1
|
Keeler AM, Zhan W, Ram S, Fitzgerald KA, Gao G. The curious case of AAV immunology. Mol Ther 2025; 33:1946-1965. [PMID: 40156190 DOI: 10.1016/j.ymthe.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Immune responses to adeno-associated virus (AAV) have long been perplexing, from its first discovery to the latest clinical trials of recombinant AAV (rAAV) therapy. Wild-type AAV (wtAAV) does not cause any known disease, making it an ideal vector for gene therapy, as viral vectors retain virus-like properties. Although AAV stimulates only a mild immune response compared with other viruses, it is still recognized by the innate immune system and induces adaptive immune responses. B cell responses against both wtAAV and rAAV are robust and can hinder gene therapy applications and prevent redosing. T cell responses can clear transduced cells or establish tolerance against gene therapy. Immune responses to AAV gene therapy are influenced by many factors. Most clinical immunotoxicities that develop in response to gene therapies have emerged as higher doses of AAV vectors have been utilized and were not properly modeled in preclinical animal studies. Thus, several strategies have been undertaken to reduce or mitigate immune responses to AAV. While we have learned a considerable amount about how the immune system responds to AAV gene therapy since the discovery of AAV virus, it still remains a curious case that requires more investigation to fully understand.
Collapse
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; NeroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Słyk Ż, Stachowiak N, Małecki M. Gene Therapy in the Light of Lifestyle Diseases: Budesonide, Acetaminophen and Simvastatin Modulates rAAV Transduction Efficiency. Pharmaceuticals (Basel) 2024; 17:1213. [PMID: 39338375 PMCID: PMC11434873 DOI: 10.3390/ph17091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Recombinant AAV (rAAV) vectors are increasingly favored for gene therapy due to their useful features of vectorology, such as transfection of dividing and nondividing cells, the presence of tissue-specific serotypes, and biosafety considerations. This study investigates the impact of commonly used therapeutic drugs-acetaminophen, budesonide, and simvastatin-on rAAV transduction efficiency in HEK-293 cells. Cells were transduced with an AAV mosaic vector under the control of a cytomegalovirus (CMV) promoter encoding green fluorescent protein (GFP). Transduction efficiency was assessed by qPCR and fluorescent microscopy. Analysis of functional interactions between genes potentially involved in rAAV transduction in drug-exposed cells was also performed. This study showed a clear effect of drugs on rAAV transmission. Notably, acetaminophen enhanced transduction efficiency by 9-fold, while budesonide and simvastatin showed 2-fold and 3-fold increases, respectively. The gene analysis illustrates the possible involvement of genes related to cell membranes in the potentiation of rAAV transduction induced by the drugs under investigation. Attention should be paid to S100A8, which is a common drug-modified gene for drugs showing anti-inflammatory effects (budesonide and simvastatin), demonstrating an interaction with the gene encoding the receptor for AAV (HGFR). This study underscores the significance of assessing rAAV pharmacokinetics/pharmacodynamics (PKs/PDs) and drug-gene therapy interactions in optimizing gene therapy protocols.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Natalia Stachowiak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
3
|
Ertl HCJ. Circumventing B Cell Responses to Allow for Redosing of Adeno-Associated Virus Vectors. Hum Gene Ther 2024; 35:416-424. [PMID: 37861281 DOI: 10.1089/hum.2023.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Adeno-associated virus (AAV)-mediated gene therapy has made significant progress in the last few decades. Nevertheless, challenges imposed by the immune system remain. The very high doses of AAV vectors used for some disorders have resulted in serious adverse events (SAEs) or even deaths, demonstrating that AAV vector doses that can safely be injected into patients are limited and for some indications below the therapeutic dose. Currently used immunosuppressive drugs have not prevented the SAEs, indicating that it may be prudent to treat patients with repeated transfer of moderate doses rather than a single injection of high doses of AAV vectors. The former approach has been avoided as AAV vectors elicit neutralizing antibodies that prevent successful reapplication of serologically crossreactive vectors. Immunosuppressive regimens that block B cell responses to AAV vectors or treatments that remove AAV neutralizing antibodies thus need to be developed to allow for a shift from toxic single-dose injections of AAV vectors to repeated treatments with more moderate and safe doses. Preventing or blocking antibody responses would also allow for redosing of patients with declining transgene product expression, or for effective AAV-mediated gene transfer into patients with the pre-existing neutralizing antibodies.
Collapse
Affiliation(s)
- Hildegund C J Ertl
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Zhang S, Zhu P, Yuan J, Cheng K, Xu Q, Chen W, Pan Z, Zheng Y. Non-alcoholic fatty liver disease combined with rheumatoid arthritis exacerbates liver fibrosis by stimulating co-localization of PTRF and TLR4 in rats. Front Pharmacol 2023; 14:1149665. [PMID: 37346294 PMCID: PMC10279862 DOI: 10.3389/fphar.2023.1149665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Rheumatoid arthritis (RA) has a high prevalence in patients with non-alcoholic fatty liver disease (NAFLD); however, the underlying mechanism is unclear. To address this, our study established a rat model with both NAFLD and RA by feeding a high-fat diet (HFD) and administering intradermal injection of Freund's complete adjuvant (FCA) with bovine type II collagen. Collagen-induced RA (CIA) was confirmed by hind paw swelling and histological examination. The histomorphological characteristics of NAFLD were evaluated by Masson's trichrome and hematoxylin-eosin staining. The development of NAFLD was further evaluated by measuring serum concentrations of triglyceride (TG), total cholesterol (T-CHO), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lipopolysaccharide (LPS). The results showed that HFD feeding exacerbated secondary inflammation in CIA rats, whereas FCA/bovine type II collagen injection increased serum levels of ALT, AST, TG, T-CHO, and LPS and exacerbated hepatic fibrosis in both normal and NAFLD rats. Interestingly, NAFLD + CIA significantly promoted the expression of PTRF, a caveolae structure protein involved in hepatic lipid metabolism and affecting downstream signaling of Toll-like receptor 4 (TLR4) and PI3K/Akt activation. High resolution confocal microscopy revealed increased PTRF and TLR4 co-localization in hepatic small vessels of NAFLD + CIA rats. AAV9-mediated PTRF knockdown inhibited TLR4 signaling and alleviated hepatic fibrosis in NAFLD + CIA rats. Together, these findings indicate that NAFLD combined with CIA causes synovial injury and enhances non-alcoholic fatty liver fibrosis in rats. PTRF could attenuate the symptoms of NAFLD + CIA likely by affecting TLR4/PTRF co-expression and downstream signaling.
Collapse
Affiliation(s)
| | - Peng Zhu
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Jianan Yuan
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Kunming Cheng
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Qixiang Xu
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Wei Chen
- Boster Biological Technology Co., Ltd., Wuhan, China
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Yongqiu Zheng
- School of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Zou P. Interspecies normalization of dose-response relationship for adeno-associated virus-mediated haemophilia gene therapy-Application to human dose prediction. Br J Clin Pharmacol 2023; 89:1393-1401. [PMID: 36367416 DOI: 10.1111/bcp.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS The aim of this study is to develop an approach to predict human dose-response relationship and first-in-human (FIH) dose for adeno-associated virus (AAV)-mediated haemophilia gene therapy. METHODS Preclinical dose-response relationships of 7 AAV vectors were normalized to a species-invariant scale using an exponent of 0.25, and the normalized dose-response relationship was then used for FIH dose prediction. The performance of this dose-response normalization approach for FIH dose prediction was compared to that of direct body weight-based dose (vg/kg) conversion and allometric scaling approaches. RESULTS A power regression analysis of normalized factor VIII (FVIII) or factor IX (FIX) showed a moderate-to-strong correlation between FVIII or FIX and vector dose across 3 species (R2 ranged 0.59 to 0.89), indicating it was feasible to normalize dose-response in multiple species to a species-invariant scale. When the mean values of normalized FVIII or FIX at each dose level were used for regression, the R2 values of the 7 vectors were improved to be >0.84. The FIH doses predicted by the 3 approaches were ranked as allometric scaling > dose-response normalization > direct vg/kg conversion for all vectors except for rAAV2-hAAT-FIX and scAAV2/8-LP1-hFIXco. Among the 7 vectors, dose-response normalization, direct vg/kg conversion and allometric scaling generated accurate FIH dose predictions for 2, 2 and 3 vectors, respectively. CONCLUSION This study first demonstrated that it is feasible to normalize dose-response relationship of AAV-mediated haemophilia gene therapy in multiple species to a species-invariant scale. The normalized dose-response relationship from preclinical species was successfully extrapolated to patients for FIH dose prediction.
Collapse
Affiliation(s)
- Peng Zou
- Quantitative Clinical Pharmacology, Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| |
Collapse
|
6
|
Zou P. First-in-Patient Dose Prediction for Adeno-Associated Virus-Mediated Hemophilia Gene Therapy Using Allometric Scaling. Mol Pharm 2023; 20:758-766. [PMID: 36374990 DOI: 10.1021/acs.molpharmaceut.2c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the author compared the performance of two allometric scaling approaches and body-weight-based dose conversion approach for first-in-patient (FIP) dose prediction for adeno-associated virus (AAV)-mediated hemophilia gene therapy using preclinical and clinical efficacy data of nine AAV vectors. In general, body-weight-based direct conversion of effective doses in monkeys or dogs was more likely to underestimate FIP dose but worked for one bioengineered vector with a high transduction efficiency specifically in humans. In contrast, allometric scaling between gene efficiency factor (log GEF) and body weight (log W) was likely to overestimate FIP dose but worked for two vectors with capsid-specific T-cell responses in patients. The third approach, allometric scaling between log GEF and W-0.25 was appropriate for FIP dose prediction in the absence of T-cell responses to AAV vectors or a dramatic difference in vector transduction efficiency between animals and humans.
Collapse
Affiliation(s)
- Peng Zou
- Quantitative Clinical Pharmacology, Daiichi Sankyo, Inc., 211 Mt. Airy Road, Basking Ridge, New Jersey07920, United States
| |
Collapse
|
7
|
Burr A, Erickson P, Bento R, Shama K, Roth C, Parekkadan B. Allometric-like scaling of AAV gene therapy for systemic protein delivery. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2022; 27:368-379. [DOI: 10.1016/j.omtm.2022.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
8
|
Piechnik M, Amendum PC, Sawamoto K, Stapleton M, Khan S, Fnu N, Álvarez V, Pachon AMH, Danos O, Bruder JT, Karumuthil-Melethil S, Tomatsu S. Sex Difference Leads to Differential Gene Expression Patterns and Therapeutic Efficacy in Mucopolysaccharidosis IVA Murine Model Receiving AAV8 Gene Therapy. Int J Mol Sci 2022; 23:ijms232012693. [PMID: 36293546 PMCID: PMC9604118 DOI: 10.3390/ijms232012693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Adeno-associated virus (AAV) vector-based therapies can effectively correct some disease pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy products, ultimately resulting in loss of enzyme activity. Inherent differences in male versus female immune response can significantly impact AAV gene transfer. We aim to investigate sex differences in the immune response to AAV gene therapies in mice with mucopolysaccharidosis IVA (MPS IVA). MPS IVA mice, treated with different AAV vectors expressing human N-acetylgalactosamine 6-sulfate sulfatase (GALNS), demonstrated a more robust antibody response in female mice resulting in subsequent decreased GALNS enzyme activity and less therapeutic efficacy in tissue pathology relative to male mice. Under thyroxine-binding globulin promoter, neutralizing antibody titers in female mice were approximately 4.6-fold higher than in male mice, with GALNS enzyme activity levels approximately 6.8-fold lower. Overall, male mice treated with AAV-based gene therapy showed pathological improvement in the femur and tibial growth plates, ligaments, and articular cartilage as determined by contrasting differences in pathology scores compared to females. Cardiac histology revealed a failure to normalize vacuolation in females, in contrast, to complete correction in male mice. These findings promote the need for further determination of sex-based differences in response to AAV-mediated gene therapy related to developing treatments for MPS IVA.
Collapse
Affiliation(s)
- Matthew Piechnik
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paige C. Amendum
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kazuki Sawamoto
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Molly Stapleton
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Shaukat Khan
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Nidhi Fnu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Victor Álvarez
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | | | | | | | - Subha Karumuthil-Melethil
- REGENXBIO Inc., Rockville, MD 20850, USA
- Correspondence: (S.K.-M.); or (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.); Fax: +1-302-651-6888 (S.T.)
| | - Shunji Tomatsu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pediatrics, Shimane University, Izumo 693-8501, Shimane, Japan
- Correspondence: (S.K.-M.); or (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.); Fax: +1-302-651-6888 (S.T.)
| |
Collapse
|
9
|
Li X, Wei X, Lin J, Ou L. A versatile toolkit for overcoming AAV immunity. Front Immunol 2022; 13:991832. [PMID: 36119036 PMCID: PMC9479010 DOI: 10.3389/fimmu.2022.991832] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) is a promising delivery vehicle for in vivo gene therapy and has been widely used in >200 clinical trials globally. There are already several approved gene therapy products, e.g., Luxturna and Zolgensma, highlighting the remarkable potential of AAV delivery. In the past, AAV has been seen as a relatively non-immunogenic vector associated with low risk of toxicity. However, an increasing number of recent studies indicate that immune responses against AAV and transgene products could be the bottleneck of AAV gene therapy. In clinical studies, pre-existing antibodies against AAV capsids exclude many patients from receiving the treatment as there is high prevalence of antibodies among humans. Moreover, immune response could lead to loss of efficacy over time and severe toxicity, manifested as liver enzyme elevations, kidney injury, and thrombocytopenia, resulting in deaths of non-human primates and patients. Therefore, extensive efforts have been attempted to address these issues, including capsid engineering, plasmapheresis, IgG proteases, CpG depletion, empty capsid decoy, exosome encapsulation, capsid variant switch, induction of regulatory T cells, and immunosuppressants. This review will discuss these methods in detail and highlight important milestones along the way.
Collapse
Affiliation(s)
- Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoli Wei
- Guangzhou Dezheng Biotechnology Co., Ltd., Guangzhou, China
| | - Jinduan Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Ou
- Genemagic Biosciences, Philadelphia, PA, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Li Ou,
| |
Collapse
|
10
|
Casana E, Jimenez V, Jambrina C, Sacristan V, Muñoz S, Rodo J, Grass I, Garcia M, Mallol C, León X, Casellas A, Sánchez V, Franckhauser S, Ferré T, Marcó S, Bosch F. AAV-mediated BMP7 gene therapy counteracts insulin resistance and obesity. Mol Ther Methods Clin Dev 2022; 25:190-204. [PMID: 35434177 PMCID: PMC8983313 DOI: 10.1016/j.omtm.2022.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/13/2022] [Indexed: 10/31/2022]
Abstract
Type 2 diabetes, insulin resistance, and obesity are strongly associated and are a major health problem worldwide. Obesity largely results from a sustained imbalance between energy intake and expenditure. Therapeutic approaches targeting metabolic rate may counteract body weight gain and insulin resistance. Bone morphogenic protein 7 (BMP7) has proven to enhance energy expenditure by inducing non-shivering thermogenesis in short-term studies in mice treated with the recombinant protein or adenoviral vectors encoding BMP7. To achieve long-term BMP7 effects, the use of adeno-associated viral (AAV) vectors would provide sustained production of the protein after a single administration. Here, we demonstrated that treatment of high-fat-diet-fed mice and ob/ob mice with liver-directed AAV-BMP7 vectors enabled a long-lasting increase in circulating levels of this factor. This rise in BMP7 concentration induced browning of white adipose tissue (WAT) and activation of brown adipose tissue, which enhanced energy expenditure, and reversed WAT hypertrophy, hepatic steatosis, and WAT and liver inflammation, ultimately resulting in normalization of body weight and insulin resistance. This study highlights the potential of AAV-BMP7-mediated gene therapy for the treatment of insulin resistance, type 2 diabetes, and obesity.
Collapse
Affiliation(s)
- Estefania Casana
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Claudia Jambrina
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jordi Rodo
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Ignasi Grass
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Cristina Mallol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Xavier León
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Víctor Sánchez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sylvie Franckhauser
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Tura Ferré
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Sara Marcó
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| |
Collapse
|
11
|
Wang L, Warzecha CC, Kistner A, Chichester JA, Bell P, Buza EL, He Z, Pampena MB, Couthouis J, Sethi S, McKeever K, Betts MR, Kakkis E, Wilson JM, Wadsworth S, Sullivan BA. Prednisolone reduces the interferon response to AAV in cynomolgus macaques and may increase liver gene expression. Mol Ther Methods Clin Dev 2022; 24:292-305. [PMID: 35211641 PMCID: PMC8841522 DOI: 10.1016/j.omtm.2022.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/16/2022] [Indexed: 12/19/2022]
Abstract
Ornithine transcarbamylase deficiency is a rare X-linked genetic urea cycle disorder leading to episodes of acute hyperammonemia, adverse cognitive and neurological effects, hospitalizations, and in some cases death. DTX301, a non-replicating, recombinant self-complimentary adeno-associated virus vector serotype 8 (scAAV8)-encoding human ornithine transcarbamylase, is a promising gene therapy for ornithine transcarbamylase deficiency; however, the impact of sex and prophylactic immunosuppression on ornithine transcarbamylase gene therapy outcomes is not well characterized. This study sought to describe the impact of sex and immunosuppression in adult, sexually mature female and male cynomolgus macaques through day 140 after DTX301 administration. Four study groups (n = 3/group) were included: male non-immunosuppressed; male immunosuppressed; female non-immunosuppressed; and female immunosuppressed. DTX301 was well tolerated with and without immunosuppression; no notable differences were observed between female and male groups across outcome measures. Prednisolone-treated animals exhibited a trend toward greater vector genome and transgene expression, although the differences were not statistically significant. The hepatic interferon gene signature was significantly decreased in prednisolone-treated animals, and a significant inverse relationship was observed between interferon gene signature levels and hepatic vector DNA and transgene RNA. These observations were not sustained upon immunosuppression withdrawal. Further studies may determine whether the observed effect can be prolonged.
Collapse
Affiliation(s)
- Lili Wang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claude C Warzecha
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Kistner
- Ultragenyx Pharmaceutical Inc., 60 Leveroni Ct, Novato, CA 94949, USA
| | - Jessica A Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth L Buza
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhenning He
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Betina Pampena
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julien Couthouis
- Ultragenyx Pharmaceutical Inc., 60 Leveroni Ct, Novato, CA 94949, USA
| | - Sunjay Sethi
- Charles River Laboratories Inc., Reno, NV 89511, USA
| | - Kathleen McKeever
- Ultragenyx Pharmaceutical Inc., 60 Leveroni Ct, Novato, CA 94949, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emil Kakkis
- Ultragenyx Pharmaceutical Inc., 60 Leveroni Ct, Novato, CA 94949, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel Wadsworth
- Ultragenyx Gene Therapy, Ultragenyx Pharmaceutical Inc., Cambridge, MA 02139, USA
| | | |
Collapse
|
12
|
Chen N, Sun K, Chemuturi NV, Cho H, Xia CQ. The Perspective of DMPK on Recombinant Adeno-Associated Virus-Based Gene Therapy: Past Learning, Current Support, and Future Contribution. AAPS J 2022; 24:31. [PMID: 35102450 PMCID: PMC8817103 DOI: 10.1208/s12248-021-00678-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Given the recent success of gene therapy modalities and the growing number of cell and gene-based therapies in clinical development across many different therapeutic areas, it is evident that this evolving field holds great promise for the unmet medical needs of patients. The recent approvals of Luxturna® and Zolgensma® prove that recombinant adeno-associated virus (rAAV)-based gene therapy is a transformative modality that enables curative treatment for genetic disorders. Over the last decade, Takeda has accumulated significant experience with rAAV-based gene therapies, especially in the early stage of development. In this review, based on the learnings from Takeda and publicly available information, we aim to provide a guiding perspective on Drug Metabolism and Pharmacokinetics (DMPK) substantial role in advancing therapeutic gene therapy modalities from nonclinical research to clinical development, in particular the characterization of gene therapy product biodistribution, elimination (shedding), immunogenicity assessment, multiple platform bioanalytical assays, and first-in-human (FIH) dose projection strategies. Graphical abstract ![]()
Collapse
Affiliation(s)
- Nancy Chen
- Takeda Development Center Americas, Inc. (TDCA), 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA.
| | - Kefeng Sun
- Takeda Development Center Americas, Inc. (TDCA), 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Nagendra Venkata Chemuturi
- Takeda Development Center Americas, Inc. (TDCA), 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Hyelim Cho
- Takeda Development Center Americas, Inc. (TDCA), 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Cindy Q Xia
- Takeda Development Center Americas, Inc. (TDCA), 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
13
|
Fakhiri J, Grimm D. Best of most possible worlds: Hybrid gene therapy vectors based on parvoviruses and heterologous viruses. Mol Ther 2021; 29:3359-3382. [PMID: 33831556 PMCID: PMC8636155 DOI: 10.1016/j.ymthe.2021.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Parvoviruses and especially the adeno-associated virus (AAV) species provide an exciting and versatile platform for the rational design or molecular evolution of human gene-therapy vectors, documented by literature from over half a century, hundreds of clinical trials, and the recent commercialization of multiple AAV gene therapeutics. For the last three decades, the power of these vectors has been further potentiated through various types of hybrid vectors created by intra- or inter-genus juxtaposition of viral DNA and protein cis elements or by synergistic complementation of parvoviral features with those of heterologous, prokaryotic, or eukaryotic viruses. Here, we provide an overview of the history and promise of this rapidly expanding field of hybrid parvoviral gene-therapy vectors, starting with early generations of chimeric particles composed of a recombinant AAV genome encapsidated in shells of synthetic AAVs or of adeno-, herpes-, baculo-, or protoparvoviruses. We then dedicate our attention to two newer, highly promising types of hybrid vectors created via (1) pseudotyping of AAV genomes with bocaviral serotypes and capsid mutants or (2) packaging of AAV DNA into, or tethering of entire vector particles to, bacteriophages. Finally, we conclude with an outlook summarizing critical requirements and improvements toward clinical translation of these original concepts.
Collapse
Affiliation(s)
- Julia Fakhiri
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
14
|
Guerra-Rebollo M, Stampa M, Lázaro MÁ, Cascante A, Fornaguera C, Borrós S. Electrostatic Coating of Viral Particles for Gene Delivery Applications in Muscular Dystrophies: Influence of Size on Stability and Antibody Protection. J Neuromuscul Dis 2021; 8:815-825. [PMID: 34366365 DOI: 10.3233/jnd-210662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Duchenne Muscular Dystrophy (DMD) is one of the most common muscular dystrophies, caused by mutated forms of the dystrophin gene. Currently, the only treatment available is symptoms management. Novel approximations are trying to treat these patients with gene therapy, namely, using viral vectors. However, these vectors can be recognized by the immune system decreasing their therapeutic activity and making impossible a multidose treatment due to the induction of the humoral immunity following the first dose. OBJECTIVE Our objective is to demonstrate the feasibility of using a hybrid vector to avoid immune clearance, based on the electrostatic coating of adeno-associated virus (AAVs) vectors with our proprietary polymers. METHODS We coated model adeno-associated virus vectors by electrostatic interaction of our cationic poly (beta aminoester) polymers with the viral anionic capsid and characterized biophysical properties. Once the nanoformulations were designed, we studied their in vivo biodistribution by bioluminescence analysis and we finally studied the capacity of the polymers as potential coatings to avoid antibody neutralization. RESULTS We tested two polymer combinations and we demonstrated the need for poly(ethylene glycol) addition to avoid vector aggregation after coating. In vivo biodistribution studies demonstrated that viral particles are located in the liver (short times) and also in muscles (long times), the target organ. However, we did not achieve complete antibody neutralization shielding using this electrostatic coating. CONCLUSIONS The null hypothesis stands: although it is feasible to coat viral particles by electrostatic interaction with a proprietary polymer, this strategy is not appropriate for AAVs due to their small size, so other alternatives are required as a novel treatment for DMD patients.
Collapse
Affiliation(s)
- Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain.,Sagetis Biotech, Via Augusta, Barcelona, Spain
| | - María Stampa
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain
| | | | - Anna Cascante
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain.,Sagetis Biotech, Via Augusta, Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain.,Sagetis Biotech, Via Augusta, Barcelona, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain.,Sagetis Biotech, Via Augusta, Barcelona, Spain
| |
Collapse
|
15
|
Bower JJ, Song L, Bastola P, Hirsch ML. Harnessing the Natural Biology of Adeno-Associated Virus to Enhance the Efficacy of Cancer Gene Therapy. Viruses 2021; 13:v13071205. [PMID: 34201599 PMCID: PMC8309980 DOI: 10.3390/v13071205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Adeno-associated virus (AAV) was first characterized as small “defective” contaminant particles in a simian adenovirus preparation in 1965. Since then, a recombinant platform of AAV (rAAV) has become one of the leading candidates for gene therapy applications resulting in two FDA-approved treatments for rare monogenic diseases and many more currently in various phases of the pharmaceutical development pipeline. Herein, we summarize rAAV approaches for the treatment of diverse types of cancers and highlight the natural anti-oncogenic effects of wild-type AAV (wtAAV), including interactions with the cellular host machinery, that are of relevance to enhance current treatment strategies for cancer.
Collapse
Affiliation(s)
- Jacquelyn J. Bower
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.S.); (P.B.)
- Correspondence: (J.J.B.); (M.L.H.)
| | - Liujiang Song
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.S.); (P.B.)
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prabhakar Bastola
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.S.); (P.B.)
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew L. Hirsch
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.S.); (P.B.)
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (J.J.B.); (M.L.H.)
| |
Collapse
|
16
|
Breaking the sound barrier: Towards next-generation AAV vectors for gene therapy of hearing disorders. Hear Res 2020; 413:108092. [PMID: 33268240 DOI: 10.1016/j.heares.2020.108092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/14/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
Owing to the advances in transgenic animal technology and the advent of the next-generation sequencing era, over 120 genes causing hereditary hearing loss have been identified by now. In parallel, the field of human gene therapy continues to make exciting and rapid progress, culminating in the recent approval of several ex vivo and in vivo applications. Despite these encouraging developments and the growing interest in causative treatments for hearing disorders, gene therapeutic interventions in the inner ear remain in their infancy and await clinical translation. This review focuses on the adeno-associated virus (AAV), which nowadays represents one of the safest and most promising vectors in gene therapy. We first provide an overview of AAV biology and outline the principles of therapeutic gene transfer with recombinant AAV vectors, before pointing out major challenges and solutions for clinical translation including vector manufacturing and species translatability. Finally, we highlight seminal technologies for engineering and selection of next-generation "designer" AAV capsids, and illustrate their power and potential with recent examples of their application for inner ear gene transfer in animals.
Collapse
|
17
|
Leng Y, Li P, Zhou L, Xiao L, Liu Y, Zheng Z, Qin F, Hao Q, Xu H, Yao S, Dong B. Long-Term Correction of Copper Metabolism in Wilson's Disease Mice with AAV8 Vector Delivering Truncated ATP7B. Hum Gene Ther 2020; 30:1494-1504. [PMID: 31668086 DOI: 10.1089/hum.2019.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism caused by mutations in the ATP7B gene encoding a liver active copper transport enzyme. Gene therapy with adeno-associated virus (AAV) carrying full-length ATP7B, which is about 4.4 kb, was shown to rescue copper metabolism disorder in WD mouse model. However, due to its relatively large size, the AAV vector containing full-length ATP7B could be oversized for its packaging capacity, which could lead to inefficient packaging. To this purpose, we engineered a truncated ATP7B mutant (tATP7B) that is about 3.3 kb in length and used for AAV gene therapy for WD mice. In vitro test showed that the excretion of copper outside the cells could be achieved with tATP7B as efficient as the full-length ATP7B. In vivo delivery of tATP7B to WD mice by AAV8 vectors corrected their copper metabolisms and significantly rescued copper accumulation-related syndromes, including reduced urinary copper excretion, increased serum ceruloplasmin, and improved liver damages. Thus, our study demonstrated that AAV gene therapy based on truncated ATP7B is a promising strategy in the treatment of WD.
Collapse
Affiliation(s)
- Yingying Leng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Li
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lifang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Xiao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyue Zheng
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengming Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiukui Hao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Farnesoid X receptor and bile acids regulate vitamin A storage. Sci Rep 2019; 9:19493. [PMID: 31862954 PMCID: PMC6925179 DOI: 10.1038/s41598-019-55988-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
The nuclear receptor Farnesoid X Receptor (FXR) is activated by bile acids and controls multiple metabolic processes, including bile acid, lipid, carbohydrate, amino acid and energy metabolism. Vitamin A is needed for proper metabolic and immune control and requires bile acids for efficient intestinal absorption and storage in the liver. Here, we analyzed whether FXR regulates vitamin A metabolism. Compared to control animals, FXR-null mice showed strongly reduced (>90%) hepatic levels of retinol and retinyl palmitate and a significant reduction in lecithin retinol acyltransferase (LRAT), the enzyme responsible for hepatic vitamin A storage. Hepatic reintroduction of FXR in FXR-null mice induced vitamin A storage in the liver. Hepatic vitamin A levels were normal in intestine-specific FXR-null mice. Obeticholic acid (OCA, 3 weeks) treatment rapidly reduced (>60%) hepatic retinyl palmitate levels in mice, concurrent with strongly increased retinol levels (>5-fold). Similar, but milder effects were observed in cholic acid (12 weeks)-treated mice. OCA did not change hepatic LRAT protein levels, but strongly reduced all enzymes involved in hepatic retinyl ester hydrolysis, involving mostly post-transcriptional mechanisms. In conclusion, vitamin A metabolism in the mouse liver heavily depends on the FXR and FXR-targeted therapies may be prone to cause vitamin A-related pathologies.
Collapse
|
19
|
Nidetz NF, McGee MC, Tse LV, Li C, Cong L, Li Y, Huang W. Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery. Pharmacol Ther 2019; 207:107453. [PMID: 31836454 DOI: 10.1016/j.pharmthera.2019.107453] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Adeno-associated viral (AAV) vectors have emerged as the leading gene delivery platform for gene therapy and vaccination. Three AAV-based gene therapy drugs, Glybera, LUXTURNA, and ZOLGENSMA were approved between 2012 and 2019 by the European Medicines Agency and the United States Food and Drug Administration as treatments for genetic diseases hereditary lipoprotein lipase deficiency (LPLD), inherited retinal disease (IRD), and spinal muscular atrophy (SMA), respectively. Despite these therapeutic successes, clinical trials have demonstrated that host anti-viral immune responses can prevent the long-term gene expression of AAV vector-encoded genes. Therefore, it is critical that we understand the complex relationship between AAV vectors and the host immune response. This knowledge could allow for the rational design of optimized gene transfer vectors capable of either subverting host immune responses in the context of gene therapy applications, or stimulating desirable immune responses that generate protective immunity in vaccine applications to AAV vector-encoded antigens. This review provides an overview of our current understanding of the AAV-induced immune response and discusses potential strategies by which these responses can be manipulated to improve AAV vector-mediated gene transfer.
Collapse
Affiliation(s)
- Natalie F Nidetz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Longping V Tse
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Le Cong
- Department of Pathology and Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yunxing Li
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Advances of adeno-associated virus applied in gene therapy to hemophilia from bench work to the clinical use. BLOOD SCIENCE 2019; 1:130-136. [PMID: 35402808 PMCID: PMC8975051 DOI: 10.1097/bs9.0000000000000030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/31/2019] [Indexed: 01/13/2023] Open
Abstract
Hemophilia A and B are diseases caused by a single gene deficiency and are thus suitable for gene therapy. In recent clinical research, adeno-associated virus (AAV) was employed by several teams in the treatment of hemophilia A and B, and the outcomes were encouraging. In this review, we summarized the most recent research on the mechanism and application of AAV in the treatment of hemophilia, trying to analyze the advantages of AAV gene therapy and the main challenges in its clinical use. We also summarized the clinical trials involving hemophilia, especially those employing AAV gene therapy to treat hemophilia A and B, some of which have already been completed and some that are still ongoing. From the reports of the completed clinical trials, we tried to determine the correlations among AAV dose, AAV serotype, immune response, and gene expression time. Finally, taking into account the most recent studies investigating AAV capsid modification, transgene optimization, and AAV chaperones, we summarized the direction of basic research and clinical applications of AAV in the future.
Collapse
|
21
|
Khan N, Bammidi S, Chattopadhyay S, Jayandharan GR. Combination Suicide Gene Delivery with an Adeno-Associated Virus Vector Encoding Inducible Caspase-9 and a Chemical Inducer of Dimerization Is Effective in a Xenotransplantation Model of Hepatocellular Carcinoma. Bioconjug Chem 2019; 30:1754-1762. [PMID: 31181889 DOI: 10.1021/acs.bioconjchem.9b00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current treatment approaches for hepatocellular carcinoma (HCC) have a narrow therapeutic index and alternate modes of treatment are thus required. We have utilized a gene delivery vector containing inducible caspase 9 (iCasp9) gene, which is a synthetic analogue based on the mammalian caspase 9 and fused to a human FK506 binding protein that allows its conditional dimerization to a synthetic, small molecule [chemical inducer of dimerization, AP20187] and results in target cell apoptosis. In our studies, we have tested these synthetic vectors based on an adeno-associated virus platform for their potential anti-tumorigenic effect in human HCC cells in vitro and in a HCC tumor model developed in nude mice. Our data demonstrates that the iCasp9-AP20187 bioconjugate is able to trigger terminal effectors of cellular apoptosis and presents a viable approach for the potential treatment of HCC.
Collapse
Affiliation(s)
- Nusrat Khan
- Department of Biological Sciences and Bioengineering , Indian Institute of Technology , Kanpur , Uttar Pradesh 20816 , India
| | - Sridhar Bammidi
- Department of Biological Sciences and Bioengineering , Indian Institute of Technology , Kanpur , Uttar Pradesh 20816 , India
| | - Sourav Chattopadhyay
- Department of Biological Sciences and Bioengineering , Indian Institute of Technology , Kanpur , Uttar Pradesh 20816 , India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering , Indian Institute of Technology , Kanpur , Uttar Pradesh 20816 , India
| |
Collapse
|
22
|
Albright BH, Simon KE, Pillai M, Devlin GW, Asokan A. Modulation of Sialic Acid Dependence Influences the Central Nervous System Transduction Profile of Adeno-associated Viruses. J Virol 2019; 93:e00332-19. [PMID: 30894463 PMCID: PMC6532073 DOI: 10.1128/jvi.00332-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) transduction by systemically administered recombinant adeno-associated viral (AAV) vectors requires crossing the blood-brain barrier (BBB). We recently mapped a structural footprint on the AAVrh.10 capsid, which, when grafted onto the AAV1 capsid (AAV1RX), enables viral transport across the BBB; however, the underlying mechanisms remain unknown. Here, we establish through structural modeling that this footprint overlaps in part the sialic acid (SIA) footprint on AAV1. We hypothesized that altered SIA-capsid interactions may influence the ability of AAV1RX to transduce the CNS. Using AAV1 variants with altered SIA footprints, we map functional attributes of these capsids to their relative SIA dependence. Specifically, capsids with ablated SIA binding can penetrate and transduce the CNS with low to moderate efficiency. In contrast, AAV1 shows strong SIA dependency and does not transduce the CNS after systemic administration and, instead, transduces the vasculature and the liver. The AAV1RX variant, which shows an intermediate SIA binding phenotype, effectively enters the brain parenchyma and transduces neurons at levels comparable to the level of AAVrh.10. In corollary, the reciprocal swap of the AAV1RX footprint onto AAVrh.10 (AAVRX1) attenuated CNS transduction relative to that of AAVrh.10. We conclude that the composition of residues within the capsid variable region 1 (VR1) of AAV1 and AAVrh.10 profoundly influences tropism, with altered SIA interactions playing a partial role in this phenotype. Further, we postulate a Goldilocks model, wherein optimal glycan interactions can influence the CNS transduction profile of AAV capsids.IMPORTANCE Understanding how viruses cross the blood-brain barrier can provide insight into new approaches to block infection by pathogens or the ability to exploit these pathways for designing new recombinant viral vectors for gene therapy. In this regard, modulation of virus-carbohydrate interactions by mutating the virion shell can influence the ability of recombinant viruses to cross the vascular barrier, enter the brain, and enable efficient gene transfer to neurons.
Collapse
Affiliation(s)
- Blake H Albright
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katherine E Simon
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Minakshi Pillai
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Garth W Devlin
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
23
|
Escudero S, Zaganjor E, Lee S, Mill CP, Morgan AM, Crawford EB, Chen J, Wales TE, Mourtada R, Luccarelli J, Bird GH, Steidl U, Engen JR, Haigis MC, Opferman JT, Walensky LD. Dynamic Regulation of Long-Chain Fatty Acid Oxidation by a Noncanonical Interaction between the MCL-1 BH3 Helix and VLCAD. Mol Cell 2019; 69:729-743.e7. [PMID: 29499131 DOI: 10.1016/j.molcel.2018.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/21/2017] [Accepted: 02/01/2018] [Indexed: 01/08/2023]
Abstract
MCL-1 is a BCL-2 family protein implicated in the development and chemoresistance of human cancer. Unlike its anti-apoptotic homologs, Mcl-1 deletion has profound physiologic consequences, indicative of a broader role in homeostasis. We report that the BCL-2 homology 3 (BH3) α helix of MCL-1 can directly engage very long-chain acyl-CoA dehydrogenase (VLCAD), a key enzyme of the mitochondrial fatty acid β-oxidation (FAO) pathway. Proteomic analysis confirmed that the mitochondrial matrix isoform of MCL-1 (MCL-1Matrix) interacts with VLCAD. Mcl-1 deletion, or eliminating MCL-1Matrix alone, selectively deregulated long-chain FAO, causing increased flux through the pathway in response to nutrient deprivation. Transient elevation in MCL-1 upon serum withdrawal, a striking increase in MCL-1 BH3/VLCAD interaction upon palmitic acid titration, and direct modulation of enzymatic activity by the MCL-1 BH3 α helix are consistent with dynamic regulation. Thus, the MCL-1 BH3 interaction with VLCAD revealed a separable, gain-of-function role for MCL-1 in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Silvia Escudero
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Elma Zaganjor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Lee
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Christopher P Mill
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ann M Morgan
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Emily B Crawford
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jiahao Chen
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Rida Mourtada
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James Luccarelli
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gregory H Bird
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ulrich Steidl
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Loren D Walensky
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Palaschak B, Herzog RW, Markusic DM. AAV-Mediated Gene Delivery to the Liver: Overview of Current Technologies and Methods. Methods Mol Biol 2019; 1950:333-360. [PMID: 30783984 DOI: 10.1007/978-1-4939-9139-6_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV) vectors to treat liver-specific genetic diseases are the focus of several ongoing clinical trials. The ability to give a peripheral injection of virus that will successfully target the liver is one of many attractive features of this technology. Although initial studies of AAV liver gene transfer revealed some limitations, extensive animal modeling and further clinical development have helped solve some of these issues, resulting in several successful clinical trials that have reached curative levels of clotting factor expression in hemophilia. Looking beyond gene replacement, recent technologies offer the possibility for AAV liver gene transfer to directly repair deficient genes and potentially treat autoimmune disease.
Collapse
Affiliation(s)
- Brett Palaschak
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, USA.,Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - David M Markusic
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
25
|
Baruteau J, Perocheau DP, Hanley J, Lorvellec M, Rocha-Ferreira E, Karda R, Ng J, Suff N, Diaz JA, Rahim AA, Hughes MP, Banushi B, Prunty H, Hristova M, Ridout DA, Virasami A, Heales S, Howe SJ, Buckley SMK, Mills PB, Gissen P, Waddington SN. Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer. Nat Commun 2018; 9:3505. [PMID: 30158522 PMCID: PMC6115417 DOI: 10.1038/s41467-018-05972-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases.
Collapse
Affiliation(s)
- Julien Baruteau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Dany P Perocheau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Joanna Hanley
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Maëlle Lorvellec
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Eridan Rocha-Ferreira
- Perinatal Brain Repair Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Joanne Ng
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- Neurology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Natalie Suff
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Juan Antinao Diaz
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Ahad A Rahim
- Department of Pharmacology, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Michael P Hughes
- Department of Pharmacology, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Blerida Banushi
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Helen Prunty
- Department of Paediatric Laboratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Mariya Hristova
- Perinatal Brain Repair Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Deborah A Ridout
- Population, Policy and Practice Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1E, UK
| | - Alex Virasami
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Simon Heales
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Paediatric Laboratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Stewen J Howe
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Philippa B Mills
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Paul Gissen
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK.
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa.
| |
Collapse
|
26
|
Abstract
Hemophilia is a congenital bleeding disorder that affects nearly half a million individuals worldwide. Joint bleeding and other co-morbidities are a significant source of debilitation for this population. Current therapies are effective but must be given lifelong at regular intervals, are costly, and are available to only about 25% of the hemophilia population living in resource-rich countries. Gene therapy for hemophilia has been in development for three decades and is now entering pivotal-stage clinical trials. While many different technology platforms exist for gene therapy, all current clinical trials for hemophilia employ adeno-associated vector (AAV)-based cell transduction. This small viral particle is capable of packaging modified F8 or F9 transgenes, can be generated robustly from cell lines, and transduces several relatively end-differentiated target tissues such as the liver with high efficiency. While pre-existing neutralizing antibodies to the AAV capsid are recognized to limit current therapy, other challenges have been identified in human studies that were not seen in preclinical studies. Both liver transaminase elevations and immune-mediated loss of transgene expression have been observed in clinical trials. Toll-like receptors, cytotoxic T cells, and other components of the immune response have been implicated in the loss of factor expression, but a full understanding of the immune response awaits clarification. Despite these challenges, many patients enrolled in gene therapy trials have attained long-term expression of factors VIII and IX. This emerging technology now represents a cure for the severe bleeding and joint damage associated with hemophilia.
Collapse
Affiliation(s)
- John C Chapin
- Shire, 650 Kendall Drive, Cambridge, MA, 02142, USA.
| | | |
Collapse
|
27
|
De BP, Chen A, Salami CO, Van de Graaf B, Rosenberg JB, Pagovich OE, Sondhi D, Crystal RG, Kaminsky SM. In Vivo Potency Assay for Adeno-Associated Virus-Based Gene Therapy Vectors Using AAVrh.10 as an Example. Hum Gene Ther Methods 2018; 29:146-155. [PMID: 29706115 DOI: 10.1089/hgtb.2017.246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The development of a drug product requires rigorous methods of characterization and quality control to assure drug potency. Gene therapy products, a relatively new strategy for drug design with very few licensed examples, represent a unique challenge for the measure of potency. Unlike traditional drugs, potency for a gene therapeutic is a tally of the measures of multiple steps, including infectivity, transcription, translation, protein modifications, proper localization of the protein product, and protein function. This is particularly challenging for products based on the adeno-associated virus (AAV) platform, which has poor in vitro infectivity, limiting the sensitivity and thus the usefulness of cell-based assays. A rigorous in vivo assay has been established that separately evaluates infection, transcription, and resulting protein levels with specifications for each based on real time polymerase chain reaction (DNA and RNA) and standard protein assays. For an acceptance criterion, an administered vector must have vector DNA, transgene mRNA, and transgene expressed protein each concurrently meet individual specifications or the production lot fails. Using the AAVrh.10 serotype as a model vector and three different transgenes as examples, the assay is based on intravenous administration of the vector to male mice. At 2 weeks, the harvested liver is homogenized and assessed for vector genome levels (to assess for vector delivery), mRNA (to assess vector infectivity and transcription), and protein in the liver or serum (to assess protein expression). For all AAV vectors, the assay is robust and reproducible: vector DNA (linearity 102-109 copies, coefficient of variation) intra-assay <0.8%, inter-assay <0.5%; mRNA intra-assay <3.3%, inter-assay <3.4%. The reproducibility of the assay for transgene expressed protein is product specific. This in vivo potency assay is a strategy for characterization and a quantitative lot release test, providing a path forward to meet regulatory drug requirements for any AAV gene therapy vectors.
Collapse
Affiliation(s)
- Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Christiana O Salami
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | | | - Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Odelya E Pagovich
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
28
|
Porro F, Bortolussi G, Barzel A, De Caneva A, Iaconcig A, Vodret S, Zentilin L, Kay MA, Muro AF. Promoterless gene targeting without nucleases rescues lethality of a Crigler-Najjar syndrome mouse model. EMBO Mol Med 2018; 9:1346-1355. [PMID: 28751579 PMCID: PMC5623861 DOI: 10.15252/emmm.201707601] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Crigler‐Najjar syndrome type I (CNSI) is a rare monogenic disease characterized by severe neonatal unconjugated hyperbilirubinemia with a lifelong risk of neurological damage and death. Liver transplantation is the only curative option, which has several limitations and risks. We applied an in vivo gene targeting approach based on the insertion, without the use of nucleases, of a promoterless therapeutic cDNA into the albumin locus of a mouse model reproducing all major features of CNSI. Neonatal transduction with the donor vector resulted in the complete rescue from neonatal lethality, with a therapeutic reduction in plasma bilirubin lasting for at least 12 months, the latest time point analyzed. Mutant mice, which expressed about 5–6% of WT Ugt1a1 levels, showed normal liver histology and motor‐coordination abilities, suggesting no functional liver or brain abnormalities. These results proved that the promoterless gene therapy is applicable for CNSI, providing therapeutic levels of an intracellular ER membrane‐bound enzyme responsible for a lethal liver metabolic disease.
Collapse
Affiliation(s)
- Fabiola Porro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Adi Barzel
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Alessia De Caneva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Simone Vodret
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
29
|
Abstract
In recent years, the number of clinical trials in which adeno-associated virus (AAV) vectors have been used for in vivo gene transfer has steadily increased. The excellent safety profile, together with the high efficiency of transduction of a broad range of target tissues, has established AAV vectors as the platform of choice for in vivo gene therapy. Successful application of the AAV technology has also been achieved in the clinic for a variety of conditions, including coagulation disorders, inherited blindness, and neurodegenerative diseases, among others. Clinical translation of novel and effective "therapeutic products" is, however, a long process that involves several cycles of iterations from bench to bedside that are required to address issues encountered during drug development. For the AAV vector gene transfer technology, several hurdles have emerged in both preclinical studies and clinical trials; addressing these issues will allow in the future to expand the scope of AAV gene transfer as a therapeutic modality for a variety of human diseases. In this review, we will give an overview on the biology of AAV vector, discuss the design of AAV-based gene therapy strategies for in vivo applications, and present key achievements and emerging issues in the field. We will use the liver as a model target tissue for gene transfer based on the large amount of data available from preclinical and clinical studies.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, INSERM U951 INTEGRARE, University of Evry, University Paris-Saclay, 91001 Evry, France
| | - Giuseppe Ronzitti
- Genethon, INSERM U951 INTEGRARE, University of Evry, University Paris-Saclay, 91001 Evry, France
| | - Federico Mingozzi
- Genethon, INSERM U951 INTEGRARE, University of Evry, University Paris-Saclay, 91001 Evry, France
- University Pierre and Marie Curie-Paris 6 and INSERM U974, 75651 Paris, France
| |
Collapse
|
30
|
Selot R, Arumugam S, Mary B, Cheemadan S, Jayandharan GR. Optimized AAV rh.10 Vectors That Partially Evade Neutralizing Antibodies during Hepatic Gene Transfer. Front Pharmacol 2017; 8:441. [PMID: 28769791 PMCID: PMC5511854 DOI: 10.3389/fphar.2017.00441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Of the 12 common serotypes used for gene delivery applications, Adeno-associated virus (AAV)rh.10 serotype has shown sustained hepatic transduction and has the lowest seropositivity in humans. We have evaluated if further modifications to AAVrh.10 at its phosphodegron like regions or predicted immunogenic epitopes could improve its hepatic gene transfer and immune evasion potential. Mutant AAVrh.10 vectors were generated by site directed mutagenesis of the predicted targets. These mutant vectors were first tested for their transduction efficiency in HeLa and HEK293T cells. The optimal vector was further evaluated for their cellular uptake, entry, and intracellular trafficking by quantitative PCR and time-lapse confocal microscopy. To evaluate their potential during hepatic gene therapy, C57BL/6 mice were administered with wild-type or optimal mutant AAVrh.10 and the luciferase transgene expression was documented by serial bioluminescence imaging at 14, 30, 45, and 72 days post-gene transfer. Their hepatic transduction was further verified by a quantitative PCR analysis of AAV copy number in the liver tissue. The optimal AAVrh.10 vector was further evaluated for their immune escape potential, in animals pre-immunized with human intravenous immunoglobulin. Our results demonstrate that a modified AAVrh.10 S671A vector had enhanced cellular entry (3.6 fold), migrate rapidly to the perinuclear region (1 vs. >2 h for wild type vectors) in vitro, which further translates to modest increase in hepatic gene transfer efficiency in vivo. More importantly, the mutant AAVrh.10 vector was able to partially evade neutralizing antibodies (~27-64 fold) in pre-immunized animals. The development of an AAV vector system that can escape the circulating neutralizing antibodies in the host will substantially widen the scope of gene therapy applications in humans.
Collapse
Affiliation(s)
- Ruchita Selot
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
| | - Sathyathithan Arumugam
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
| | - Bertin Mary
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
| | - Sabna Cheemadan
- Department of Hematology and Centre for Stem Cell Research (CSCR), Christian Medical CollegeVellore, India
| | - Giridhara R. Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
- Department of Hematology and Centre for Stem Cell Research (CSCR), Christian Medical CollegeVellore, India
| |
Collapse
|
31
|
Hösel M, Huber A, Bohlen S, Lucifora J, Ronzitti G, Puzzo F, Boisgerault F, Hacker UT, Kwanten WJ, Klöting N, Blüher M, Gluschko A, Schramm M, Utermöhlen O, Bloch W, Mingozzi F, Krut O, Büning H. Autophagy determines efficiency of liver-directed gene therapy with adeno-associated viral vectors. Hepatology 2017; 66:252-265. [PMID: 28318036 PMCID: PMC5518300 DOI: 10.1002/hep.29176] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/21/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022]
Abstract
UNLABELLED Use of adeno-associated viral (AAV) vectors for liver-directed gene therapy has shown considerable success, particularly in patients with severe hemophilia B. However, the high vector doses required to reach therapeutic levels of transgene expression caused liver inflammation in some patients that selectively destroyed transduced hepatocytes. We hypothesized that such detrimental immune responses can be avoided by enhancing the efficacy of AAV vectors in hepatocytes. Because autophagy is a key liver response to environmental stresses, we characterized the impact of hepatic autophagy on AAV infection. We found that AAV induced mammalian target of rapamycin (mTOR)-dependent autophagy in human hepatocytes. This cell response was critically required for efficient transduction because under conditions of impaired autophagy (pharmacological inhibition, small interfering RNA knockdown of autophagic proteins, or suppression by food intake), recombinant AAV-mediated transgene expression was markedly reduced, both in vitro and in vivo. Taking advantage of this dependence, we employed pharmacological inducers of autophagy to increase the level of autophagy. This resulted in greatly improved transduction efficiency of AAV vectors in human and mouse hepatocytes independent of the transgene, driving promoter, or AAV serotype and was subsequently confirmed in vivo. Specifically, short-term treatment with a single dose of torin 1 significantly increased vector-mediated hepatic expression of erythropoietin in C57BL/6 mice. Similarly, coadministration of rapamycin with AAV vectors resulted in markedly enhanced expression of human acid-α-glucosidase in nonhuman primates. CONCLUSION We identified autophagy as a pivotal cell response determining the efficiency of AAVs intracellular processing in hepatocytes and thus the outcome of liver-directed gene therapy using AAV vectors and showed in a proof-of-principle study how this virus-host interaction can be employed to enhance efficacy of this vector system. (Hepatology 2017;66:252-265).
Collapse
Affiliation(s)
- Marianna Hösel
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany,German Center for Infection Research (DZIF), Partner sites Bonn‐Cologne and Hannover‐BraunschweigGermany
| | - Anke Huber
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany,German Center for Infection Research (DZIF), Partner sites Bonn‐Cologne and Hannover‐BraunschweigGermany
| | - Susanne Bohlen
- Institute for Medical Microbiology, Immunology and HygieneUniversity of CologneCologneGermany
| | - Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL)University of LyonLyonFrance
| | | | | | | | - Ulrich T. Hacker
- University Medicine LeipzigUniversity Cancer Center Leipzig (UCCL)LeipzigGermany
| | - Wilhelmus J. Kwanten
- Laboratory of Experimental Medicine and Pediatrics (LEMP)University of AntwerpAntwerpBelgium
| | - Nora Klöting
- IFB Adiposity DiseasesUniversity of LeipzigLeipzigGermany
| | | | - Alexander Gluschko
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany,Institute for Medical Microbiology, Immunology and HygieneUniversity of CologneCologneGermany
| | - Michael Schramm
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany,Institute for Medical Microbiology, Immunology and HygieneUniversity of CologneCologneGermany
| | - Olaf Utermöhlen
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany,Institute for Medical Microbiology, Immunology and HygieneUniversity of CologneCologneGermany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport MedicineGerman Sport University CologneCologneGermany
| | - Federico Mingozzi
- Genethon and INSERM U951EvryFrance,University Pierre and Marie CurieParisFrance
| | - Oleg Krut
- Institute for Medical Microbiology, Immunology and HygieneUniversity of CologneCologneGermany
| | - Hildegard Büning
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany,German Center for Infection Research (DZIF), Partner sites Bonn‐Cologne and Hannover‐BraunschweigGermany,Institute of Experimental Hematology, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
32
|
Low-Dose Gene Therapy for Murine PKU Using Episomal Naked DNA Vectors Expressing PAH from Its Endogenous Liver Promoter. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624210 PMCID: PMC5423318 DOI: 10.1016/j.omtn.2017.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Limited duration of transgene expression, insertional mutagenesis, and size limitations for transgene cassettes pose challenges and risk factors for many gene therapy vectors. Here, we report on physiological expression of liver phenylalanine hydroxylase (PAH) by delivery of naked DNA/minicircle (MC)-based vectors for correction of homozygous enu2 mice, a model of human phenylketonuria (PKU). Because MC vectors lack a defined size limit, we constructed a MC vector expressing a codon-optimized murine Pah cDNA that includes a truncated intron and is under the transcriptional control of a 3.6-kb native Pah promoter/enhancer sequence. This vector, delivered via hydrodynamic injection, yielded therapeutic liver PAH activity and sustained correction of blood phenylalanine comparable to viral or synthetic liver promoters. Therapeutic efficacy was seen with vector copy numbers of <1 vector genome per diploid hepatocyte genome and was achieved at a vector dose that was significantly lowered. Partial hepatectomy and subsequent liver regeneration was associated with >95% loss of vector genomes and PAH activity in liver, demonstrating that MC vectors had not integrated into the liver genome. In conclusion, MC vectors, which do not have a defined size-limitation, offer a favorable safety profile for hepatic gene therapy due to their non-integration in combination with native promoters.
Collapse
|
33
|
Kattenhorn LM, Tipper CH, Stoica L, Geraghty DS, Wright TL, Clark KR, Wadsworth SC. Adeno-Associated Virus Gene Therapy for Liver Disease. Hum Gene Ther 2016; 27:947-961. [PMID: 27897038 PMCID: PMC5177998 DOI: 10.1089/hum.2016.160] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments.
Collapse
|
34
|
Cellular transduction mechanisms of adeno-associated viral vectors. Curr Opin Virol 2016; 21:54-60. [PMID: 27544821 DOI: 10.1016/j.coviro.2016.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
Abstract
Recombinant adeno-associated viral vectors (rAAV) are regarded as promising vehicles for therapeutic gene delivery. Continued development and new strategies are essential to improve the potency of AAV vectors and reduce the effective dose needed for clinical efficacy. In this regard, many studies have focused on understanding the cellular transduction mechanisms of rAAV, often with the goal of exploiting this knowledge to increase gene transfer efficiency. Here, we provide an overview of our evolving understanding of rAAV cellular trafficking pathways through the host cell, beginning with cellular entry and ending with transcription of the vector genome. Strategies to exploit this information for improving rAAV transduction are discussed.
Collapse
|
35
|
Identification and Validation of Small Molecules That Enhance Recombinant Adeno-associated Virus Transduction following High-Throughput Screens. J Virol 2016; 90:7019-7031. [PMID: 27147738 DOI: 10.1128/jvi.02953-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/20/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED While the recent success of adeno-associated virus (AAV)-mediated gene therapy in clinical trials is promising, challenges still face the widespread applicability of recombinant AAV(rAAV). A major goal is to enhance the transduction efficiency of vectors in order to achieve therapeutic levels of gene expression at a vector dose that is below the immunological response threshold. In an attempt to identify novel compounds that enhance rAAV transduction, we performed two high-throughput screens comprising 2,396 compounds. We identified 13 compounds that were capable of enhancing transduction, of which 12 demonstrated vector-specific effects and 1 could also enhance vector-independent transgene expression. Many of these compounds had similar properties and could be categorized into five groups: epipodophyllotoxins (group 1), inducers of DNA damage (group 2), effectors of epigenetic modification (group 3), anthracyclines (group 4), and proteasome inhibitors (group 5). We optimized dosing for the identified compounds in several immortalized human cell lines as well as normal diploid cells. We found that the group 1 epipodophyllotoxins (teniposide and etoposide) consistently produced the greatest transduction enhancement. We also explored transduction enhancement among single-stranded, self-complementary, and fragment vectors and found that the compounds could impact fragmented rAAV2 transduction to an even greater extent than single-stranded vectors. In vivo analysis of rAAV2 and all of the clinically relevant compounds revealed that, consistent with our in vitro results, teniposide exhibited the greatest level of transduction enhancement. Finally, we explored the capability of teniposide to enhance transduction of fragment vectors in vivo using an AAV8 capsid that is known to exhibit robust liver tropism. Consistent with our in vitro results, teniposide coadministration greatly enhanced fragmented rAAV8 transduction at 48 h and 8 days. This study provides a foundation based on the rAAV small-molecule screen methodology, which is ideally used for more-diverse libraries of compounds that can be tested for potentiating rAAV transduction. IMPORTANCE This study seeks to enhance the capability of adeno-associated viral vectors for therapeutic gene delivery applicable to the treatment of diverse diseases. To do this, a comprehensive panel of FDA-approved drugs were tested in human cells and in animal models to determine if they increased adeno-associated virus gene delivery. The results demonstrate that particular groups of drugs enhance adeno-associated virus gene delivery by unknown mechanisms. In particular, the enhancement of gene delivery was approximately 50 to 100 times better with than without teniposide, a compound that is also used as chemotherapy for cancer. Collectively, these results highlight the potential for FDA-approved drug enhancement of adeno-associated virus gene therapy, which could result in safe and effective treatments for diverse acquired or genetic diseases.
Collapse
|
36
|
Berry GE, Asokan A. Chemical Modulation of Endocytic Sorting Augments Adeno-associated Viral Transduction. J Biol Chem 2016; 291:939-47. [PMID: 26527686 PMCID: PMC4705411 DOI: 10.1074/jbc.m115.687657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/24/2015] [Indexed: 01/10/2023] Open
Abstract
Intracellular trafficking of viruses can be influenced by a variety of inter-connected cellular sorting and degradation pathways involving endo-lysosomal vesicles, the ubiquitin-proteasome system, and autophagy-based or endoplasmic reticulum-associated machinery. In the case of recombinant adeno-associated viruses (AAV), proteasome inhibitors are known to prevent degradation of ubiquitinated AAV capsids, thereby leading to increased nuclear accumulation and transduction. However, the impact of other cellular degradation pathways on AAV trafficking is not well understood. In the current study, we screened a panel of small molecules focused on modulating different cellular degradation pathways and identified eeyarestatin I (EerI) as a novel reagent that enhances AAV transduction. EerI improved AAV transduction by an order of magnitude regardless of vector dose, genome architecture, cell type, or serotype. This effect was preceded by sequestration of AAV within enlarged vesicles that were dispersed throughout the cytoplasm. Specifically, EerI treatment redirected AAV particles toward large vesicles positive for late endosomal (Rab7) and lysosomal (LAMP1) markers. Notably, MG132 and EerI (proteasomal and endoplasmic reticulum-associated degradation inhibitors, respectively) appear to enhance AAV transduction by increasing the intracellular accumulation of viral particles in a mutually exclusive fashion. Taken together, our results expand on potential strategies to redirect recombinant AAV vectors toward more productive trafficking pathways by deregulating cellular degradation mechanisms.
Collapse
Affiliation(s)
- Garrett E Berry
- From the Gene Therapy Center, Department of Genetics, Curriculum in Genetics and Molecular Biology, and
| | - Aravind Asokan
- From the Gene Therapy Center, Department of Genetics, Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina 27599-7352
| |
Collapse
|
37
|
Aronovich EL, Hackett PB. Lysosomal storage disease: gene therapy on both sides of the blood-brain barrier. Mol Genet Metab 2015; 114:83-93. [PMID: 25410058 PMCID: PMC4312729 DOI: 10.1016/j.ymgme.2014.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
Most lysosomal storage disorders affect the nervous system as well as other tissues and organs of the body. Previously, the complexities of these diseases, particularly in treating neurologic abnormalities, were too great to surmount. However, based on recent developments there are realistic expectations that effective therapies are coming soon. Gene therapy offers the possibility of affordable, comprehensive treatment associated with these diseases currently not provided by standards of care. With a focus on correction of neurologic disease by systemic gene therapy of mucopolysaccharidoses types I and IIIA, we review some of the major recent advances in viral and non-viral vectors, methods of their delivery and strategies leading to correction of both the nervous and somatic tissues as well as evaluation of functional correction of neurologic manifestations in animal models. We discuss two questions: what systemic gene therapy strategies work best for correction of both somatic and neurologic abnormalities in a lysosomal storage disorder and is there evidence that targeting peripheral tissues (e.g., in the liver) has a future for ameliorating neurologic disease in patients?
Collapse
Affiliation(s)
- Elena L Aronovich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Perry B Hackett
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
38
|
Batista AR, Gianni D, Ventosa M, Coelho AV, Almeida MR, Sena-Esteves M, Saraiva MJ. Gene therapy approach to FAP: in vivo influence of T119M in TTR deposition in a transgenic V30M mouse model. Gene Ther 2014; 21:1041-50. [DOI: 10.1038/gt.2014.86] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/16/2014] [Accepted: 08/06/2014] [Indexed: 11/09/2022]
|
39
|
Basner-Tschakarjan E, Mingozzi F. Cell-Mediated Immunity to AAV Vectors, Evolving Concepts and Potential Solutions. Front Immunol 2014; 5:350. [PMID: 25101090 PMCID: PMC4107954 DOI: 10.3389/fimmu.2014.00350] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/08/2014] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are one of the most efficient in vivo gene delivery platforms. Over the past decade, clinical trials of AAV vector-mediated gene transfer led to some of the most exciting results in the field of gene therapy and, recently, to the market approval of an AAV-based drug in Europe. With clinical development, however, it became obvious that the host immune system represents an important obstacle to successful gene transfer with AAV vectors. In this review article, we will discuss the issue of cytotoxic T cell responses directed against the AAV capsid encountered on human studies. While over the past several years the field has acquired a tremendous amount of information on the interactions of AAV vectors with the immune system, a lot of questions are still unanswered. Novel concepts are emerging, such as the relationship between the total capsid dose and the T cell-mediated clearance of transduced cells, the potential role of innate immunity in vector immunogenicity highlighted in preclinical studies, and the cross talk between regulatory and effector T cells in the determination of the outcome of gene transfer. There is still a lot to learn about immune responses in AAV gene transfer, for example, it is not well understood what are the determinants of the kinetics of activation of T cells in response to vector administration, why not all subjects develop detrimental T cell responses following gene transfer, and whether the intervention strategies currently in use to block T cell-mediated clearance of transduced cells will be safe and effective for all gene therapy indications. Results from novel preclinical models and clinical studies will help to address these points and to reach the important goal of developing safe and effective gene therapy protocols to treat human diseases.
Collapse
Affiliation(s)
| | - Federico Mingozzi
- University Pierre and Marie Curie , Paris , France ; Genethon , Evry , France
| |
Collapse
|
40
|
Maguire CA, Crommentuijn MH, Mu D, Hudry E, Serrano-Pozo A, Hyman BT, Tannous BA. Mouse gender influences brain transduction by intravascularly administered AAV9. Mol Ther 2014; 21:1470-1. [PMID: 23903572 DOI: 10.1038/mt.2013.95] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
41
|
Basner-Tschakarjan E, Bijjiga E, Martino AT. Pre-Clinical Assessment of Immune Responses to Adeno-Associated Virus (AAV) Vectors. Front Immunol 2014; 5:28. [PMID: 24570676 PMCID: PMC3916775 DOI: 10.3389/fimmu.2014.00028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022] Open
Abstract
Transitioning to human trials from pre-clinical models resulted in the emergence of inhibitory AAV vector immune responses which has become a hurdle for sustained correction. Early animal studies did not predict the full range of host immunity to the AAV vector in human studies. While pre-existing antibody titers against AAV vectors has been a lingering concern, cytotoxic T-cell (CTL) responses against the input capsid can prevent long-term therapy in humans. These discoveries spawned more thorough profiling of immune response to rAAV in pre-clinical models, which have assessed both innate and adaptive immunity and explored methods for bypassing these responses. Many efforts toward measuring innate immunity have utilized Toll-like receptor deficient models and have focused on differential responses to viral capsid and genome. From adaptive studies, it is clear that humoral responses are relevant for initial vector transduction efficiency while cellular responses impact long-term outcomes of gene transfer. Measuring humoral responses to AAV vectors has utilized in vitro neutralizing antibody assays and transfer of seropositive serum to immunodeficient mice. Overcoming antibodies using CD20 inhibitors, plasmapheresis, altering route of delivery and using different capsids have been explored. CTL responses were measured using in vitro and in vivo models. In in vitro assays expansion of antigen-specific T-cells as well as cytotoxicity toward AAV transduced cells can be shown. Many groups have successfully mimicked antigen-specific T-cell proliferation, but actual transgene level reduction and parameters of cytotoxicity toward transduced target cells have only been shown in one model. The model utilized adoptive transfer of capsid-specific in vitro expanded T-cells isolated from immunized mice with LPS as an adjuvant. Finally, the development of immune tolerance to AAV vectors by enriching regulatory T-cells as well as modulating the response pharmacologically has also been explored.
Collapse
Affiliation(s)
| | - Enoch Bijjiga
- Department of Pharmaceutical Sciences, St. John's University , Queens, NY , USA
| | - Ashley T Martino
- Department of Pharmaceutical Sciences, St. John's University , Queens, NY , USA
| |
Collapse
|
42
|
Mechanistic insights into the enhancement of adeno-associated virus transduction by proteasome inhibitors. J Virol 2013; 87:13035-41. [PMID: 24027330 DOI: 10.1128/jvi.01826-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Proteasome inhibitors (e.g., bortezomib, MG132) are known to enhance adeno-associated virus (AAV) transduction; however, whether this results from pleotropic proteasome inhibition or off-target serine and/or cysteine protease inhibition remains unresolved. Here, we examined recombinant AAV (rAAV) effects of a new proteasome inhibitor, carfilzomib, which specifically inhibits chymotrypsin-like proteasome activity and no other proteases. We determined that proteasome inhibitors act on rAAV through proteasome inhibition and not serine or cysteine protease inhibition, likely through positive changes late in transduction.
Collapse
|
43
|
Abstract
Gene therapy products for the treatment of genetic diseases are currently in clinical trials, and one of these, an adeno-associated viral (AAV) product, has recently been licensed. AAV vectors have achieved positive results in a number of clinical and preclinical settings, including hematologic disorders such as the hemophilias, Gaucher disease, hemochromatosis, and the porphyrias. Because AAV vectors are administered directly to the patient, the likelihood of a host immune response is high, as shown by human studies. Preexisting and/or recall responses to the wild-type virus from which the vector is engineered, or to the transgene product itself, can interfere with therapeutic efficacy if not identified and managed optimally. Small-scale clinical studies have enabled investigators to dissect the immune responses to the AAV vector capsid and to the transgene product, and to develop strategies to manage these responses to achieve long-term expression of the therapeutic gene. However, a comprehensive understanding of the determinants of immunogenicity of AAV vectors, and of potential associated toxicities, is still lacking. Careful immunosurveillance conducted as part of ongoing clinical studies will provide the basis for understanding the intricacies of the immune response in AAV-mediated gene transfer, facilitating safe and effective therapies for genetic diseases.
Collapse
|
44
|
Ferla R, O'Malley T, Calcedo R, O'Donnell P, Wang P, Cotugno G, Claudiani P, Wilson JM, Haskins M, Auricchio A. Gene therapy for mucopolysaccharidosis type VI is effective in cats without pre-existing immunity to AAV8. Hum Gene Ther 2013. [PMID: 23194248 DOI: 10.1089/hum.2012.179] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Liver gene transfer with adeno-associated viral (AAV) 2/8 vectors is being considered for therapy of systemic diseases like mucopolysaccharidosis type VI (MPS VI), a lysosomal storage disease due to deficiency of arylsulfatase B (ARSB). We have previously reported that liver gene transfer with AAV2/8 results in sustained yet variable expression of ARSB. We hypothesized that the variability we observed could be due to pre-existing immunity to wild-type AAV8. To test this, we compared the levels of AAV2/8-mediated transduction in MPS VI cats with and without pre-existing immunity to AAV8. In addition, since levels of lysosomal enzymes as low as 5% of normal are expected to be therapeutic, we evaluated the impact of pre-existing immunity on MPS VI phenotypic rescue. AAV2/8 administration to MPS VI cats without pre-existing neutralizing antibodies to AAV8 resulted in consistent and dose-dependent expression of ARSB, urinary glycosaminoglycan (GAG) reduction, and femur length amelioration. Conversely, animals with pre-existing immunity to AAV8 showed low levels of ARSB expression and limited phenotypic improvement. Our data support the use of AAV2/8-mediated gene transfer for MPS VI and other systemic diseases, and highlight that pre-existing immunity to AAV8 should be considered in determining subject eligibility for therapy.
Collapse
Affiliation(s)
- Rita Ferla
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vector systems for prenatal gene therapy: principles of adeno-associated virus vector design and production. Methods Mol Biol 2012; 891:109-31. [PMID: 22648770 DOI: 10.1007/978-1-61779-873-3_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Vectors based on adeno-associated virus (AAV) show great promise for safe, efficacious therapeutic gene transfer in extensive pre-clinical data and, recently, in clinical trials. Careful vector design and choice from a range of natural or synthetic pseudotypes allow targeted, efficient, and sustained expression of therapeutic genes. The efficiency of gene delivery can be further enhanced through the use of drug pre-treatment or co-infection with a suitable helper virus. This chapter describes current best practice for AAV production, including complete methods for: (1) efficient generation of vector without the use of helper viruses, simplifying the transition to GMP-grade production for clinical applications; (2) efficient and easily scalable purification of the virus by affinity chromatography, allowing rapid production of highly concentrated, high titre stocks; (3) reliable quantification and assaying of viral stocks, along with short- and long-term storage considerations.
Collapse
|
46
|
Wang L, Wang H, Bell P, McMenamin D, Wilson JM. Hepatic gene transfer in neonatal mice by adeno-associated virus serotype 8 vector. Hum Gene Ther 2012; 23:533-9. [PMID: 22098408 PMCID: PMC3360497 DOI: 10.1089/hum.2011.183] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/18/2011] [Indexed: 12/14/2022] Open
Abstract
For genetic diseases that manifest at a young age with irreversible consequences, early treatment is critical and essential. Neonatal gene therapy has the advantages of achieving therapeutic effects before disease manifestation, a low vector requirement and high vector-to-cell ratio, and a relatively immature immune system. Therapeutic effects or long-term rescue of neonatal lethality have been demonstrated in several animal models. However, vigorous cell proliferation in the newborn stage is a significant challenge for nonintegrating vectors, such as adeno-associated viral (AAV) vector. Slightly delaying the injection age, and readministration at a later time, are two of the alternative strategies to solve this problem. In this study, we demonstrated robust and efficient hepatic gene transfer by self-complementary AAV8 vector in neonatal mice. However, transduction quickly decreased over a few weeks because of vector dilution caused by fast proliferation. Delaying the injection age improved sustained expression, although it also increased neutralizing antibody (NAb) responses to AAV capsid. This approach can be used to treat genetic diseases with slow progression. For genetic diseases with early onset and severe consequences, early treatment is essential. A second injection of vector of a different serotype at a later time may overcome preexisting NAb and achieve sustained therapeutic effects.
Collapse
Affiliation(s)
- Lili Wang
- Gene Therapy Program, and Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Huan Wang
- Gene Therapy Program, and Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Vaccine Research Institute, Third Affiliated Hospital, Sun Yat-Sen University, 510630 Guangzhou, China
| | - Peter Bell
- Gene Therapy Program, and Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Deirdre McMenamin
- Gene Therapy Program, and Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - James M. Wilson
- Gene Therapy Program, and Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
47
|
Karman J, Gumlaw NK, Zhang J, Jiang JL, Cheng SH, Zhu Y. Proteasome inhibition is partially effective in attenuating pre-existing immunity against recombinant adeno-associated viral vectors. PLoS One 2012; 7:e34684. [PMID: 22514654 PMCID: PMC3326043 DOI: 10.1371/journal.pone.0034684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/08/2012] [Indexed: 12/12/2022] Open
Abstract
Pre-existing immunity against adeno-associated virus (AAV) remains a major challenge facing the clinical use of systemic administration of recombinant AAV vectors for the treatment of genetic and acquired diseases using gene therapy. In this study, we evaluated the potential of bortezomib (marketed under trade name Velcade) to abrogate a pre-existing immunity to AAV in mice, thereby allowing subsequent transduction by a recombinant AAV vector of the same serotype. We demonstrate that bortezomib efficiently reduces AAV-specific IgG titres and moderates the cytotoxic T cell response in mice that have a pre-existing immunity to AAV2/8. Significant depletion of AAV2/8-specific IgG-producing plasma cells in secondary lymphoid organs and bone marrow was observed. However, this inhibition of the immune response by bortezomib was insufficient to allow subsequent re-infection with a recombinant AAV vector of a similar serotype. We show that this shortcoming is probably due to the combination of residual antibody levels and the inability of bortezomib to completely deplete the memory B cells that are re-activated in response to a repeated infection with a recombinant AAV vector. Taken together, the results of this study argue for the use of immunosuppressive therapies that target both plasma and memory B cells for the efficient elimination of pre-existing immunity against AAV2/8 vectors.
Collapse
Affiliation(s)
- Jozsef Karman
- Genetic Disease Science, Genzyme Corporation, Framingham, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
48
|
Wang L, Morizono H, Lin J, Bell P, Jones D, McMenamin D, Yu H, Batshaw ML, Wilson JM. Preclinical evaluation of a clinical candidate AAV8 vector for ornithine transcarbamylase (OTC) deficiency reveals functional enzyme from each persisting vector genome. Mol Genet Metab 2012; 105:203-11. [PMID: 22133298 PMCID: PMC3270700 DOI: 10.1016/j.ymgme.2011.10.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
Abstract
Ornithine transcarbamylase deficiency (OTCD), the most common and severe urea cycle disorder, is an excellent model for developing liver-directed gene therapy. No curative therapy exists except for liver transplantation which is limited by available donors and carries significant risk of mortality and morbidity. Adeno-associated virus 8 (AAV8) has been shown to be the most efficient vector for liver-directed gene transfer and is currently being evaluated in a clinical trial for treating hemophilia B. In this study, we generated a clinical candidate vector for a proposed OTC gene therapy trial in humans based on a self-complementary AAV8 vector expressing codon-optimized human OTC (hOTCco) under the control of a liver-specific promoter. Codon-optimization dramatically improved the efficacy of OTC gene therapy. Supraphysiological expression levels and activity of hOTC were achieved in adult spf(ash) mice following a single intravenous injection of hOTCco vector. Vector doses as low as 1×10(10) genome copies (GC) achieved robust and sustained correction of the OTCD biomarker orotic aciduria and clinical protection against an ammonia challenge. Functional expression of hOTC in 40% of liver areas was found in mice treated with a low vector dose of 1×10(9) GC. We suggest that the clinical candidate vector we have developed has the potential to achieve therapeutic effects in OTCD patients.
Collapse
Affiliation(s)
- Lili Wang
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiroki Morizono
- Center for Genetic Medicine Research, Children’s National Medical Center, Children’s Research Institute, Washington, D.C., USA
| | - Jianping Lin
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Bell
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Jones
- Center for Genetic Medicine Research, Children’s National Medical Center, Children’s Research Institute, Washington, D.C., USA
| | - Deirdre McMenamin
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongwei Yu
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark L. Batshaw
- Center for Genetic Medicine Research, Children’s National Medical Center, Children’s Research Institute, Washington, D.C., USA
| | - James M. Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corresponding author: Department of Pathology and Laboratory Medicine University of Pennsylvania, Philadelphia, PA 19104, USA Phone: 215-898-0226; Fax: 215-494-5444
| |
Collapse
|
49
|
Abstract
Twelve AAV serotypes have been described so far in human and nonhuman primate (NHP) populations while surprisingly high diversity of AAV sequences is detected in tissue biopsies. The analysis of these novel AAV sequences has indicated a rapid evolution of the viral genome both by accumulation of mutations and recombination. This chapter describes how this rich resource of naturally evolved sequences is used to derive gene transfer vectors with a wide array of activities depending on the nature of the cap gene used in the packaging system. AAV2-based recombinant genomes have been packaged in dozens of different capsid types, resulting in a wide array of "pseudotyped vectors" that constitute a rich resource for the development of gene therapy clinical trials. We describe a polymerase chain reaction-based molecular rescue method for novel AAV isolation that uses primers designed to recognize the highly conserved regions in known AAV isolates and generate amplicons across the hypervariable regions of novel AAV genomes present in the analyzed sample.
Collapse
|
50
|
McIntosh J, Cochrane M, Cobbold S, Waldmann H, Davidoff AM, Nathwani AC. Successful attenuation of humoral immunity to viral capsid and transgenic protein following AAV-mediated gene transfer with a non-depleting CD4 antibody and cyclosporine. Gene Ther 2012; 19:78-85. [PMID: 21716299 PMCID: PMC3526978 DOI: 10.1038/gt.2011.64] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 01/04/2011] [Accepted: 01/07/2011] [Indexed: 01/13/2023]
Abstract
The ability of transient immunosuppression with a combination of a non-depleting anti-CD4 (NDCD4) antibody and cyclosporine (CyA) to abrogate immune reactivity to both adeno-associated viral vector (AAV) and its transgene product was evaluated. This combination of immunosuppressants resulted in a 20-fold reduction in the resulting anti-AAV8 antibody titres, to levels in naïve mice, following intravenous administration of 2 × 10(12) AAV8 vector particles per kg to immunocompetent mice. This allowed efficient transduction upon secondary challenge with vector pseudotyped with the same capsid. Persistent tolerance did not result, however, as an anti-AAV8 antibody response was elicited upon rechallenge with AAV8 without immunosuppression. The route of vector administration, vector dose, AAV serotype or the concomitant administration of adenoviral vector appeared to have little impact on the ability of the NDCD4 antibody and CyA combination to moderate the primary humoral response to AAV capsid proteins. The combination of NDCD4 and CyA also abrogated the humoral response to the transgene product, that otherwise invariably would occur, following intramuscular injection of AAV5, leading to stable transgene expression. These observations could significantly improve the prospects of using rAAV vectors for chronic disorders by allowing for repeated vector administration and avoiding the development of antibodies to the transgene product.
Collapse
Affiliation(s)
| | | | | | | | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Amit C. Nathwani
- Department of Haematology, UCL Cancer Institute, UK
- NHS Blood and Transplant, Oxford, UK
| |
Collapse
|