validating the method using 4 well-studied human disease-associated proteins. We then analyzed 47 inherited retinal disease (IRD) genes. We compared SBNA scores to phenotype data from the ClinVar database and found a significant difference between benign and pathogenic mutations with respect to network score. Finally, we applied this approach to 65 patients at Massachusetts Eye and Ear (MEE) who were diagnosed with IRD but for whom no genetic cause was found. Multivariable logistic regression models built using SBNA scores for IRD-associated genes successfully predicted pathogenicity of novel mutations, allowing us to identify likely causative disease variants in 37 patients with IRD from our clinic. In conclusion, SBNA can be meaningfully applied to human proteins and may help predict mutations causative of IRD.
Collapse
Affiliation(s)
| | - Yuyang Luo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Anusha Nathan
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA
| | - Gaurav D. Gaiha
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA
| | - Demetrios Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Jason Comander
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Eric A. Pierce
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Emily M. Place
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Kinga M. Bujakowska
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Elizabeth J. Rossin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Villalba MF, Li CM, Pakravan P, Bademci G, Chang TCP. Commercial Gene Panels for Congenital Anterior Segment Anomalies: Are They All the Same? Am J Ophthalmol 2023; 251:90-103. [PMID: 36906093 PMCID: PMC10247492 DOI: 10.1016/j.ajo.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
PURPOSE We compared next generation sequencing multigene panels (NGS-MGP) from 5 commercial laboratories to inform ophthalmologists' decision making in diagnostic genetic testing for congenital anterior segment anomalies (CASAs). DESIGN Comparison of commercial genetic testing panels. METHODS This observational study gathered publicly available information on NGS-MGP from 5 commercial laboratories for the following: cataracts, glaucoma, anterior segment dysgenesis (ASD), microphthalmia-anophthalmia-coloboma (MAC), corneal dystrophies, and Axenfeld-Rieger syndrome (ARS). We compared gene panel composition, consensus rate (genes covered by all the panels per condition, "concurrent"), dissensus rate (genes covered by only 1 panel per condition, "standalone"), and intronic variant coverage. For individual genes, we compared publication history and association with systemic conditions. RESULTS Altogether, cataract, glaucoma, corneal dystrophies, MAC, ASD, and ARS panels tested 239, 60, 36, 292, and 10 discrete genes, respectively. The consensus rate varied between 16% and 50%, and the dissensus rate varied between 14% and 74%. After pooling concurrent genes from all conditions, 20% of these genes were concurrent in 2 or more conditions. For both cataract and glaucoma, concurrent genes had significantly stronger correlation with the condition than standalone genes. CONCLUSIONS The genetic testing of CASAs using NGS-MGPs is complicated, owing to their number, variety, and phenotypic and genetic overlap. Although the inclusion of additional genes, such as the standalone ones, might increase diagnostic yield, these genes are also less well studied, indicating uncertainty over their role in CASA pathogenesis. Rigorous prospective diagnostic yield studies of NGS-MGPs will aid in making decisions of panel selection for the diagnosis of CASAs.
Collapse
Affiliation(s)
- Maria Fernanda Villalba
- From the Bascom Palmer Eye Institute (M.F.V., T.C.P.C.), University of Miami Miller School of Medicine, Miami, Florida, USA; John P. Hussmann Institute for Human Genomics (M.F.V., G.B.), University of Miami Miller School of Medicine, Miami, Florida, USA; University of Miami Miller School of Medicine (M.F.V., C.M.L., P.P.), Miami, Florida, USA
| | - Chris Michael Li
- University of Miami Miller School of Medicine (M.F.V., C.M.L., P.P.), Miami, Florida, USA
| | - Parastou Pakravan
- University of Miami Miller School of Medicine (M.F.V., C.M.L., P.P.), Miami, Florida, USA
| | - Guney Bademci
- John P. Hussmann Institute for Human Genomics (M.F.V., G.B.), University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Human Genetics (G.B.), University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ta Chen Peter Chang
- From the Bascom Palmer Eye Institute (M.F.V., T.C.P.C.), University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
12
|
Ronzoni L, Marini I, Passignani G, Malvestiti F, Marchelli D, Bianco C, Pelusi S, Prati D, Valenti L. Validation of a targeted gene panel sequencing for the diagnosis of hereditary chronic liver diseases. Front Genet 2023; 14:1137016. [PMID: 37388930 PMCID: PMC10300275 DOI: 10.3389/fgene.2023.1137016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Background: The cause of chronic liver diseases (CLD) remains undiagnosed in up to 30% of adult patients. Whole-Exome Sequencing (WES) can improve the diagnostic rate of genetic conditions, but it is not yet widely available, due to the costs and the difficulties in results interpretation. Targeted panel sequencing (TS) represents an alternative more focused diagnostic approach. Aims: To validate a customized TS for hereditary CLD diagnosis. Methods: We designed a customized panel including 82 CLD-associated genes (iron overload, lipid metabolism, cholestatic diseases, storage diseases, specific hereditary CLD and susceptibility to liver diseases). DNA samples from 19 unrelated adult patients with undiagnosed CLD were analyzed by both TS (HaloPlex) and WES (SureSelect Human All Exon kit v5) and the diagnostic performances were compared. Results: The mean depth of coverage of TS-targeted regions was higher with TS than WES (300x vs. 102x; p < 0.0001). Moreover, TS yielded a higher average coverage per gene and lower fraction of exons with low coverage (p < 0.0001). Overall, 374 unique variants were identified across all samples, 98 of which were classified as "Pathogenic" or "Likely Pathogenic" with a high functional impact (HFI). The majority of HFI variants (91%) were detected by both methods; 6 were uniquely identified by TS and 3 by WES. Discrepancies in variant calling were mainly due to variability in read depth and insufficient coverage in the corresponding target regions. All variants were confirmed by Sanger sequencing except two uniquely detected by TS. Detection rate and specificity for variants in TS-targeted regions of TS were 96.9% and 97.9% respectively, whereas those of WES were 95.8% and 100%, respectively. Conclusion: TS was confirmed to be a valid first-tier genetic test, with an average mean depth per gene higher than WES and a comparable detection rate and specificity.
Collapse
Affiliation(s)
- Luisa Ronzoni
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Ilaria Marini
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Giulia Passignani
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milano, Italy
| | - Daniele Marchelli
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Cristiana Bianco
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Serena Pelusi
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Daniele Prati
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Luca Valenti
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
13
|
Shah AH, Park E, Luke T, Xu Q, Jewell A, Couser NL. The Role of Genetic Testing in Avoiding Diagnostic Delays in Inherited Retinal Disease. Retin Cases Brief Rep 2023; 18:01271216-990000000-00171. [PMID: 37116464 PMCID: PMC10603209 DOI: 10.1097/icb.0000000000001436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
PURPOSE To identify and highlight potential delays in diagnosis and improve the characterization of the providers referring individuals affected with suspected IRDs for specialty care, we performed an analysis of the patients with IRDs seen by an ophthalmic genetics specialty service. In addition, we analyzed the diagnostic yield of genetic testing in patients with IRD in our series and compared this information with other previous studies. METHODS We analyzed 131 consecutive patients with suspected IRDs referred to an ophthalmic genetics specialty service at a tertiary hospital. Provider referral patterns, delays in diagnosis and the diagnostic yield of genetic testing were evaluated. RESULTS Mean age in the cohort was 24 years. From the 51 patients that underwent genetic testing, the diagnostic yield was 69%. Of these, genetic testing revealed 51% of patients had an incorrect initial referral clinical diagnosis. The average delay to reach a correct diagnosis was 15 years. Ophthalmologists represented the largest referral base at 80%, followed by neurologists representing 5% of referrals. Pediatric and retinal specialists were the largest referral of ophthalmic subspecialties at 44% and 35%, respectively. CONCLUSION A significant number of patients experienced a prolonged delay in reaching a correct diagnosis largely due to a delay in initiating the genetic evaluation and testing process. The initial suspected clinical diagnosis was incorrect in a significant number of cases, revealing that affected patients were potentially denied from appropriate recurrence risk counseling, relevant educational resources, specialty referrals in syndromic cases, and clinical trial eligibility in a timely manner.
Collapse
Affiliation(s)
- Arth H. Shah
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Elisse Park
- Department of Ophthalmology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Tamara Luke
- Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Qingguo Xu
- Department of Ophthalmology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Children’s Hospital of Richmond at VCU, Richmond, VA, USA
| | - Ann Jewell
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Natario L. Couser
- Department of Ophthalmology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Children’s Hospital of Richmond at VCU, Richmond, VA, USA
| |
Collapse
|
14
|
Hussain HMJ, Wang M, Huang A, Schmidt R, Qian X, Yang P, Marra M, Li Y, Pennesi ME, Chen R. Novel Pathogenic Mutations Identified from Whole-Genome Sequencing in Unsolved Cases of Patients Affected with Inherited Retinal Diseases. Genes (Basel) 2023; 14:447. [PMID: 36833373 PMCID: PMC9956865 DOI: 10.3390/genes14020447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a diverse set of visual disorders that collectively represent a major cause of early-onset blindness. With the reduction in sequencing costs in recent years, whole-genome sequencing (WGS) is being used more frequently, particularly when targeted gene panels and whole-exome sequencing (WES) fail to detect pathogenic mutations in patients. In this study, we performed mutation screens using WGS for a cohort of 311 IRD patients whose mutations were undetermined. A total of nine putative pathogenic mutations in six IRD patients were identified, including six novel mutations. Among them, four were deep intronic mutations that affected mRNA splicing, while the other five affected protein-coding sequences. Our results suggested that the rate of resolution of unsolved cases via targeted gene panels and WES can be further enhanced with WGS; however, the overall improvement may be limited.
Collapse
Affiliation(s)
- Hafiz Muhammad Jafar Hussain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Austin Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan Schmidt
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xinye Qian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Molly Marra
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark E. Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Li W, He XD, Yang ZT, Han DM, Sun Y, Chen YX, Han XT, Guo SC, Ma YT, Jin X, Yang HM, Gao Y, Wang ZS, Li JK, He W. De Novo Mutations Contributes Approximately 7% of Pathogenicity in Inherited Eye Diseases. Invest Ophthalmol Vis Sci 2023; 64:5. [PMID: 36729443 PMCID: PMC9907368 DOI: 10.1167/iovs.64.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose The purpose of this study was to describe genotype-phenotype associations and novel insights into genetic characteristics in a trio-based cohort of inherited eye diseases (IEDs). Methods To determine the etiological role of de novo mutations (DNMs) and genetic profile in IEDs, we retrospectively reviewed a large cohort of proband-parent trios of Chinese origin. The patients underwent a detailed examination and was clinically diagnosed by an ophthalmologist. Panel-based targeted exome sequencing was performed on DNA extracted from blood samples, containing coding regions of 792 IED-causative genes and their flanking exons. All participants underwent genetic testing. Results All proband-parent trios were divided into 22 subgroups, the overall diagnostic yield was 48.67% (605/1243), ranging from 4% to 94.44% for each of the subgroups. A total of 108 IED-causative genes were identified, with the top 24 genes explaining 67% of the 605 genetically solved trios. The genetic etiology of 6.76% (84/1243) of the trio was attributed to disease-causative DNMs, and the top 3 subgroups with the highest incidence of DNM were aniridia (n = 40%), Marfan syndrome/ectopia lentis (n = 38.78%), and retinoblastoma (n = 37.04%). The top 10 genes have a diagnostic yield of DNM greater than 3.5% in their subgroups, including PAX6 (40.00%), FBN1 (38.78%), RB1 (37.04%), CRX (10.34%), CHM (9.09%), WFS1 (8.00%), RP1L1 (5.88%), RS1 (5.26%), PCDH15 (4.00%), and ABCA4 (3.51%). Additionally, the incidence of DNM in offspring showed a trend of correlation with paternal age at reproduction, but not statistically significant with paternal (P = 0.154) and maternal (P = 0.959) age at reproduction. Conclusions Trios-based genetic analysis has high accuracy and validity. Our study helps to quantify the burden of the full spectrum IED caused by each gene, offers novel potential for elucidating etiology, and plays a crucial role in genetic counseling and patient management.
Collapse
Affiliation(s)
- Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | | | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | - Yan Sun
- He University, Shenyang, China
| | - Yan-Xian Chen
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiao-Tong Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Si-Cheng Guo
- BGI-Shenzhen, Shenzhen, China,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Yu-Ting Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
| | - Huan-Ming Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Wei He
- He University, Shenyang, China
| |
Collapse
|
16
|
Chorfi S, Place EM, Huckfeldt RM. Disparities in Inherited Retinal Degenerations. Semin Ophthalmol 2023; 38:201-206. [PMID: 36536519 DOI: 10.1080/08820538.2022.2152715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To review disparities in the field of inherited retinal degenerations to establish foundations for future discussions oriented toward finding possible solutions. A narrative overview of the literature. Despite collective efforts towards democratization of genetic testing and investigation, genetic databases containing primarily European populations are heavily relied upon. Access to specialized care and other resources is also still not available to all. Recognizing and addressing disparities and inequities within the field of inherited retinal degenerations will improve our care of these patients and our knowledge of their conditions.
Collapse
Affiliation(s)
- Sarah Chorfi
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Ocular Genomics Institute, Boston, MS, USA
| | - Emily M Place
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Ocular Genomics Institute, Boston, MS, USA
| | - Rachel M Huckfeldt
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Ocular Genomics Institute, Boston, MS, USA
| |
Collapse
|
17
|
Gopinath C, Rompicherla R, Mathias GP, Patil R, Poornachandra B, Vinekar A, Mochi TB, Braganza S, Shetty KB, Kumaramanickavel G, Ghosh A. Inherited retinal disorders: a genotype-phenotype correlation in an Indian cohort and the importance of genetic testing and genetic counselling. Graefes Arch Clin Exp Ophthalmol 2023:10.1007/s00417-022-05955-5. [PMID: 36648511 DOI: 10.1007/s00417-022-05955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/10/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Recent advances in sequencing technologies have enabled radical and rapid progress in the genetic diagnosis of inherited retinal disorders (IRDs). Although the list of gene variations continues to grow, it lacks the genetic etiology of ethnic groups like South Asians. Differences in racial backgrounds and consanguinity add to genetic heterogeneity and phenotypic overlaps. METHODS This retrospective study includes documented data from the Gen-Eye clinic from years 2014 to 2019. Medical records and pedigrees of 591 IRD patients of Indian origin and genetic reports of 117 probands were reviewed. Genotype-phenotype correlations were performed to classify as correlating, non-correlating and unsolved cases. RESULTS Among the 591 patients, we observed a higher prevalence of clinically diagnosed retinitis pigmentosa (38.9%) followed by unspecified diagnoses (28.5%). Consanguinity was reported to be high (55.6%) in this cohort. Among the variants identified in 117 probands, 36.4% of variants were pathogenic, 19.2% were likely pathogenic, and 44.4% were of uncertain significance. Among the pathogenic and likely pathogenic variants, autosomal recessive inheritance showed higher prevalence. About 35% (41/117) of cases showed genotype-phenotype correlation. Within the correlating cases, retinitis pigmentosa and Stargardt disease were predominant. Novel variants identified in RP, Stargardt, and LCA are reported here. CONCLUSION This first-of-a-kind report on an Indian cohort contributes to existing knowledge and expansion of variant databases, presenting relevant and plausible novel variants. Phenotypic overlap and variability lead to a differential diagnosis and hence a clear genotype-phenotype correlation helps in precise clinical confirmation. The study also emphasizes the importance of genetic counselling and testing for personalized vision care in a tertiary eye hospital.
Collapse
Affiliation(s)
- Chitra Gopinath
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, 560099, India
- Gen-Eye Clinic, Narayana Nethralaya, Bangalore, 560099, India
| | - Ramya Rompicherla
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, 560099, India
- Gen-Eye Clinic, Narayana Nethralaya, Bangalore, 560099, India
| | - Grace Priyaranjini Mathias
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, 560099, India
- Gen-Eye Clinic, Narayana Nethralaya, Bangalore, 560099, India
| | - Rajeshwari Patil
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, 560099, India
- Gen-Eye Clinic, Narayana Nethralaya, Bangalore, 560099, India
| | - B Poornachandra
- Vitreo-Retina Services, Narayana Nethralaya, Bangalore, 560010, India
| | - Anand Vinekar
- Vitreo-Retina Services, Narayana Nethralaya, Bangalore, 560010, India
| | | | - Sherine Braganza
- Vitreo-Retina Services, Narayana Nethralaya, Bangalore, 560010, India
| | - K Bhujang Shetty
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, 560099, India
- Gen-Eye Clinic, Narayana Nethralaya, Bangalore, 560099, India
- Vitreo-Retina Services, Narayana Nethralaya, Bangalore, 560010, India
| | - Govindasamy Kumaramanickavel
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, 560099, India
- Gen-Eye Clinic, Narayana Nethralaya, Bangalore, 560099, India
| | - Anuprita Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, 560099, India.
- Gen-Eye Clinic, Narayana Nethralaya, Bangalore, 560099, India.
| |
Collapse
|
18
|
Mc Clinton B, Corradi Z, McKibbin M, Panneman DM, Roosing S, Boonen EGM, Ali M, Watson CM, Steel DH, Cremers FPM, Inglehearn CF, Hitti-Malin RJ, Toomes C. Effective smMIPs-Based Sequencing of Maculopathy-Associated Genes in Stargardt Disease Cases and Allied Maculopathies from the UK. Genes (Basel) 2023; 14:191. [PMID: 36672932 PMCID: PMC9859292 DOI: 10.3390/genes14010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Macular dystrophies are a group of individually rare but collectively common inherited retinal dystrophies characterised by central vision loss and loss of visual acuity. Single molecule Molecular Inversion Probes (smMIPs) have proved effective in identifying genetic variants causing macular dystrophy. Here, a previously established smMIPs panel tailored for genes associated with macular diseases has been used to examine 57 UK macular dystrophy cases, achieving a high solve rate of 63.2% (36/57). Among 27 bi-allelic STGD1 cases, only three novel ABCA4 variants were identified, illustrating that the majority of ABCA4 variants in Caucasian STGD1 cases are currently known. We examined cases with ABCA4-associated disease in detail, comparing our results with a previously reported variant grading system, and found this model to be accurate and clinically useful. In this study, we showed that ABCA4-associated disease could be distinguished from other forms of macular dystrophy based on clinical evaluation in the majority of cases (34/36).
Collapse
Affiliation(s)
- Benjamin Mc Clinton
- Leeds Institute of Medical Research, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martin McKibbin
- Leeds Institute of Medical Research, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
- Department of Ophthalmology, St. James’s University Hospital, Leeds LS9 7TF, UK
| | - Daan M. Panneman
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Erica G. M. Boonen
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Manir Ali
- Leeds Institute of Medical Research, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Christopher M. Watson
- Leeds Institute of Medical Research, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James’s University Hospital, Leeds LS9 7TF, UK
| | - David H. Steel
- Sunderland Eye Infirmary, Sunderland SR2 9HP, UK
- The Bioscience Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Chris F. Inglehearn
- Leeds Institute of Medical Research, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Rebekkah J. Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Carmel Toomes
- Leeds Institute of Medical Research, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
19
|
Soucy M, Tanaka AJ, Dharmadhikari A. Molecular Genetic Testing Approaches for Retinitis Pigmentosa. Methods Mol Biol 2022; 2560:41-66. [PMID: 36481882 DOI: 10.1007/978-1-0716-2651-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) affects approximately 1 in 4000 individuals. It has many different genetic etiologies and therefore diagnosis can be challenging. Understanding the different testing methodologies is beneficial for clinicians and researchers in order to select the best testing method, whether it be panel testing, whole exome sequencing, or whole genome sequencing for individuals affected with RP. The Methods section also outlines the steps required to complete a WES assay, which has become a popular method for identifying the molecular diagnosis for individuals with RP.
Collapse
Affiliation(s)
- Megan Soucy
- Columbia University Irving Medical Center, New York, NY, USA.
| | - Akemi Joy Tanaka
- Genetics and Genomics, Columbia University Irving Medical Center, New York, NY, USA
| | - Avinash Dharmadhikari
- Clinical Genomics, Department of Clinical Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Fu H, Siggs OM, Knight LS, Staffieri SE, Ruddle JB, Birsner AE, Collantes ER, Craig JE, Wiggs JL, D’Amato RJ. Thrombospondin 1 missense alleles induce extracellular matrix protein aggregation and TM dysfunction in congenital glaucoma. J Clin Invest 2022; 132:e156967. [PMID: 36453543 PMCID: PMC9711877 DOI: 10.1172/jci156967] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Glaucoma is a highly heritable disease that is a leading cause of blindness worldwide. Here, we identified heterozygous thrombospondin 1 (THBS1) missense alleles altering p.Arg1034, a highly evolutionarily conserved amino acid, in 3 unrelated and ethnically diverse families affected by congenital glaucoma, a severe form of glaucoma affecting children. Thbs1R1034C-mutant mice had elevated intraocular pressure (IOP), reduced ocular fluid outflow, and retinal ganglion cell loss. Histology revealed an abundant, abnormal extracellular accumulation of THBS1 with abnormal morphology of juxtacanalicular trabecular meshwork (TM), an ocular tissue critical for aqueous fluid outflow. Functional characterization showed that the THBS1 missense alleles found in affected individuals destabilized the THBS1 C-terminus, causing protein misfolding and extracellular aggregation. Analysis using a range of amino acid substitutions at position R1034 showed that the extent of aggregation was correlated with the change in protein-folding free energy caused by variations in amino acid structure. Extracellular matrix (ECM) proteins, especially fibronectin, which bind to THBS1, also accumulated within THBS1 deposits. These results show that missense variants altering THBS1 p.Arg1034 can cause elevated IOP through a mechanism involving impaired TM fluid outflow in association with accumulation of aggregated THBS1 in the ECM of juxtacanalicular meshwork with altered morphology.
Collapse
Affiliation(s)
- Haojie Fu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Owen M. Siggs
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Lachlan S.W. Knight
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Sandra E. Staffieri
- Centre for Eye Research Australia (CERA), Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Department of Ophthalmology, University of Melbourne, Department of Surgery, Parkville, Victoria, Australia
- Department of Ophthalmology, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Jonathan B. Ruddle
- Department of Ophthalmology, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Amy E. Birsner
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Robert J. D’Amato
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Yi Z, Li S, Wang S, Xiao X, Sun W, Zhang Q. Clinical features and genetic spectrum of NMNAT1-associated retinal degeneration. Eye (Lond) 2022; 36:2279-2285. [PMID: 34837036 PMCID: PMC9674661 DOI: 10.1038/s41433-021-01853-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES To systematically analyse the NMNAT1 variant spectrum and frequency, the associated phenotypic characteristics, and potential genotype-phenotype correlations based on our data and literature review. METHODS Biallelic potential pathogenic variants (PPV) in NMNAT1 were collected from our in-house exome sequencing data. Whole-genome sequencing was conducted subsequently for patients with only one heterozygous PPV detected in NMNAT1. The clinical data were reviewed and evaluated in detail. Furthermore, the literature was reviewed for reports of NMNAT1 variants and their associated phenotypes. RESULTS Eleven NMNAT1 variants, including two novel variants, were detected in 8 families from our cohort. All of the 9 available patients showed generalized tapetoretinal dystrophy at an early age (88.9% in the first decade), and disciform macular atrophy was identified in six patients from five unrelated families. Among a total of 125 patients from 8 families of our cohort and 91 families reported by the available literature, 92.9% patients showed onset of disease in the first year after birth, and 89.0% patients showed visual acuity of 0.05 or lower. All of the 39 patients with fundus photos available presented disciform macular atrophy with generalized tapetoretinal dystrophy. Most (54/80, 67.5%) of causative NMNAT1 variants were missense. The most frequent variants in Caucasian and Asian population are p.E257K and p.R237C, respectively. CONCLUSIONS Early-onset age, disciform macular atrophy with generalized tapetoretinal dystrophy, and poor visual acuity are the typical features of NMNAT1-associated retinal degeneration. Different variant hot spots of NMNAT1 were observed in different populations.
Collapse
Affiliation(s)
- Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Siyu Wang
- Department of Ophthalmology, Li Chuan People's Hospital, Enshi, HuBei, 445400, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China.
| |
Collapse
|
22
|
Hitti-Malin RJ, Dhaenens CM, Panneman DM, Corradi Z, Khan M, den Hollander AI, Farrar GJ, Gilissen C, Hoischen A, van de Vorst M, Bults F, Boonen EGM, Saunders P, Roosing S, Cremers FPM. Using single molecule Molecular Inversion Probes as a cost-effective, high-throughput sequencing approach to target all genes and loci associated with macular diseases. Hum Mutat 2022; 43:2234-2250. [PMID: 36259723 PMCID: PMC10092144 DOI: 10.1002/humu.24489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023]
Abstract
Macular degenerations (MDs) are a subgroup of retinal disorders characterized by central vision loss. Knowledge is still lacking on the extent of genetic and nongenetic factors influencing inherited MD (iMD) and age-related MD (AMD) expression. Single molecule Molecular Inversion Probes (smMIPs) have proven effective in sequencing the ABCA4 gene in patients with Stargardt disease to identify associated coding and noncoding variation, however many MD patients still remain genetically unexplained. We hypothesized that the missing heritability of MDs may be revealed by smMIPs-based sequencing of all MD-associated genes and risk factors. Using 17,394 smMIPs, we sequenced the coding regions of 105 iMD and AMD-associated genes and noncoding or regulatory loci, known pseudo-exons, and the mitochondrial genome in two test cohorts that were previously screened for variants in ABCA4. Following detailed sequencing analysis of 110 probands, a diagnostic yield of 38% was observed. This established an ''MD-smMIPs panel," enabling a genotype-first approach in a high-throughput and cost-effective manner, whilst achieving uniform and high coverage across targets. Further analysis will identify known and novel variants in MD-associated genes to offer an accurate clinical diagnosis to patients. Furthermore, this will reveal new genetic associations for MD and potential genetic overlaps between iMD and AMD.
Collapse
Affiliation(s)
- Rebekkah J Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claire-Marie Dhaenens
- Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, Univ. Lille, Lille, France
| | - Daan M Panneman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G Jane Farrar
- The School of Genetics & Microbiology, The University of Dublin Trinity College, Dublin, Ireland
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje van de Vorst
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Femke Bults
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erica G M Boonen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Iarossi G, Sinibaldi L, Passarelli C, Coppe’ AM, Cappelli A, Petrocelli G, Catena G, Perrone C, Falsini B, Novelli A, Bartuli A, Buzzonetti L. A Novel Autosomal Recessive Variant of the NRL Gene Causing Enhanced S-Cone Syndrome: A Morpho-Functional Analysis of Two Unrelated Pediatric Patients. Diagnostics (Basel) 2022; 12:2183. [PMID: 36140584 PMCID: PMC9497687 DOI: 10.3390/diagnostics12092183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Enhanced S-cone syndrome (ESCS) is a rare autosomal recessive retinal degeneration mainly associated with pathogenic variations in the NR2E3 gene. Only a few pathogenic variations in the NRL gene associated with ESCS have been reported to date. Here, we describe the clinical and genetic findings of two unrelated pediatric patients with a novel frameshift homozygous variant in the NRL gene. Fundus examinations showed signs of peripheral degeneration in both patients, more severe in Proband 2, with relative sparing of the macular area. Spectral domain optical coherence tomography (SD-OCT) revealed a significant macular involvement with cysts in Proband 1, and minimal foveal alteration with peripheral retina involvement in Proband 2. Visual acuity was abnormal in both patients, but more severely affected in Proband 1 than Proband 2. The electroretinogram recordings showed reduced scotopic, mixed and single flash cone responses, with a typical supernormal S-cone response, meeting the criteria for a clinical diagnosis of ESCS in both patients. The present report expands the clinical and genetic spectrum of NRL-associated ESCS, and confirms the age-independent variability of phenotypic presentation already described in the NR2E3-associated ESCS.
Collapse
Affiliation(s)
- Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Lorenzo Sinibaldi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
- Rare Disease and Medical Genetics, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Chiara Passarelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Andrea Maria Coppe’
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Alessandro Cappelli
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gianni Petrocelli
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gino Catena
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Chiara Perrone
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Andrea Bartuli
- Rare Disease and Medical Genetics, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Luca Buzzonetti
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| |
Collapse
|
24
|
McClard CK, Pollalis D, Jamshidi F, Kingsley R, Lee SY. Utility of No-Charge Panel Genetic Testing for Inherited Retinal Diseases in a Real-World Clinical Setting. JOURNAL OF VITREORETINAL DISEASES 2022; 6:351-357. [PMID: 36213299 PMCID: PMC9542391 DOI: 10.1177/24741264221100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PURPOSE To show the utility of genetic testing in inherited retinal disease (IRD) patients. METHODS This retrospective cohort study was performed at a single academic center and comprised 59 patients clinically diagnosed with IRD who had testing via the Invitae IRD Panel (Invitae Corp). Samples were collected from August 2019 to April 2021. The rates of genetic diagnosis and disease-category specific results (ie, positive, undetermined, negative) were assessed. RESULTS Testing results were returned a mean of 20 days (range, 14-28 days) after submission. Of the samples, 50.8% (30/59) had a diagnostic yield. By disease category, the yield was 46.4% (13/28) nonsyndromic retinitis pigmentosa (RP), 50.0% (4/8) syndromic RP, 46.2% (6/13) macular dystrophies, 75.0% (3/4) cone or cone-rod dystrophies, and 80.0% (4/5) other retinopathies; there were no cases of rod dystrophies. The results were undetermined in 47.5% of patients (28/59) because of identification of only 1 recessive mutation (5.1%; 3/59), 1 recessive mutation and at least 1 variant of uncertain significance (VUS) (13.6%; 8/59), or VUS only (28.8%; 17/59). One patient (1.7%) received negative testing results with no mutations or VUS identified. CONCLUSIONS Open-access, no-charge panel testing offers a reasonable diagnostic yield. Accurate clinical diagnosis of IRD before testing and acknowledgment of the limitations of panel testing are critical. The results add to the current estimates of the value of genetic testing for retina specialists in the management of IRD.
Collapse
Affiliation(s)
- Cynthia K. McClard
- Ophthalmology, Dean McGee Eye
Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK,
USA
| | - Dimitrios Pollalis
- Ophthalmology, Dean McGee Eye
Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK,
USA
- USC Roski Eye Institute, USC Ginsburg
Institute for Biomedical Therapeutics and Department of Ophthalmology, Keck School
of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Farzad Jamshidi
- Ophthalmology, Dean McGee Eye
Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK,
USA
| | - Ronald Kingsley
- Ophthalmology, Dean McGee Eye
Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK,
USA
| | - Sun Young Lee
- Ophthalmology, Dean McGee Eye
Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK,
USA
- USC Roski Eye Institute, USC Ginsburg
Institute for Biomedical Therapeutics and Department of Ophthalmology, Keck School
of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology, University of
Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
25
|
Li W, Jiang XS, Han DM, Gao JY, Yang ZT, Jiang L, Zhang Q, Zhang SH, Gao Y, Wu JH, Li JK. Genetic Characteristics and Variation Spectrum of USH2A-Related Retinitis Pigmentosa and Usher Syndrome. Front Genet 2022; 13:900548. [PMID: 36110214 PMCID: PMC9468824 DOI: 10.3389/fgene.2022.900548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Purposes: We aimed to characterize the USH2A genotypic spectrum in a Chinese cohort and provide a detailed genetic profile for Chinese patients with USH2A-IRD.Methods: We designed a retrospective study wherein a total of 1,334 patients diagnosed with IRD were included as a study cohort, namely 1,278 RP and 56 USH patients, as well as other types of IEDs patients and healthy family members as a control cohort. The genotype-phenotype correlation of all participants with USH2A variant was evaluated.Results: Etiological mutations in USH2A, the most common cause of RP and USH, were found in 16.34% (n = 218) genetically solved IRD patients, with prevalences of 14.87% (190/1,278) and 50% (28/56). After bioinformatics and QC processing, 768 distinct USH2A variants were detected in all participants, including 136 disease-causing mutations present in 665 alleles, distributed in 5.81% of all participants. Of these 136 mutations, 43 were novel, nine were founder mutations, and two hot spot mutations with allele count ≥10. Furthermore, 38.5% (84/218) of genetically solved USH2A-IRD patients were caused by at least one of both c.2802T>G and c.8559–2 A>G mutations, and 36.9% and 69.6% of the alleles in the RP and USH groups were truncating, respectively.Conclusion: USH2A-related East Asian-specific founder and hot spot mutations were the major causes for Chinese RP and USH patients. Our study systematically delineated the genotype spectrum of USH2A-IRD, enabled accurate genetic diagnosis, and provided East Asian and other ethnicities with baseline data of a Chinese origin, which would better serve genetic counseling and therapeutic targets selection.
Collapse
Affiliation(s)
- Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| | - Xiao-Sen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Jia-Yu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People’s Hospital, Yantai, China
| | - Qian Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| | - Jian-Kang Li
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| |
Collapse
|
26
|
Gupta PR, Kheir W, Peng B, Duan J, Chiang JPW, Iannaccone A. Identification of numerous novel disease-causing variants in patients with inherited retinal diseases, combining careful clinical-functional phenotyping with systematic, broad NGS panel-based genotyping. Mol Vis 2022; 28:203-219. [PMID: 36284670 PMCID: PMC9514548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/14/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose The widespread consensus is that genotyping is essential for patients with inherited retinal disease (IRD). Given the numerous ongoing gene therapy clinical trials for IRDs, identifying the pathogenic mutation in these patients has potential important therapeutic implications. In this study, we demonstrate how we identified with a high degree of confidence numerous novel disease-causing mutations, deletions, and duplications in a large consecutive IRD case series by using a judicious combination of careful, in-depth clinical-functional phenotyping to guide and integrate our genotyping approach. Methods We conducted a retrospective analysis of data between November 2016 and March 2018 from the Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases IRD patient database, which encompassed 378 IRD cases that had not yet been previously genotyped. With the exception of some patients who presented with classical clinical-functional phenotypes that allowed for targeted gene testing, all other subjects systematically underwent next-generation sequencing-based broad, IRD-focused panel testing. Most cases were also tested for parental allele phase. Results were reviewed vis-à-vis the clinical-functional phenotypes for reconciliation and potential addition of supplemental testing such as deletion/duplication microarrays or copy number variant (CNV) analysis. Supplemental testing was driven by an IRD specialist-laboratory consensus, and decisions were clinically or genetically driven or both. Results By judiciously using this two-way approach and leveraging to its full potential the benefits of careful, in-depth clinical-functional phenotyping by an experienced IRD specialist, more than 80% of the cases in this series were successfully genotyped. We also identified with a high degree of confidence 52 novel disease-causing mutations, deletions, and duplications. Conclusions The combination of meticulous, expert clinical-functional phenotyping studies with systematic next-generation sequencing panel-based genotyping and microarray deletion/duplication testing or CNV analysis as applicable in accordance with the above-mentioned consensus was extremely effective at the diagnostic end, reduced costs, and saved time. IRD specialist-laboratory two-way interactions and case discussions would augment the efficacy of this approach and improve the diagnostic yield in successfully solving and genotyping IRD cases.
Collapse
Affiliation(s)
- Priya R. Gupta
- Duke Eye Center, Department of Ophthalmology, Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Duke University School of Medicine, Durham, NC
| | - Wajiha Kheir
- Duke Eye Center, Department of Ophthalmology, Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Duke University School of Medicine, Durham, NC,,Current affiliation: Department of Ophthalmology, American University of Beirut, Beirut, Lebanon
| | - Bo Peng
- Molecular Vision Laboratory, Hillsboro, OR
| | - Jie Duan
- Molecular Vision Laboratory, Hillsboro, OR
| | | | - Alessandro Iannaccone
- Duke Eye Center, Department of Ophthalmology, Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Duke University School of Medicine, Durham, NC
| |
Collapse
|
27
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
28
|
Ratra D, Ozdek S, Raviselvan M, Elchuri S, Sharma T. Approach to inherited retinal diseases. Indian J Ophthalmol 2022; 70:2305-2315. [PMID: 35791111 PMCID: PMC9426075 DOI: 10.4103/ijo.ijo_314_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a group of phenotypically diverse disorders with varied genetic mutations, which result in retinal degeneration leading to visual impairment. When a patient presents to a clinician who is not an IRD expert, establishing a correct diagnosis can be challenging. The patient and the family members are often anxious about further vision loss. They are eager to know the prognosis and chance of further worsening of the vision. It is important for every eye specialist to educate himself/herself about the basics of IRD. It would help to familiarize oneself about how to approach a patient with an IRD. An early and accurate diagnosis can help predict the vision loss and also help the patient plan his/her education and choose appropriate career choices. An updated knowledge about the genetic mutations, mode of inheritance, and possible therapies would empower the eye specialist to help his/her patients. This article gives a broad plan of how to approach a patient with IRD with regards to characterization and diagnosis of the disorder, visual rehabilitation, and possible therapy.
Collapse
Affiliation(s)
- Dhanashree Ratra
- Department of Vitreoretinal Diseases, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Sengul Ozdek
- School of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - Munispriyan Raviselvan
- Department of Vitreoretinal Diseases, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Sailaja Elchuri
- Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Tarun Sharma
- Department of Ophthalmology, Columbia University, New York, USA
| |
Collapse
|
29
|
Zamani M, Sedighzadeh S, Seifi T, Negahdari S, Zeighami J, Sedaghat A, Shariati G, Galehdari H. Whole-exome sequencing deciphers the genetic profile of visual impairments in patients from Southwest Iran. Mol Genet Genomics 2022; 297:1289-1300. [PMID: 35754085 DOI: 10.1007/s00438-022-01917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
Genetic ocular diseases are heterogeneous disorders. Recent advances have led to a paradigm shift in the discovery of eye disease-associated genetic variants from linkage and genome-wide association studies to next-generation sequencing-based genome studies. The aim of the current study was to investigate the spectrum of possible vision impairment-related variants in 66 Iranian patients. Whole-exome sequencing (WES) technology followed by bioinformatics analysis, Sanger validation, and co-segregation study were done to find eye disease-causing variants in the patients with vision impairments from Southwest Iran. WES revealed disease-causing variants in 82% of the enrolled cases. WES of understudied cohorts presented an effective strategy for determining pathogenic variants in heterogeneous eye diseases and demonstrated the distribution of causative genetic mutations in Iranian patients. The present data could provide the potential to accelerate genetic screening and a reference for treatment modalities for patients with different types of eye disorders from Southwest Iran.
Collapse
Affiliation(s)
- Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Sahar Sedighzadeh
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Tahereh Seifi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Samira Negahdari
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran.,Legal Medicine Research Center, Legal Medicine Organization, Ahvaz, Iran
| | - Jawaher Zeighami
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Alireza Sedaghat
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran.,Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran. .,Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
30
|
Kamenarova K, Mihova K, Veleva N, Mermeklieva E, Mihaylova B, Dimitrova G, Oscar A, Shandurkov I, Cherninkova S, Kaneva R. Panel-based next-generation sequencing identifies novel mutations in Bulgarian patients with inherited retinal dystrophies. Mol Genet Genomic Med 2022; 10:e1997. [PMID: 35656873 PMCID: PMC9356554 DOI: 10.1002/mgg3.1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Next-generation sequencing (NGS)-based method is being used broadly for genetic testing especially for clinically and genetically heterogeneous disorders, such as inherited retinal degenerations (IRDs) but still not routinely used for molecular diagnostics in Bulgaria. Consequently, the purpose of this study was to evaluate the effectiveness of a molecular diagnostic approach, based on targeted NGS for the identification of the disease-causing mutations in 16 Bulgarian patients with different IRDs. METHODS We applied a customized NGS panel, including 125 genes associated with retinal and other eye diseases to the patients with hereditary retinopathies. RESULTS Systematic filtering approach coupled with copy number variation analysis and segregation study lead to the identification of 16 pathogenic and likely pathogenic variants in 12/16 (75%) of IRD patients, 2 of which novel (12.5%): ABCA4-c.668delA (p.K223Rfs18) and RР1-c.2015dupA (p.K673Efs*25). Mutations in the ABCA4, PRPH2, USH2A, BEST1, RР1, CDHR1, and RHO genes were detected reaching a diagnostic yield between 42.9% for Retinitis pigmentosa cases and 100% for macular degeneration, Usher syndrome, and cone-rod dystrophy patients. CONCLUSION Our results confirm the usefulness of targeted NGS approach based on frequently mutated genes as a comprehensive and successful genetic diagnostic tool for IRDs with significant impact on patients counseling.
Collapse
Affiliation(s)
- Kunka Kamenarova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria.,Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Kalina Mihova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria.,Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Nevyana Veleva
- Department of Ophthalmology, University Hospital "Alexandrovska", Medical University of Sofia, Sofia, Bulgaria
| | - Elena Mermeklieva
- Clinic of Ophthalmology, University Hospital "Lozenetz", Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | | | - Galina Dimitrova
- Department of Ophthalmology, University Hospital "Alexandrovska", Medical University of Sofia, Sofia, Bulgaria
| | - Alexander Oscar
- Department of Ophthalmology, University Hospital "Alexandrovska", Medical University of Sofia, Sofia, Bulgaria
| | | | - Sylvia Cherninkova
- Department of Neurology, University hospital "Alexandrovska", Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria.,Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
31
|
Lee J, Jeong H, Won D, Shin S, Lee ST, Choi JR, Byeon SH, Kuht HJ, Thomas MG, Han J. Noncanonical Splice Site and Deep Intronic FRMD7 Variants Activate Cryptic Exons in X-linked Infantile Nystagmus. Transl Vis Sci Technol 2022; 11:25. [PMID: 35762937 PMCID: PMC9251792 DOI: 10.1167/tvst.11.6.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose We aim to report noncoding pathogenic variants in patients with FRMD7-related infantile nystagmus (FIN). Methods Genome sequencing (n = 2 families) and reanalysis of targeted panel next generation sequencing (n = 2 families) was performed in genetically unsolved cases of suspected FIN. Previous sequence analysis showed no pathogenic coding variants in genes associated with infantile nystagmus. SpliceAI, SpliceRover, and Alamut consensus programs were used to annotate noncoding variants. Minigene splicing assay was performed to confirm aberrant splicing. In silico analysis of exonic splicing enhancer and silencer was also performed. Results FRMD7 intronic variants were identified based on genome sequencing and targeted next-generation sequencing analysis. These included c.285-12A>G (pedigree 1), c.284+63T>A (pedigrees 2 and 3), and c. 383-1368A>G (pedigree 4). All variants were absent in gnomAD, and the both c.285-12A>G and c.284+63T>A variants were predicted to enhance new splicing acceptor gains with SpliceAI, SpliceRover, and Alamut consensus approaches. However, the c.383-1368 A>G variant only had a significant impact score on the SpliceRover program. The c.383-1368A>G variant was predicted to promote pseudoexon inclusion by binding of exonic splicing enhancer. Aberrant exonizations were validated through minigene constructs, and all variants were segregated in the families. Conclusions Deep learning–based annotation of noncoding variants facilitates the discovery of hidden genetic variations in patients with FIN. This study provides evidence of effectiveness of combined deep learning–based splicing tools to identify hidden pathogenic variants in previously unsolved patients with infantile nystagmus. Translational Relevance These results demonstrate robust analysis using two deep learning splicing predictions and in vitro functional study can lead to finding hidden genetic variations in unsolved patients.
Collapse
Affiliation(s)
- Junwon Lee
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Jeong
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, South Korea.,Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongju Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Dxome Co., Ltd. Seongnam-si, Gyeonggi-do, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Dxome Co., Ltd. Seongnam-si, Gyeonggi-do, South Korea
| | - Suk Ho Byeon
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, South Korea.,Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Helen J Kuht
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, RKCSB, PO Box 65, Leicester LE2 7LX, UK
| | - Mervyn G Thomas
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, RKCSB, PO Box 65, Leicester LE2 7LX, UK
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Lange KI, Best S, Tsiropoulou S, Berry I, Johnson CA, Blacque OE. Interpreting ciliopathy-associated missense variants of uncertain significance (VUS) in Caenorhabditis elegans. Hum Mol Genet 2022; 31:1574-1587. [PMID: 34964473 PMCID: PMC9122650 DOI: 10.1093/hmg/ddab344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Better methods are required to interpret the pathogenicity of disease-associated variants of uncertain significance (VUS), which cannot be actioned clinically. In this study, we explore the use of an animal model (Caenorhabditis elegans) for in vivo interpretation of missense VUS alleles of TMEM67, a cilia gene associated with ciliopathies. CRISPR/Cas9 gene editing was used to generate homozygous knock-in C. elegans worm strains carrying TMEM67 patient variants engineered into the orthologous gene (mks-3). Quantitative phenotypic assays of sensory cilia structure and function (neuronal dye filling, roaming and chemotaxis assays) measured how the variants impacted mks-3 gene function. Effects of the variants on mks-3 function were further investigated by looking at MKS-3::GFP localization and cilia ultrastructure. The quantitative assays in C. elegans accurately distinguished between known benign (Asp359Glu, Thr360Ala) and known pathogenic (Glu361Ter, Gln376Pro) variants. Analysis of eight missense VUS generated evidence that three are benign (Cys173Arg, Thr176Ile and Gly979Arg) and five are pathogenic (Cys170Tyr, His782Arg, Gly786Glu, His790Arg and Ser961Tyr). Results from worms were validated by a genetic complementation assay in a human TMEM67 knock-out hTERT-RPE1 cell line that tests a TMEM67 signalling function. We conclude that efficient genome editing and quantitative functional assays in C. elegans make it a tractable in vivo animal model for rapid, cost-effective interpretation of ciliopathy-associated missense VUS alleles.
Collapse
Affiliation(s)
- Karen I Lange
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire, UK
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian Berry
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol BS10 5NB, UK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire, UK
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
33
|
Cicerone AP, Dailey W, Sun M, Santos A, Jeong D, Jones L, Koustas K, Drekh M, Schmitz K, Haque N, Felisky JA, Guzman AE, Mellert K, Trese MT, Capone A, Drenser KA, Mitton KP. A Survey of Multigenic Protein-Altering Variant Frequency in Familial Exudative Vitreo-Retinopathy (FEVR) Patients by Targeted Sequencing of Seven FEVR-Linked Genes. Genes (Basel) 2022; 13:495. [PMID: 35328049 PMCID: PMC8953269 DOI: 10.3390/genes13030495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
While Inherited Retinal Diseases (IRDs) are typically considered rare diseases, Familial Exudative Vitreo-Retinopathy (FEVR) and Norrie Disease (ND) are more rare than retinitis pigmentosa. We wanted to determine if multigenic protein-altering variants are common in FEVR subjects within a set of FEVR-related genes. The potential occurrence of protein-altering variants in two different genes has been documented in a very small percentage of patients, but potential multigenic contributions to FEVR remain unclear. Genes involved in these orphan pediatric retinal diseases are not universally included in available IRD targeted-sequencing panels, and cost is also a factor limiting multigenic-sequence-based testing for these rare conditions. To provide an accurate solution at lower cost, we developed a targeted-sequencing protocol that includes seven genes involved in Familial Exudative Vitreo-Retinopathy (FEVR) and Norrie disease. Seventy-six DNA samples from persons refered to clinic with possible FEVR and some close relatives were sequenced using a novel Oakland-ERI orphan pediatric retinal disease panel (version 2) providing 900 times average read coverage. The seven genes involved in FEVR/ND were: NDP (ChrX), CTNNB1 (Chr3); TSPAN12 (Chr7); KIF11 (Chr10), FZD4 (Chr11), LRP5 (Chr11), ZNF408 (Chr11). A total of 33 variants were found that alter protein sequence, with the following relative distribution: LRP5 13/33 (40%), FZD4 9/33 (27%), ZNF408 6/33 (18%), (KIF11 3/33 (9%), NDP 1/33 (3%), CTNNB1 1/33 (3%). Most protein-altering variants, 85%, were found in three genes: FZD4, LRP5, and ZNF408. Four previously known pathogenic variants were detected in five families and two unrelated individuals. Two novel, likely pathogenic variants were detected in one family (FZD4: Cys450ter), and a likely pathogenic frame shift termination variant was detected in one unrelated individual (LRP5: Ala919CysfsTer67). The average number of genes with protein-altering variants was greater in subjects with confirmed FEVR (1.46, n = 30) compared to subjects confirmed unaffected by FEVR (0.95, n = 20), (p = 0.009). Thirty-four percent of persons sequenced had digenic and trigenic protein-altering variants within this set of FEVR genes, which was much greater than expected in the general population (3.6%), as derived from GnomAD data. While the potential contributions to FEVR are not known for most of the variants in a multigenic context, the high multigenic frequency suggests that potential multigenic contributions to FEVR severity warrant future investigation. The targeted-sequencing format developed will support such exploration by reducing the testing cost to $250 (US) for seven genes and facilitating greater access to genetic testing for families with this very rare inherited retinal disease.
Collapse
Affiliation(s)
- Amanda Petrelli Cicerone
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
| | - Wendy Dailey
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
| | - Michael Sun
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Andrew Santos
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Daeun Jeong
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Lance Jones
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Konstaninos Koustas
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Mary Drekh
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Keaton Schmitz
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Naomi Haque
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Jennifer A. Felisky
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
| | - Alvaro E. Guzman
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
| | - Kendra Mellert
- Associated Retinal Consultants LLC, Royal Oak, MI 48073, USA; (K.M.); (M.T.T.); (A.C.)
| | - Michael T. Trese
- Associated Retinal Consultants LLC, Royal Oak, MI 48073, USA; (K.M.); (M.T.T.); (A.C.)
| | - Antonio Capone
- Associated Retinal Consultants LLC, Royal Oak, MI 48073, USA; (K.M.); (M.T.T.); (A.C.)
| | - Kimberly A. Drenser
- Associated Retinal Consultants LLC, Royal Oak, MI 48073, USA; (K.M.); (M.T.T.); (A.C.)
| | - Kenneth P. Mitton
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
34
|
Aboobakar IF, Wiggs JL. The genetics of glaucoma: Disease associations, personalised risk assessment and therapeutic opportunities-A review. Clin Exp Ophthalmol 2022; 50:143-162. [PMID: 35037362 DOI: 10.1111/ceo.14035] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
Glaucoma refers to a heterogenous group of disorders characterised by progressive loss of retinal ganglion cells and associated visual field loss. Both early-onset and adult-onset forms of the disease have a strong genetic component. Here, we summarise the known genetic associations for various forms of glaucoma and the possible functional roles for these genes in disease pathogenesis. We also discuss efforts to translate genetic knowledge into clinical practice, including gene-based tests for disease diagnosis and risk-stratification as well as gene-based therapies.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Zhang Q, Ding Y, Feng B, Tang Y, Chen Y, Wang Y, Chang G, Liu S, Wang J, Li Q, Fu L, Wang X. Molecular and Phenotypic Expansion of Alström Syndrome in Chinese Patients. Front Genet 2022; 13:808919. [PMID: 35211159 PMCID: PMC8861322 DOI: 10.3389/fgene.2022.808919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022] Open
Abstract
Alström syndrome (ALMS) is a rare inherited metabolic disease and ciliopathy. Large cohorts of ALMS are lacking around the world. Detailed genetic and phenotypic data were obtained from all affected individuals. Olfactory function was evaluated by the Chinese Smell Identification Test and facial pattern was analyzed with Face2gene. Fifty ALMS patients were included in this study, aged from 0.3 to 21.7 years old. Sixty-one ALMS1 variants in 50 patients from 47 different families were confirmed, including 59 truncating and two exon deletions. Twenty-four of those variants were novel. We also summarized all previously reported cases of Chinese ALMS patients (69 patients) and identified specific and common variants within the Chinese population. Besides, the Chinese Smell Identification Test scores in patients was lower than that in controls (11.97 Vs. 10.44, p < .05), indicating olfactory identification impairments in ALMS patients. The facial pattern in ALMS patients was also distinctive from that of the controls (p < .05). In conclusion, this is the largest cohort of Chinese ALMS patients. We have successfully identified both specific and common variants in our cohort. We found a new phenotype of olfactory impairments in ALMS patients through a case-control study.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Biyun Feng
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Tang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Fu
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Collantes ERA, Delfin MS, Fan B, Torregosa JMR, Siguan-Bell C, de Guzman Florcruz NV, Martinez JMD, Masna-Hidalgo BJ, Guzman VPT, Anotado-Flores JF, Levina FD, Hernandez SRC, Collantes AA, Sibulo MC, Rong S, Wiggs JL. EFEMP1 rare variants cause familial juvenile-onset open-angle glaucoma. Hum Mutat 2022; 43:240-252. [PMID: 34923728 PMCID: PMC8972201 DOI: 10.1002/humu.24320] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Juvenile open-angle glaucoma (JOAG) is a severe type of glaucoma with onset before age 40 and dominant inheritance. Using exome sequencing we identified 3 independent families from the Philippines with novel EFEMP1 variants (c.238A>T, p.Asn80Tyr; c.1480T>C, p.Ter494Glnext*29; and c.1429C>T, p.Arg477Cys) co-segregating with disease. Affected variant carriers (N = 34) exhibited severe disease with average age of onset of 16 years and with 76% developing blindness. To investigate functional effects, we transfected COS7 cells with vectors expressing the three novel EFEMP1 variants and showed that all three variants found in JOAG patients caused significant intracellular protein aggregation and retention compared to wild type and also compared to EFEMP1 variants associated with other ocular phenotypes including an early-onset form of macular degeneration, Malattia Leventinese/Doyne's Honeycomb retinal dystrophy. These results suggest that rare EFEMP1 coding variants can cause JOAG through a mechanism involving protein aggregation and retention, and that the extent of intracellular retention correlates with disease phenotype. This is the first report of EFEMP1 variants causing JOAG, expanding the EFEMP1 disease spectrum. Our results suggest that EFEMP1 mutations appear to be a relatively common cause of JOAG in Filipino families, an ethnically diverse population.
Collapse
Affiliation(s)
- Edward Ryan A. Collantes
- Harvard Medical School Department of Ophthalmology, Massachusetts Eye and Ear, Boston, USA
- Department of Ophthalmology, Manila Doctors Hospital, Manila, Philippines
| | - Manuel S. Delfin
- Department of Ophthalmology, Manila Doctors Hospital, Manila, Philippines
| | - Baojian Fan
- Harvard Medical School Department of Ophthalmology, Massachusetts Eye and Ear, Boston, USA
| | - Justine May R. Torregosa
- Department of Ophthalmology, Cebu Institute of Medicine, Cebu Velez General Hospital, Cebu City, Philippines
| | - Christine Siguan-Bell
- Department of Ophthalmology, Cebu Institute of Medicine, Cebu Velez General Hospital, Cebu City, Philippines
| | - Nilo Vincent de Guzman Florcruz
- Department of Ophthalmology and Visual Sciences, University of the Philippines-Philippine General Hospital, Manila, Philippines
- Glaucoma Service, Department of Ophthalmology, East Avenue Medical Center, Quezon City, Philippines
| | - Jose Maria D. Martinez
- Glaucoma Service, Department of Ophthalmology, East Avenue Medical Center, Quezon City, Philippines
| | | | | | | | - Faye D. Levina
- Department of Ophthalmology, Jose R. Reyes Memorial Medical Center, Manila, Philippines
| | | | | | | | - Shisong Rong
- Harvard Medical School Department of Ophthalmology, Massachusetts Eye and Ear, Boston, USA
| | - Janey L. Wiggs
- Harvard Medical School Department of Ophthalmology, Massachusetts Eye and Ear, Boston, USA
| |
Collapse
|
37
|
Molina Romero M, Yoldi Chaure A, Gañán Parra M, Navas Bastida P, del Pico Sánchez JL, Vaquero Argüelles Á, de la Fuente Vaquero P, Ramírez López JP, Castilla Alcalá JA. Probability of high-risk genetic matching with oocyte and semen donors: complete gene analysis or genotyping test? J Assist Reprod Genet 2022; 39:341-355. [PMID: 35091964 PMCID: PMC8956772 DOI: 10.1007/s10815-021-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To estimate the probability of high-risk genetic matching when assisted reproductive techniques (ART) are applied with double gamete donation, following an NGS carrier test based on a complete study of the genes concerned. We then determine the results that would have been obtained if the genotyping tests most widely used in Spanish gamete banks had been applied. METHODS In this descriptive observational study, 1818 gamete donors were characterised by NGS. The pathogenic variants detected were analysed to estimate the probability of high-risk genetic matching and to determine the results that would have been obtained if the three most commonly used genotyping tests in ART had been applied. RESULTS The probability of high-risk genetic matching with gamete donation, screened by NGS and complete gene analysis, was 5.5%, versus the 0.6-2.7% that would have been obtained with the genotyping test. A total of 1741 variants were detected, including 607 different variants, of which only 22.6% would have been detected by all three genotyping tests considered and 44.7% of which would not have been detected by any of these tests. CONCLUSION Our study highlights the considerable heterogeneity of the genotyping tests, which present significant differences in their ability to detect pathogenic variants. The complete study of the genes by NGS considerably reduces reproductive risks when genetic matching is performed with gamete donors. Accordingly, we recommend that carrier screening in gamete donors be carried out using NGS and a complete study with nontargeted analysis of the variants of the screened genes.
Collapse
Affiliation(s)
- Marta Molina Romero
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain
| | | | | | | | | | | | | | | | - José Antonio Castilla Alcalá
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain ,U. Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain ,Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| |
Collapse
|
38
|
Catomeris AJ, Ballios BG, Sangermano R, Wagner NE, Comander JI, Pierce EA, Place EM, Bujakowska KM, Huckfeldt RM. Novel RCBTB1 variants causing later-onset non-syndromic retinal dystrophy with macular chorioretinal atrophy. Ophthalmic Genet 2022; 43:332-339. [DOI: 10.1080/13816810.2021.2023196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Andrew J. Catomeris
- Georgetown School of Medicine, Washington, District of Columbia, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian G. Ballios
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Riccardo Sangermano
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Naomi E. Wagner
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason I. Comander
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A. Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily M. Place
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Kinga M. Bujakowska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel M. Huckfeldt
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Norton ME, Ziffle JV, Lianoglou BR, Hodoglugil U, Devine WP, Sparks TN. Exome sequencing vs targeted gene panels for the evaluation of nonimmune hydrops fetalis. Am J Obstet Gynecol 2022; 226:128.e1-128.e11. [PMID: 34331894 PMCID: PMC8748274 DOI: 10.1016/j.ajog.2021.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Next-generation sequencing is increasingly used in prenatal diagnosis. Targeted gene panels and exome sequencing are both available, but the comparative diagnostic yields of these approaches are not known. OBJECTIVE We compared the diagnostic yield of exome sequencing with the simulated application of commercial targeted gene panels in a large cohort of fetuses with nonimmune hydrops fetalis. STUDY DESIGN This was a secondary analysis of a cohort study of exome sequencing for nonimmune hydrops fetalis, in which recruitment, exome sequencing, and phenotype-driven variant analysis were completed in 127 pregnancies with features of nonimmune hydrops fetalis. An Internet search was performed to identify commercial laboratories that offer targeted gene panels for the prenatal evaluation of nonimmune hydrops fetalis or for specific disorders associated with nonimmune hydrops fetalis using the terms "non-immune hydrops fetalis," "fetal non-immune hydrops," "hydrops," "cystic hygroma," "lysosomal storage disease," "metabolic disorder," "inborn error of metabolism," "RASopathy," and "Noonan." Our primary outcome was the proportion of all genetic variants identified through exome sequencing that would have been identified if a targeted gene panel had instead been used. The secondary outcomes were the proportion of genetic variants that would have been identified by type of targeted gene panel (general nonimmune hydrops fetalis, RASopathy, or metabolic) and the percent of variants of uncertain significance that would have been identified on the panels, assuming 100% analytical sensitivity and specificity of panels for variants in the included genes. RESULTS Exome sequencing identified a pathogenic or likely pathogenic variant in 37 of 127 cases (29%) in a total of 29 genes. A variant of uncertain significance, strongly suspected to be associated with the phenotype, was identified in another 12 cases (9%). We identified 7 laboratories that offer 10 relevant targeted gene panels; 6 are described as RASopathy panels, 3 as nonimmune hydrops fetalis panels, and 1 as a metabolic panel. The median number of genes included on each of these panels is 22, ranging from 11 to 148. Had a nonimmune hydrops fetalis targeted gene panel been used instead of exome sequencing, 13 to 15 of the 29 genes (45%-52%) identified in our nonimmune hydrops fetalis cohort would have been sequenced, and 19 to 24 of the pathogenic variants (51%-62%) would have been detected. The yield was predicted to be the lowest with the metabolic panel (11%) and the highest with the largest nonimmune hydrops fetalis panel (62%). The largest nonimmune hydrops fetalis targeted gene panel would have had a diagnostic yield of 18% compared with 29% with exome sequencing. The exome sequencing platform used provided 30× or more coverage for all of the exons on the commercial targeted gene panels, supporting our assumption of 100% analytical sensitivity for exome sequencing. CONCLUSION The broader coverage of exome sequencing for genetically heterogeneous disorders, such as nonimmune hydrops fetalis, made it a superior alternative to targeted gene panel testing.
Collapse
Affiliation(s)
- Mary E Norton
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA; Fetal Treatment Center, University of California, San Francisco, San Francisco, CA.
| | - Jessica Van Ziffle
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA; Department of Pathology, University of California, San Francisco, San Francisco, CA; Genomic Medicine Laboratory, University of California, San Francisco, San Francisco, CA
| | - Billie R Lianoglou
- Fetal Treatment Center, University of California, San Francisco, San Francisco, CA
| | - Ugur Hodoglugil
- Genomic Medicine Laboratory, University of California, San Francisco, San Francisco, CA
| | - W Patrick Devine
- Department of Pathology, University of California, San Francisco, San Francisco, CA; Genomic Medicine Laboratory, University of California, San Francisco, San Francisco, CA
| | - Teresa N Sparks
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA; Fetal Treatment Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
40
|
Narcizo AM, Cardoso LC, Benedetti AF, Jorge AA, Funari MF, Braga BL, Franca MM, Montenegro LR, Lerario AM, Nishi MY, Mendonca BB. Targeted massively parallel sequencing panel to diagnose genetic endocrine disorders in a tertiary hospital. Clinics (Sao Paulo) 2022; 77:100132. [PMID: 36288632 PMCID: PMC9593712 DOI: 10.1016/j.clinsp.2022.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES To analyze the efficiency of a multigenic targeted massively parallel sequencing panel related to endocrine disorders for molecular diagnosis of patients assisted in a tertiary hospital involved in the training of medical faculty. MATERIAL AND METHODS Retrospective analysis of the clinical diagnosis and genotype obtained from 272 patients in the Endocrine unit of a tertiary hospital was performed using a custom panel designed with 653 genes, most of them already associated with the phenotype (OMIM) and some candidate genes that englobes developmental, metabolic and adrenal diseases. The enriched DNA libraries were sequenced in NextSeq 500. Variants found were then classified according to ACMG/AMP criteria, with Varsome and InterVar. RESULTS Three runs were performed; the mean coverage depth of the targeted regions in panel sequencing data was 249×, with at least 96.3% of the sequenced bases being covered more than 20-fold. The authors identified 66 LP/P variants (24%) and 27 VUS (10%). Considering the solved cases, 49 have developmental diseases, 12 have metabolic and 5 have adrenal diseases. CONCLUSION The application of a multigenic panel aids the training of medical faculty in an academic hospital by showing the picture of the molecular pathways behind each disorder. This may be particularly helpful in developmental disease cases. A precise genetic etiology provides an improvement in understanding the disease, guides decisions about prevention or treatment, and allows genetic counseling.
Collapse
Affiliation(s)
- Amanda M. Narcizo
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Corresponding authors at: Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Lais C. Cardoso
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Anna F.F. Benedetti
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alexander A.L. Jorge
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Unidade de Endocrinologia Genetica/LIM25, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mariana F.A. Funari
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Barbara L. Braga
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Monica M. Franca
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luciana R. Montenegro
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Corresponding authors at: Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Antonio M. Lerario
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Mirian Y. Nishi
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice B. Mendonca
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Moon D, Park HW, Surl D, Won D, Lee ST, Shin S, Choi JR, Han J. Precision Medicine through Next-Generation Sequencing in Inherited Eye Diseases in a Korean Cohort. Genes (Basel) 2021; 13:genes13010027. [PMID: 35052368 PMCID: PMC8774510 DOI: 10.3390/genes13010027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigated medically or surgically actionable genes in inherited eye disease, based on clinical phenotype and genomic data. This retrospective consecutive case series included 149 patients with inherited eye diseases, seen by a single pediatric ophthalmologist, who underwent genetic testing between 1 March 2017 and 28 February 2018. Variants were detected using a target enrichment panel of 429 genes and known deep intronic variants associated with inherited eye disease. Among 149 patients, 38 (25.5%) had a family history, and this cohort includes heterogeneous phenotype including anterior segment dysgenesis, congenital cataract, infantile nystagmus syndrome, optic atrophy, and retinal dystrophy. Overall, 90 patients (60.4%) received a definite molecular diagnosis. Overall, NGS-guided precision care was provided to 8 patients (5.4%). The precision care included cryotherapy to prevent retinal detachment in COL2A1 Stickler syndrome, osteoporosis management in patients with LRP5-associated familial exudative vitreoretinopathy, and avoidance of unnecessary phlebotomy in hyperferritinemia-cataract syndrome. A revision of the initial clinical diagnosis was made in 22 patients (14.8%). Unexpected multi-gene deletions and dual diagnosis were noted in 4 patients (2.7%). We found that precision medical or surgical managements were provided for 8 of 149 patients (5.4%), and multiple locus variants were found in 2.7% of cases. These findings are important because individualized management of inherited eye diseases can be achieved through genetic testing.
Collapse
Affiliation(s)
- Dabin Moon
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Hye Won Park
- Department of Ophthalmology, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Dongheon Surl
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Dongju Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.); (S.S.); (J.R.C.)
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.); (S.S.); (J.R.C.)
| | - Saeam Shin
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.); (S.S.); (J.R.C.)
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.); (S.S.); (J.R.C.)
| | - Jinu Han
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3445; Fax: +82-2-3463-1049
| |
Collapse
|
42
|
Lam BL, Leroy BP, Black G, Ong T, Yoon D, Trzupek K. Genetic testing and diagnosis of inherited retinal diseases. Orphanet J Rare Dis 2021; 16:514. [PMID: 34906171 PMCID: PMC8670140 DOI: 10.1186/s13023-021-02145-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a diverse group of degenerative diseases of the retina that can lead to significant reduction in vision and blindness. Because of the considerable phenotypic overlap among IRDs, genetic testing is a critical step in obtaining a definitive diagnosis for affected individuals and enabling access to emerging gene therapy–based treatments and ongoing clinical studies. While advances in molecular diagnostic technologies have significantly improved the understanding of IRDs and identification of disease-causing variants, training in genetic diagnostics among ophthalmologists is limited. In this review, we will provide ophthalmologists with an overview of genetic testing for IRDs, including the types of available testing, variant interpretation, and genetic counseling. Additionally, we will discuss the clinical applications of genetic testing in the molecular diagnosis of IRDs through case studies.
Collapse
Affiliation(s)
- Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33156, USA.
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Ophthalmic Genetics and Visual Electrophysiology, Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Graeme Black
- UK Inherited Retinal Disease Consortium, Manchester, UK.,Genomics England Clinical Interpretation Partnership, Manchester, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester, UK
| | - Tuyen Ong
- Ring Therapeutics, Cambridge, MA, USA
| | | | - Karmen Trzupek
- Ocular and Rare Disease Genetics Services, InformedDNA, St Petersburg, FL, USA
| |
Collapse
|
43
|
Ballios BG, Place EM, Martinez-Velazquez L, Pierce EA, Comander JI, Huckfeldt RM. Beyond Sector Retinitis Pigmentosa: Expanding the Phenotype and Natural History of the Rhodopsin Gene Codon 106 Mutation (Gly-to-Arg) in Autosomal Dominant Retinitis Pigmentosa. Genes (Basel) 2021; 12:genes12121853. [PMID: 34946802 PMCID: PMC8701931 DOI: 10.3390/genes12121853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Sector and pericentral are two rare, regional forms of retinitis pigmentosa (RP). While usually defined as stable or only very slowly progressing, the available literature to support this claim is limited. Additionally, few studies have analyzed the spectrum of disease within a particular genotype. We identified all cases (9 patients) with an autosomal dominant Rhodopsin variant previously associated with sector RP (RHO c.316G > A, p.Gly106Arg) at our institution. Clinical histories were reviewed, and testing included visual fields, multimodal imaging, and electroretinography. Patients demonstrated a broad phenotypic spectrum that spanned regional phenotypes from sector-like to pericentral RP, as well as generalized disease. We also present evidence of significant intrafamilial variability in regional phenotypes. Finally, we present the longest-reported follow-up for a patient with RHO-associated sector-like RP, showing progression from sectoral to pericentral disease over three decades. In the absence of comorbid macular disease, the long-term prognosis for central visual acuity is good. However, we found that significant progression of RHO p.Gly106Arg disease can occur over protracted periods, with impact on peripheral vision. Longitudinal widefield imaging and periodic ERG reassessment are likely to aid in monitoring disease progression.
Collapse
Affiliation(s)
- Brian G. Ballios
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (B.G.B.); (E.M.P.); (L.M.-V.); (E.A.P.); (J.I.C.)
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Emily M. Place
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (B.G.B.); (E.M.P.); (L.M.-V.); (E.A.P.); (J.I.C.)
| | - Luis Martinez-Velazquez
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (B.G.B.); (E.M.P.); (L.M.-V.); (E.A.P.); (J.I.C.)
| | - Eric A. Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (B.G.B.); (E.M.P.); (L.M.-V.); (E.A.P.); (J.I.C.)
| | - Jason I. Comander
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (B.G.B.); (E.M.P.); (L.M.-V.); (E.A.P.); (J.I.C.)
| | - Rachel M. Huckfeldt
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (B.G.B.); (E.M.P.); (L.M.-V.); (E.A.P.); (J.I.C.)
- Correspondence:
| |
Collapse
|
44
|
Fadaie Z, Whelan L, Ben-Yosef T, Dockery A, Corradi Z, Gilissen C, Haer-Wigman L, Corominas J, Astuti GDN, de Rooij L, van den Born LI, Klaver CCW, Hoyng CB, Wynne N, Duignan ES, Kenna PF, Cremers FPM, Farrar GJ, Roosing S. Whole genome sequencing and in vitro splice assays reveal genetic causes for inherited retinal diseases. NPJ Genom Med 2021; 6:97. [PMID: 34795310 PMCID: PMC8602293 DOI: 10.1038/s41525-021-00261-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a major cause of visual impairment. These clinically heterogeneous disorders are caused by pathogenic variants in more than 270 genes. As 30-40% of cases remain genetically unexplained following conventional genetic testing, we aimed to obtain a genetic diagnosis in an IRD cohort in which the genetic cause was not found using whole-exome sequencing or targeted capture sequencing. We performed whole-genome sequencing (WGS) to identify causative variants in 100 unresolved cases. After initial prioritization, we performed an in-depth interrogation of all noncoding and structural variants in genes when one candidate variant was detected. In addition, functional analysis of putative splice-altering variants was performed using in vitro splice assays. We identified the genetic cause of the disease in 24 patients. Causative coding variants were observed in genes such as ATXN7, CEP78, EYS, FAM161A, and HGSNAT. Gene disrupting structural variants were also detected in ATXN7, PRPF31, and RPGRIP1. In 14 monoallelic cases, we prioritized candidate noncanonical splice sites or deep-intronic variants that were predicted to disrupt the splicing process based on in silico analyses. Of these, seven cases were resolved as they carried pathogenic splice defects. WGS is a powerful tool to identify causative variants residing outside coding regions or heterozygous structural variants. This approach was most efficient in cases with a distinct clinical diagnosis. In addition, in vitro splice assays provide important evidence of the pathogenicity of rare variants.
Collapse
Affiliation(s)
- Zeinab Fadaie
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Whelan
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adrian Dockery
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jordi Corominas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Galuh D N Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Laura de Rooij
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niamh Wynne
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Emma S Duignan
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Paul F Kenna
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G Jane Farrar
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
45
|
Zampaglione E, Maher M, Place EM, Wagner NE, DiTroia S, Chao KR, England E, Cmg B, Catomeris A, Nassiri S, Himes S, Pagliarulo J, Ferguson C, Galdikaité-Braziené E, Cole B, Pierce EA, Bujakowska KM. The importance of automation in genetic diagnosis: Lessons from analyzing an inherited retinal degeneration cohort with the Mendelian Analysis Toolkit (MATK). Genet Med 2021; 24:332-343. [PMID: 34906470 DOI: 10.1016/j.gim.2021.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE In Mendelian disease diagnosis, variant analysis is a repetitive, error-prone, and time consuming process. To address this, we have developed the Mendelian Analysis Toolkit (MATK), a configurable, automated variant ranking program. METHODS MATK aggregates variant information from multiple annotation sources and uses expert-designed rules with parameterized weights to produce a ranked list of potentially causal solutions. MATK performance was measured by a comparison between MATK-aided and human-domain expert analyses of 1060 families with inherited retinal degeneration (IRD), analyzed using an IRD-specific gene panel (589 individuals) and exome sequencing (471 families). RESULTS When comparing MATK-assisted analysis with expert curation in both the IRD-specific gene panel and exome sequencing (1060 subjects), 97.3% of potential solutions found by experts were also identified by the MATK-assisted analysis (541 solutions identified with MATK of 556 solutions found by conventional analysis). Furthermore, MATK-assisted analysis identified 114 additional potential solutions from the 504 cases unsolved by conventional analysis. CONCLUSION MATK expedites the process of identification of likely solving variants in Mendelian traits, and reduces variability stemming from human error and researcher bias. MATK facilitates data reanalysis to keep up with the constantly improving annotation sources and next-generation sequencing processing pipelines. The software is open source and available at https://gitlab.com/matthew_maher/mendelanalysis.
Collapse
Affiliation(s)
- Erin Zampaglione
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA
| | - Matthew Maher
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA
| | - Emily M Place
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA
| | - Naomi E Wagner
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA; Invitae Corporation, San Francisco, CA
| | - Stephanie DiTroia
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Katherine R Chao
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Eleina England
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Broad Cmg
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | | | - Sherwin Nassiri
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Seraphim Himes
- Touro University College of Osteopathic Medicine in California, Vallejo, CA
| | - Joey Pagliarulo
- Department of Genetic Counseling, School of Health and Rehab Sciences, MGH Institute of Health Professions, Boston, MA
| | - Charles Ferguson
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA
| | - Eglé Galdikaité-Braziené
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA
| | - Brian Cole
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA.
| |
Collapse
|
46
|
Yang J, Zhou L, Ouyang J, Xiao X, Sun W, Li S, Zhang Q. Genotype-Phenotype Analysis of RPGR Variations: Reporting of 62 Chinese Families and a Literature Review. Front Genet 2021; 12:600210. [PMID: 34745198 PMCID: PMC8565807 DOI: 10.3389/fgene.2021.600210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose RPGR is the most common cause of X-linked retinitis pigmentosa (RP), of which female carriers are also frequently affected. The aim of the current study was to explore the RPGR variation spectrum and associated phenotype based on the data from our lab and previous studies. Methods Variants in RPGR were selected from exome sequencing data of 7,092 probands with different eye conditions. The probands and their available family members underwent comprehensive ocular examinations. Similar data were collected from previous reports through searches in PubMed, Web of Science, and Google Scholar. Systematic analyses of genotypes, phenotypes and their correlations were performed. Results A total of 46 likely pathogenic variants, including nine missense and one in-frame variants in RCC1-like domain and 36 truncation variants, in RPGR were detected in 62 unrelated families in our in-house cohort. In addition, a total of 585 variants, including 491 (83.9%) truncation variants, were identified from the literature. Systematic analysis of variants from our in-house dataset, literature, and gnomAD suggested that most of the pathogenic variants of RPGR were truncation variants while pathogenic missense and in-frame variants were enriched in the RCC1-like domain. Phenotypic variations were present between males and female carriers, including more severe refractive error but better best corrected visual acuity (BCVA) in female carriers than those in males. The male patients showed a significant reduction of BCVA with increase of age and males with exon1-14 variants presented a better BCVA than those with ORF15 variants. For female carriers, the BCVA also showed significant reduction with increase of age, but BCVA in females with exon1-14 variants was not significant difference compared with those with ORF15 variants. Conclusion Most pathogenic variants of RPGR are truncations. Missense and in-frame variants located outside of the RCC1-like domain might be benign and the pathogenicity criteria for these variants should be considered with greater caution. The BCVA and refractive error are different between males and female carriers. Increase of age and location of variants in ORF15 contribute to the reduction of BCVA in males. These results are valuable for understanding genotypes and phenotypes of RPGR.
Collapse
Affiliation(s)
- Junxing Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
Peeters MHCA, Khan M, Rooijakkers AAMB, Mulders T, Haer-Wigman L, Boon CJF, Klaver CCW, van den Born LI, Hoyng CB, Cremers FPM, den Hollander AI, Dhaenens CM, Collin RWJ. PRPH2 mutation update: In silico assessment of 245 reported and 7 novel variants in patients with retinal disease. Hum Mutat 2021; 42:1521-1547. [PMID: 34411390 PMCID: PMC9290825 DOI: 10.1002/humu.24275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 01/31/2023]
Abstract
Mutations in PRPH2, encoding peripherin-2, are associated with the development of a wide variety of inherited retinal diseases (IRDs). To determine the causality of the many PRPH2 variants that have been discovered over the last decades, we surveyed all published PRPH2 variants up to July 2020, describing 720 index patients that in total carried 245 unique variants. In addition, we identified seven novel PRPH2 variants in eight additional index patients. The pathogenicity of all variants was determined using the ACMG guidelines. With this, 107 variants were classified as pathogenic, 92 as likely pathogenic, one as benign, and two as likely benign. The remaining 50 variants were classified as variants of uncertain significance. Interestingly, of the total 252 PRPH2 variants, more than half (n = 137) were missense variants. All variants were uploaded into the Leiden Open source Variation and ClinVar databases. Our study underscores the need for experimental assays for variants of unknown significance to improve pathogenicity classification, which would allow us to better understand genotype-phenotype correlations, and in the long-term, hopefully also support the development of therapeutic strategies for patients with PRPH2-associated IRD.
Collapse
Affiliation(s)
- Manon H C A Peeters
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Timo Mulders
- Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - L Ingeborgh van den Born
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands.,Rotterdam Ophthalmic Institute, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claire-Marie Dhaenens
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Biochemistry and Molecular Biology, Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, Lille, France
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
48
|
Saelaert M, Mertes H, Moerenhout T, Van Cauwenbergh C, Leroy BP, Devisch I, De Baere E. A qualitative study among patients with an inherited retinal disease on the meaning of genomic unsolicited findings. Sci Rep 2021; 11:15834. [PMID: 34349199 PMCID: PMC8339116 DOI: 10.1038/s41598-021-95258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022] Open
Abstract
Exome-based testing for genetic diseases can reveal unsolicited findings (UFs), i.e. predispositions for diseases that exceed the diagnostic question. Knowledge of patients’ interpretation of possible UFs and of motives for (not) wanting to know UFs is still limited. This lacking knowledge may impede effective counselling that meets patients’ needs. Therefore, this article examines the meaning of UFs from a patient perspective. A qualitative study was conducted and an interpretative phenomenological analysis was made of 14 interviews with patients with an inherited retinal disease. Patients assign a complex meaning to UFs, including three main components. The first component focuses on result-specific qualities, i.e. the characteristics of an UF (inclusive of actionability, penetrance, severity and age of onset) and the consequences of disclosure; the second component applies to a patient’s lived illness experiences and to the way these contrast with reflections on presymptomatic UFs; the third component addresses a patient’s family embedding and its effect on concerns about disease prognosis and genetic information’s family relevance. The complex meaning structure of UFs suggests the need for counselling procedures that transcend a strictly clinical approach. Counselling should be personalised and consider patients’ lived illness experiences and family context.
Collapse
Affiliation(s)
- Marlies Saelaert
- Department of Public Health and Primary Care, Philosophy of Medicine and Ethics Research Group, Ghent University, Campus Heymans (UZ Gent), Corneel Heymanslaan 10 - Building 6K3, 9000, Ghent, Belgium.
| | - Heidi Mertes
- Department of Philosophy and Moral Sciences, Bioethics Institute Ghent, Ghent University, Ghent, Belgium
| | - Tania Moerenhout
- Department of Public Health and Primary Care, Philosophy of Medicine and Ethics Research Group, Ghent University, Campus Heymans (UZ Gent), Corneel Heymanslaan 10 - Building 6K3, 9000, Ghent, Belgium.,Bioethics Centre, University of Otago, Dunedin, New Zealand.,Department of Philosophy and Moral Sciences, Ghent University, Ghent, Belgium
| | - Caroline Van Cauwenbergh
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Department of Head and Skin, Ghent University, Ghent, Belgium.,Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology & Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ignaas Devisch
- Department of Public Health and Primary Care, Philosophy of Medicine and Ethics Research Group, Ghent University, Campus Heymans (UZ Gent), Corneel Heymanslaan 10 - Building 6K3, 9000, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
49
|
Burdon KP. The utility of genomic testing in the ophthalmology clinic: A review. Clin Exp Ophthalmol 2021; 49:615-625. [PMID: 34231298 DOI: 10.1111/ceo.13970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022]
Abstract
Genomic testing assesses many genes in one test. It is often used in the diagnosis of heterogeneous single gene disorders where pathogenic variation in one of many genes are known to cause similar phenotypes, or where a clinical diagnosis is difficult to reach. In the ophthalmic setting, genomic testing can be used to diagnose several groups of diseases, including inherited retinal dystrophies, paediatric cataract, glaucoma and anterior segment dysgenesis and other syndromic developmental disorders with eye involvement. The testing can encompass several modalities ranging from whole genome sequencing to exome sequencing or targeted gene panels. The advantages to the patient of receiving a molecular diagnosis include an end to the diagnostic odyssey, determination of prognosis and clarification of treatment, access to accurate genetic counselling, and confirming eligibility for clinical trials or genetic specific therapies. Genomic testing is a powerful addition to the diagnosis and management of inherited eye disease.
Collapse
Affiliation(s)
- Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
50
|
Broadening INPP5E phenotypic spectrum: detection of rare variants in syndromic and non-syndromic IRD. NPJ Genom Med 2021; 6:53. [PMID: 34188062 PMCID: PMC8242099 DOI: 10.1038/s41525-021-00214-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pathogenic variants in INPP5E cause Joubert syndrome (JBTS), a ciliopathy with retinal involvement. However, despite sporadic cases in large cohort sequencing studies, a clear association with non-syndromic inherited retinal degenerations (IRDs) has not been made. We validate this association by reporting 16 non-syndromic IRD patients from ten families with bi-allelic mutations in INPP5E. Additional two patients showed early onset IRD with limited JBTS features. Detailed phenotypic description for all probands is presented. We report 14 rare INPP5E variants, 12 of which have not been reported in previous studies. We present tertiary protein modeling and analyze all INPP5E variants for deleteriousness and phenotypic correlation. We observe that the combined impact of INPP5E variants in JBTS and non-syndromic IRD patients does not reveal a clear genotype-phenotype correlation, suggesting the involvement of genetic modifiers. Our study cements the wide phenotypic spectrum of INPP5E disease, adding proof that sequence defects in this gene can lead to early-onset non-syndromic IRD.
Collapse
|