1
|
Nelson A, McMullen N, Gebremeskel S, De Antueno R, Mackenzie D, Duncan R, Johnston B. Fusogenic vesicular stomatitis virus combined with natural killer T cell immunotherapy controls metastatic breast cancer. Breast Cancer Res 2024; 26:78. [PMID: 38750591 PMCID: PMC11094881 DOI: 10.1186/s13058-024-01818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/30/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, B3H 4R2, Halifax, NS, Canada
| | - Nichole McMullen
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
| | - Simon Gebremeskel
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, B3H 4R2, Halifax, NS, Canada
| | - Roberto De Antueno
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
| | - Duncan Mackenzie
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, B3H 4R2, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, B3H 4R2, Halifax, NS, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada.
- Beatrice Hunter Cancer Research Institute, B3H 4R2, Halifax, NS, Canada.
- Department of Pathology, Dalhousie University, B3H 4R2, Halifax, NS, Canada.
| |
Collapse
|
2
|
Gao Y. Oncolytic Therapy of Solid Tumors by Modified Vesicular Stomatitis Virus. DNA Cell Biol 2024; 43:57-60. [PMID: 38079267 DOI: 10.1089/dna.2023.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Vesicular stomatitis virus (VSV) is a promising oncolytic virus for treating solid tumors. We recently engineered a replicating VSV that specifically targets and destroys Her2/neu-expressing cancer cells. This virus was created by eliminating its natural binding site and adding a coding sequence for a single chain antibody to the Her2/neu receptor into its genome. Such an approach can be tailored to target various cellular surface molecules. This mini review will discuss genomic modifications of VSVs and their role in oncolytic therapy and discuss some challenges for moving VSVs to clinical applications.
Collapse
Affiliation(s)
- Yanhua Gao
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Webb MJ, Kottke T, Kendall BL, Swanson J, Uzendu C, Tonne J, Thompson J, Metko M, Moore M, Borad M, Roberts L, Diaz RM, Olin M, Borgatti A, Vile R. Trap and ambush therapy using sequential primary and tumor escape-selective oncolytic viruses. Mol Ther Oncolytics 2023; 29:129-142. [PMID: 37313455 PMCID: PMC10258242 DOI: 10.1016/j.omto.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
In multiple models of oncolytic virotherapy, it is common to see an early anti-tumor response followed by recurrence. We have previously shown that frontline treatment with oncolytic VSV-IFN-β induces APOBEC proteins, promoting the selection of specific mutations that allow tumor escape. Of these mutations in B16 melanoma escape (ESC) cells, a C-T point mutation in the cold shock domain-containing E1 (CSDE1) gene was present at the highest frequency, which could be used to ambush ESC cells by vaccination with the mutant CSDE1 expressed within the virus. Here, we show that the evolution of viral ESC tumor cells harboring the escape-promoting CSDE1C-T mutation can also be exploited by a virological ambush. By sequential delivery of two oncolytic VSVs in vivo, tumors which would otherwise escape VSV-IFN-β oncolytic virotherapy could be cured. This also facilitated the priming of anti-tumor T cell responses, which could be further exploited using immune checkpoint blockade with the CD200 activation receptor ligand (CD200AR-L) peptide. Our findings here are significant in that they offer the possibility to develop oncolytic viruses as highly specific, escape-targeting viro-immunotherapeutic agents to be used in conjunction with recurrence of tumors following multiple different types of frontline cancer therapies.
Collapse
Affiliation(s)
- Mason J. Webb
- Division of Hematology/Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jack Swanson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chisom Uzendu
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Madelyn Moore
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mitesh Borad
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosa M. Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Olin
- Division of Pediatric Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Antonella Borgatti
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Clinical Investigation Center, University of Minnesota, St. Paul, MN 55108, USA
| | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
5
|
Lundstrom K. Therapeutic Applications for Oncolytic Self-Replicating RNA Viruses. Int J Mol Sci 2022; 23:ijms232415622. [PMID: 36555262 PMCID: PMC9779410 DOI: 10.3390/ijms232415622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Self-replicating RNA viruses have become attractive delivery vehicles for therapeutic applications. They are easy to handle, can be rapidly produced in large quantities, and can be delivered as recombinant viral particles, naked or nanoparticle-encapsulated RNA, or plasmid DNA-based vectors. The self-replication of RNA in infected host cells provides the means for generating much higher transgene expression levels and the possibility to apply substantially reduced amounts of RNA to achieve similar expression levels or immune responses compared to conventional synthetic mRNA. Alphaviruses and flaviviruses, possessing a single-stranded RNA genome of positive polarity, as well as measles viruses and rhabdoviruses with a negative-stranded RNA genome, have frequently been utilized for therapeutic applications. Both naturally and engineered oncolytic self-replicating RNA viruses providing specific replication in tumor cells have been evaluated for cancer therapy. Therapeutic efficacy has been demonstrated in animal models. Furthermore, the safe application of oncolytic viruses has been confirmed in clinical trials. Multiple myeloma patients treated with an oncolytic measles virus (MV-NIS) resulted in increased T-cell responses against the measles virus and several tumor-associated antigen responses and complete remission in one patient. Furthermore, MV-CEA administration to patients with ovarian cancer resulted in a stable disease and more than doubled the median overall survival.
Collapse
|
6
|
Lundstrom K. Self-replicating vehicles based on negative strand RNA viruses. Cancer Gene Ther 2022:10.1038/s41417-022-00436-7. [PMID: 35169298 PMCID: PMC8853047 DOI: 10.1038/s41417-022-00436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Self-replicating RNA viruses have been engineered as efficient expression vectors for vaccine development for infectious diseases and cancers. Moreover, self-replicating RNA viral vectors, particularly oncolytic viruses, have been applied for cancer therapy and immunotherapy. Among negative strand RNA viruses, measles viruses and rhabdoviruses have been frequently applied for vaccine development against viruses such as Chikungunya virus, Lassa virus, Ebola virus, influenza virus, HIV, Zika virus, and coronaviruses. Immunization of rodents and primates has elicited strong neutralizing antibody responses and provided protection against lethal challenges with pathogenic viruses. Several clinical trials have been conducted. Ervebo, a vaccine based on a vesicular stomatitis virus (VSV) vector has been approved for immunization of humans against Ebola virus. Different types of cancers such as brain, breast, cervical, lung, leukemia/lymphoma, ovarian, prostate, pancreatic, and melanoma, have been the targets for cancer vaccine development, cancer gene therapy, and cancer immunotherapy. Administration of measles virus and VSV vectors have demonstrated immune responses, tumor regression, and tumor eradication in various animal models. A limited number of clinical trials have shown well-tolerated treatment, good safety profiles, and dose-dependent activity in cancer patients.
Collapse
|
7
|
Feola S, Russo S, Ylösmäki E, Cerullo V. Oncolytic ImmunoViroTherapy: A long history of crosstalk between viruses and immune system for cancer treatment. Pharmacol Ther 2021; 236:108103. [PMID: 34954301 DOI: 10.1016/j.pharmthera.2021.108103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Cancer Immunotherapy relies on harnessing a patient's immune system to fine-tune specific anti-tumor responses and ultimately eradicate cancer. Among diverse therapeutic approaches, oncolytic viruses (OVs) have emerged as a novel form of cancer immunotherapy. OVs are a naturally occurring or genetically modified class of viruses able to selectively kill cancer cells, leaving healthy cells unharmed; in the last two decades, the role of OVs has been redefined to act beyond their oncolytic activity. Indeed, the immunogenic cancer cell death mediated by OVs induces the release of tumor antigens that in turn induces anti-tumor immunity, allowing OVs to act as in situ therapeutic cancer vaccines. Additionally, OVs can be engineered for intratumoral delivery of immunostimulatory molecules such as tumor antigens or cytokines to further enhance anti-tumor response. Moreover, OVs can be used in combination with other cancer immunotherapeutic approaches such as Immune Checkpoint Inhibitors and CAR-T cells. The current review first defines the three main mechanisms of action (MOA) of OVs currently used in cancer therapy that are: i) Oncolysis, ii) OV-induced cancer-specific immune activation, and iii) Exploiting pre-existing anti-viral immunity to enhance cancer therapy. Secondly, we focus on how OVs can induce and/or improve anti-cancer immunity in a specific or unspecific fashion, highlighting the importance of these approaches. Finally, the last part of the review analyses OVs combined with other cancer immunotherapies, revising present and future clinical applications.
Collapse
Affiliation(s)
- S Feola
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | - S Russo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | - E Ylösmäki
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | - V Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland; Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
8
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
9
|
Kim TE, Puckett S, Zhang K, Herpai DM, Ornelles DA, Davis JN, van den Pol AN, Debinski W, Lyles DS. Diversity in responses to oncolytic Lassa-vesicular stomatitis virus in patient-derived glioblastoma cells. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:232-244. [PMID: 34514102 PMCID: PMC8424128 DOI: 10.1016/j.omto.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
The difficulty of glioblastoma treatment makes it a good candidate for novel therapies, such as oncolytic viruses. Vesicular stomatitis virus expressing Lassa virus glycoprotein (Lassa-VSV) showed significant promise in animal models using established glioblastoma cell lines. These experiments were to determine the susceptibility of low-passage, patient-derived cell lines to Lassa-VSV oncolysis. Four patient-derived glioblastoma cell lines were infected with Lassa-VSV that expresses green fluorescent protein (GFP) and analyzed by fluorescence microscopy, flow cytometry, and cell viability assays. Cells were also analyzed as tumorspheres containing primarily glioma stem-like cells. Three low-passage, patient-derived cells were further analyzed with RNA sequencing (RNA-seq). Individual cell lines varied somewhat in their levels of viral gene expression and time course of Lassa-VSV-induced cell death, but each was susceptible to Lassa-VSV. Brain Tumor Center of Excellence (BTCOE) 4765 cells had the highest level of expression of interferon-stimulated genes but were most susceptible to Lassa-VSV-induced cell death, indicating that more susceptible cells do not necessarily have lower interferon pathway activation. Cells cultured as tumorspheres and infected with Lassa-VSV also showed variable susceptibility to Lassa-VSV, but BTCOE 4765 cells were least susceptible. Thus, patient-derived brain tumor cells show variable responses to Lassa-VSV infection, but each of the lines was susceptible to VSV oncolysis.
Collapse
Affiliation(s)
- Teddy E Kim
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shelby Puckett
- Department of Biochemistry, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Kailong Zhang
- Department of Biochemistry, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Denise M Herpai
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John N Davis
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Douglas S Lyles
- Department of Biochemistry, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| |
Collapse
|
10
|
A new insight into aggregation of oncolytic adenovirus Ad5-delta-24-RGD during CsCl gradient ultracentrifugation. Sci Rep 2021; 11:16088. [PMID: 34373477 PMCID: PMC8352973 DOI: 10.1038/s41598-021-94573-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Two-cycle cesium chloride (2 × CsCl) gradient ultracentrifugation is a conventional approach for purifying recombinant adenoviruses (rAds) for research purposes (gene therapy, vaccines, and oncolytic vectors). However, rAds containing the RGD-4C peptide in the HI loop of the fiber knob domain tend to aggregate during 2 × CsCl gradient ultracentrifugation resulting in a low infectious titer yield or even purification failure. An iodixanol-based purification method preventing aggregation of the RGD4C-modified rAds has been proposed. However, the reason explaining aggregation of the RGD4C-modified rAds during 2 × CsCl but not iodixanol gradient ultracentrifugation has not been revealed. In the present study, we showed that rAds with the RGD-4C peptide in the HI loop but not at the C-terminus of the fiber knob domain were prone to aggregate during 2 × CsCl but not iodixanol gradient ultracentrifugation. The cysteine residues with free thiol groups after the RGD motif within the inserted RGD-4C peptide were responsible for formation of the interparticle disulfide bonds under atmospheric oxygen and aggregation of Ad5-delta-24-RGD4C-based rAds during 2 × CsCl gradient ultracentrifugation, which could be prevented using iodixanol gradient ultracentrifugation, most likely due to antioxidant properties of iodixanol. A cysteine-to-glycine substitution of the cysteine residues with free thiol groups (RGD-2C2G) prevented aggregation during 2 × CsCl gradient purification but in coxsackie and adenovirus receptor (CAR)-low/negative cancer cell lines of human and rodent origin, this reduced cytolytic efficacy to the levels observed for a fiber non-modified control vector. However, both Ad5-delta-24-RGD4C and Ad5-delta-24-RGD2C2G were equally effective in the murine immunocompetent CT-2A glioma model due to a primary role of antitumor immune responses in the therapeutic efficacy of oncolytic virotherapy.
Collapse
|
11
|
Kottke T, Tonne J, Evgin L, Driscoll CB, van Vloten J, Jennings VA, Huff AL, Zell B, Thompson JM, Wongthida P, Pulido J, Schuelke MR, Samson A, Selby P, Ilett E, McNiven M, Roberts LR, Borad MJ, Pandha H, Harrington K, Melcher A, Vile RG. Oncolytic virotherapy induced CSDE1 neo-antigenesis restricts VSV replication but can be targeted by immunotherapy. Nat Commun 2021; 12:1930. [PMID: 33772027 PMCID: PMC7997928 DOI: 10.1038/s41467-021-22115-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/25/2021] [Indexed: 01/06/2023] Open
Abstract
In our clinical trials of oncolytic vesicular stomatitis virus expressing interferon beta (VSV-IFNβ), several patients achieved initial responses followed by aggressive relapse. We show here that VSV-IFNβ-escape tumors predictably express a point-mutated CSDE1P5S form of the RNA-binding Cold Shock Domain-containing E1 protein, which promotes escape as an inhibitor of VSV replication by disrupting viral transcription. Given time, VSV-IFNβ evolves a compensatory mutation in the P/M Inter-Genic Region which rescues replication in CSDE1P5S cells. These data show that CSDE1 is a major cellular co-factor for VSV replication. However, CSDE1P5S also generates a neo-epitope recognized by non-tolerized T cells. We exploit this predictable neo-antigenesis to drive, and trap, tumors into an escape phenotype, which can be ambushed by vaccination against CSDE1P5S, preventing tumor escape. Combining frontline therapy with escape-targeting immunotherapy will be applicable across multiple therapies which drive tumor mutation/evolution and simultaneously generate novel, targetable immunopeptidomes associated with acquired treatment resistance.
Collapse
Affiliation(s)
- Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Jacob van Vloten
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Victoria A Jennings
- Chester Beatty Laboratories, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Amanda L Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brady Zell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jill M Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Jose Pulido
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Adel Samson
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Peter Selby
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Elizabeth Ilett
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Mark McNiven
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Hardev Pandha
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Kevin Harrington
- Chester Beatty Laboratories, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Alan Melcher
- Chester Beatty Laboratories, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Fisher K, Hazini A, Seymour LW. Tackling HLA Deficiencies Head on with Oncolytic Viruses. Cancers (Basel) 2021; 13:719. [PMID: 33578735 PMCID: PMC7916504 DOI: 10.3390/cancers13040719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of HLA (human leukocyte antigen) function is increasingly recognized as a common escape mechanism for cancers subject to the pressures exerted by immunosurveillance or immunotherapeutic interventions. Oncolytic viruses have the potential to counter this resistance by upregulating HLA expression or encouraging an HLA-independent immunological responses. However, to achieve the best therapeutic outcomes, a prospective understanding of the HLA phenotype of cancer patients is required to match them to the characteristics of different oncolytic strategies. Here, we consider the spectrum of immune competence observed in clinical disease and discuss how it can be best addressed using this novel and powerful treatment approach.
Collapse
Affiliation(s)
- Kerry Fisher
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | | | | |
Collapse
|
13
|
Assessing and Overcoming Resistance Phenomena against a Genetically Modified Vaccinia Virus in Selected Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21207618. [PMID: 33076270 PMCID: PMC7589280 DOI: 10.3390/ijms21207618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Genetically modified vaccinia viruses (VACVs) have been shown to possess profound oncolytic capabilities. However, tumor cell resistance to VACVs may endanger broad clinical success. Using cell mass assays, viral replication studies, and fluorescence microscopy, we investigated primary resistance phenomena of cell lines of the NCI-60 tumor cell panel to GLV-1h94, a derivative of the Lister strain of VACV, which encodes the enzyme super cytosine deaminase (SCD) that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic compound 5-fluorouracil (5-FU). After treatment with GLV-1h94 alone, only half of the cell lines were defined as highly susceptible to GLV-1h94-induced oncolysis. When adding 5-FC, 85% of the cell lines became highly susceptible to combinatorial treatment; none of the tested tumor cell lines exhibited a "high-grade resistance" pattern. Detailed investigation of the SCD prodrug system suggested that the cytotoxic effect of converted 5-FU is directed either against the cells or against the virus particles, depending on the balance between cell line-specific susceptibility to GLV-1h94-induced oncolysis and 5-FU sensitivity. The data provided by this work underline that cellular resistance against VACV-based virotherapy can be overcome by virus-encoded prodrug systems. Phase I/II clinical trials are recommended to further elucidate the enormous potential of this combination therapy.
Collapse
|
14
|
Flores EB, Aksoy BA, Bartee E. Initial dose of oncolytic myxoma virus programs durable antitumor immunity independent of in vivo viral replication. J Immunother Cancer 2020; 8:jitc-2020-000804. [PMID: 32581062 PMCID: PMC7319776 DOI: 10.1136/jitc-2020-000804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2020] [Indexed: 12/26/2022] Open
Abstract
Background Oncolytic therapy uses live-replicating viruses to improve the immunological status of treated tumors. Critically, while these viruses are known to self-amplify in vivo, clinical oncolytic therapies still appear to display a strong dose dependence and the mechanisms mediating this dose dependence are not well understood. Methods To explore this apparent contradiction, we investigated how the initial dose of oncolytic myxoma virus affected the subsequent ability of treatment to alter the immunological status of tumors as well as synergize with programmed cell death protein 1 (PD1) blockade. Results Our results indicate that, due to viral self-amplification in vivo, the overall load of myxoma virus rapidly normalizes within treated tumors despite up to 3-log differences in inoculating dose. Because of this, therapeutic efficacy in the absence of checkpoint blockade is largely dose independent. Despite this rapid normalization, however, treatment with high or low doses of myxoma virus induces distinct immunological changes within treated tumors. Critically, these changes appear to be durably programmed based on the initial oncolytic dose with low-dose treatment failing to induce immunological improvements despite rapidly achieving equivalent viral burdens. Finally, due to the distinct immunological profiles induced by high and low myxoma virus doses, oncolytic efficacy resulting from combination with PD1 blockade therapy displays a strong dose dependence. Conclusions Taken together, these data suggest that the ability of oncolytic myxoma virus to immunologically reprogram treated tumors is dependent on initial viral dose. Additionally, this work could provide a possible mechanistic explanation for clinical results observed with other oncolytic viruses.
Collapse
Affiliation(s)
- Erica B Flores
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Bulent A Aksoy
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Eric Bartee
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
15
|
Abstract
In addition of being directly tumoricidal, oncolytic viruses have emerged as potent partners for established and investigational immunotherapies due to their immune-stimulatory effects. The shifting focus on virus-mediated immune modulation calls for a comprehensive analysis of the tumor microenvironment (TME) and the factors orchestrating the antiviral and antitumor immune response. The oncolytic VSV-GP studied in our lab is a safe and potent antitumor agent with a fast replication cycle and killing of a broad range of different cancer types. It induces a robust local inflammatory conversion of the TME and drives a strong adaptive immune response toward the tumor. Here we present our multidisciplinary approach to study VSV-GP treatment effects in tumors by assessing both immune cells (tumor-infiltrating lymphocytes and tumor-associated macrophages) and immune-regulatory factors (cytokines) as well as characterizing immune signatures using an immune-targeted NanoString gene expression system.
Collapse
|
16
|
The lytic activity of VSV-GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer. Br J Cancer 2019; 121:647-658. [PMID: 31530903 PMCID: PMC6889376 DOI: 10.1038/s41416-019-0574-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Oncolytic virotherapy is thought to result in direct virus-induced lytic tumour killing and simultaneous activation of innate and tumour-specific adaptive immune responses. Using a chimeric vesicular stomatitis virus variant VSV-GP, we addressed the direct oncolytic effects and the role of anti-tumour immune induction in the syngeneic mouse lung cancer model LLC1. Methods To study a tumour system with limited antiviral effects, we generated interferon receptor-deficient cells (LLC1-IFNAR1−/−). Therapeutic efficacy of VSV-GP was assessed in vivo in syngeneic C57BL/6 and athymic nude mice bearing subcutaneous tumours. VSV-GP treatment effects were analysed using bioluminescent imaging (BLI), immunohistochemistry, ELISpot, flow cytometry, multiplex ELISA and Nanostring® assays. Results Interferon insensitivity correlated with VSV-GP replication and therapeutic outcome. BLI revealed tumour-to-tumour spread of viral progeny in bilateral tumours. Histological and gene expression analysis confirmed widespread and rapid infection and cell killing within the tumour with activation of innate and adaptive immune-response markers. However, treatment outcome was increased in the absence of CD8+ T cells and surviving mice showed little protection from tumour re-challenge, indicating limited therapeutic contribution by the activated immune system. Conclusion These studies present a case for a predominantly lytic treatment effect of VSV-GP in a syngeneic mouse lung cancer model.
Collapse
|
17
|
Koske I, Rössler A, Pipperger L, Petersson M, Barnstorf I, Kimpel J, Tripp CH, Stoitzner P, Bánki Z, von Laer D. Oncolytic virotherapy enhances the efficacy of a cancer vaccine by modulating the tumor microenvironment. Int J Cancer 2019; 145:1958-1969. [PMID: 30972741 PMCID: PMC6767478 DOI: 10.1002/ijc.32325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
The efficacy of cancer vaccines has been limited by the immunosuppressive tumor microenvironment, which can be alleviated by immune checkpoint inhibitor (ICI) therapy. Here, we tested if oncolytic viruses (OVs), similar to ICI, can also synergize with cancer vaccines by modulating the tumor microenvironment. VSV‐GP, a chimeric vesicular stomatitis virus (VSV) pseudotyped with the glycoprotein (GP) of the lymphocytic choriomeningitis virus, is a promising new OV candidate. Here, we show that in mouse B16‐OVA melanoma, combination treatment of VSV‐GP with an ovalbumin (OVA) peptide‐loaded dendritic cell (DC) vaccine (DCVacc) significantly enhanced survival over the single agent therapies, although both DCVacc and DCVacc/VSV‐GP treatments induced comparable levels of OVA‐specific CD8 T cell responses. Virus replication was minimal so that direct viral oncolysis in B16‐OVA did not contribute to this synergism. The strong therapeutic effect of the DCVacc/VSV‐GP combination treatment was associated with high numbers of tumor‐infiltrating, highly activated T cells and the relative reduction of regulatory T cells in treated and contra‐lateral nontreated tumors. Accordingly, depletion of CD8 T cells but not natural killer cells abrogated the therapeutic effect of DCVacc/VSV‐GP supporting the crucial role of CD8 T cells. In addition, a drastic increase in several proinflammatory cytokines was observed in VSV‐GP‐treated tumors. Taken together, OVs, similar to ICI, have the potential to markedly increase the efficacy of cancer vaccines by alleviating local immune suppression in the tumor microenvironment. What's new? Cancer vaccine efficacy has been limited by the immunosuppressive tumor microenvironment. By inducing cancer cell death with the release of tumor‐related antigens, oncolytic viruses may have an adjuvant effect. Here, the authors show that a combination of the oncolytic rhabdovirus VSV‐GP and a dendritic cell vaccine is highly effective in the treatment of mouse melanoma, most likely because VSV‐GP reprograms the tumor microenvironment to enhance the effectivity of the vaccine‐induced immune response. Oncolytic viruses have the potential to dramatically increase the efficacy of cancer vaccines by alleviating local immune suppression in the tumor microenvironment.
Collapse
Affiliation(s)
- Iris Koske
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Annika Rössler
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Pipperger
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Petersson
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria.,ViraTherapeutics GmbH, Innsbruck, Austria
| | - Isabel Barnstorf
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Davola ME, Mossman KL. Oncolytic viruses: how "lytic" must they be for therapeutic efficacy? Oncoimmunology 2019; 8:e1581528. [PMID: 31069150 PMCID: PMC6492965 DOI: 10.1080/2162402x.2019.1596006] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Oncolytic viruses (OVs) preferentially target and kill cancer cells without affecting healthy cells through a multi-modal mechanism of action. While historically the direct killing activity of OVs was considered the primary mode of action, initiation or augmentation of a host antitumor immune response is now considered an essential aspect of oncolytic virotherapy. To improve oncolytic virotherapy, many studies focus on increasing virus replication and spread. In this article, we open for discussion the traditional dogma that correlates replication with the efficacy of OVs, pointing out several examples that oppose this principle.
Collapse
Affiliation(s)
- Maria Eugenia Davola
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Karen Louise Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Zhang X, Mao G, van den Pol AN. Chikungunya-vesicular stomatitis chimeric virus targets and eliminates brain tumors. Virology 2018; 522:244-259. [PMID: 30055515 DOI: 10.1016/j.virol.2018.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/17/2023]
Abstract
Vesicular stomatitis virus (VSV) shows potential for targeting and killing cancer cells, but can be dangerous in the brain due to its neurotropic glycoprotein. Here we test a chimeric virus in which the VSV glycoprotein is replaced with the Chikungunya polyprotein E3-E2-6K-E1 (VSVΔG-CHIKV). Control mice with brain tumors survived a mean of 40 days after tumor implant. VSVΔG-CHIKV selectively infected and eliminated the tumor, and extended survival substantially in all tumor-bearing mice to over 100 days. VSVΔG-CHIKV also targeted intracranial primary patient derived melanoma xenografts. Virus injected into one melanoma spread to other melanomas within the same brain with little detectable infection of normal cells. Intravenous VSVΔG-CHIKV infected tumor cells but not normal tissue. In immunocompetent mice, VSVΔG-CHIKV selectively infected mouse melanoma cells within the brain. These data suggest VSVΔG-CHIKV can target and destroy brain tumors in multiple animal models without the neurotropism associated with the wild type VSV glycoprotein.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, United States
| | - Guochao Mao
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, United States
| | - Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, United States.
| |
Collapse
|
20
|
Oseledchyk A, Ricca JM, Gigoux M, Ko B, Redelman-Sidi G, Walther T, Liu C, Iyer G, Merghoub T, Wolchok JD, Zamarin D. Lysis-independent potentiation of immune checkpoint blockade by oncolytic virus. Oncotarget 2018; 9:28702-28716. [PMID: 29983890 PMCID: PMC6033351 DOI: 10.18632/oncotarget.25614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Intratumoral therapy with oncolytic viruses is increasingly being explored as a strategy to potentiate an immune response against cancer, but it remains unknown whether such therapy should be restricted to cancers sensitive to virus-mediated lysis. Using Newcastle Disease Virus (NDV) as a model, we explore immunogenic potential of an oncolytic virus in bladder cancer, where existing immunotherapy with PD-1 and PD-L1-targeting antibodies to date has shown suboptimal response rates. Infection of human and mouse bladder cancer cells with NDV resulted in immunogenic cell death, activation of innate immune pathways, and upregulation of MHC and PD-L1 in all tested cell lines, including the cell lines completely resistant to NDV-mediated lysis. In a bilateral flank NDV-lysis-resistant syngeneic murine bladder cancer model, intratumoral therapy with NDV led to an increase of immune infiltration in both treated and distant tumors and a shift from an inhibitory to effector T cell phenotype. Consequently, combination of intratumoral NDV with systemic PD-1 or CTLA-4 blockade led to improved local and abscopal tumor control and overall survival. These findings encourage future clinical trials combining intratumoral NDV therapy with systemic immunomodulatory agents and underscore the rationale for such treatments irrespective of tumor cell sensitivity to NDV-mediated lysis.
Collapse
Affiliation(s)
- Anton Oseledchyk
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob M Ricca
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathieu Gigoux
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian Ko
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gil Redelman-Sidi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Tyler Walther
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cailian Liu
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gopa Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
21
|
Vile RG. The Immune System in Oncolytic Immunovirotherapy: Gospel, Schism and Heresy. Mol Ther 2018; 26:942-946. [PMID: 29573976 DOI: 10.1016/j.ymthe.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Richard G Vile
- Department of Molecular Medicine and Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
The Oncolytic Virus VSV-GP Is Effective against Malignant Melanoma. Viruses 2018; 10:v10030108. [PMID: 29498639 PMCID: PMC5869501 DOI: 10.3390/v10030108] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/12/2018] [Accepted: 02/24/2018] [Indexed: 12/12/2022] Open
Abstract
Previously, we described VSV-GP, a modified version of the vesicular stomatitis virus, as a non-neurotoxic oncolytic virus that is effective for the treatment of malignant glioblastoma and ovarian cancer. Here, we evaluate the therapeutic efficacy of VSV-GP for malignant melanoma. All of the human, mouse, and canine melanoma cell lines that were tested, alongside most primary human melanoma cultures, were infected by VSV-GP and efficiently killed. Additionally, we found that VSV-GP prolonged the survival of mice in both a xenograft and a syngeneic mouse model. However, only a few mice survived with long-term tumor remission. When we analyzed the factors that might limit VSV-GP's efficacy, we found that vector-neutralizing antibodies did not play a role in this context, as even after eight subsequent immunizations and an observation time of 42 weeks, no vector-neutralizing antibodies were induced in VSV-GP immunized mice. In contrast, the type I IFN response might have contributed to the reduced efficacy of the therapy, as both of the cell lines that were used for the mouse models were able to mount a protective IFN response. Nevertheless, early treatment with VSV-GP also reduced the number and size of lung metastases in a syngeneic B16 mouse model. In summary, VSV-GP is a potent candidate for the treatment of malignant melanoma; however, factors limiting the efficacy of the virus need to be further explored.
Collapse
|
23
|
Oncotargeting by Vesicular Stomatitis Virus (VSV): Advances in Cancer Therapy. Viruses 2018; 10:v10020090. [PMID: 29473868 PMCID: PMC5850397 DOI: 10.3390/v10020090] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/28/2022] Open
Abstract
Modern oncotherapy approaches are based on inducing controlled apoptosis in tumor cells. Although a number of apoptosis-induction approaches are available, site-specific delivery of therapeutic agents still remain the biggest hurdle in achieving the desired cancer treatment benefit. Additionally, systemic treatment-induced toxicity remains a major limiting factor in chemotherapy. To specifically address drug-accessibility and chemotherapy side effects, oncolytic virotherapy (OV) has emerged as a novel cancer treatment alternative. In OV, recombinant viruses with higher replication capacity and stronger lytic properties are being considered for tumor cell-targeting and subsequent cell lysing. Successful application of OVs lies in achieving strict tumor-specific tropism called oncotropism, which is contingent upon the biophysical interactions of tumor cell surface receptors with viral receptors and subsequent replication of oncolytic viruses in cancer cells. In this direction, few viral vector platforms have been developed and some of these have entered pre-clinical/clinical trials. Among these, the Vesicular stomatitis virus (VSV)-based platform shows high promise, as it is not pathogenic to humans. Further, modern molecular biology techniques such as reverse genetics tools have favorably advanced this field by creating efficient recombinant VSVs for OV; some have entered into clinical trials. In this review, we discuss the current status of VSV based oncotherapy, challenges, and future perspectives regarding its therapeutic applications in the cancer treatment.
Collapse
|
24
|
Ricca JM, Oseledchyk A, Walther T, Liu C, Mangarin L, Merghoub T, Wolchok JD, Zamarin D. Pre-existing Immunity to Oncolytic Virus Potentiates Its Immunotherapeutic Efficacy. Mol Ther 2018; 26:1008-1019. [PMID: 29478729 PMCID: PMC6079372 DOI: 10.1016/j.ymthe.2018.01.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/18/2018] [Accepted: 01/25/2018] [Indexed: 12/28/2022] Open
Abstract
Anti-viral immunity presents a major hurdle for systemically administered oncolytic viruses (OV). Intratumoral OV therapy has a potential to overcome this problem through activation of anti-tumor immune response, with local and abscopal effects. However, the effects of anti-viral immunity in such a setting are still not well defined. Using Newcastle Disease Virus (NDV) as a model, we explore the effects of pre-existing anti-viral immunity on therapeutic efficacy in syngeneic mouse tumor models. Unexpectedly, we find that while pre-existing immunity to NDV limits its replication in tumors, tumor clearance, abscopal anti-tumor immune effects, and survival are not compromised and, on the contrary, are superior in NDV-immunized mice. These findings demonstrate that pre-existing immunity to NDV may increase its therapeutic efficacy through potentiation of systemic anti-tumor immunity, which provides clinical rationale for repeated therapeutic dosing and prompts investigation of such effects with other OVs.
Collapse
Affiliation(s)
- Jacob M Ricca
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anton Oseledchyk
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tyler Walther
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cailian Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Levi Mangarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Taha Merghoub
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
25
|
|
26
|
Balathasan L, Tang VA, Yadollahi B, Brun J, Labelle M, Lefebvre C, Swift SL, Stojdl DF. Activating Peripheral Innate Immunity Enables Safe and Effective Oncolytic Virotherapy in the Brain. MOLECULAR THERAPY-ONCOLYTICS 2017; 7:45-56. [PMID: 29062886 PMCID: PMC5645178 DOI: 10.1016/j.omto.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/08/2017] [Indexed: 11/29/2022]
Abstract
The oncolytic mutant vesicular stomatitis virus VSVΔ51 achieves robust efficacy in multiple extracranial tumor models. Yet for malignancies of the brain, direct intratumoral infusion of VSVΔ51 causes lethal virus-induced neuropathology. Here, we have developed a novel therapeutic regime that uses peripheral immunization with a single sub-lethal dose of VSVΔ51 to establish an acute anti-viral state that enables the safe intracranial (IC) infusion of an otherwise lethal dose of VSVΔ51 within just 6 hr. Although type I interferons alone appeared insufficient to explain this protective phenotype, serum isolated at early time points from primed animals conferred protection against an IC dose of virus. Adaptive immune populations had minimal contributions. Finally, the therapeutic utility of this novel strategy was demonstrated by peripherally priming and intracranially treating mice bearing aggressive CT2A syngeneic astrocytomas with VSVΔ51. Approximately 25% of animals achieved complete regression of established tumors, with no signs of virus-induced neurological impairment. This approach may harness an early warning system in the brain that has evolved to protect the host against otherwise lethal neurotropic viral infections. We have exploited this protective mechanism to safely and efficaciously treat brain tumors with an otherwise neurotoxic virus, potentially widening the available treatment options for oncolytic virotherapy in the brain.
Collapse
Affiliation(s)
- Lukxmi Balathasan
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Vera A Tang
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Beta Yadollahi
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada.,Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Jan Brun
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Melanie Labelle
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Charles Lefebvre
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Stephanie L Swift
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - David F Stojdl
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada.,Department of Biology, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.,Department of Pediatrics, University of Ottawa, 75 Laurier Ave. E., Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
27
|
Evaluation of the oncolytic potential of R 2B Mukteshwar vaccine strain of Newcastle disease virus (NDV) in a colon cancer cell line (SW-620). Arch Virol 2017; 162:2705-2713. [PMID: 28578522 DOI: 10.1007/s00705-017-3411-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 04/06/2017] [Indexed: 01/21/2023]
Abstract
Virotherapy is emerging as an alternative treatment of cancer. Among the candidate oncolytic viruses (OVs), Newcastle disease virus (NDV) has emerged as a promising non-engineered OV. In the present communication, we explored the oncolytic potential of R2B Mukteshwar strain of NDV using SW-620 colon cancer cells. SW-620 cells were xenografted in nude mice and after evaluation of the safety profile, 1 x 107 plaque forming units (PFU) of NDV were inoculated as virotherapeutic agent via the intratumoral (I/T) and intravenous (I/V) route. Tumor growth inhibition was compared with their respective control groups by gross volume and histopathological evaluation. Antibody titer and virus survival were measured by hemagglutination inhibition (HI)/serum neutralization test (SNT) and real-time PCR, respectively. During the safety trial, the test strain did not produce any abnormal symptoms nor weight loss in BALB/c mice. Significant tumor lytic activity was evident when viruses were injected via the I/T route. There was a 43 and 57% tumor growth inhibition on absolute and relative tumor volume basis, respectively, compared with mock control. On the same basis, the I/V route treatment resulted in 40 and 16% of inhibition, respectively. Histopathological examination revealed that the virus caused apoptosis, followed by necrosis, but immune cell infiltration was not remarkable. The virus survived in 2/2 mice until day 10 and in 3/6 mice by day 19, with both routes of administration. Anti-NDV antibodies were generated at moderate level and the titer reached a maximum of 1:32 and 1:64 via the I/T and I/V routes, respectively. In conclusion, the test NDV strain was found to be safe and showed oncolytic activity against the SW-620 cell line in mice.
Collapse
|
28
|
Filley AC, Dey M. Immune System, Friend or Foe of Oncolytic Virotherapy? Front Oncol 2017; 7:106. [PMID: 28589085 PMCID: PMC5440545 DOI: 10.3389/fonc.2017.00106] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/08/2017] [Indexed: 01/25/2023] Open
Abstract
Oncolytic viruses (OVs) are an emerging class of targeted anticancer therapies designed to selectively infect, replicate in, and lyse malignant cells without causing harm to normal, healthy tissues. In addition to direct oncolytic activity, OVs have shown dual promise as immunotherapeutic agents. The presence of viral infection and subsequently generated immunogenic tumor cell death trigger innate and adaptive immune responses that mediate further tumor destruction. However, antiviral immune responses can intrinsically limit OV infection, spread, and overall therapeutic efficacy. Host immune system can act both as a barrier as well as a facilitator and sometimes both at the same time based on the phase of viral infection. Thus, manipulating the host immune system to minimize antiviral responses and viral clearance while still promoting immune-mediated tumor destruction remains a key challenge facing oncolytic virotherapy. Recent clinical trials have established the safety, tolerability, and efficacy of virotherapies in the treatment of a variety of malignancies. Most notably, talimogene laherparepvec (T-VEC), a genetically engineered oncolytic herpesvirus-expressing granulocyte macrophage colony stimulating factor, was recently approved for the treatment of melanoma, representing the first OV to be approved by the FDA as an anticancer therapy in the US. This review discusses OVs and their antitumor properties, their complex interactions with the immune system, synergy between virotherapy and existing cancer treatments, and emerging strategies to augment the efficacy of OVs as anticancer therapies.
Collapse
Affiliation(s)
- Anna C Filley
- Department of Neurosurgery, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Mahua Dey
- Department of Neurosurgery, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
29
|
Guo ZS, Liu Z, Kowalsky S, Feist M, Kalinski P, Lu B, Storkus WJ, Bartlett DL. Oncolytic Immunotherapy: Conceptual Evolution, Current Strategies, and Future Perspectives. Front Immunol 2017; 8:555. [PMID: 28555136 PMCID: PMC5430078 DOI: 10.3389/fimmu.2017.00555] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
The concept of oncolytic virus (OV)-mediated cancer therapy has been shifted from an operational virotherapy paradigm to an immunotherapy. OVs often induce immunogenic cell death (ICD) of cancer cells, and they may interact directly with immune cells as well to prime antitumor immunity. We and others have developed a number of strategies to further stimulate antitumor immunity and to productively modulate the tumor microenvironment (TME) for potent and sustained antitumor immune cell activity. First, OVs have been engineered or combined with other ICD inducers to promote more effective T cell cross-priming, and in many cases, the breaking of functional immune tolerance. Second, OVs may be armed to express Th1-stimulatory cytokines/chemokines or costimulators to recruit and sustain the potent antitumor immunity into the TME to focus their therapeutic activity within the sites of disease. Third, combinations of OV with immunomodulatory drugs or antibodies that recondition the TME have proven to be highly promising in early studies. Fourth, combinations of OVs with other immunotherapeutic regimens (such as prime-boost cancer vaccines, CAR T cells; armed with bispecific T-cell engagers) have also yielded promising preliminary findings. Finally, OVs have been combined with immune checkpoint blockade, with robust antitumor efficacy being observed in pilot evaluations. Despite some expected hurdles for the rapid translation of OV-based state-of-the-art protocols, we believe that a cohort of these novel approaches will join the repertoire of standard cancer treatment options in the near future.
Collapse
Affiliation(s)
- Zong Sheng Guo
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zuqiang Liu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacy Kowalsky
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Surgery, CCM/CVK, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Pawel Kalinski
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J. Storkus
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L. Bartlett
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Melzer MK, Lopez-Martinez A, Altomonte J. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a "Hammer" and "Anvil". Biomedicines 2017; 5:E8. [PMID: 28536351 PMCID: PMC5423493 DOI: 10.3390/biomedicines5010008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022] Open
Abstract
Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV), a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Arturo Lopez-Martinez
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Jennifer Altomonte
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
31
|
Simovic B, Walsh SR, Wan Y. Mechanistic insights into the oncolytic activity of vesicular stomatitis virus in cancer immunotherapy. Oncolytic Virother 2015; 4:157-67. [PMID: 27512679 PMCID: PMC4918393 DOI: 10.2147/ov.s66079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy and oncolytic virotherapy have both shown anticancer efficacy in the clinic as monotherapies but the greatest promise lies in therapies that combine these approaches. Vesicular stomatitis virus is a prominent oncolytic virus with several features that promise synergy between oncolytic virotherapy and immunotherapy. This review will address the cytotoxicity of vesicular stomatitis virus in transformed cells and what this means for antitumor immunity and the virus’ immunogenicity, as well as how it facilitates the breaking of tolerance within the tumor, and finally, we will outline how these features can be incorporated into the rational design of new treatment strategies in combination with immunotherapy.
Collapse
Affiliation(s)
- Boris Simovic
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Scott R Walsh
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
32
|
Miller A, Suksanpaisan L, Naik S, Nace R, Federspiel M, Peng KW, Russell SJ. Reporter gene imaging identifies intratumoral infection voids as a critical barrier to systemic oncolytic virus efficacy. MOLECULAR THERAPY-ONCOLYTICS 2014; 1:14005. [PMID: 27119095 PMCID: PMC4782940 DOI: 10.1038/mto.2014.5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/18/2014] [Indexed: 01/31/2023]
Abstract
Systemically administered oncolytic viruses have the ability to cause tumor destruction through the expansion and coalescence of intratumoral infectious centers. Efficacy is therefore dependent upon both the density and intratumoral distribution of virus-infected cells achieved after initial virus infusion, and delivery methods are being developed to enhance these critical parameters. However, the three-dimensional (3D) mapping of intratumoral infectious centers is difficult using conventional immunohistochemical methodology, requiring painstaking 3D reconstruction of numerous sequential stained tumor sections, with no ability to study the temporal evolution of spreading infection in a single animal. We therefore developed a system using very high-resolution noninvasive in vivo micro single-photon emitted computed tomography/computed tomography (microSPECT/CT) imaging to determine the intratumoral distribution of thyroid radiotracers in tumors infected with an oncolytic virus encoding the thyroidal sodium–iodide symporter (NIS). This imaging system was used for longitudinal analysis of the density, distribution, and evolution of intratumoral infectious centers after systemic administration of oncolytic vesicular stomatitis virus in tumor-bearing mice and revealed heterogeneous delivery of virus particles both within and between tumors in animals receiving identical therapy. This study provides compelling validation of high resolution in vivo reporter gene mapping as a convenient method for serial monitoring of intratumoral virus spread that will be necessary to address critical barriers to systemic oncolytic virus efficacy such as intratumoral delivery.
Collapse
Affiliation(s)
- Amber Miller
- Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lukkana Suksanpaisan
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA; Imanis Life Sciences, Rochester, Minnesota, USA
| | - Shruthi Naik
- Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota, USA
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota, USA
| | - Mark Federspiel
- Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
33
|
Alonso-Camino V, Rajani K, Kottke T, Rommelfanger-Konkol D, Zaidi S, Thompson J, Pulido J, Ilett E, Donnelly O, Selby P, Pandha H, Melcher A, Harrington K, Diaz RM, Vile R. The profile of tumor antigens which can be targeted by immunotherapy depends upon the tumor's anatomical site. Mol Ther 2014; 22:1936-48. [PMID: 25059678 DOI: 10.1038/mt.2014.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/05/2014] [Indexed: 11/09/2022] Open
Abstract
Previously, we showed that vesicular stomatitis virus (VSV) engineered to express a cDNA library from human melanoma cells (ASMEL, Altered Self Melanoma Epitope Library) was an effective systemic therapy to treat subcutaneous (s.c.) murine B16 melanomas. Here, we show that intravenous treatment with the same ASMEL VSV-cDNA library was an effective treatment for established intra-cranial (i.c.) melanoma brain tumors. The optimal combination of antigens identified from the ASMEL which treated s.c. B16 tumors (VSV-N-RAS+VSV-CYTC-C+VSV-TYRP-1) was ineffective against i.c. B16 brain tumors. In contrast, combination of VSV-expressed antigens-VSV-HIF-2α+VSV-SOX-10+VSV-C-MYC+VSV-TYRP1-from ASMEL which was highly effective against i.c. B16 brain tumors, had no efficacy against the same tumors growing subcutaneously. Correspondingly, i.c. B16 tumors expressed a HIF-2α(Hi), SOX-10(Hi), c-myc(Hi), TYRP1, N-RAS(lo)Cytc(lo) antigen profile, which differed significantly from the HIF-2α(lo), SOX-10(lo), c-myc(lo), TYRP1, N-RAS(Hi)Cytc(Hi) phenotype of s.c. B16 tumors, and was imposed upon the tumor cells by CD11b(+) cells within the local brain tumor microenvironment. Combining T-cell costimulation with systemic VSV-cDNA treatment, long-term cures of mice with established i.c. tumors were achieved in about 75% of mice. Our data show that the anatomical location of a tumor profoundly affects the profile of antigens that it expresses.
Collapse
Affiliation(s)
| | - Karishma Rajani
- Department of Molecular Medicine, The Institute of Cancer Research, London, UK
| | - Timothy Kottke
- Department of Molecular Medicine, The Institute of Cancer Research, London, UK
| | | | - Shane Zaidi
- 1] Department of Molecular Medicine, The Institute of Cancer Research, London, UK [2] The Institute of Cancer Research, Division of Cancer Biology, Chester Beatty Laboratories, London, UK
| | - Jill Thompson
- Department of Molecular Medicine, The Institute of Cancer Research, London, UK
| | - Jose Pulido
- 1] Department of Molecular Medicine, The Institute of Cancer Research, London, UK [2] Department of Ophthalmology and Ocular Oncology Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth Ilett
- Faculty of Medicine and Health, Leeds Institute of Cancer and Pathology, Leeds, UK
| | - Oliver Donnelly
- Faculty of Medicine and Health, Leeds Institute of Cancer and Pathology, Leeds, UK
| | - Peter Selby
- Faculty of Medicine and Health, Leeds Institute of Cancer and Pathology, Leeds, UK
| | - Hardev Pandha
- Leggett Building, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Alan Melcher
- Faculty of Medicine and Health, Leeds Institute of Cancer and Pathology, Leeds, UK
| | - Kevin Harrington
- The Institute of Cancer Research, Division of Cancer Biology, Chester Beatty Laboratories, London, UK
| | - Rosa Maria Diaz
- Department of Molecular Medicine, The Institute of Cancer Research, London, UK
| | - Richard Vile
- 1] Department of Molecular Medicine, The Institute of Cancer Research, London, UK [2] Faculty of Medicine and Health, Leeds Institute of Cancer and Pathology, Leeds, UK [3] Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
34
|
Cytokine conditioning enhances systemic delivery and therapy of an oncolytic virus. Mol Ther 2014; 22:1851-63. [PMID: 24957982 DOI: 10.1038/mt.2014.118] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/18/2014] [Indexed: 12/11/2022] Open
Abstract
Optimum clinical protocols require systemic delivery of oncolytic viruses in the presence of an intact immune system. We show that preconditioning with immune modulators, or loading virus onto carrier cells ex vivo, enhances virus-mediated antitumor activity. Our early trials of systemic reovirus delivery showed that after infusion reovirus could be recovered from blood cells--but not from plasma--suggesting that rapid association with blood cells may protect virus from neutralizing antibody. We therefore postulated that stimulation of potential carrier cells directly in vivo before intravenous viral delivery would enhance delivery of cell-associated virus to tumor. We show that mobilization of the CD11b(+) cell compartment by granulocyte macrophage-colony stimulating factor immediately before intravenous reovirus, eliminated detectable tumor in mice with small B16 melanomas, and achieved highly significant therapy in mice bearing well-established tumors. Unexpectedly, cytokine conditioning therapy was most effective in the presence of preexisting neutralizing antibody. Consistent with this, reovirus bound by neutralizing antibody effectively accessed monocytes/macrophages and was handed off to tumor cells. Thus, preconditioning with cytokine stimulated recipient cells in vivo for enhanced viral delivery to tumors. Moreover, preexisting neutralizing antibody to an oncolytic virus may, therefore, even be exploited for systemic delivery to tumors in the clinic.
Collapse
|
35
|
Janelle V, Lamarre A. How Informative is the Immune Response Against Surrogate Tumor Antigens to Assess Antitumor Immunity? Front Oncol 2014; 4:135. [PMID: 24926437 PMCID: PMC4045314 DOI: 10.3389/fonc.2014.00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/21/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Valérie Janelle
- Immunovirology Laboratory, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier , Laval, QC , Canada ; Department of Biology, Biomed Research Center, Université du Québec à Montréal , Montréal, QC , Canada
| | - Alain Lamarre
- Immunovirology Laboratory, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier , Laval, QC , Canada ; Department of Biology, Biomed Research Center, Université du Québec à Montréal , Montréal, QC , Canada
| |
Collapse
|
36
|
Abstract
Oncolytic viruses are ideal platforms for tumor vaccination because they can mediate the direct in situ killing of tumor cells that release a broad array of tumor antigens and alarmins or danger signals thereby cross-priming antitumor cytotoxic T lymphocytes (CTLs), which mediate the indirect killing of uninfected cells. The balance between the direct and indirect killing phases of oncolytic virotherapy is the key to its success and can be manipulated by incorporating various immunomodulatory genes into the oncolytic virus genome. Recently, the interim analysis of a large multicenter Phase III clinical trial for Talimogene laherparepvec, a granulocyte-macrophage colony stimulating factor-armed oncolytic herpes simplex virus, revealed significant improvement in objective response and durable response rates over control arm and a trend toward improved overall survival. Meanwhile, newer oncolytics are being developed expressing additional immunomodulatory transgenes to further enhance cross-priming and the generation of antitumor CTLs and to block the immunosuppressive actions of the tumor microenvironment. Since oncolytic vaccines can be engineered to kill tumor cells directly, modulate the kinetics of the antitumor immune response and reverse the immunosuppressive actions of the tumor, they are predicted to emerge as the preferred immunotherapeutic anticancer weapons of the future.
Collapse
Affiliation(s)
- Noura B Elsedawy
- Department of Molecular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
37
|
Maraba MG1 virus enhances natural killer cell function via conventional dendritic cells to reduce postoperative metastatic disease. Mol Ther 2014; 22:1320-1332. [PMID: 24695102 DOI: 10.1038/mt.2014.60] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 03/25/2014] [Indexed: 01/04/2023] Open
Abstract
This study characterizes the ability of novel oncolytic rhabdoviruses (Maraba MG1) to boost natural killer (NK) cell activity. Our results demonstrate that MG1 activates NK cells via direct infection and maturation of conventional dendritic cells. Using NK depletion and conventional dendritic cells ablation studies in vivo, we established that both are required for MG1 efficacy. We further explored the efficacy of attenuated MG1 (nonreplicating MG1-UV(2min) and single-cycle replicating MG1-Gless) and demonstrated that these viruses activate conventional dendritic cells, although to a lesser extent than live MG1. This translates to equivalent abilities to remove tumor metastases only at the highest viral doses of attenuated MG1. In tandem, we characterized the antitumor ability of NK cells following preoperative administration of live and attenuated MG1. Our results demonstrates that a similar level of NK activation and reduction in postoperative tumor metastases was achieved with equivalent high viral doses concluding that viral replication is important, but not necessary for NK activation. Biochemical characterization of a panel of UV-inactivated MG1 (2-120 minutes) revealed that intact viral particle and target cell recognition are essential for NK cell-mediated antitumor responses. These findings provide mechanistic insight and preclinical rationale for safe perioperative virotherapy to effectively reduce metastatic disease following cancer surgery.
Collapse
|
38
|
The strength of the T cell response against a surrogate tumor antigen induced by oncolytic VSV therapy does not correlate with tumor control. Mol Ther 2014; 22:1198-1210. [PMID: 24590047 DOI: 10.1038/mt.2014.34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/21/2014] [Indexed: 12/14/2022] Open
Abstract
Cancer therapy using oncolytic viruses has gained interest in the last decade. Vesicular stomatitis virus is an attractive candidate for this alternative treatment approach. The importance of the immune response against tumor antigens in virotherapy efficacy is now well recognized, however, its relative contribution versus the intrinsic oncolytic capacity of viruses has been difficult to evaluate. To start addressing this question, we compared glycoprotein and matrix mutants of vesicular stomatitis virus (VSV), showing different oncolytic potentials for B16/B16gp33 melanoma tumor cells in vitro, with the wild-type virus in their ability to induce tumor-specific CD8(+) T cell responses and control tumor progression in vivo. Despite the fact that wild-type and G mutants induced a stronger gp33-specific immune response compared to the MM51R mutant, all VSV strains showed a similar capacity to slow down tumor progression. The effectiveness of the matrix mutant treatment proved to be CD8(+) dependent and directed against tumor antigens other than gp33 since adoptive transfer of isolated CD8(+) T lymphocytes from treated B16gp33-bearing mice resulted in significant protection of naive mice against challenge with the parental tumor. Remarkably, the VSV matrix mutant induced the upregulation of major histocompatibility class-I antigen at the tumor cell surface thus favoring recognition by CD8(+) T cells. These results demonstrate that VSV mutants induce an antitumor immune response using several mechanisms. A better understanding of these mechanisms will prove useful for the rational design of viruses with improved therapeutic efficacy.
Collapse
|
39
|
Abstract
Despite extensive research, current glioma therapies are still unsatisfactory, and novel approaches are pressingly needed. In recent years, both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment, and the mechanistic background of their cytotoxicity has been unveiled. A growing number of clinical trials have convincingly established viral therapies to be safe in glioma patients, and maximum tolerated doses have generally not been reached. However, evidence for therapeutic benefit has been limited: new generations of therapeutic vectors need to be developed in order to target not only tumor cells but also the complex surrounding microenvironment. Such therapies could also direct long-lasting immune responses toward the tumor while reducing early antiviral reactions. Furthermore, viral delivery methods are to be improved and viral spread within the tumor will have to be enhanced. Here, we will review the outcome of completed glioma virus therapy trials as well as highlight the ongoing clinical activities. On this basis, we will give an overview of the numerous strategies to enhance therapeutic efficacy of new-generation viruses and novel treatment regimens. Finally, we will conclude with approaches that may be crucial to the development of successful glioma therapies in the future.
Collapse
Affiliation(s)
| | - E. Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Oncolytic vesicular stomatitis virus in an immunocompetent model of MUC1-positive or MUC1-null pancreatic ductal adenocarcinoma. J Virol 2013; 87:10283-94. [PMID: 23864625 DOI: 10.1128/jvi.01412-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is a promising oncolytic agent against various malignancies. Here, for the first time, we tested VSV in vitro and in vivo in a clinically relevant, immunocompetent mouse model of pancreatic ductal adenocarcinoma (PDA). Our system allows the study of virotherapy against PDA in the context of overexpression (80% of PDA patients) or no expression of human mucin 1 (MUC1), a major marker for poor prognosis in patients. In vitro, we tested three VSV recombinants, wild-type VSV, VSV-green fluorescent protein (VSV-GFP), and a safe oncolytic VSV-ΔM51-GFP, against five mouse PDA cell lines that either expressed human MUC1 or were MUC1 null. All viruses demonstrated significant oncolytic abilities independent of MUC1 expression, although VSV-ΔM51-GFP was somewhat less effective in two PDA cell lines. In vivo administration of VSV-ΔM51-GFP resulted in significant reduction of tumor growth for tested mouse PDA xenografts (+MUC1 or MUC1 null), and antitumor efficacy was further improved when the virus was combined with the chemotherapeutic drug gemcitabine. The antitumor effect was transient in all tested groups. The developed system can be used to study therapies involving various oncolytic viruses and chemotherapeutics, with the goal of inducing tumor-specific immunity while preventing premature virus clearance.
Collapse
|
41
|
Batenchuk C, Le Boeuf F, Stubbert L, Falls T, Atkins HL, Bell JC, Conrad DP. Non-replicating rhabdovirus-derived particles (NRRPs) eradicate acute leukemia by direct cytolysis and induction of antitumor immunity. Blood Cancer J 2013; 3:e123. [PMID: 23852158 PMCID: PMC3730201 DOI: 10.1038/bcj.2013.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023] Open
Abstract
Rhabdoviruses (RVs) are currently being pursued as anticancer therapeutics for various tumor types, notably leukemia. However, modest virion production and limited spread between noncontiguous circulating leukemic cells requires high-dose administration of RVs, which exceeds the maximum tolerable dose of the live virus. Furthermore, in severely immunosuppressed leukemic patients, the potential for uncontrolled live virus spread may compromise the safety of a live virus approach. We hypothesized that the barriers to oncolytic virotherapy in liquid tumors may be overcome by administration of high-dose non-replicating RVs. We have developed a method to produce unique high-titer bioactive yet non-replicating rhabdovirus-derived particles (NRRPs). This novel biopharmaceutical is multimodal possessing direct cytolytic and immunomodulatory activity against acute leukemia. We demonstrate that NRRP resistance in normal cells is mediated by intact antiviral defences including interferon (IFN). This data was substantiated using murine models of blast crisis. The translational promise of NRRPs was demonstrated in clinical samples obtained from patients with high-burden multidrug-resistant acute myeloid leukemia. This is the first successful attempt to eradicate disseminated cancer using a non-replicating virus-derived agent, representing a paradigm shift in our understanding of oncolytic virus-based therapies and their application toward the treatment of acute leukemia.
Collapse
Affiliation(s)
- C Batenchuk
- 1] Center for Cancer Therapeutics, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada [2] Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada [3] Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Vesicular stomatitis virus variants selectively infect and kill human melanomas but not normal melanocytes. J Virol 2013; 87:6644-59. [PMID: 23552414 DOI: 10.1128/jvi.03311-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Metastatic malignant melanoma remains one of the most therapeutically challenging forms of cancer. Here we test replication-competent vesicular stomatitis viruses (VSV) on 19 primary human melanoma samples and compare these infections with those of normal human melanocyte control cells. Even at a low viral concentration, we found a strong susceptibility to viral oncolysis in over 70% of melanomas. In contrast, melanocytes displayed strong resistance to virus infection and showed complete protection by interferon. Several recombinant VSVs were compared, and all infected and killed most melanomas with differences in the time course with increasing rates of melanoma infection, as follows: VSV-CT9-M51 < VSV-M51 < VSV-G/GFP < VSV-rp30. VSV-rp30 sequencing revealed 2 nonsynonymous mutations at codon positions P126 and L223, both of which appear to be required for the enhanced phenotype. VSV-rp30 showed effective targeting and infection of multiple subcutaneous and intracranial melanoma xenografts in SCID mice after tail vein virus application. Sequence analysis of mutations in the melanomas used revealed that BRAF but not NRAS gene mutation status was predictive for enhanced susceptibility to infection. In mouse melanoma models with specific induced gene mutations including mutations of the Braf, Pten, and Cdkn2a genes, viral infection correlated with the extent of malignant transformation. Similar to human melanocytes, mouse melanocytes resisted VSV-rp30 infection. This study confirms the general susceptibility of the majority of human melanoma types for VSV-mediated oncolysis.
Collapse
|
43
|
Donnelly OG, Errington-Mais F, Steele L, Hadac E, Jennings V, Scott K, Peach H, Phillips RM, Bond J, Pandha H, Harrington K, Vile R, Russell S, Selby P, Melcher AA. Measles virus causes immunogenic cell death in human melanoma. Gene Ther 2013; 20:7-15. [PMID: 22170342 PMCID: PMC3378495 DOI: 10.1038/gt.2011.205] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/11/2011] [Accepted: 11/21/2011] [Indexed: 12/25/2022]
Abstract
Oncolytic viruses (OV) are promising treatments for cancer, with several currently undergoing testing in randomised clinical trials. Measles virus (MV) has not yet been tested in models of human melanoma. This study demonstrates the efficacy of MV against human melanoma. It is increasingly recognised that an essential component of therapy with OV is the recruitment of host antitumour immune responses, both innate and adaptive. MV-mediated melanoma cell death is an inflammatory process, causing the release of inflammatory cytokines including type-1 interferons and the potent danger signal HMGB1. Here, using human in vitro models, we demonstrate that MV enhances innate antitumour activity, and that MV-mediated melanoma cell death is capable of stimulating a melanoma-specific adaptive immune response.
Collapse
Affiliation(s)
- O G Donnelly
- Leeds Institute for Molecular Medicine, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mahoney DJ, Stojdl DF. Molecular Pathways: Multimodal Cancer-Killing Mechanisms Employed by Oncolytic Vesiculoviruses. Clin Cancer Res 2012; 19:758-63. [DOI: 10.1158/1078-0432.ccr-11-3149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med 2012. [PMID: 23178246 DOI: 10.1038/nm.3013] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of the immune response to oncolytic Herpes simplex viral (oHSV) therapy for glioblastoma is controversial because it might enhance or inhibit efficacy. We found that within hours of oHSV infection of glioblastomas in mice, activated natural killer (NK) cells are recruited to the site of infection. This response substantially diminished the efficacy of glioblastoma virotherapy. oHSV-activated NK cells coordinated macrophage and microglia activation within tumors. In vitro, human NK cells preferentially lysed oHSV-infected human glioblastoma cell lines. This enhanced killing depended on the NK cell natural cytotoxicity receptors (NCRs) NKp30 and NKp46, whose ligands are upregulated in oHSV-infected glioblastoma cells. We found that HSV titers and oHSV efficacy are increased in Ncr1(-/-) mice and a Ncr1(-/-) NK cell adoptive transfer model of glioma, respectively. These results demonstrate that glioblastoma virotherapy is limited partially by an antiviral NK cell response involving specific NCRs, uncovering new potential targets to enhance cancer virotherapy.
Collapse
|
46
|
The efficacy versus toxicity profile of combination virotherapy and TLR immunotherapy highlights the danger of administering TLR agonists to oncolytic virus-treated mice. Mol Ther 2012; 21:348-57. [PMID: 23011032 DOI: 10.1038/mt.2012.204] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Injection of oncolytic vesicular stomatitis virus (VSV) into established B16ova melanomas results in tumor regression, in large part by inducing innate immune reactivity against the viral infection, mediated by MyD88- and type III interferon (IFN)-, but not TLR-4-, signaling. We show here that intratumoral (IT) treatment with lipopolysaccharide (LPS), a TLR-4 agonist, significantly enhanced the local therapy induced by VSV by combining activation of different innate immune pathways. Therapy was further enhanced by co-recruiting a potent antitumor, adaptive T-cell response by using a VSV engineered to express the ovalbumin tumor-associated antigen ova, in combination with LPS. However, the combination of IT LPS with systemically delivered VSV resulted in rapid morbidity and mortality in the majority of mice. Decreasing the intravenous (IV) dose of VSV to levels at which toxicity was ameliorated did not enhance therapy compared with IT LPS alone. Toxicity of the systemic VSV + IT LPS regimen was associated with rapidly elevated levels of serum tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, which neither systemic VSV, nor IT LPS, alone induced. These data show that therapy associated with direct IT injections of oncolytic viruses can be significantly enhanced by combination with agonists of innate immune activation pathways, which are not themselves activated by the virus alone. Importantly, they also highlight possible, unforeseen dangers of combination therapies in which an immunotherapy, even delivered locally at the tumor site, may systemically sensitize the patient to a cytokine shock-like response triggered by IV delivery of oncolytic virus.
Collapse
|
47
|
Rommelfanger DM, Wongthida P, Diaz RM, Kaluza KM, Thompson JM, Kottke TJ, Vile RG. Systemic combination virotherapy for melanoma with tumor antigen-expressing vesicular stomatitis virus and adoptive T-cell transfer. Cancer Res 2012; 72:4753-64. [PMID: 22836753 PMCID: PMC3893932 DOI: 10.1158/0008-5472.can-12-0600] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oncolytic virotherapy offers the potential to treat tumors both as a single agent and in combination with traditional modalities such as chemotherapy and radiotherapy. Here we describe an effective, fully systemic treatment regimen, which combines virotherapy, acting essentially as an adjuvant immunotherapy, with adoptive cell transfer (ACT). The combination of ACT with systemic administration of a vesicular stomatitis virus (VSV) engineered to express the endogenous melanocyte antigen glycoprotein 100 (gp100) resulted in regression of established melanomas and generation of antitumor immunity. Tumor response was associated with in vivo T-cell persistence and activation as well as treatment-related vitiligo. However, in a proportion of treated mice, initial tumor regressions were followed by recurrences. Therapy was further enhanced by targeting an additional tumor antigen with the VSV-antigen + ACT combination strategy, leading to sustained response in 100% of mice. Together, our findings suggest that systemic virotherapy combined with antigen-expressing VSV could be used to support and enhance clinical immunotherapy protocols with adoptive T-cell transfer, which are already used in the clinic.
Collapse
|
48
|
Rintoul JL, Lemay CG, Tai LH, Stanford MM, Falls TJ, de Souza CT, Bridle BW, Daneshmand M, Ohashi PS, Wan Y, Lichty BD, Mercer AA, Auer RC, Atkins HL, Bell JC. ORFV: a novel oncolytic and immune stimulating parapoxvirus therapeutic. Mol Ther 2012; 20:1148-57. [PMID: 22273579 PMCID: PMC3369287 DOI: 10.1038/mt.2011.301] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/18/2011] [Indexed: 12/27/2022] Open
Abstract
Replicating viruses for the treatment of cancer have a number of advantages over traditional therapeutic modalities. They are highly targeted, self-amplifying, and have the added potential to act as both gene-therapy delivery vehicles and oncolytic agents. Parapoxvirus ovis or Orf virus (ORFV) is the prototypic species of the Parapoxvirus genus, causing a benign disease in its natural ungulate host. ORFV possesses a number of unique properties that make it an ideal viral backbone for the development of a cancer therapeutic: it is safe in humans, has the ability to cause repeat infections even in the presence of antibody, and it induces a potent T(h)-1-dominated immune response. Here, we show that live replicating ORFV induces an antitumor immune response in multiple syngeneic mouse models of cancer that is mediated largely by the potent activation of both cytokine-secreting, and tumoricidal natural killer (NK) cells. We have also highlighted the clinical potential of the virus by demonstration of human cancer cell oncolysis including efficacy in an A549 xenograft model of cancer.
Collapse
Affiliation(s)
- Julia L Rintoul
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Chantal G Lemay
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Lee-Hwa Tai
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Marianne M Stanford
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Theresa J Falls
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Christiano T de Souza
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Byram W Bridle
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, Faculty of Health Sciences, Hamilton, Ontario, Canada
| | - Manijeh Daneshmand
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Pamela S Ohashi
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, Faculty of Health Sciences, Hamilton, Ontario, Canada
| | - Brian D Lichty
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, Faculty of Health Sciences, Hamilton, Ontario, Canada
| | - Andrew A Mercer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Rebecca C Auer
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Harold L Atkins
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - John C Bell
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| |
Collapse
|
49
|
Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma. Nat Biotechnol 2012; 30:337-43. [PMID: 22426030 DOI: 10.1038/nbt.2157] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/13/2012] [Indexed: 02/08/2023]
Abstract
Multiple intravenous injections of a cDNA library, derived from human melanoma cell lines and expressed using the highly immunogenic vector vesicular stomatitis virus (VSV), cured mice with established melanoma tumors. Successful tumor eradication was associated with the ability of mouse lymphoid cells to mount a tumor-specific CD4(+) interleukin (IL)-17 recall response in vitro. We used this characteristic IL-17 response to screen the VSV-cDNA library and identified three different VSV-cDNA virus clones that, when used in combination but not alone, achieved the same efficacy against tumors as the complete parental virus library. VSV-expressed cDNA libraries can therefore be used to identify tumor rejection antigens that can cooperate to induce anti-tumor responses. This technology should be applicable to antigen discovery for other cancers, as well as for other diseases in which immune reactivity against more than one target antigen contributes to disease pathology.
Collapse
|
50
|
Deciphering the Multifaceted Relationship between Oncolytic Viruses and Natural Killer Cells. Adv Virol 2011; 2012:702839. [PMID: 22312364 PMCID: PMC3263705 DOI: 10.1155/2012/702839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/14/2011] [Indexed: 12/23/2022] Open
Abstract
Despite active research in virotherapy, this apparently safe modality has not achieved widespread success. The immune response to viral infection appears to be an essential factor that determines the efficacy of oncolytic viral therapy. The challenge is determining whether the viral-elicited immune response is a hindrance or a tool for viral treatment. NK cells are a key component of innate immunity that mediates antiviral immunity while also coordinating tumor clearance. Various reports have suggested that the NK response to oncolytic viral therapy is a critical factor in premature viral clearance while also mediating downstream antitumor immunity. As a result, particular attention should be given to the NK cell response to various oncolytic viral vectors and how their antiviral properties can be suppressed while maintaining tumor clearance. In this review we discuss the current literature on the NK response to oncolytic viral infection and how future studies clarify this intricate response.
Collapse
|