1
|
Ngowi E, Datoo A, Ally P, Salum H, Edward K. Lissencephaly with subcortical band heterotopia in an East African child: A case report. Radiol Case Rep 2025; 20:480-483. [PMID: 39555181 PMCID: PMC11564014 DOI: 10.1016/j.radcr.2024.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Lissencephaly is a rare neuronal migration defect that results in a smooth cerebral surface, mental retardation, and seizures. It is diagnosed primarily by correlating clinical manifestations with MRI findings. We present a case of a 3-year-old girl with developmental delay and seizures. Her first seizure was at 14 months and MRI showed features of lissencephaly and subcortical band heterotopia. Lissencephaly is associated with gene mutations. Treatment focuses on antiseizure meds and physiotherapy to reduce seizures and improve motor skills. This case report highlights the importance of promptly diagnosing the LIS/SBH spectrum to enhance patient outcomes. Timely identification and treatment, such as physiotherapy, can significantly improve the quality of life, especially in resource-limited settings.
Collapse
Affiliation(s)
- Elisamia Ngowi
- Department of Paediatrics and Child Health, Aga Khan Hospital Tanzania, Dar Es Salaam, Tanzania
- Department of Paediatrics and Child Health, Aga Khan University, Dar Es Salaam, Tanzania
| | - Adil Datoo
- Department of Radiology, Aga Khan Hospital Tanzania, Dar Es Salaam, Tanzania
| | - Pilly Ally
- Department of Radiology, Aga Khan Hospital Tanzania, Dar Es Salaam, Tanzania
| | - Hajaj Salum
- Department of Paediatrics and Child Health, Aga Khan Hospital Tanzania, Dar Es Salaam, Tanzania
- Department of Paediatrics and Child Health, Aga Khan University, Dar Es Salaam, Tanzania
| | - Kija Edward
- Department of Paediatrics, Muhimbili National Hospital, Dar es Salaam, Tanzania
- Department of Paediatrics, Muhimbili University of Health and Allied Science, Dar es Salaam, Tanzania
| |
Collapse
|
2
|
Chen J, Li XP, Luo GJ, Yu XM, Liu QY, Peng M, Hou M. Heterozygous Inversion on Chromosome 17 involving PAFAH1B1 Detected by Whole Genome Sequencing in a Patient Suffering from Pachygyria. Eur J Med Genet 2024:104991. [PMID: 39709006 DOI: 10.1016/j.ejmg.2024.104991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/24/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
Lissencephaly (LIS) is a subtype of malformations of cortical development (MCD), characterized by smooth brain surfaces and underdeveloped gyri and sulci. This study investigates the genetic cause of pachygyria in a Chinese male infant diagnosed with the condition, who previously showed no causative variant through trio whole exome sequencing (Trio-WES) and copy number variation sequencing (CNVseq). Whole-genome sequencing (WGS) was conducted, revealing a novel heterozygous inversion spanning 1.02M bps on chromosome 17 [seq[GRCh37]inv(17)(p13.3p13.2)|NC_000017.10:g.2562761_3581978inv] involving the PAFAH1B1 gene. This de novo variant, confirmed by PCR and Sanger sequencing, was present in the proband but absent in the parents. The inversion disrupts PAFAH1B1, classified as haploinsufficient in the ClinGen database, and is associated with lissencephaly-1 (LIS1) and subcortical band heterotopia (SBH) (OMIM #607432). The findings align with the known characteristics of this disorder, extending the understanding of the molecular mechanisms underlying pachygyria. This identification offers new insights for individuals with developmental delays and brain malformations to uncover the genetic cause of their conditions.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatric Rehabilitation, Qingdao Women & Children's Hospital, Qingdao University, Qingdao, China.
| | - Xiao-Ping Li
- Department of Pediatric Rehabilitation, Qingdao Women & Children's Hospital, Qingdao University, Qingdao, China
| | - Guang-Jin Luo
- Department of Pediatric Rehabilitation, Qingdao Women & Children's Hospital, Qingdao University, Qingdao, China
| | - Xiao-Ming Yu
- Department of Pediatric Rehabilitation, Qingdao Women & Children's Hospital, Qingdao University, Qingdao, China
| | - Qiu-Yan Liu
- Department of Pediatric Rehabilitation, Qingdao Women & Children's Hospital, Qingdao University, Qingdao, China
| | - Min Peng
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, China
| | - Mei Hou
- Department of Pediatric Rehabilitation, Qingdao Women & Children's Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Dema A, Charafeddine RA, van Haren J, Rahgozar S, Viola G, Jacobs KA, Kutys ML, Wittmann T. Doublecortin reinforces microtubules to promote growth cone advance in soft environments. Curr Biol 2024; 34:5822-5832.e5. [PMID: 39626666 DOI: 10.1016/j.cub.2024.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/05/2024] [Accepted: 10/24/2024] [Indexed: 12/11/2024]
Abstract
Doublecortin (DCX) is a microtubule (MT)-associated protein in immature neurons. DCX is essential for early brain development,1 and DCX mutations account for nearly a quarter of all cases of lissencephaly-spectrum brain malformations2,3 that arise from a neuronal migration failure through the developing cortex.4 By analyzing pathogenic DCX missense mutations in non-neuronal cells, we show that disruption of MT binding is central to DCX pathology. In human-induced pluripotent stem cell (hiPSC)-derived cortical i3Neurons, genome edited to express DCX-mEmerald from the endogenous locus, DCX-MT interactions polarize very early during neuron morphogenesis. DCX interacts with MTs through two conserved DCX domains5,6 that bind between protofilaments and adjacent tubulin dimers,7 a site that changes conformation during guanosine triphosphate (GTP) hydrolysis.8 Consequently and consistent with our previous results,5 DCX specifically binds straight growth cone MTs and is excluded from the GTP/guanosine diphosphate (GDP)-inorganic phosphate (Pi) cap recognized by end-binding proteins (EBs). Comparing MT-bound DCX fluorescence to mEmerald-tagged nanocage standards, we measure approximately one hundred DCX molecules per micrometer growth cone MT. DCX is required for i3Neuron growth cone advance in soft microenvironments that mimic the viscoelasticity of brain tissue, and using high-resolution traction force microscopy, we find that growth cones produce comparatively small and transient traction forces. Given our finding that DCX stabilizes MTs in the growth cone periphery by inhibiting MT depolymerization, we propose that DCX contributes to growth cone biomechanics and reinforces the growth cone cytoskeleton to counteract actomyosin-generated contractile forces in soft physiological environments in which weak and transient adhesion-mediated traction may be insufficient for productive growth cone advance.
Collapse
Affiliation(s)
- Alessandro Dema
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Rabab A Charafeddine
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jeffrey van Haren
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Shima Rahgozar
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Giulia Viola
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Kyle A Jacobs
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Matthew L Kutys
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Torsten Wittmann
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Furukawa S, Kato M, Ishiyama A, Kumada T, Yoshida T, Takeshita E, Chong PF, Yamanouchi H, Kotake Y, Kyoda T, Nomura T, Miyata Y, Nakashima M, Saitsu H. Exploring unsolved cases of lissencephaly spectrum: integrating exome and genome sequencing for higher diagnostic yield. J Hum Genet 2024; 69:629-637. [PMID: 39123069 DOI: 10.1038/s10038-024-01283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Lissencephaly is a rare brain malformation characterized by abnormal neuronal migration during cortical development. In this study, we performed a comprehensive genetic analysis using next-generation sequencing in 12 unsolved Japanese lissencephaly patients, in whom PAFAH1B1, DCX, TUBA1A, and ARX variants were excluded using the Sanger method. Exome sequencing (ES) was conducted on these 12 patients, identifying pathogenic variants in CEP85L, DYNC1H1, LAMC3, and DCX in four patients. Next, we performed genome sequencing (GS) on eight unsolved patients, and structural variants in PAFAH1B1, including an inversion and microdeletions involving several exons, were detected in three patients. Notably, these microdeletions in PAFAH1B1 could not to be detected by copy number variation (CNV) detection tools based on the depth of coverage methods using ES data. The density of repeat sequences, including Alu sequences or segmental duplications, which increase the susceptibility to structural variations, is very high in some lissencephaly spectrum genes (PAFAH1B1, TUBA1A, DYNC1H1). These missing CNVs were due to the limitations of detecting repeat sequences in ES-based CNV detection tools. Our study suggests that a combined approach integrating ES with GS can contribute to a higher diagnostic yield and a better understanding of the genetic landscape of the lissencephaly spectrum.
Collapse
Affiliation(s)
- Shogo Furukawa
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomohiro Kumada
- Department of Pediatrics, Shiga Medical Center for Children, Moriyama, Japan
- Kumada Kids-Family Clinic, Moriyama, Japan
| | - Takeshi Yoshida
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideo Yamanouchi
- Department of Pediatrics, Saitama Medical University, Saitama, Japan
| | - Yuko Kotake
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Takayoshi Kyoda
- Children's Medical Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Toshihiro Nomura
- Department of Pediatrics, Kawaguchi Municipal Medical Center, Saitama, Japan
| | - Yohane Miyata
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
5
|
Brunelli JM, Lopes TJP, Alves IS, Delgado DS, Lee HW, Martin MGM, Docema MFL, Alves SS, Pinho PC, Gonçalves VT, Oliveira LRLB, Takahashi JT, Maralani PJ, Amancio CT, Leite CC. Malformations of Cortical Development: Updated Imaging Review. Radiographics 2024; 44:e230239. [PMID: 39446612 DOI: 10.1148/rg.230239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Malformations of cortical development (MCD) are structural anomalies that disrupt the normal process of cortical development. Patients with these anomalies frequently present with seizures, developmental delay, neurologic deficits, and cognitive impairment, resulting in a wide spectrum of neurologic outcomes. The severity and type of malformation, in addition to the genetic pathways of brain development involved, contribute to the observed variability. While neuroimaging plays a central role in identifying congenital anomalies in vivo, the precise definition and classification of cortical developmental defects have undergone significant transformations in recent years due to advances in molecular and genetic knowledge. The authors provide a concise overview of embryologic brain development, recently standardized nomenclature, and the categorization system for abnormalities in cortical development, offering valuable insights into the interpretation of their neuroradiologic patterns. ©RSNA, 2024 Supplemental material is available for this article. The slide presentation from the RSNA Annual Meeting is available for this article.
Collapse
Affiliation(s)
- Julia M Brunelli
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Thiago J P Lopes
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Isabela S Alves
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Daniel S Delgado
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Hae W Lee
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Maria G M Martin
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Marcos F L Docema
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Samya S Alves
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Paula C Pinho
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Vinicius T Gonçalves
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Lucas R L B Oliveira
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Jorge T Takahashi
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Pejman J Maralani
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Camila T Amancio
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Claudia C Leite
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| |
Collapse
|
6
|
Cuccurullo C, Cerulli Irelli E, Ugga L, Riva A, D'Amico A, Cabet S, Lesca G, Bilo L, Zara F, Iliescu C, Barca D, Fung F, Helbig K, Ortiz-Gonzalez X, Schelhaas HJ, Willemsen MH, van der Linden I, Canafoglia L, Courage C, Gommaraschi S, Gonzalez-Alegre P, Bardakjian T, Syrbe S, Schuler E, Lemke JR, Vari S, Roende G, Bak M, Huq M, Powis Z, Johannesen KM, Hammer TB, Møller RS, Rabin R, Pappas J, Zupanc ML, Zadeh N, Cohen J, Naidu S, Krey I, Saneto R, Thies J, Licchetta L, Tinuper P, Bisulli F, Minardi R, Bayat A, Villeneuve N, Molinari F, Salimi Dafsari H, Moller B, Le Roux M, Houdayer C, Vecchi M, Mammi I, Fiorini E, Proietti J, Ferri S, Cantalupo G, Battaglia DI, Gambardella ML, Contaldo I, Brogna C, Trivisano M, De Dominicis A, Bova SM, Gardella E, Striano P, Coppola A. Clinical features and genotype-phenotype correlations in epilepsy patients with de novo DYNC1H1 variants. Epilepsia 2024; 65:2728-2750. [PMID: 38953796 DOI: 10.1111/epi.18054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE DYNC1H1 variants are involved on a disease spectrum from neuromuscular disorders to neurodevelopmental disorders. DYNC1H1-related epilepsy has been reported in small cohorts. We dissect the electroclinical features of 34 patients harboring de novo DYNC1H1 pathogenic variants, identify subphenotypes on the DYNC1H1-related epilepsy spectrum, and compare the genotype-phenotype correlations observed in our cohort with the literature. METHODS Patients harboring de novo DYNC1H1 pathogenic variants were recruited through international collaborations. Clinical data were retrospectively collected. Latent class analysis was performed to identify subphenotypes. Multivariable binary logistic regression analysis was applied to investigate the association with DYNC1H1 protein domains. RESULTS DYNC1H1-related epilepsy presented with infantile epileptic spasms syndrome (IESS) in 17 subjects (50%), and in 25% of these individuals the epileptic phenotype evolved into Lennox-Gastaut syndrome (LGS). In 12 patients (35%), focal onset epilepsy was defined. In two patients, the epileptic phenotype consisted of generalized myoclonic epilepsy, with a progressive phenotype in one individual harboring a frameshift variant. In approximately 60% of our cohort, seizures were drug-resistant. Malformations of cortical development were noticed in 79% of our patients, mostly on the lissencephaly-pachygyria spectrum, particularly with posterior predominance in a half of them. Midline and infratentorial abnormalities were additionally reported in 45% and 27% of subjects. We have identified three main classes of subphenotypes on the DYNC1H1-related epilepsy spectrum. SIGNIFICANCE We propose a classification in which pathogenic de novo DYNC1H1 variants feature drug-resistant IESS in half of cases with potential evolution to LGS (Class 1), developmental and epileptic encephalopathy other than IESS and LGS (Class 2), or less severe focal or genetic generalized epilepsy including a progressive phenotype (Class 3). We observed an association between stalk domain variants and Class 1 phenotypes. The variants p.Arg309His and p.Arg1962His were common and associated with Class 1 subphenotype in our cohort. These findings may aid genetic counseling of patients with DYNC1H1-related epilepsy.
Collapse
Affiliation(s)
- Claudia Cuccurullo
- Epilepsy Center, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Naples, Italy
- Neurology and Stroke Unit, Ospedale del Mare Hospital, Naples, Italy
| | | | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Medical Genetic Unit, Istituti di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Genoa, Italy
| | | | - Sara Cabet
- Pediatric and Fetal Imaging, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Lyon, France
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon, Bron, France
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Leonilda Bilo
- Epilepsy Center, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Naples, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Medical Genetic Unit, Istituti di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Genoa, Italy
| | - Catrinel Iliescu
- Department of Clinical Neurosciences, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Diana Barca
- Department of Pediatric Neurology, Expertise Center for Rare Diseases in Pediatric Neurology, member of the EpiCARE European Reference Network, "Prof. Dr. Alex. Obregia" Clinical Hospital, Bucharest, Romania
| | - France Fung
- Department of Pediatrics and Neurology, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katherine Helbig
- Department of Pediatrics and Neurology, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xilma Ortiz-Gonzalez
- Department of Pediatrics and Neurology, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Inge van der Linden
- Department of Neurology, Epilepsy Center Kempenhaeghe, Heeze, the Netherlands
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carolina Courage
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Samuele Gommaraschi
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Pedro Gonzalez-Alegre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, Philadelphia, USA
| | - Tanya Bardakjian
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, Philadelphia, USA
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Elisabeth Schuler
- Division of Paediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Johannes R Lemke
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genoa, Italy
| | - Gitte Roende
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshopitalet, Copenhagen, Denmark
| | - Mads Bak
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mahbulul Huq
- Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
| | - Zoe Powis
- Ambry Genetics, Department of Emerging Genetic Medicine, CGC 15 Argonaut, Aliso Viejo, California, USA
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Rachel Rabin
- Clinical Genetic Services, Department of Pediatrics, NYU Grossman School of Medicine, New York, New York, USA
| | - John Pappas
- Clinical Genetic Services, Department of Pediatrics, NYU Grossman School of Medicine, New York, New York, USA
| | - Mary L Zupanc
- Children's Health of Orange County, Orange, California, USA
| | - Neda Zadeh
- Genetics Center and Division of Medical Genetics, Children's Hospital of Orange County, Orange, California, USA
| | - Julie Cohen
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sakkubai Naidu
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Russell Saneto
- Department of Neurology, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Jenny Thies
- Seattle Children's Research Institute, University of Washington, Seattle, Washington, USA
| | - Laura Licchetta
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, full member of the EpiCARE European Reference Network, Bologna, Italy
| | - Paolo Tinuper
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, full member of the EpiCARE European Reference Network, Bologna, Italy
| | - Francesca Bisulli
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, full member of the EpiCARE European Reference Network, Bologna, Italy
| | - Raffaella Minardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | | | - Florence Molinari
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
- Department of Paediatric Neurology, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King's College London, London, UK
| | - Birk Moller
- Department of Pediatrics, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marie Le Roux
- Department of Pediatric Neurology and Neurosurgery, CHU, Angers, France
| | - Clara Houdayer
- Service de Génétique Médicale, Université d'Angers, CHU d'Angers, Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France
| | | | | | - Elena Fiorini
- Child Neuropsychiatry Unit, University Hospital of Verona, full member of the EpiCARE European Reference Network, Verona, Italy
- Center for Research on Epilepsy in Pediatric Age, University Hospital of Verona, Verona, Italy
| | - Jacopo Proietti
- Child Neuropsychiatry Unit, University Hospital of Verona, full member of the EpiCARE European Reference Network, Verona, Italy
- Center for Research on Epilepsy in Pediatric Age, University Hospital of Verona, Verona, Italy
| | - Sofia Ferri
- Child Neuropsychiatry Unit, University Hospital of Verona, full member of the EpiCARE European Reference Network, Verona, Italy
| | - Gaetano Cantalupo
- Child Neuropsychiatry Unit, University Hospital of Verona, full member of the EpiCARE European Reference Network, Verona, Italy
- Center for Research on Epilepsy in Pediatric Age, University Hospital of Verona, Verona, Italy
- Innovation Biomedicine Section, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Domenica Immacolata Battaglia
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Ilaria Contaldo
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudia Brogna
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Neuropsychiatric Unit, ASL Avellino, Avellino, Italy
| | - Marina Trivisano
- Neurology, Epilepsy, and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, full member of the EpiCARE European Reference Network, Rome, Italy
| | | | | | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genoa, Italy
| | - Antonietta Coppola
- Epilepsy Center, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Naples, Italy
| |
Collapse
|
7
|
Proepper CR, Schuetz SM, Schwarz LM, Au KV, Bast T, Beaud N, Borggraefe I, Bosch F, Budde J, Busse M, Chung J, Debus O, Diepold K, Fries T, Gersdorff GV, Haeussler M, Hahn A, Hartlieb T, Heiming R, Herkenrath P, Kluger G, Kreth JH, Kurlemann G, Moeller P, Morris-Rosendahl DJ, Panzer A, Philippi H, Ruegner S, Toepfer C, Vieker S, Wiemer-Kruel A, Winter A, Schuierer G, Hehr U, Geis T. Characterization of the Epileptogenic Phenotype and Response to Antiseizure Medications in Lissencephaly Patients. Neuropediatrics 2024. [PMID: 39214127 DOI: 10.1055/s-0044-1789014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Patients with lissencephaly typically present with severe psychomotor retardation and drug-resistant seizures. The aim of this study was to characterize the epileptic phenotype in a genotypically and radiologically well-defined patient cohort and to evaluate the response to antiseizure medication (ASM). Therefore, we retrospectively evaluated 47 patients of five genetic forms (LIS1/PAFAH1B1, DCX, DYNC1H1, TUBA1A, TUBG1) using family questionnaires, standardized neuropediatric assessments, and patients' medical reports. RESULTS All but two patients were diagnosed with epilepsy. Median age at seizure onset was 6 months (range: 2.1-42.0), starting with epileptic spasms in 70%. Standard treatment protocols with hormonal therapy (ACTH or corticosteroids) and/or vigabatrin were the most effective approach for epileptic spasms, leading to seizure control in 47%. Seizures later in the disease course were most effectively treated with valproic acid and lamotrigine, followed by vigabatrin and phenobarbital, resulting in seizure freedom in 20%. Regarding psychomotor development, lissencephaly patients presenting without epileptic spasms were significantly more likely to reach various developmental milestones compared to patients with spasms. CONCLUSION Classic lissencephaly is highly associated with drug-resistant epilepsy starting with epileptic spasms in most patients. The standard treatment protocols for infantile epileptic spasms syndrome lead to freedom from seizures in around half of the patients. Due to the association of epileptic spasms with an unfavorable course of psychomotor development, early and reliable diagnosis and treatment of spasms should be pursued. For epilepsies occurring later in childhood, ASM with valproic acid and lamotrigine, followed by vigabatrin and phenobarbital, appears to be most effective.
Collapse
Affiliation(s)
- Christiane R Proepper
- University Children's Hospital Regensburg (KUNO), University Hospital Regensburg, Regensburg, Germany
| | - Sofia M Schuetz
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Lisa-Maria Schwarz
- Department of Neurology, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Katja von Au
- Department of Pediatrics, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | | | | | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Friedrich Bosch
- Department of Neuropediatrics, Children's Hospital Fürth, Fürth, Germany
| | - Joerg Budde
- Department of Pediatrics, St. Josefskrankenhaus, Freiburg im Breisgau, Germany
| | - Melanie Busse
- Social Pediatric Center, Evangelisches Krankenhaus Mülheim/Ruhr, Mülheim an der Ruhr, Germany
| | - Jena Chung
- Department of Pediatrics and Adolescent Medicine, Kepler University Hospital, Linz, Austria
| | - Otfried Debus
- Department of Pediatrics, Clemenshospital, Münster, Germany
| | | | - Thomas Fries
- Department of Pediatrics, Asklepios Kinderklinik St. Augustin, St. Augustin, Germany
| | - Gero von Gersdorff
- Division of Nephrology, Department of Medicine II, University Hospital Cologne, Cologne, Germany
| | - Martin Haeussler
- Pediatric Neurology and Social Pediatrics, University Children's Hospital, Wuerzburg, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Till Hartlieb
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen-Clinic, Vogtareuth, Germany
- Research Center "Rehabilitation, Transition and Palliation," Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Peter Herkenrath
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gerhard Kluger
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen-Clinic, Vogtareuth, Germany
- Research Center "Rehabilitation, Transition and Palliation," Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Jonas H Kreth
- Pediatric Neurology, Hospital for Children and Adolescents, gGmbH Klinikum Leverkusen, Leverkusen, Germany
| | - Gerhard Kurlemann
- Department of Pediatric Neurology, Bonifatius Hospital Lingen, Lingen (Ems), Germany
| | - Peter Moeller
- Center for Developmental Diagnostics and Social Pediatrics, Wolfsburg, Germany
| | - Deborah J Morris-Rosendahl
- Genomic Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Clinical Genetics and Genomics, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Axel Panzer
- Department of Neuropediatrics, Center for Epilepsy, DRK Westend Clinic Berlin, Berlin, Germany
| | - Heike Philippi
- Social Pediatric Center Frankfurt-Mitte, Frankfurt am Main, Germany
| | | | | | | | | | - Anika Winter
- Department of Neuropediatrics, Jena University Hospital, Jena, Germany
| | - Gerhard Schuierer
- Center for Neuroradiology, University Clinics and Bezirksklinikum Regensburg, Regensburg, Germany
| | - Ute Hehr
- Center for Human Genetics, Regensburg, Germany
| | - Tobias Geis
- University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Hung SC, Dahmoush H, Lee HJ, Chen HC, Guimaraes CV. Prenatal Imaging of Supratentorial Fetal Brain Malformation. Magn Reson Imaging Clin N Am 2024; 32:395-412. [PMID: 38944430 DOI: 10.1016/j.mric.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
This review article provides a comprehensive overview of fetal MR imaging in supratentorial cerebral malformations. It emphasizes the importance of fetal MR imaging as an adjunct diagnostic tool used alongside ultrasound, improving the detection and characterization of prenatal brain abnormalities. This article reviews a spectrum of cerebral malformations, their MR imaging features, and the clinical implications of these findings. Additionally, it outlines the growing importance of fetal MR imaging in the context of perinatal care.
Collapse
Affiliation(s)
- Sheng-Che Hung
- Division of Neuroradiology, Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, NC, USA; Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill
| | - Hisham Dahmoush
- Division of Pediatric Neuroradiology, Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | - Han-Jui Lee
- Division of Neuroradiology, Department of Radiology, Taipei Veterans General Hospital, Taiwan; National Yang Ming Chiao Tung University, Taiwan
| | - Hung-Chieh Chen
- National Yang Ming Chiao Tung University, Taiwan; Division of Neuroradiology, Department of Radiology, Taichung Veterans General Hospital, Taiwan
| | - Carolina V Guimaraes
- Division of Pediatric Radiology, Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Riva M, Ferreira S, Hayashi K, Saillour Y, Medvedeva VP, Honda T, Hayashi K, Altersitz C, Albadri S, Rosello M, Dang J, Serafini M, Causeret F, Henry OJ, Roux CJ, Bellesme C, Freri E, Josifova D, Parrini E, Guerrini R, Del Bene F, Nakajima K, Bahi-Buisson N, Pierani A. De novo monoallelic Reelin missense variants cause dominant neuronal migration disorders via a dominant-negative mechanism. J Clin Invest 2024; 134:e153097. [PMID: 38980724 PMCID: PMC11324310 DOI: 10.1172/jci153097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Reelin (RELN) is a secreted glycoprotein essential for cerebral cortex development. In humans, recessive RELN variants cause cortical and cerebellar malformations, while heterozygous variants were associated with epilepsy, autism, and mild cortical abnormalities. However, the functional effects of RELN variants remain unknown. We identified inherited and de novo RELN missense variants in heterozygous patients with neuronal migration disorders (NMDs) as diverse as pachygyria and polymicrogyria. We investigated in culture and in the developing mouse cerebral cortex how different variants impacted RELN function. Polymicrogyria-associated variants behaved as gain-of-function, showing an enhanced ability to induce neuronal aggregation, while those linked to pachygyria behaved as loss-of-function, leading to defective neuronal aggregation/migration. The pachygyria-associated de novo heterozygous RELN variants acted as dominant-negative by preventing WT RELN secretion in culture, animal models, and patients, thereby causing dominant NMDs. We demonstrated how mutant RELN proteins in vitro and in vivo predict cortical malformation phenotypes, providing valuable insights into the pathogenesis of such disorders.
Collapse
Affiliation(s)
- Martina Riva
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Sofia Ferreira
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Kotaro Hayashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Yoann Saillour
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Vera P. Medvedeva
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Takao Honda
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Claire Altersitz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Marion Rosello
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Julie Dang
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Malo Serafini
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Frédéric Causeret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Olivia J. Henry
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Charles-Joris Roux
- Pediatric Radiology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France
| | - Céline Bellesme
- Pediatric Neurology, Bicêtre University Hospital, Université Paris Saclay, Kremlin-Bicêtre, France
| | - Elena Freri
- Dipartimento di Neuroscienze Pediatriche Fondazione Istituto Neurologico “C. Besta,” Milan, Italy
| | - Dragana Josifova
- Department of Clinical Genetics, Guy’s and St Thomas’ Hospital NHS Trust, London, United Kingdom
| | - Elena Parrini
- Neuroscience Department, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children’s Hospital IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Filippo Del Bene
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Nadia Bahi-Buisson
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, and
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Institut des Sciences Biologiques, Centre National de la Recherche Scientifique (CNRS), Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
10
|
Mato-Blanco X, Kim SK, Jourdon A, Ma S, Tebbenkamp AT, Liu F, Duque A, Vaccarino FM, Sestan N, Colantuoni C, Rakic P, Santpere G, Micali N. Early Developmental Origins of Cortical Disorders Modeled in Human Neural Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598925. [PMID: 38915580 PMCID: PMC11195173 DOI: 10.1101/2024.06.14.598925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The implications of the early phases of human telencephalic development, involving neural stem cells (NSCs), in the etiology of cortical disorders remain elusive. Here, we explored the expression dynamics of cortical and neuropsychiatric disorder-associated genes in datasets generated from human NSCs across telencephalic fate transitions in vitro and in vivo. We identified risk genes expressed in brain organizers and sequential gene regulatory networks across corticogenesis revealing disease-specific critical phases, when NSCs are more vulnerable to gene dysfunctions, and converging signaling across multiple diseases. Moreover, we simulated the impact of risk transcription factor (TF) depletions on different neural cell types spanning the developing human neocortex and observed a spatiotemporal-dependent effect for each perturbation. Finally, single-cell transcriptomics of newly generated autism-affected patient-derived NSCs in vitro revealed recurrent alterations of TFs orchestrating brain patterning and NSC lineage commitment. This work opens new perspectives to explore human brain dysfunctions at the early phases of development.
Collapse
Affiliation(s)
- Xoel Mato-Blanco
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Suel-Kee Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alexandre Jourdon
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Fuchen Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alvaro Duque
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Flora M. Vaccarino
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Departments of Psychiatry, Genetics and Comparative Medicine, Wu Tsai Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlo Colantuoni
- Depts. of Neurology, Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gabriel Santpere
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Nicola Micali
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Järvelä I, Paetau R, Rajendran Y, Acharya A, Bharadwaj T, Leal SM, Lehesjoki AE, Palomäki M, Schrauwen I. Heterogeneous genetic patterns in bilateral perisylvian polymicrogyria: insights from a Finnish family cohort. Brain Commun 2024; 6:fcae142. [PMID: 38712318 PMCID: PMC11073749 DOI: 10.1093/braincomms/fcae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Bilateral perisylvian polymicrogyria is the most common form of regional polymicrogyria within malformations of cortical development, constituting 20% of all malformations of cortical development. Bilateral perisylvian polymicrogyria is characterized by an excessive folding of the cerebral cortex and abnormal cortical layering. Notable clinical features include upper motoneuron dysfunction, dysarthria and asymmetric quadriparesis. Cognitive impairment and epilepsy are frequently observed. To identify genetic variants underlying bilateral perisylvian polymicrogyria in Finland, we examined 21 families using standard exome sequencing, complemented by optical genome mapping and/or deep exome sequencing. Pathogenic or likely pathogenic variants were identified in 5/21 (24%) of families, of which all were confirmed as de novo. These variants were identified in five genes, i.e. DDX23, NUS1, SCN3A, TUBA1A and TUBB2B, with NUS1 and DDX23 being associated with bilateral perisylvian polymicrogyria for the first time. In conclusion, our results confirm the previously reported genetic heterogeneity of bilateral perisylvian polymicrogyria and underscore the necessity of more advanced methods to elucidate the genetic background of bilateral perisylvian polymicrogyria.
Collapse
Affiliation(s)
- Irma Järvelä
- Department of Medical Genetics, University of Helsinki, 00251 Helsinki, Finland
| | - Ritva Paetau
- Department of Child Neurology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Yasmin Rajendran
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
- Taub Institute, Columbia University Medical Center, 10032 New York, NY, USA
| | - Anna-Elina Lehesjoki
- Department of Medical Genetics, University of Helsinki, 00251 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Maarit Palomäki
- Medical Imaging Center, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
| |
Collapse
|
12
|
Wang L, Pan P, Ma H, He C, Qin Z, He W, Huang J, Tan S, Meng D, Wei H, Yin A. Malformations of cortical development: Fetal imaging and genetics. Mol Genet Genomic Med 2024; 12:e2440. [PMID: 38634212 PMCID: PMC11024634 DOI: 10.1002/mgg3.2440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Malformations of cortical development (MCD) are a group of congenital disorders characterized by structural abnormalities in the brain cortex. The clinical manifestations include refractory epilepsy, mental retardation, and cognitive impairment. Genetic factors play a key role in the etiology of MCD. Currently, there is no curative treatment for MCD. Phenotypes such as epilepsy and cerebral palsy cannot be observed in the fetus. Therefore, the diagnosis of MCD is typically based on fetal brain magnetic resonance imaging (MRI), ultrasound, or genetic testing. The recent advances in neuroimaging have enabled the in-utero diagnosis of MCD using fetal ultrasound or MRI. METHODS The present study retrospectively reviewed 32 cases of fetal MCD diagnosed by ultrasound or MRI. Then, the chromosome karyotype analysis, single nucleotide polymorphism array or copy number variation sequencing, and whole-exome sequencing (WES) findings were presented. RESULTS Pathogenic copy number variants (CNVs) or single-nucleotide variants (SNVs) were detected in 22 fetuses (three pathogenic CNVs [9.4%, 3/32] and 19 SNVs [59.4%, 19/32]), corresponding to a total detection rate of 68.8% (22/32). CONCLUSION The results suggest that genetic testing, especially WES, should be performed for fetal MCD, in order to evaluate the outcomes and prognosis, and predict the risk of recurrence in future pregnancies.
Collapse
Affiliation(s)
- Lin‐Lin Wang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- Prenatal Diagnosis CenterMaternal & Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiChina
| | - Ping‐Shan Pan
- Prenatal Diagnosis CenterMaternal & Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiChina
| | - Hui Ma
- Prenatal Diagnosis CenterMaternal & Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiChina
| | - Chun He
- Prenatal Diagnosis CenterMaternal & Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiChina
| | - Zai‐Long Qin
- Prenatal Diagnosis CenterMaternal & Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiChina
| | - Wei He
- Prenatal Diagnosis CenterMaternal & Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiChina
| | - Jing Huang
- Prenatal Diagnosis CenterMaternal & Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiChina
| | - Shu‐Yin Tan
- Prenatal Diagnosis CenterMaternal & Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiChina
| | - Da‐Hua Meng
- Prenatal Diagnosis CenterMaternal & Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiChina
| | - Hong‐Wei Wei
- Prenatal Diagnosis CenterMaternal & Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiChina
| | - Ai‐Hua Yin
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- Medical Genetic CenterGuangdong Women and Children HospitalGuangzhouGuangdongChina
| |
Collapse
|
13
|
Feng WX, Wang XF, Wu Y, Li XM, Chen SH, Wang XH, Wang ZH, Fang F, Chen CH. Clinical analysis of PAFAH1B1 gene variants in pediatric patients with epilepsy. Seizure 2024; 117:98-104. [PMID: 38364333 DOI: 10.1016/j.seizure.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE PAFAH1B1, also known as LIS1, is associated with type I lissencephaly in humans, which is a severe developmental brain disorder believed to result from abnormal neuronal migration. Our objective was to characterize the genotypes and phenotypes of PAFAH1B1-related epilepsy. METHODS We conducted a comprehensive analysis of the medical histories, magnetic resonance imaging findings, and video-electroencephalogram recordings of 11 patients with PAFAH1B1 variants at the Neurology Department of Beijing Children's Hospital from June 2017 to November 2022. RESULTS The age of onset of epilepsy ranged from 2 months to 4 years, with a median onset age of 5 months. Among these 11 patients (comprising 6 boys and 5 girls), all were diagnosed with lissencephaly type 1. Predominantly, generalized tonic-clonic and spasm seizures characterized PAFAH1B1-related epilepsy. Additionally, 10 out of the 11 patients exhibited severe developmental disorders. All patients exhibited de novo variants, with three individuals displaying 17p13.3 deletions linked to haploinsufficiency of PAFAH1B1. Four variants were previously unreported. Notably, three patients with 17p13.3 deletions displayed developmental delay and drug resistant epilepsy, whereas the single patient with mild developmental delay, Intelligence Quotient (IQ) 57 and well-controlled seizures had a splicing-site variant. CONCLUSION The severity of the phenotype in patients with PAFAH1B1 variants ranged from drug-responsive seizures to severe epileptic encephalopathy. These observations underscore the clinical heterogeneity of PAFAH1B1-related disorders, with most patients exhibiting developmental disorders. Moreover, the severity of epilepsy appears to be linked to genetic variations.
Collapse
Affiliation(s)
- Wei-Xing Feng
- Neurology Department, National Center for Children's Health China, Beijing Children Hospital affiliated to Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing 100045, China.
| | - Xiao-Fei Wang
- Neurology Department, National Center for Children's Health China, Beijing Children Hospital affiliated to Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing 100045, China
| | - Yun Wu
- Neurology Department, National Center for Children's Health China, Beijing Children Hospital affiliated to Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing 100045, China
| | - Xing-Meng Li
- Neurology Department, National Center for Children's Health China, Beijing Children Hospital affiliated to Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing 100045, China
| | - Shu-Hua Chen
- Neurology Department, National Center for Children's Health China, Beijing Children Hospital affiliated to Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing 100045, China
| | - Xiao-Hui Wang
- Neurology Department, National Center for Children's Health China, Beijing Children Hospital affiliated to Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing 100045, China
| | - Zi-Han Wang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fang Fang
- Neurology Department, National Center for Children's Health China, Beijing Children Hospital affiliated to Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing 100045, China
| | - Chun-Hong Chen
- Neurology Department, National Center for Children's Health China, Beijing Children Hospital affiliated to Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing 100045, China
| |
Collapse
|
14
|
Gooley S, Perucca P, Tubb C, Hildebrand MS, Berkovic SF. Somatic mosaicism in focal epilepsies. Curr Opin Neurol 2024; 37:105-114. [PMID: 38235675 DOI: 10.1097/wco.0000000000001244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW Over the past decade, it has become clear that brain somatic mosaicism is an important contributor to many focal epilepsies. The number of cases and the range of underlying pathologies with somatic mosaicism are rapidly increasing. This growth in somatic variant discovery is revealing dysfunction in distinct molecular pathways in different focal epilepsies. RECENT FINDINGS We briefly summarize the current diagnostic yield of pathogenic somatic variants across all types of focal epilepsy where somatic mosaicism has been implicated and outline the specific molecular pathways affected by these variants. We will highlight the recent findings that have increased diagnostic yields such as the discovery of pathogenic somatic variants in novel genes, and new techniques that allow the discovery of somatic variants at much lower variant allele fractions. SUMMARY A major focus will be on the emerging evidence that somatic mosaicism may contribute to some of the more common focal epilepsies such as temporal lobe epilepsy with hippocampal sclerosis, which could lead to it being re-conceptualized as a genetic disorder.
Collapse
Affiliation(s)
- Samuel Gooley
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg
| | - Piero Perucca
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg
- Department of Neuroscience, Central Clinical School, Monash University
- Department of Neurology, Alfred Health, Melbourne
- Department of Neurology, The Royal Melbourne Hospital
| | - Caitlin Tubb
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Neuroscience Group, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg
| |
Collapse
|
15
|
Wu WC, Liang XY, Zhang DM, Jin L, Liu ZG, Zeng XL, Zhai QX, Liao WP, He N, Meng XH. DYNC1H1 variants associated with infant-onset epilepsy without neurodevelopmental disorders. Seizure 2024; 116:119-125. [PMID: 37903666 DOI: 10.1016/j.seizure.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVES The DYNC1H1 variants are associated with abnormal brain morphology and neuromuscular disorders that are accompanied by epilepsy. This study aimed to explore the relationship between DYNC1H1 variants and epilepsy. MATERIALS AND METHODS Trios-based whole-exome sequencing was performed on patients with epilepsy. Previously reported epilepsy-related DYNC1H1 variants were systematically reviewed to analyse genotype-phenotype correlation. RESULTS The DYNC1H1 variants were identified in four unrelated cases of infant-onset epilepsy, including two de novo and two biallelic variants. Two patients harbouring de novo missense variants located in the stem and stalk domains presented with refractory epilepsies, whereas two patients harbouring biallelic variants located in the regions between functional domains had mild epilepsy with infrequent focal seizures and favourable outcomes. One patient presented with pachygyria and neurodevelopmental abnormalities, and the other three patients presented with normal development. These variants have no or low frequencies in the Genome Aggregation Database. All the missense variants were predicted to be damaging using silico tools. Previously reported epilepsy-related variants were monoallelic variants, mainly de novo missense variants, and all the patients presented with severe epileptic phenotypes or developmental delay and malformations of cortical development. Epilepsy-related variants were clustered in the dimerization and stalk domains, and generalized epilepsy-associated variants were distributed in the stem domain. CONCLUSION This study suggested that DYNC1H1 variants are potentially associated with infant-onset epilepsy without neurodevelopmental disorders, expanding the phenotypic spectrum of DYNC1H1. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic variation.
Collapse
Affiliation(s)
- Wu-Chen Wu
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Xiao-Yu Liang
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dong-Ming Zhang
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang Jin
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Xiao-Lu Zeng
- Department of pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiong-Xiang Zhai
- Department of pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xiang-Hong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.
| |
Collapse
|
16
|
Dema A, Charafeddine RA, van Haren J, Rahgozar S, Viola G, Jacobs KA, Kutys ML, Wittmann T. Doublecortin reinforces microtubules to promote growth cone advance in soft environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582626. [PMID: 38464100 PMCID: PMC10925279 DOI: 10.1101/2024.02.28.582626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Doublecortin (DCX) is a microtubule-associated protein critical for brain development. Although most highly expressed in the developing central nervous system, the molecular function of DCX in neuron morphogenesis remains unknown and controversial. We demonstrate that DCX function is intimately linked to its microtubule-binding activity. By using human induced pluripotent stem cell (hiPSC)- derived cortical i 3 Neurons genome engineered to express mEmerald-tagged DCX from the endogenous locus, we find that DCX-MT interactions become highly polarized very early during neuron morphogenesis. DCX becomes enriched only on straight microtubules in advancing growth cones with approximately 120 DCX molecules bound per micrometer of growth cone microtubule. At a similar saturation, microtubule-bound DCX molecules begin to impede lysosome transport, and thus can potentially control growth cone organelle entry. In addition, by comparing control, DCX-mEmerald and knockout DCX -/Y i 3 Neurons, we find that DCX stabilizes microtubules in the growth cone peripheral domain by reducing the microtubule catastrophe frequency and the depolymerization rate. DCX -/Y i 3 Neuron morphogenesis was inhibited in soft microenvironments that mimic the viscoelasticity of brain tissue and DCX -/Y neurites failed to grow toward brain-derived neurotrophic factor (BDNF) gradients. Together with high resolution traction force microscopy data, we propose a model in which DCX-decorated, rigid growth cone microtubules provide intracellular mechanical resistance to actomyosin generated contractile forces in soft physiological environments in which weak and transient adhesion-mediated forces in the growth cone periphery may be insufficient for productive growth cone advance. These data provide a new mechanistic understanding of how DCX mutations cause lissencephaly-spectrum brain malformations by impacting growth cone dynamics during neuron morphogenesis in physiological environments.
Collapse
|
17
|
Kooshavar D, Amor DJ, Boggs K, Baker N, Barnett C, de Silva MG, Edwards S, Fahey MC, Marum JE, Snell P, Bozaoglu K, Pope K, Mohammad SS, Riney K, Sachdev R, Scheffer IE, Schenscher S, Silberstein J, Smith N, Tom M, Ware TL, Lockhart PJ, Leventer RJ. Diagnostic utility of exome sequencing followed by research reanalysis in human brain malformations. Brain Commun 2024; 6:fcae056. [PMID: 38444904 PMCID: PMC10914449 DOI: 10.1093/braincomms/fcae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
This study aimed to determine the diagnostic yield of singleton exome sequencing and subsequent research-based trio exome analysis in children with a spectrum of brain malformations seen commonly in clinical practice. We recruited children ≤ 18 years old with a brain malformation diagnosed by magnetic resonance imaging and consistent with an established list of known genetic causes. Patients were ascertained nationally from eight tertiary paediatric centres as part of the Australian Genomics Brain Malformation Flagship. Chromosome microarray was required for all children, and those with pathogenic copy number changes were excluded. Cytomegalovirus polymerase chain reaction on neonatal blood spots was performed on all children with polymicrogyria with positive patients excluded. Singleton exome sequencing was performed through a diagnostic laboratory and analysed using a clinical exome sequencing pipeline. Undiagnosed patients were followed up in a research setting, including reanalysis of the singleton exome data and subsequent trio exome sequencing. A total of 102 children were recruited. Ten malformation subtypes were identified with the commonest being polymicrogyria (36%), pontocerebellar hypoplasia (14%), periventricular nodular heterotopia (11%), tubulinopathy (10%), lissencephaly (10%) and cortical dysplasia (9%). The overall diagnostic yield for the clinical singleton exome sequencing was 36%, which increased to 43% after research follow-up. The main source of increased diagnostic yield was the reanalysis of the singleton exome data to include newly discovered gene-disease associations. One additional diagnosis was made by trio exome sequencing. The highest phenotype-based diagnostic yields were for cobblestone malformation, tubulinopathy and lissencephaly and the lowest for cortical dysplasia and polymicrogyria. Pathogenic variants were identified in 32 genes, with variants in 6/32 genes occurring in more than one patient. The most frequent genetic diagnosis was pathogenic variants in TUBA1A. This study shows that over 40% of patients with common brain malformations have a genetic aetiology identified by exome sequencing. Periodic reanalysis of exome data to include newly identified genes was of greater value in increasing diagnostic yield than the expansion to trio exome. This study highlights the genetic and phenotypic heterogeneity of brain malformations, the importance of a multidisciplinary approach to diagnosis and the large number of patients that remain without a genetic diagnosis despite clinical exome sequencing and research reanalysis.
Collapse
Affiliation(s)
- Daniz Kooshavar
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - David J Amor
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kirsten Boggs
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
- Department of Clinical Genetics, The Children’s Hospital Westmead, Westmead, NSW 2145, Australia
- Australian Genomics, Parkville, VIC 3052, Australia
| | - Naomi Baker
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Christopher Barnett
- SA Clinical Genetics Service, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Michelle G de Silva
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Australian Genomics, Parkville, VIC 3052, Australia
| | - Samantha Edwards
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Clayton, VIC 3168, Australia
| | | | - Penny Snell
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Kiymet Bozaoglu
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kate Pope
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Shekeeb S Mohammad
- Department of Neurology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Kate Riney
- Neurosciences Unit, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD 4072, Australia
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Ingrid E Scheffer
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health and Florey Institute, Heidelberg, VIC 3084, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Sarah Schenscher
- Paediatric and Reproductive Genetics Unit, Women’s and Children’s Hospital, Adelaide, SA 5006Australia
| | - John Silberstein
- Department of Neurology, Princess Margaret Hospital, Nedlands, WA 6009, Australia
| | - Nicholas Smith
- Department of Neurology and Clinical Neurophysiology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Melanie Tom
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD 4029Australia
| | - Tyson L Ware
- Department of Paediatrics, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Paul J Lockhart
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Richard J Leventer
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
18
|
Tsai MH, Lin WC, Chen SY, Hsieh MY, Nian FS, Cheng HY, Zhao HJ, Hung SS, Hsu CH, Hou PS, Tung CY, Lee MH, Tsai JW. A lissencephaly-associated BAIAP2 variant causes defects in neuronal migration during brain development. Development 2024; 151:dev201912. [PMID: 38149472 DOI: 10.1242/dev.201912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Lissencephaly is a neurodevelopmental disorder characterized by a loss of brain surface convolutions caused by genetic variants that disrupt neuronal migration. However, the genetic origins of the disorder remain unidentified in nearly one-fifth of people with lissencephaly. Using whole-exome sequencing, we identified a de novo BAIAP2 variant, p.Arg29Trp, in an individual with lissencephaly with a posterior more severe than anterior (P>A) gradient, implicating BAIAP2 as a potential lissencephaly gene. Spatial transcriptome analysis in the developing mouse cortex revealed that Baiap2 is expressed in the cortical plate and intermediate zone in an anterior low to posterior high gradient. We next used in utero electroporation to explore the effects of the Baiap2 variant in the developing mouse cortex. We found that Baiap2 knockdown caused abnormalities in neuronal migration, morphogenesis and differentiation. Expression of the p.Arg29Trp variant failed to rescue the migration defect, suggesting a loss-of-function effect. Mechanistically, the variant interfered with the ability of BAIAP2 to localize to the cell membrane. These results suggest that the functions of BAIAP2 in the cytoskeleton, cell morphogenesis and migration are important for cortical development and for the pathogenesis of lissencephaly in humans.
Collapse
Affiliation(s)
- Meng-Han Tsai
- Department of Neurology & Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wan-Cian Lin
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shih-Ying Chen
- Department of Neurology & Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Meng-Ying Hsieh
- Division of Pediatric Neurology, Department of Pediatrics, Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Fang-Shin Nian
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Haw-Yuan Cheng
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hong-Jun Zhao
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shih-Shun Hung
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chi-Hsin Hsu
- Genomics Center for Clinical and Biotechnological Applications, Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Yi Tung
- Genomics Center for Clinical and Biotechnological Applications, Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
19
|
Zolzaya S, Narumoto A, Katsuyama Y. Genomic variation in neurons. Dev Growth Differ 2024; 66:35-42. [PMID: 37855730 DOI: 10.1111/dgd.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Neurons born during the fetal period have extreme longevity and survive until the death of the individual because the human brain has highly limited tissue regeneration. The brain is comprised of an enormous variety of neurons each exhibiting different morphological and physiological characteristics and recent studies have further reported variations in their genome including chromosomal abnormalities, copy number variations, and single nucleotide mutations. During the early stages of brain development, the increasing number of neurons generated at high speeds has been proposed to lead to chromosomal instability. Additionally, mutations in the neuronal genome can occur in the mature brain. This observed genomic mosaicism in the brain can be produced by multiple endogenous and environmental factors and careful analyses of these observed variations in the neuronal genome remain central for our understanding of the genetic basis of neurological disorders.
Collapse
Affiliation(s)
- Sunjidmaa Zolzaya
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Ayano Narumoto
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
20
|
Igreja L, Menezes C, Pinto PS, Freixo JP, Chorão R. Lissencephaly With Cerebellar Hypoplasia Due To a New RELN Mutation. Pediatr Neurol 2023; 149:137-140. [PMID: 37879138 DOI: 10.1016/j.pediatrneurol.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 07/02/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
Lissencephaly with cerebellar hypoplasia (LCH) is a rare variant form of lissencephaly, its distinctive neuroradiological phenotype being an important investigation clue regarding the potential involved genes, including variants in RELN gene. We report on a case of LCH whose clinical and neuroradiological features led to the identification of a homozygous pathogenic variant in RELN gene that has not been previously reported in the scientific literature.
Collapse
Affiliation(s)
- Liliana Igreja
- Department of Neuroradiology, Centro Hospitalar Universitário do Porto, Porto, Portugal.
| | - Catarina Menezes
- Department of Pediatrics, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Pedro S Pinto
- Department of Neuroradiology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - João Parente Freixo
- Center for Predictive and Preventive Genetics, Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Rui Chorão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Department of Neurophysiology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
21
|
Volik PI, Kopeina GS, Zhivotovsky B, Zamaraev AV. Total recall: the role of PIDDosome components in neurodegeneration. Trends Mol Med 2023; 29:996-1013. [PMID: 37716905 DOI: 10.1016/j.molmed.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/18/2023]
Abstract
The PIDDosome is a multiprotein complex that includes p53-induced protein with a death domain 1 (PIDD1), receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD), and caspase-2, the activation of which is driven by PIDDosome assembly. In addition to the key role of the PIDDosome in the regulation of cell differentiation, tissue homeostasis, and organogenesis and regeneration, caspase-2, RAIDD and PIDD1 engagement in neuronal development was shown. Here, we focus on the involvement of PIDDosome components in neurodegenerative disorders, including retinal neuropathies, different types of brain damage, and Alzheimer's disease (AD), Huntington's disease (HD), and Lewy body disease. We also discuss pathogenic variants of PIDD1, RAIDD, and caspase-2 that are associated with intellectual, behavioral, and psychological abnormalities, together with prospective PIDDosome inhibition strategies and their potential clinical application.
Collapse
Affiliation(s)
- Pavel I Volik
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia
| | - Gelina S Kopeina
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| | - Alexey V Zamaraev
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia.
| |
Collapse
|
22
|
Edey J, Soleimani-Nouri P, Dawson-Kavanagh A, Imran Azeem MS, Episkopou V. X-linked neuronal migration disorders: Gender differences and insights for genetic screening. Int J Dev Neurosci 2023; 83:581-599. [PMID: 37574439 DOI: 10.1002/jdn.10290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Cortical development depends on neuronal migration of both excitatory and inhibitory interneurons. Neuronal migration disorders (NMDs) are conditions characterised by anatomical cortical defects leading to varying degrees of neurocognitive impairment, developmental delay and seizures. Refractory epilepsy affects 15 million people worldwide, and it is thought that cortical developmental disorders are responsible for 25% of childhood cases. However, little is known about the epidemiology of these disorders, nor are their aetiologies fully understood, though many are associated with sporadic genetic mutations. In this review, we aim to highlight X-linked NMDs including lissencephaly, periventricular nodular heterotopia and polymicrogyria because of their mostly familial inheritance pattern. We focus on the most prominent genes responsible: including DCX, ARX, FLNA, FMR1, L1CAM, SRPX2, DDX3X, NSHDL, CUL4B and OFD1, outlining what is known about their prevalence among NMDs, and the underlying pathophysiology. X-linked disorders are important to recognise clinically, as females often have milder phenotypes. Consequently, there is a greater chance they survive to reproductive age and risk passing the mutations down. Effective genetic screening is important to prevent and treat these conditions, and for this, we need to know gene mutations and have a clear understanding of the function of the genes involved. This review summarises the knowledge base and provides clear direction for future work by both scientists and clinicians alike.
Collapse
Affiliation(s)
- Juliet Edey
- Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Payam Soleimani-Nouri
- Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | | | | - Vasso Episkopou
- Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
23
|
Pavone P, Striano P, Cacciaguerra G, Marino SD, Parano E, Pappalardo XG, Falsaperla R, Ruggieri M. Case report: Structural brain abnormalities in TUBA1A-tubulinopathies: a narrative review. Front Pediatr 2023; 11:1210272. [PMID: 37744437 PMCID: PMC10515619 DOI: 10.3389/fped.2023.1210272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Tubulin genes have been related to severe neurological complications and the term "tubulinopathy" now refers to a heterogeneous group of disorders involving an extensive family of tubulin genes with TUBA1A being the most common. A review was carried out on the complex and severe brain abnormalities associated with this genetic anomaly. Methods A literature review of the cases of TUBA1A-tubulopathy was performed to investigate the molecular findings linked with cerebral anomalies and to describe the clinical and neuroradiological features related to this genetic disorder. Results Clinical manifestations of TUBA1A-tubulinopathy patients are heterogeneous and severe ranging from craniofacial dysmorphism, notable developmental delay, and intellectual delay to early-onset seizures, neuroradiologically associated with complex abnormalities. TUBA1A-tubulinopathy may display various and complex cortical and subcortical malformations. Discussion A range of clinical manifestations related to different cerebral structures involved may be observed in patients with TUBA1A-tubulinopathy. Genotype-phenotype correlations are discussed here. Individuals with cortical and subcortical anomalies should be screened also for pathogenic variants in TUBA1A.
Collapse
Affiliation(s)
- Piero Pavone
- Section of Pediatrics and Child Neuropsychiatry, Department of Child and Experimental Medicine, University of Catania, Catania, Italy
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “G. Gaslini”, Genova, Italy
| | - Giovanni Cacciaguerra
- Section of Pediatrics and Child Neuropsychiatry, Department of Child and Experimental Medicine, University of Catania, Catania, Italy
| | - Simona Domenica Marino
- Pediatrics and Pediatric Emergency Department, University Hospital, A.U.O “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Enrico Parano
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Xena Giada Pappalardo
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Pediatrics and Pediatric Emergency Department, University Hospital, A.U.O “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Martino Ruggieri
- Section of Pediatrics and Child Neuropsychiatry, Department of Child and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
24
|
Puri D, Barry BJ, Engle EC. TUBB3 and KIF21A in neurodevelopment and disease. Front Neurosci 2023; 17:1226181. [PMID: 37600020 PMCID: PMC10436312 DOI: 10.3389/fnins.2023.1226181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Neuronal migration and axon growth and guidance require precise control of microtubule dynamics and microtubule-based cargo transport. TUBB3 encodes the neuronal-specific β-tubulin isotype III, TUBB3, a component of neuronal microtubules expressed throughout the life of central and peripheral neurons. Human pathogenic TUBB3 missense variants result in altered TUBB3 function and cause errors either in the growth and guidance of cranial and, to a lesser extent, central axons, or in cortical neuronal migration and organization, and rarely in both. Moreover, human pathogenic missense variants in KIF21A, which encodes an anterograde kinesin motor protein that interacts directly with microtubules, alter KIF21A function and cause errors in cranial axon growth and guidance that can phenocopy TUBB3 variants. Here, we review reported TUBB3 and KIF21A variants, resulting phenotypes, and corresponding functional studies of both wildtype and mutant proteins. We summarize the evidence that, in vitro and in mouse models, loss-of-function and missense variants can alter microtubule dynamics and microtubule-kinesin interactions. Lastly, we highlight additional studies that might contribute to our understanding of the relationship between specific tubulin isotypes and specific kinesin motor proteins in health and disease.
Collapse
Affiliation(s)
- Dharmendra Puri
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Brenda J. Barry
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Elizabeth C. Engle
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Ge WR, Fu PP, Zhang WN, Zhang B, Ding YX, Yang G. Case report: Genotype and phenotype of DYNC1H1-related malformations of cortical development: a case report and literature review. Front Neurol 2023; 14:1163803. [PMID: 37181555 PMCID: PMC10167015 DOI: 10.3389/fneur.2023.1163803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Background Mutations in the dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene are linked to malformations of cortical development (MCD), which may be accompanied by central nervous system (CNS) manifestations. Here, we present the case of a patient with MCD harboring a variant of DYNC1H1 and review the relevant literature to explore genotype-phenotype relationships. Case presentation A girl having infantile spasms, was unsuccessfully administered multiple antiseizure medications and developed drug-resistant epilepsy. Brain magnetic resonance imaging (MRI) at 14 months-of-age revealed pachygyria. At 4 years-of-age, the patient exhibited severe developmental delay and mental retardation. A de novo heterozygous mutation (p.Arg292Trp) in the DYNC1H1 gene was identified. A search of multiple databases, including PubMed and Embase, using the search strategy DYNC1H1 AND [malformations of cortical development OR seizure OR intellectual OR clinical symptoms] up to June 2022, identified 129 patients from 43 studies (including the case presented herein). A review of these cases showed that patients with DYNC1H1-related MCD had higher risks of epilepsy (odds ratio [OR] = 33.67, 95% confidence interval [CI] = 11.59, 97.84) and intellectual disability/developmental delay (OR = 52.64, 95% CI = 16.27, 170.38). Patients with the variants in the regions encoding the protein stalk or microtubule-binding domain had the most prevalence of MCD (95%). Conclusion MCD, particularly pachygyria, is a common neurodevelopmental disorder in patients with DYNC1H1 mutations. Literature searches reveales that most (95%) patients who carried mutations in the protein stalk or microtubule binding domains exhibited DYNC1H1-related MCD, whereas almost two-thirds of patients (63%) who carried mutations in the tail domain did not display MCD. Patients with DYNC1H1 mutations may experience central nervous system (CNS) manifestations due to MCD.
Collapse
Affiliation(s)
- Wen-Rong Ge
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pei-Pei Fu
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei-Na Zhang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Zhang
- Department of Neurology and ICCTR Biostatistics and Research Design Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ying-Xue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guang Yang
- Senior Department of Pediatrics, The Seventh Medical Center of People's Liberation Army General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Toldo I, Brunello F, Cavasin P, Nosadini M, Sartori S, Frigo AC, Mai R, Pelliccia V, Mancardi MM, Striano P, Severino M, Zara F, Rizzi R, Casellato S, Di Rosa G, Mastrangelo M, Spalice A, Budetta M, De Palma L, Guerrini R, Pruna D, Cordelli DM, Sofia V, Papa A, Chiesa V, Ragona F, Parisi P, D'Aniello A, Veggiotti P, Dainese F, Giordano L, Licchetta L, Tinuper P, D'Orsi G, Cassina M, Manara R. Extended Glasgow Outcome Scale to Evaluate the Functional Impairment of Patients With Subcortical Band Heterotopia: A Multicentric Cross-sectional Study. Pediatr Neurol 2023; 141:58-64. [PMID: 36773408 DOI: 10.1016/j.pediatrneurol.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/06/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Subcortical band heterotopia (SBH) is a rare malformation of the cortical development characterized by a heterotopic band of gray matter between cortex and ventricles. The clinical presentation typically includes intellectual disability and epilepsy. PURPOSE To evaluate if the Extended Glasgow Outcome Scale-pediatric version (EGOS-ped) is a feasible tool for evaluating the functional disability of patients with (SBH). METHOD Cross-sectional multicenter study of a cohort of 49 patients with SBH (female n = 30, 61%), recruited from 23 Italian centers. RESULTS Thirty-nine of 49 (80%) cases showed high functional disability at EGOS-ped assessment. In the poor result subgroup (EGOS-ped >3) motor deficit, language impairment, and lower intelligence quotient were more frequent (P < 0.001, P = 0.02, and P = 0.01, respectively); the age at epilepsy onset was remarkably lower (P < 0.001); and the prevalence of epileptic encephalopathy (West syndrome or Lennox-Gastaut-like encephalopathy) was higher (P = 0.04). The thickness and the extension of the heterotopic band were associated with EGOS-ped score (P < 0.01 and P = 0.02). Pachygyria was found exclusively among patients with poor outcome (P < 0.01). CONCLUSIONS The EGOS-ped proved to be a reliable tool for stratifying the functional disability of patients with SBH. According to this score, patients could be dichotomized: group 1 (80%) is characterized by a poor overall functionality with early epilepsy onset, thick heterotopic band, and pachygyria, whereas group 2 (20%) is characterized by a good overall functionality with later epilepsy onset and thinner heterotopic band.
Collapse
Affiliation(s)
- Irene Toldo
- Child Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy.
| | - Francesco Brunello
- Child Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Paola Cavasin
- Child Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Margherita Nosadini
- Child Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Stefano Sartori
- Child Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Anna Chiara Frigo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Roberto Mai
- 'Claudio Munari' Centre for Epilepsy Surgery, ASST GOM Niguarda, Milan, Italy
| | - Veronica Pelliccia
- 'Claudio Munari' Centre for Epilepsy Surgery, ASST GOM Niguarda, Milan, Italy
| | - Maria Margherita Mancardi
- Child Neuropsychiatry Unit, Clinical and Surgical Neurosciences Department, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Pasquale Striano
- Child Neuropsychiatry Unit, Clinical and Surgical Neurosciences Department, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marisavina Severino
- Pediatric Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Romana Rizzi
- Neurology Unit, Department of Neuro-Motor Diseases, Azienda Unità Sanitaria Locale IRCCS, Reggio Emilia, Italy
| | - Susanna Casellato
- Child Neuropsychiatry Unit, University Hospital of Sassari, Sassari, Italy
| | - Gabriella Di Rosa
- Child Neuropsychiatry Unit, Department of Human Pathology of the Adult and Developmental Age, University Hospital "G. Martino", Messina, Italy
| | - Mario Mastrangelo
- Unit of Child Neurology and Psychiatry, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Alberto Spalice
- Department of Pediatrics, Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Mauro Budetta
- Pediatric and Child Neurology Unit, Cava de' Tirreni AOU S. Giovanni di Dio e Ruggiero d'Aragona Hospital, Salerno, Italy
| | - Luca De Palma
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Dario Pruna
- Pediatric Neurology and Epileptology Unit, "Brotzu" Hospital, Cagliari, Italy
| | - Duccio Maria Cordelli
- IRCCS Institute of Neurological Sciences of Bologna, UOC Neuropsychiatry of the Pediatric Age, Bologna, Italy
| | - Vito Sofia
- Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Catania, Italy
| | - Amanda Papa
- Department of Child Neurology and Psychiatry, AOU Maggiore della Carità Novara, Novara, Italy
| | - Valentina Chiesa
- Epilepsy Centre-Child Neuropsychiatry Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pasquale Parisi
- Child Neurology, Faculty of Medicine & Psychology, NESMOS Department, Sapienza University, Rome, Italy
| | | | | | - Filippo Dainese
- Epilepsy Centre, SS. Giovanni e Paolo Hospital, Venice, Italy
| | - Lucio Giordano
- Child Neuropsychiatric Division, Spedali Civili, Brescia, Italy
| | - Laura Licchetta
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Milan, Italy
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Milan, Italy
| | - Giuseppe D'Orsi
- Epilepsy Centre, Clinic of Nervous System Diseases, Ospedali Riuniti, University of Foggia, Foggia, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Renzo Manara
- Neuroradiology, Department of Neuroscience, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Liu W, Cheng M, Zhu Y, Chen Y, Yang Y, Chen H, Niu X, Tian X, Yang X, Zhang Y. DYNC1H1-related epilepsy: Genotype-phenotype correlation. Dev Med Child Neurol 2023; 65:534-543. [PMID: 36175372 DOI: 10.1111/dmcn.15414] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
AIM To explore the phenotypic spectrum and refine the genotype-phenotype correlation of DYNC1H1-related epilepsy. METHOD The clinical data of 15 patients with epilepsy in our cohort and 50 patients with epilepsy from 24 published studies with the DYNC1H1 variants were evaluated. RESULTS In our cohort, 13 variants were identified from 15 patients (seven males, eight females). Twelve variants were de novo and seven were new. Age at seizure onset ranged from 3 months to 4 years 5 months (median age 1 year). Common seizure types were epileptic spasms, focal seizures, tonic seizures, and myoclonic seizures. Mild-to-severe developmental delay was present in all patients. Six patients were diagnosed with West syndrome and one was diagnosed with epileptic encephalopathy with continuous spikes and waves during slow sleep (CSWS). Collectively, in our cohort and published studies, 17% had ophthalmic diseases, 31% of variants were located in the stalk domain, and 92% patients with epilepsy had a malformation of cortical development (MCD). INTERPRETATION The phenotypes of DYNC1H1-related epilepsy included multiple seizure types; the most common epileptic syndrome was West syndrome. CSWS is a new phenotype of DYNC1H1-related epilepsy. One-third of the variants in patients with epilepsy were located in the stalk domain. Most patients had a MCD and developmental delay. WHAT THIS PAPER ADDS Nearly 40% of patients with DYNC1H1 variants had epilepsy. Ninety-two percent of patients with DYNC1H1-related epilepsy had malformation of cortical development. More than 10% of patients with DYNC1H1-related epilepsy were diagnosed with West syndrome. Continuous spikes and waves during slow sleep could be a new phenotype of DYNC1H1 variants. One-third of the variants in patients with epilepsy were located in the stalk domain.
Collapse
Affiliation(s)
- Wenwei Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Miaomiao Cheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Yi Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hui Chen
- Department of Neurology, Chengdu Women and Children's Central Hospital, Chengdu, China
| | - Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaojuan Tian
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
28
|
Tantry MSA, Santhakumar K. Insights on the Role of α- and β-Tubulin Isotypes in Early Brain Development. Mol Neurobiol 2023; 60:3803-3823. [PMID: 36943622 DOI: 10.1007/s12035-023-03302-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Tubulins are the highly conserved subunit of microtubules which involve in various fundamental functions including brain development. Microtubules help in neuronal proliferation, migration, differentiation, cargo transport along the axons, synapse formation, and many more. Tubulin gene family consisting of multiple isotypes, their differential expression and varied post translational modifications create a whole new level of complexity and diversity in accomplishing manifold neuronal functions. The studies on the relation between tubulin genes and brain development opened a new avenue to understand the role of each tubulin isotype in neurodevelopment. Mutations in tubulin genes are reported to cause brain development defects especially cortical malformations, referred as tubulinopathies. There is an increased need to understand the molecular correlation between various tubulin mutations and the associated brain pathology. Recently, mutations in tubulin isotypes (TUBA1A, TUBB, TUBB1, TUBB2A, TUBB2B, TUBB3, and TUBG1) have been linked to cause various neurodevelopmental defects like lissencephaly, microcephaly, cortical dysplasia, polymicrogyria, schizencephaly, subcortical band heterotopia, periventricular heterotopia, corpus callosum agenesis, and cerebellar hypoplasia. This review summarizes on the microtubule dynamics, their role in neurodevelopment, tubulin isotypes, post translational modifications, and the role of tubulin mutations in causing specific neurodevelopmental defects. A comprehensive list containing all the reported tubulin pathogenic variants associated with brain developmental defects has been prepared to give a bird's eye view on the broad range of tubulin functions.
Collapse
Affiliation(s)
- M S Ananthakrishna Tantry
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
29
|
Liu M, Liu X, Wu J, Sha J, Zhai J, Zhang B. Missed diagnosis of lissencephaly after prenatal diagnosis: A case report. Medicine (Baltimore) 2023; 102:e33014. [PMID: 36800618 PMCID: PMC9936017 DOI: 10.1097/md.0000000000033014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
RATIONALE Lissencephaly (LIS) is a rare and serious cortical malformation characterized by a smooth or nearly smooth brain surface. With the progress of molecular genetics, platelet-activating factor acetylhydrolase brain isoform Ib is the most frequent type during the fetal period. Here, we report an infant with LIS who was missed although undergoing prenatal diagnosis. We aim to share our experiences and lessons. PATIENT CONCERNS A 2-month-old male infant presented recurrent convulsions. Karyotype and copy number variation sequencing were conducted to be normal at the 23-week gestation because of bipedal varus and ventricular septal defect (2.3 mm). After birth, he suffered from epilepsy confirmed by video electroencephalogram exam, meanwhile, computed tomography and magnetic resonance imaging revealed pachygyria. The infant was diagnosed with LIS carrying a de-novo mutation c.817 C > T (p.Arg273 Ter,138) in exon 8 of platelet-activating factor acetylhydrolase brain isoform Ib (NM_000430) detected by whole-exome sequencing. DIAGNOSES Based on the clinical characteristics, imaging, and genetic test findings, the infant was diagnosed with LIS. INTERVENTIONS The patient was treated with topiramate and dose was adjusted according to the seizure frequency. OUTCOMES The infant had recurrent seizures. The muscle tone of his extremities increased, and he could not look up or turn over actively at the age of 6 months. LESSONS Comprehensive evaluation of a multi-disciplinary team should be recommended for patients with epilepsy and cerebral hypoplasia. Individuals with LIS during the fetal period might be missed due to atypical features. In fetuses with structural abnormalities, if karyotype and copy number variation sequencing are both normal, whole-exome sequencing may be an effective complementary means to detect pathogenic variants.
Collapse
Affiliation(s)
- Mengna Liu
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Liu
- Department of Pediatrics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiebin Wu
- Department of Pediatrics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Sha
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingfang Zhai
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, Jiangsu, China
- * Correspondence: Jingfang Zhai, Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, 199 South Jiefang Road, Xuzhou, Jiangsu 221009, China (e-mail: )
| | - Bei Zhang
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
30
|
Zocchi R, Compagnucci C, Bertini E, Sferra A. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons. Int J Mol Sci 2023; 24:ijms24032781. [PMID: 36769099 PMCID: PMC9917122 DOI: 10.3390/ijms24032781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Research Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| |
Collapse
|
31
|
Hardy D, Buhler E, Suchkov D, Vinck A, Fortoul A, Watrin F, Represa A, Minlebaev M, Manent JB. Early suppression of excitability in subcortical band heterotopia modifies epileptogenesis in rats. Neurobiol Dis 2023; 177:106002. [PMID: 36649744 DOI: 10.1016/j.nbd.2023.106002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023] Open
Abstract
Malformations of cortical development represent a major cause of epilepsy in childhood. However, the pathological substrate and dynamic changes leading to the development and progression of epilepsy remain unclear. Here, we characterized an etiology-relevant rat model of subcortical band heterotopia (SBH), a diffuse type of cortical malformation associated with drug-resistant seizures in humans. We used longitudinal electrographic recordings to monitor the age-dependent evolution of epileptiform discharges during the course of epileptogenesis in this model. We found both quantitative and qualitative age-related changes in seizures properties and patterns, accompanying a gradual progression towards a fully developed seizure pattern seen in adulthood. We also dissected the relative contribution of the band heterotopia and the overlying cortex to the development and age-dependent progression of epilepsy using timed and spatially targeted manipulation of neuronal excitability. We found that an early suppression of neuronal excitability in SBH slows down epileptogenesis in juvenile rats, whereas epileptogenesis is paradoxically exacerbated when excitability is suppressed in the overlying cortex. However, in rats with active epilepsy, similar manipulations of excitability have no effect on chronic spontaneous seizures. Together, our data support the notion that complex developmental alterations occurring in both the SBH and the overlying cortex concur to creating pathogenic circuits prone to generate seizures. Our study also suggests that early and targeted interventions could potentially influence the course of these altered developmental trajectories, and favorably modify epileptogenesis in malformations of cortical development.
Collapse
Affiliation(s)
- Delphine Hardy
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Emmanuelle Buhler
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Dmitrii Suchkov
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Antonin Vinck
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Aurélien Fortoul
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Françoise Watrin
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Alfonso Represa
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Marat Minlebaev
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Jean-Bernard Manent
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
32
|
Shah YB, Lin P, Chen S, Zheng A, Alcaraz W, Towne MC, Gabriel C, Bhoj EJ, Lambert MP, Olson TS, Frank DM, Ellis CA, Babushok DV. Inherited bone marrow failure with macrothrombocytopenia due to germline tubulin beta class I (TUBB) variant. Br J Haematol 2023; 200:222-228. [PMID: 36207145 PMCID: PMC10989998 DOI: 10.1111/bjh.18491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Germline mutations in tubulin beta class I (TUBB), which encodes one of the β-tubulin isoforms, were previously associated with neurological and cutaneous abnormalities. Here, we describe the first case of inherited bone marrow (BM) failure, including marked thrombocytopenia, morphological abnormalities, and cortical dysplasia, associated with a de novo p.D249V variant in TUBB. Mutant TUBB had abnormal cellular localisation in transfected cells. Following interferon/ribavirin therapy administered for transfusion-acquired hepatitis C, severe pancytopenia and BM aplasia ensued, which was unresponsive to immunosuppression. Acquired chromosome arm 6p loss of heterozygosity was identified, leading to somatic loss of the mutant TUBB allele.
Collapse
Affiliation(s)
- Yash B. Shah
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ping Lin
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Stone Chen
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Alan Zheng
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Courtney Gabriel
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth J. Bhoj
- Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michele P. Lambert
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy S. Olson
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dale M. Frank
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin A. Ellis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Daria V. Babushok
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Chung CT, Lee NC, Fan SP, Hung MZ, Lin YH, Chen CH, Jao T. DYNC1H1 variant associated with epilepsy: Expanding the phenotypic spectrum. Epilepsy Behav Rep 2022; 21:100580. [PMID: 36636459 PMCID: PMC9829698 DOI: 10.1016/j.ebr.2022.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
DYNC1H1 variants are associated with peripheral neuronal dysfunction and brain morphology abnormalities resulting in neurodevelopmental delay. However, few studies have focused on the association between DYNC1H1 variants and epilepsy. Herein, we report a case of drug-resistant focal epilepsy associated with a pathogenic variant of DYNC1H1. We further summarized the clinical, genetic, and neuroimaging characteristics of patients with DYNC1H1 variant-associated epilepsy from the relevant literature. This report expands the phenotypic spectrum of DYNC1H1-related disorder to include early-onset epilepsy, which is frequently associated with neurodevelopmental delay and intellectual disability, malformations of cortical development, and neuromuscular, ophthalmic, and orthopedic involvement.
Collapse
Affiliation(s)
- Chi-Ting Chung
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan,Department of Neurology, National Taiwan University, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan,Department of Medical Genetics, National Taiwan University, Taipei, Taiwan,Corresponding authors at: Room 12, 15F, Clinical Research Building, National Taiwan University Hospital, No.7, Chung-Shan S. Rd., Taipei 100225, Taiwan (Tun Jao). Department of Pediatrics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan, (Ni-Chung Lee).
| | - Sung-Pin Fan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan,Department of Neurology, National Taiwan University, Taipei, Taiwan
| | - Miao-Zi Hung
- Department of Medical Genetics, National Taiwan University, Taipei, Taiwan
| | - Yen-Heng Lin
- Department of Medical Imaging, National Taiwan University, Taipei, Taiwan
| | - Chih-Hao Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan,Department of Neurology, National Taiwan University, Taipei, Taiwan
| | - Tun Jao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan,Department of Neurology, National Taiwan University, Taipei, Taiwan,Corresponding authors at: Room 12, 15F, Clinical Research Building, National Taiwan University Hospital, No.7, Chung-Shan S. Rd., Taipei 100225, Taiwan (Tun Jao). Department of Pediatrics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan, (Ni-Chung Lee).
| |
Collapse
|
34
|
Moloney PB, Benson KA, Phelan E, O'Regan M, Redmond J. Familial posterior predominant subcortical band heterotopia caused by a CEP85L missense mutation. Seizure 2022; 103:58-60. [PMID: 36306705 DOI: 10.1016/j.seizure.2022.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Patrick B Moloney
- Department of Neurology, St. James's Hospital, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, the Royal College of Surgeons in Ireland, Dublin, Ireland; FutureNeuro SFI Research Centre, Dublin, Ireland.
| | - Katherine A Benson
- School of Pharmacy and Biomolecular Sciences, the Royal College of Surgeons in Ireland, Dublin, Ireland; FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Ethna Phelan
- Department of Radiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Mary O'Regan
- Department of Neurology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Janice Redmond
- Department of Neurology, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
35
|
Khalaf-Nazzal R, Fasham J, Inskeep KA, Blizzard LE, Leslie JS, Wakeling MN, Ubeyratna N, Mitani T, Griffith JL, Baker W, Al-Hijawi F, Keough KC, Gezdirici A, Pena L, Spaeth CG, Turnpenny PD, Walsh JR, Ray R, Neilson A, Kouranova E, Cui X, Curiel DT, Pehlivan D, Akdemir ZC, Posey JE, Lupski JR, Dobyns WB, Stottmann RW, Crosby AH, Baple EL. Bi-allelic CAMSAP1 variants cause a clinically recognizable neuronal migration disorder. Am J Hum Genet 2022; 109:2068-2079. [PMID: 36283405 PMCID: PMC9674946 DOI: 10.1016/j.ajhg.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023] Open
Abstract
Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.
Collapse
Affiliation(s)
- Reham Khalaf-Nazzal
- Biomedical Sciences Department, Faculty of Medicine, Arab American University of Palestine, Jenin P227, Palestine
| | - James Fasham
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK
| | - Katherine A Inskeep
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Institute for Genomic Medicine at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Lauren E Blizzard
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA
| | - Joseph S Leslie
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Matthew N Wakeling
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Nishanka Ubeyratna
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer L Griffith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wisam Baker
- Paediatrics Department, Dr. Khalil Suleiman Government Hospital, Jenin, Palestine
| | - Fida' Al-Hijawi
- Paediatrics Community Outpatient Clinics, Palestinian Ministry of Health, Jenin, Palestine
| | - Karen C Keough
- Department of Pediatrics, Dell Medical School, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA; Child Neurology Consultants of Austin, 7940 Shoal Creek Boulevard, Suite 100, Austin, TX 78757, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Başakşehir Çam and Sakura City Hospital, 34480 Istanbul, Turkey
| | - Loren Pena
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christine G Spaeth
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Peter D Turnpenny
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK
| | - Joseph R Walsh
- Department of Neurological Surgery, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Randall Ray
- Departments of Pediatrics and Medical Genetics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amber Neilson
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Evguenia Kouranova
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Xiaoxia Cui
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA; Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - William B Dobyns
- Departments of Pediatrics and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Rolf W Stottmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Institute for Genomic Medicine at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Andrew H Crosby
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Emma L Baple
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK.
| |
Collapse
|
36
|
Di Donato N, Guerrini R, Billington CJ, Barkovich AJ, Dinkel P, Freri E, Heide M, Gershon ES, Gertler TS, Hopkin RJ, Jacob S, Keedy SK, Kooshavar D, Lockhart PJ, Lohmann DR, Mahmoud IG, Parrini E, Schrock E, Severi G, Timms AE, Webster RI, Willis MJH, Zaki MS, Gleeson JG, Leventer RJ, Dobyns WB. Monoallelic and biallelic mutations in RELN underlie a graded series of neurodevelopmental disorders. Brain 2022; 145:3274-3287. [PMID: 35769015 PMCID: PMC9989350 DOI: 10.1093/brain/awac164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
Reelin, a large extracellular protein, plays several critical roles in brain development and function. It is encoded by RELN, first identified as the gene disrupted in the reeler mouse, a classic neurological mutant exhibiting ataxia, tremors and a 'reeling' gait. In humans, biallelic variants in RELN have been associated with a recessive lissencephaly variant with cerebellar hypoplasia, which matches well with the homozygous mouse mutant that has abnormal cortical structure, small hippocampi and severe cerebellar hypoplasia. Despite the large size of the gene, only 11 individuals with RELN-related lissencephaly with cerebellar hypoplasia from six families have previously been reported. Heterozygous carriers in these families were briefly reported as unaffected, although putative loss-of-function variants are practically absent in the population (probability of loss of function intolerance = 1). Here we present data on seven individuals from four families with biallelic and 13 individuals from seven families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Some individuals with monoallelic variants have moderate frontotemporal lissencephaly, but with normal cerebellar structure and intellectual disability with severe behavioural dysfunction. However, one adult had abnormal MRI with normal intelligence and neurological profile. Thorough literature analysis supports a causal role for monoallelic RELN variants in four seemingly distinct phenotypes including frontotemporal lissencephaly, epilepsy, autism and probably schizophrenia. Notably, we observed a significantly higher proportion of loss-of-function variants in the biallelic compared to the monoallelic cohort, where the variant spectrum included missense and splice-site variants. We assessed the impact of two canonical splice-site variants observed as biallelic or monoallelic variants in individuals with moderately affected or normal cerebellum and demonstrated exon skipping causing in-frame loss of 46 or 52 amino acids in the central RELN domain. Previously reported functional studies demonstrated severe reduction in overall RELN secretion caused by heterozygous missense variants p.Cys539Arg and p.Arg3207Cys associated with lissencephaly suggesting a dominant-negative effect. We conclude that biallelic variants resulting in complete absence of RELN expression are associated with a consistent and severe phenotype that includes cerebellar hypoplasia. However, reduced expression of RELN remains sufficient to maintain nearly normal cerebellar structure. Monoallelic variants are associated with incomplete penetrance and variable expressivity even within the same family and may have dominant-negative effects. Reduced RELN secretion in heterozygous individuals affects only cortical structure whereas the cerebellum remains intact. Our data expand the spectrum of RELN-related neurodevelopmental disorders ranging from lethal brain malformations to adult phenotypes with normal brain imaging.
Collapse
Affiliation(s)
- Nataliya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01307 Dresden, Germany
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, 50139 Florence, Italy
| | - Charles J Billington
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN 55454, USA
| | - A James Barkovich
- Departments of Radiology and Biomedical Imaging, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Philine Dinkel
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01307 Dresden, Germany
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- German Primate Center, Leibniz Institute for Primate Research, 37077 Goettingen, Germany
| | - Elliot S Gershon
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Tracy S Gertler
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Robert J Hopkin
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Department of Pediatrics, Division of Human Genetics, Cincinnati, OH 45229, USA
| | - Suma Jacob
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55454, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Daniz Kooshavar
- Bruce Lefory Centre, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne 3052, Australia
| | - Paul J Lockhart
- Bruce Lefory Centre, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne 3052, Australia
| | - Dietmar R Lohmann
- Institut fur Humangenetik, Universitatsklinikum Essen, 45147 Essen, Germany
| | - Iman G Mahmoud
- Pediatric Neurology Department, Cairo University Children's Hospital, Cairo, Egypt
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, 50139 Florence, Italy
| | - Evelin Schrock
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01307 Dresden, Germany
| | - Giulia Severi
- Medical Genetics Unit, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Richard I Webster
- T. Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney 2145, Australia
| | - Mary J H Willis
- Uniformed Services University School of Medicine and Naval Medical Center, Department of Pediatrics, San Diego, CA 92134, USA
| | - Maha S Zaki
- Pediatric Neurology Department, Cairo University Children's Hospital, Cairo, Egypt
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo Governorate 12622, Egypt
| | - Joseph G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne 3052, Australia
| | - William B Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN 55454, USA
| |
Collapse
|
37
|
Moloney PB, Dugan P, Widdess-Walsh P, Devinsky O, Delanty N. Genomics in the Presurgical Epilepsy Evaluation. Epilepsy Res 2022; 184:106951. [DOI: 10.1016/j.eplepsyres.2022.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/23/2022] [Accepted: 05/25/2022] [Indexed: 11/03/2022]
|
38
|
Liu S, Zhu P, Tian Y, Chen Y, Liu Y, Chen W, Liping D, Wu C. Preparation and application of taste bud organoids in biomedicine towards chemical sensation mechanisms. Biotechnol Bioeng 2022; 119:2015-2030. [PMID: 35441364 DOI: 10.1002/bit.28109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022]
Abstract
Taste is one of the most basic and important sensations that is able to monitor the food quality and avoid intake of potential danger materials. Whether as an inevitable symptom of aging or a complication of cancer treatment, taste loss very seriously affects the patient's life quality. Taste bud organoids provide an alternative and convenient approach for the research of taste functions and the underlying mechanisms due to their characteristics of availability, strong maneuverability, and high similarity to the in-vivo taste buds. This review gives a systemic and comprehensive introduction to the preparation and application of taste bud organoids towards chemical sensing mechanisms. For the first, the basic structure and functions of taste buds will be briefly introduced. Then, the currently available approaches for the preparation of taste bud organoids are summarized and discussed, which are mainly divided into two categories, i.e. the stem/progenitor cell-derived approach and the tissue-derived approach. For the next, different applications of taste bud organoids in biomedicine are outlined based on their central roles such as disease modeling, biological sensing, gene regulation, and signal transduction. Finally, the current challenges, future development trends and prospects of research in taste bud organoids are proposed and discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuge Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Yulan Tian
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Yating Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Yage Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Du Liping
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| |
Collapse
|
39
|
Stouffer MA, Khalaf-Nazzal R, Cifuentes-Diaz C, Albertini G, Bandet E, Grannec G, Lavilla V, Deleuze JF, Olaso R, Nosten-Bertrand M, Francis F. Doublecortin mutation leads to persistent defects in the Golgi apparatus and mitochondria in adult hippocampal pyramidal cells. Neurobiol Dis 2022; 168:105702. [PMID: 35339680 DOI: 10.1016/j.nbd.2022.105702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. DCX is a microtubule-associated protein which plays a key role during neurodevelopment in neuronal migration and differentiation. Dcx knockout (KO) mice show disorganized hippocampal pyramidal neurons. The CA2/CA3 pyramidal cell layer is present as two abnormal layers and disorganized CA3 KO pyramidal neurons are also more excitable than wild-type (WT) cells. To further identify abnormalities, we characterized Dcx KO hippocampal neurons at subcellular, molecular and ultrastructural levels. Severe defects were observed in mitochondria, affecting number and distribution. Also, the Golgi apparatus was visibly abnormal, increased in volume and abnormally organized. Transcriptome analyses from laser microdissected hippocampal tissue at postnatal day 60 (P60) highlighted organelle abnormalities. Ultrastructural studies of CA3 cells performed in P60 (young adult) and > 9 months (mature) tissue showed that organelle defects are persistent throughout life. Locomotor activity and fear memory of young and mature adults were also abnormal: Dcx KO mice consistently performed less well than WT littermates, with defects becoming more severe with age. Thus, we show that disruption of a neurodevelopmentally-regulated gene can lead to permanent organelle anomalies contributing to abnormal adult behavior.
Collapse
Affiliation(s)
- M A Stouffer
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - R Khalaf-Nazzal
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - C Cifuentes-Diaz
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - G Albertini
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - E Bandet
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - G Grannec
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - V Lavilla
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France
| | - J-F Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France
| | - R Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France
| | - M Nosten-Bertrand
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - F Francis
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France.
| |
Collapse
|
40
|
Malformations of cerebral development and clues from the peripheral nervous system: A systematic literature review. Eur J Paediatr Neurol 2022; 37:155-164. [PMID: 34535379 DOI: 10.1016/j.ejpn.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Clinical manifestations of malformations of cortical development (MCD) are variable and can range from mild to severe intellectual disability, cerebral palsy and drug-resistant epilepsy. Besides common clinical features, non-specific or more subtle clinical symptoms may be present in association with different types of MCD. Especially in severely affected individuals, subtle but specific underlying clinical symptoms can be overlooked or overshadowed by the global clinical presentation. To facilitate the interpretation of genetic variants detailed clinical information is indispensable. Detailed (neurological) examination can be helpful in assisting with the diagnostic trajectory, both when referring for genetic work-up as well as when interpreting data from molecular genetic testing. This systematic literature review focusses on different clues derived from the neurological examination and potential further work-up triggered by these signs and symptoms in genetically defined MCDs. A concise overview of specific neurological findings and their associations with MCD subtype and genotype are presented, easily applicable in daily clinical practice. The following pathologies will be discussed: neuropathy, myopathy, muscular dystrophies and spastic paraplegia. In the discussion section, tips and pitfalls are illustrated to improve clinical outcome in the future.
Collapse
|
41
|
Simmons R, Martinez AB, Barkovich J, Numis AL, Cilio MR, Glenn OA, Gano D, Rogers EE, Glass HC. Disorders of Neuronal Migration/Organization Convey the Highest Risk of Neonatal Onset Epilepsy Compared With Other Congenital Brain Malformations. Pediatr Neurol 2022; 127:20-27. [PMID: 34933271 DOI: 10.1016/j.pediatrneurol.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Although seizures in neonates are common and often due to acute brain injury, 10-15% are unprovoked from congenital brain malformations. A better understanding of the risk of neonatal-onset epilepsy by the type of brain malformation is essential for counseling and monitoring. METHODS In this retrospective cohort study, we evaluated 132 neonates with congenital brain malformations and their risk of neonatal-onset epilepsy. Malformations were classified into one of five categories based on imaging patterns on prenatal or postnatal imaging. Infants were monitored with continuous video EEG (cEEG) for encephalopathy and paroxysmal events in addition to abnormal neuroimaging. RESULTS Seventy-four of 132 (56%) neonates underwent EEG monitoring, and 18 of 132 (14%) were diagnosed with neonatal-onset epilepsy. The highest prevalence of epilepsy was in neonates with disorders of neuronal migration/organization (9/34, 26%; 95% confidence interval [CI] = 13-44%), followed by disorders of early prosencephalic development (6/38, 16%; 95% CI = 6-31%), complex total brain malformations (2/16, 13%; 95% CI = 2-38%), and disorders of midbrain/hindbrain malformations (1/30, 3%; 95% CI = 0-17%). Of neonates with epilepsy, 5 of 18 (28%) had only electrographic seizures, 13 of 18 (72%) required treatment with two or more antiseizure medicines (ASMs), and 7 of 18 (39%) died within the neonatal period. CONCLUSION Our results demonstrate that disorders of neuronal migration/organization represent the highest-risk group for early-onset epilepsy. Seizures are frequently electrographic only, require treatment with multiple ASMs, and portend a high mortality rate. These results support American Clinical Neurophysiology Society recommendations for EEG monitoring during the neonatal period for infants with congenital brain malformations.
Collapse
Affiliation(s)
- Roxanne Simmons
- Department of Neurology and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California
| | | | - James Barkovich
- Department of Radiology and Biomedical Engineering, University of California, San Francisco, San Francisco, California
| | - Adam L Numis
- Department of Neurology and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California
| | - Maria Roberta Cilio
- Department of Pediatrics, Saint-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Orit A Glenn
- Department of Radiology and Biomedical Engineering, University of California, San Francisco, San Francisco, California
| | - Dawn Gano
- Department of Neurology and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California; Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, California
| | - Elizabeth E Rogers
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, California
| | - Hannah C Glass
- Department of Neurology and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California; Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, California; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
42
|
Su T, Yan Y, Hu Q, Liu Y, Xu S. De novo
DYNC1H1
mutation causes infantile developmental and epileptic encephalopathy with brain malformations. Mol Genet Genomic Med 2022; 10:e1874. [PMID: 35099838 PMCID: PMC8922968 DOI: 10.1002/mgg3.1874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 11/11/2022] Open
Abstract
Background The human dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene encodes a large subunit of the cytoplasmic dynein complex. DYNC1H1 mutations are associated with various neurological diseases involving both the peripheral and central nervous systems. Methods The clinical characteristics and genetic data of an infant carrying the de novo DYNC1H1 variant identified by trio exome sequencing were analyzed. Patients with epilepsy with DYNC1H1 mutations were summarized by reviewing the literature. Results We first identified an infant presenting with epileptic spasms harboring a de novo missense mutation in DYNC1H1 (c.874C>T; p. Arg292Trp), once reported in an adult case, and further summarized another 54 patients with seizures or epilepsy caused by DYNC1H1 pathogenic variants in the literature. Refractory epilepsy, intellectual disability, and cortical developmental malformations are crucial characteristics of patients with developmental and epileptic encephalopathy (DEE) caused by DYNC1H1 variants. Notably, epileptic spasms in this case were resistant to multiple anti‐seizure medications, corticosteroids, ketogenic diet, and vagus nerve stimulation treatment. The child also showed cortical gyrus malformation and global developmental delay. Conclusion DYNC1H1 variants can cause infantile developmental and epileptic encephalopathy, in which Arg292Trp is a mutation hotspot of the DYNC1H1 gene. Epileptic seizures in this type of DYNC1H1‐related DEE are mostly resistant to multiple antiepileptic strategies and need to explore optimized treatments.
Collapse
Affiliation(s)
- Tangfeng Su
- Department of Pediatrics Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yu Yan
- Department of Neurology People's Hospital of Dongxihu District Wuhan China
| | - Qingqing Hu
- Department of Pediatrics Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yan Liu
- Department of Pediatrics Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Sanqing Xu
- Department of Pediatrics Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
43
|
Jiang J, Zhan X, Liang T, Chen L, Huang S, Sun X, Jiang W, Chen J, Chen T, Li H, Yao Y, Wu S, Zhu J, Liu C. Dysregulation of SAA1, TUBA8 and Monocytes Are Key Factors in Ankylosing Spondylitis With Femoral Head Necrosis. Front Immunol 2022; 12:814278. [PMID: 35126370 PMCID: PMC8812255 DOI: 10.3389/fimmu.2021.814278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction The mechanism of ankylosing spondylitis with femoral head necrosis is unknown, and our study aimed investigate the effects of genetic and immune cell dysregulation on ankylosing spondylitis. Materials and Methods The protein expression of all ligaments in ankylosing spondylitis with femoral head necrosis was obtained using label-free quantification protein park analysis of six pairs of specimens. The possible pathogenesis was explored using differential protein analysis, weighted gene co-expression network analysis, recording intersections with hypoxia-related genes, immune cell correlation analysis, and drug sensitivity analysis. Finally, routine blood test data from 502 AS and 162 healthy controls were collected to examine immune cell differential analysis. Results SAA1 and TUBA8 were significantly expressed differentially in these two groups and correlated quite strongly with macrophage M0 and resting mast cells (P < 0.05). Routine blood data showed that monocytes were significantly more expressed in AS than in healthy controls (P < 0.05). SAA1 and TUBA8 were closely related to the sensitivity of various drugs, which might lead to altered drug sensitivity. Conclusion Dysregulation of SAA1, TUBA8 and monocytes are key factors in ankylosing spondylitis with femoral head necrosis.
Collapse
|
44
|
Lin WX, Chai YY, Huang TT, Zhang X, Zheng G, Zhang G, Peng F, Huang YJ. Novel compound heterozygous GPR56 gene mutation in a twin with lissencephaly: A case report. World J Clin Cases 2022; 10:607-617. [PMID: 35097086 PMCID: PMC8771398 DOI: 10.12998/wjcc.v10.i2.607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/19/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lissencephaly (LIS) is a malformation of cortical development with broad gyri, shallow sulci and thickened cortex characterized by developmental delays and seizures. Currently, 20 genes have been implicated in LIS. However, GRP56-related LIS has never been reported. GRP56 is considered one of the causative genes for bilateral frontoparietal polymicrogyria. Here, we report a twin infant with LIS and review the relevant literature. The twins both carried the novel compound heterozygous GPR56 mutations.
CASE SUMMARY A 5-mo-old female infant was hospitalized due to repeated convulsions for 1 d. The patient had a flat head deformity that manifested as developmental delays and a sudden onset of generalized tonic-clonic seizures at 5 mo without any causes. The electroencephalography was normal. Brain magnetic resonance imaging revealed a simple brain structure with widened and thickened gyri and shallow sulci. The white matter of the brain was significantly reduced. Patchy long T1 and T2 signals could be seen around the ventricles, which were expanded, and the extracerebral space was widened. Genetic testing confirmed that the patient carried the GPR56 gene compound heterozygous mutations c.228delC (p.F76fs) and c.1820_1821delAT (p.H607fs). The unaffected father carried a heterozygous c.1820_1821delAT mutation, and the unaffected mother carried a heterozygous c.228delC mutation. The twin sister carried the same mutations as the proband. The patient was diagnosed with LIS.
CONCLUSION This is the first case report of LIS that is likely caused by mutations of the GPR56 gene.
Collapse
Affiliation(s)
- Wen-Xin Lin
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Ying-Ying Chai
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Ting-Ting Huang
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Xia Zhang
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Guo Zheng
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Gang Zhang
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Fang Peng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yan-Jun Huang
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
45
|
Huang H, Jin J, Wu L, Wu H, Pi H, Dong Y, Xiang R. A de novo Non-sense Nuclear Factor I B Mutation (p.Tyr290*) Is Responsible for Brain Malformation and Lung Lobulation Defects. Front Pediatr 2022; 10:865181. [PMID: 35433561 PMCID: PMC9005976 DOI: 10.3389/fped.2022.865181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Nuclear factor I B (NFIB) plays an important role in regulating the transcription of multiple biological processes. Mutations in NFIB cause intellectual disability and macrocephaly. However, studies on abnormal brain and lung development caused by NFIB mutations are lacking. METHODS In the present study, we enrolled a fetus with brain malformation and lung lobulation defects from China. Whole-exome sequencing (WES) was performed to detect the candidate genes and Sanger sequencing was performed for mutational analysis. RESULTS After data filtering and bioinformatics prediction, a novel non-sense mutation of NFIB (NM_001190737:c.870C > A;p.Tyr290*) was identified in the fetus. This variant was predicted to produce a truncated NFIB protein because of a premature stop codon and was absent in 200 healthy controls. CONCLUSION To the best of our knowledge, this is the first case of brain malformation and lung lobulation defects caused by a NFIB variant in Asia. These findings contribute to genetic diagnosis and family counseling and expand our understanding of NFIB mutations as well as brain and lung maturation.
Collapse
Affiliation(s)
- Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jieyuan Jin
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Liping Wu
- Department of Medical Genetics and Prenatal Diagnosis, Shenzhen Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Huifen Wu
- Obstetric Inpatient Department, Shenzhen Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Huichun Pi
- Department of Medical Genetics and Prenatal Diagnosis, Shenzhen Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yi Dong
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
46
|
Balza C, Garofalo G, Cos T, Désir J, Kang X, Keymolen K, Soblet J, Van Berkel K, Vilain C, Ben Abbou W, Cassart M. A prenatal case of lissencephaly with cerebellar hypoplasia: New mutation in RELN gene. Clin Case Rep 2021; 9:e04882. [PMID: 34917359 PMCID: PMC8645177 DOI: 10.1002/ccr3.4882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022] Open
Abstract
Reelinopathies cause a distinctive lissencephaly type associated with cerebellar hypoplasia. To help further management, we wanted to report here the first prenatal diagnosis due to a homozygous inherited reelinopathy.
Collapse
Affiliation(s)
- Claire Balza
- Department of Fetal MedicineCHU Saint‐PierreBrusselsBelgium
- Department of Fetal MedicineHôpitaux Iris SudBrusselsBelgium
| | | | - Teresa Cos
- Department of Obstetrics and GynecologyUniversity Hospital BrugmannUniversité Libre de BruxellesBrusselsBelgium
| | - Julie Désir
- Institut de Pathologie et de Génétique a.s.b.l.CharleroiBelgium
| | - Xin Kang
- Department of Obstetrics and GynecologyUniversity Hospital BrugmannUniversité Libre de BruxellesBrusselsBelgium
| | - Kathelijn Keymolen
- Belgium Center for Reproduction and GeneticsUniversitair Ziekenhuis BrusselBrusselsBelgium
| | - Julie Soblet
- Department of GeneticsHôpital ErasmeULB Center of Human GeneticsUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Kim Van Berkel
- Belgium Center for Reproduction and GeneticsUniversitair Ziekenhuis BrusselBrusselsBelgium
| | - Catheline Vilain
- Department of GeneticsHôpital ErasmeULB Center of Human GeneticsUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Wafa Ben Abbou
- Department of Fetal MedicineHôpitaux Iris SudBrusselsBelgium
| | - Marie Cassart
- Department of Fetal MedicineCHU Saint‐PierreBrusselsBelgium
- Department of Fetal MedicineHôpitaux Iris SudBrusselsBelgium
- Department of RadiologyHôpitaux Iris SudBrusselsBelgium
| |
Collapse
|
47
|
Yang H, Gong P, Jiao X, Niu Y, Zhou Q, Zhang Y, Yang Z. De Novo Variants in the DYNC1H1 Gene Associated With Infantile Spasms. Front Neurol 2021; 12:733178. [PMID: 34803881 PMCID: PMC8603382 DOI: 10.3389/fneur.2021.733178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022] Open
Abstract
Objective: The DYNC1H1 gene is related to a variety of diseases, including spinal muscular atrophy with lower extremity-predominant 1, Charcot-Marie-Tooth disease type 2O, and mental retardation, autosomal dominant13 (MRD13). Some patients with DYNC1H1 variant also had epilepsy. This study aimed to detect DYNC1H1 variants in Chinese patients with infantile spasms (ISs). Methods: We reviewed clinical information, video electroencephalogram (V-EEG), and neuroimaging of a newly identified cohort of five patients with de novo DYNC1H1gene variants. Results: Five patients with four DYNC1H1variants from four families were included. All patients had epileptic spasms (ESs), the median age at seizure onset was 7.5 months (range from 5 months to 2 years 7 months), and the interictal V-EEG results were hypsarrhythmia. Four of five patients had brain magnetic resonance imaging (MRI) abnormalities. Four de novo DYNC1H1 variants were identified, including two novel variants (p.N1117K, p.M3405L) and two reported variants (p.R1962C, p.F1093S). As for the variant site, two variants are located in the tail domain, one variant is located in the motor domain, and one variant is located in the stalk domain. All patients had tried more than five kinds of antiepileptic drugs. One patient has been controlled well by vigabatrin (VGB) for 4 years, and another patient by VGB and steroids for 1.5 years. The other three patients still had frequent ESs. All patients had severe intellectual disability and development delays. Significance: IS was one of the phenotypes of DYNC1H1 variants. Most patients had non-specific brain MRI abnormality. Two of four DYNC1H1 variants were novel, expanding the variant spectrum. The IS phenotype was related to the variant's domains of DYNC1H1 variant sites. All patients were drug-refractory and showed development delays.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
48
|
Vriend I, Oegema R. Genetic causes underlying grey matter heterotopia. Eur J Paediatr Neurol 2021; 35:82-92. [PMID: 34666232 DOI: 10.1016/j.ejpn.2021.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Grey matter heterotopia (GMH) can cause of seizures and are associated with a wide range of neurodevelopmental disorders and syndromes. They are caused by a failure of neuronal migration during fetal development, leading to clusters of neurons that have not reached their final destination in the cerebral cortex. We have performed an extensive literature search in Pubmed, OMIM, and Google scholar and provide an overview of known genetic associations with periventricular nodular heterotopia (PNVH), subcortical band heterotopia (SBH) and other subcortical heterotopia (SUBH). We classified the heterotopias as PVNH, SBH, SUBH or other and collected the genetic information, frequency, imaging features and salient features in tables for every subtype of heterotopia. This resulted in 105 PVNH, 16 SBH and 25 SUBH gene/locus associations, making a total of 146 genes and chromosomal loci. Our study emphasizes the extreme genetic heterogeneity underlying GMH. It will aid the clinician in establishing an differential diagnosis and eventually a molecular diagnosis in GMH patients. A diagnosis enables proper counseling of prognosis and recurrence risks, and enables individualized patient management.
Collapse
Affiliation(s)
- Ilona Vriend
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
49
|
Koenig M, Dobyns WB, Di Donato N. Lissencephaly: Update on diagnostics and clinical management. Eur J Paediatr Neurol 2021; 35:147-152. [PMID: 34731701 DOI: 10.1016/j.ejpn.2021.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/27/2022]
Abstract
Lissencephaly represents a spectrum of rare malformations of cortical development including agyria, pachygyria and subcortical band heterotopia. The progress in molecular genetics has led to identification of 31 lissencephaly-associated genes with the overall diagnostic yield over 80%. In this review, we focus on clinical and molecular diagnosis of lissencephaly and summarize the current knowledge on histopathological changes and their correlation with the MRI imaging. Additionally we provide the overview of clinical follow-up recommendations and available data on epilepsy management in patients with lissencephaly.
Collapse
Affiliation(s)
- Matti Koenig
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany
| | - William B Dobyns
- Department of Pediatrics (Genetics), University of Minnesota, Minneapolis, MN, USA
| | - Nataliya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany.
| |
Collapse
|
50
|
Chiba E, Kimura Y, Shimizu-Motohashi Y, Miyagawa N, Ota M, Shigemoto Y, Ohnishi M, Nakaya M, Nakagawa E, Sasaki M, Sato N. Clinical and neuroimaging findings in patients with lissencephaly/subcortical band heterotopia spectrum: a magnetic resonance conventional and diffusion tensor study. Neuroradiology 2021; 64:825-836. [PMID: 34693484 DOI: 10.1007/s00234-021-02836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To clarify brain abnormalities on magnetic resonance imaging (MRI) and its clinical implications in lissencephaly/subcortical band heterotopia (LIS/SBH) spectrum patients. METHODS The clinical severity and classification according to Di Donato were retrospectively reviewed in 23 LIS/SBH spectrum patients. The morphological and signal abnormalities of the brainstem, corpus callosum, and basal ganglia were also assessed. The brainstem distribution pattern of the corticospinal tract (CST) was analyzed by diffusion tensor imaging (DTI) and categorized into two types: normal pattern, in which the CST and medial lemniscus (ML) are separated by the dorsal portion of the transverse pontine fiber, and the abnormal pattern, in which the CST and ML are juxtaposed on the dorsal portion of a single transverse pontine fiber. Correlations between MR grading score and potential additional malformative findings of the brain and clinical symptoms were investigated. RESULTS All patients with grade 3 (n = 5) showed brainstem deformities, signal abnormalities of pontine surface and had a tendency of basal ganglia deformity and callosal hypoplasia whereas those abnormalities were rarely seen in patients with grade 1 and 2 (n = 18). For DTI analysis, the patients with grade 3 LIS/SBH had typically abnormal CST, whereas the patients with grade 1 and 2 LIS/SBH had normal CST. The classification was well correlated with CST and brainstem abnormalities and clinical severity. CONCLUSION MR assessment including DTI analysis may be useful in assessing the clinical severity in LIS/BH spectrum and may provide insight into its developmental pathology.
Collapse
Affiliation(s)
- Emiko Chiba
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Yukio Kimura
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, Japan
| | - Nozomi Miyagawa
- Department of Psychiatry, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, Japan
| | - Miho Ota
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoko Shigemoto
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Masahiro Ohnishi
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Moto Nakaya
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan.
| |
Collapse
|