1
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
2
|
Khushalani NI, Harrington KJ, Melcher A, Bommareddy PK, Zamarin D. Breaking the barriers in cancer care: The next generation of herpes simplex virus-based oncolytic immunotherapies for cancer treatment. Mol Ther Oncolytics 2023; 31:100729. [PMID: 37841530 PMCID: PMC10570124 DOI: 10.1016/j.omto.2023.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Since the US Food and Drug Administration first approved talimogene laherparepvec for the treatment of melanoma in 2015, the field of oncolytic immunotherapy (OI) has rapidly evolved. There are numerous ongoing clinical studies assessing the clinical activity of OIs across a wide range of tumor types. Further understanding of the mechanisms underlying the anti-tumor immune response has led to the development of OIs with improved immune-mediated preclinical efficacy. In this review, we discuss the key approaches for developing the next generation of herpes simplex virus-based OIs. Modifications to the viral genome and incorporation of transgenes to promote safety, tumor-selective replication, and immune stimulation are reviewed. We also review the advantages and disadvantages of intratumoral versus intravenous administration, summarize clinical evidence supporting the use of OIs as a strategy to overcome resistance to immune checkpoint blockade, and consider emerging opportunities to improve OI efficacy in the combination setting.
Collapse
|
3
|
Ma XY, Hill BD, Hoang T, Wen F. Virus-inspired strategies for cancer therapy. Semin Cancer Biol 2022; 86:1143-1157. [PMID: 34182141 PMCID: PMC8710185 DOI: 10.1016/j.semcancer.2021.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/27/2023]
Abstract
The intentional use of viruses for cancer therapy dates back over a century. As viruses are inherently immunogenic and naturally optimized delivery vehicles, repurposing viruses for drug delivery, tumor antigen presentation, or selective replication in cancer cells represents a simple and elegant approach to cancer treatment. While early virotherapy was fraught with harsh side effects and low response rates, virus-based therapies have recently seen a resurgence due to newfound abilities to engineer and tune oncolytic viruses, virus-like particles, and virus-mimicking nanoparticles for improved safety and efficacy. However, despite their great potential, very few virus-based therapies have made it through clinical trials. In this review, we present an overview of virus-inspired approaches for cancer therapy, discuss engineering strategies to enhance their mechanisms of action, and highlight their application for overcoming the challenges of traditional cancer therapies.
Collapse
Affiliation(s)
- Xiao Yin Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brett D Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Trang Hoang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
4
|
Semenova AV, Sivolobova GF, Grazhdantseva AA, Agafonov AP, Kochneva GV. Reporter Transgenes for Monitoring the Antitumor Efficacy of Recombinant Oncolytic Viruses. Acta Naturae 2022; 14:46-56. [PMID: 36348722 PMCID: PMC9611865 DOI: 10.32607/actanaturae.11719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Accurate measurement of tumor size and margins is crucial for successful oncotherapy. In the last decade, non-invasive imaging modalities, including optical imaging using non-radioactive substrates, deep-tissue imaging with radioactive substrates, and magnetic resonance imaging have been developed. Reporter genes play the most important role among visualization tools; their expression in tumors and metastases makes it possible to track changes in the tumor growth and gauge therapy effectiveness. Oncolytic viruses are often chosen as a vector for delivering reporter genes into tumor cells, since oncolytic viruses are tumor-specific, meaning that they infect and lyse tumor cells without damaging normal cells. The choice of reporter transgenes for genetic modification of oncolytic viruses depends on the study objectives and imaging methods used. Optical imaging techniques are suitable for in vitro studies and small animal models, while deep-tissue imaging techniques are used to evaluate virotherapy in large animals and humans. For optical imaging, transgenes of fluorescent proteins, luciferases, and tyrosinases are used; for deep-tissue imaging, the most promising transgene is the sodium/iodide symporter (NIS), which ensures an accumulation of radioactive isotopes in virus-infected tumor cells. Currently, NIS is the only reporter transgene that has been shown to be effective in monitoring tumor virotherapy not only in preclinical but also in clinical studies.
Collapse
Affiliation(s)
- A. V. Semenova
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| | - G. F. Sivolobova
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| | - A. A. Grazhdantseva
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| | - A. P. Agafonov
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| | - G. V. Kochneva
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| |
Collapse
|
5
|
Nisar M, Paracha RZ, Adil S, Qureshi SN, Janjua HA. An Extensive Review on Preclinical and Clinical Trials of Oncolytic Viruses Therapy for Pancreatic Cancer. Front Oncol 2022; 12:875188. [PMID: 35686109 PMCID: PMC9171400 DOI: 10.3389/fonc.2022.875188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy resistance and peculiar tumor microenvironment, which diminish or mitigate the effects of therapies, make pancreatic cancer one of the deadliest malignancies to manage and treat. Advanced immunotherapies are under consideration intending to ameliorate the overall patient survival rate in pancreatic cancer. Oncolytic viruses therapy is a new type of immunotherapy in which a virus after infecting and lysis the cancer cell induces/activates patients’ immune response by releasing tumor antigen in the blood. The current review covers the pathways and molecular ablation that take place in pancreatic cancer cells. It also unfolds the extensive preclinical and clinical trial studies of oncolytic viruses performed and/or undergoing to design an efficacious therapy against pancreatic cancer.
Collapse
Affiliation(s)
- Maryum Nisar
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Adil
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
6
|
Dittmar T, Weiler J, Luo T, Hass R. Cell-Cell Fusion Mediated by Viruses and HERV-Derived Fusogens in Cancer Initiation and Progression. Cancers (Basel) 2021; 13:5363. [PMID: 34771528 PMCID: PMC8582398 DOI: 10.3390/cancers13215363] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is a well-known, but still scarcely understood biological phenomenon, which might play a role in cancer initiation, progression and formation of metastases. Although the merging of two (cancer) cells appears simple, the entire process is highly complex, energy-dependent and tightly regulated. Among cell fusion-inducing and -regulating factors, so-called fusogens have been identified as a specific type of proteins that are indispensable for overcoming fusion-associated energetic barriers and final merging of plasma membranes. About 8% of the human genome is of retroviral origin and some well-known fusogens, such as syncytin-1, are expressed by human (cancer) cells. Likewise, enveloped viruses can enable and facilitate cell fusion due to evolutionarily optimized fusogens, and are also capable to induce bi- and multinucleation underlining their fusion capacity. Moreover, multinucleated giant cancer cells have been found in tumors derived from oncogenic viruses. Accordingly, a potential correlation between viruses and fusogens of human endogenous retroviral origin in cancer cell fusion will be summarized in this review.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Julian Weiler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
7
|
Jeon YH, Jung YT. Production of a replicating retroviral vector expressing Reovirus fast protein for cancer gene therapy. J Virol Methods 2021; 299:114332. [PMID: 34655690 DOI: 10.1016/j.jviromet.2021.114332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/09/2023]
Abstract
Reovirus fusion-associated small transmembrane (FAST) proteins induce syncytium formation. Recently, several studies have shown that the use of recombinant vectors engineered to express fusion proteins is becoming attractive for the development of enhanced oncolytic viruses. In this study, we investigated the cytotoxic effect of four different FAST proteins (p10 FAST of Avian reovirus [ARV], p10 FAST of Pulau virus [PuV], p13 FAST of Broome virus [BroV], and p14 FAST of reptilian reovirus [RRV]). Plasmids encoding FASTs were transfected into Vero cells. All FAST proteins induced syncytium formation at varying intensities. To achieve high levels of FAST expression, four different FAST genes were inserted into the murine leukemia virus (MLV)-based replication-competent retroviral (RCR) vector. Two days after transfection in 293 T cells, only the MoMLV-10A1-p10(PuV) RCR vector showed syncytia formation. Based on these results, p10(Puv) was selected from the four FASTs. Next, we investigated the cytotoxicity of p10(PuV) on HeLa cervical carcinoma cells, HT1080 human fibrosarcoma cells, and U87 human glioma cells. Although three human cancer cell lines induced syncytium formation, U87 cells were highly susceptible to syncytia formation by transfection with p10(PuV). In addition, the viral supernatants from MoMLV-10A-p10(PuV) RCR vector-transfected 293 T cells also induced syncytium formation in HT1080, TE671, and U87 cells. This RCR vector encoding p10(PuV) is a promising candidate for cancer gene therapy.
Collapse
Affiliation(s)
- Young Hyun Jeon
- Department of Microbiology, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Yong-Tae Jung
- Department of Microbiology, Dankook University, Cheonan, 330-714, Republic of Korea.
| |
Collapse
|
8
|
Fusogenic oncolytic vaccinia virus enhances systemic antitumor immune response by modulating the tumor microenvironment. Mol Ther 2020; 29:1782-1793. [PMID: 33348052 DOI: 10.1016/j.ymthe.2020.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/04/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022] Open
Abstract
Oncolytic viruses induce antitumor immunity following direct viral oncolysis. However, their therapeutic effects are limited in distant untreated tumors because their antitumor function depends on indirect antitumor immunity. Here, we generated a novel fusogenic oncolytic vaccinia virus (FUVAC) and compared its antitumor activity with that of its parental non-fusogenic virus. Compared with the parent, FUVAC exerted the cytopathic effect and induced immunogenic cell death in human and murine cancer cells more efficiently. In a bilateral tumor-bearing syngeneic mouse model, FUVAC administration significantly inhibited tumor growth in both treated and untreated tumors. However, its antitumor effects were completely suppressed by CD8+ T cell depletion. Notably, FUVAC reduced the number of tumor-associated immune-suppressive cells in treated tumors, but not in untreated tumors. Mice treated with FUVAC before an immune checkpoint inhibitor (ICI) treatment achieved complete response (CR) in both treated and untreated tumors, whereas ICI alone did not show antitumor activity. Mice achieving CR rejected rechallenge with the same tumor cells, suggesting establishment of a long-term tumor-specific immune memory. Thus, FUVAC improves the tumor immune microenvironment and enhances systemic antitumor immunity, suggesting that, alone and in combination with ICI, it is a novel immune modulator for overcoming oncolytic virus-resistant tumors.
Collapse
|
9
|
Sasso E, D'Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A. New viral vectors for infectious diseases and cancer. Semin Immunol 2020; 50:101430. [PMID: 33262065 DOI: 10.1016/j.smim.2020.101430] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Nouscom srl, Via di Castel Romano 100, 00128 Rome, Italy; Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | - Nicola Zambrano
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| | | | | | - Alfredo Nicosia
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
10
|
Wang X, Wu Z, Qiu W, Chen P, Xu X, Han W. Programming CAR T cells to enhance anti-tumor efficacy through remodeling of the immune system. Front Med 2020; 14:726-745. [PMID: 32794014 DOI: 10.1007/s11684-020-0746-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have been indicated effective in treating B cell acute lymphoblastic leukemia and non-Hodgkin lymphoma and have shown encouraging results in preclinical and clinical studies. However, CAR T cells have achieved minimal success against solid malignancies because of the additional obstacles of their insufficient migration into tumors and poor amplification and persistence, in addition to antigen-negative relapse and an immunosuppressive microenvironment. Various preclinical studies are exploring strategies to overcome the above challenges. Mobilization of endogenous immune cells is also necessary for CAR T cells to obtain their optimal therapeutic effect given the importance of the innate immune responses in the elimination of malignant tumors. In this review, we focus on the recent advances in the engineering of CAR T cell therapies to restore the immune response in solid malignancies, especially with CAR T cells acting as cellular carriers to deliver immunomodulators to tumors to mobilize the endogenous immune response. We also explored the sensitizing effects of conventional treatment approaches, such as chemotherapy and radiotherapy, on CAR T cell therapy. Finally, we discuss the combination of CAR T cells with biomaterials or oncolytic viruses to enhance the anti-tumor outcomes of CAR T cell therapies in solid tumors.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Biotechnology, Southwest University, Chongqing, 400715, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Department of Stem Cell & Regenerative Medicine, Daping Hospital and Research Institute of Surgery, Chongqing, 400042, China.,Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhiqiang Wu
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Qiu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Stem Cell & Regenerative Medicine, Daping Hospital and Research Institute of Surgery, Chongqing, 400042, China
| | - Ping Chen
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xiang Xu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Stem Cell & Regenerative Medicine, Daping Hospital and Research Institute of Surgery, Chongqing, 400042, China.
| | - Weidong Han
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
11
|
Del Papa J, Clarkin RG, Parks RJ. Use of cell fusion proteins to enhance adenoviral vector efficacy as an anti-cancer therapeutic. Cancer Gene Ther 2020; 28:745-756. [DOI: 10.1038/s41417-020-0192-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/03/2023]
|
12
|
Goradel NH, Negahdari B, Ghorghanlu S, Jahangiri S, Arashkia A. Strategies for enhancing intratumoral spread of oncolytic adenoviruses. Pharmacol Ther 2020; 213:107586. [PMID: 32479843 DOI: 10.1016/j.pharmthera.2020.107586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses, effectively replicate viruses within malignant cells to lyse them without affecting normal ones, have recently shown great promise in developing therapeutic options for cancer. Adenoviruses (Ads) are one of the candidates in oncolytic virotheraoy due to its easily manipulated genomic DNA and expression of wide rane of its receptors on the various cancers. Although systematic delivery of oncolytic adenoviruses can target both primary and metastatic tumors, there are some drawbacks in the effective systematic delivery of oncolytic adenoviruses, including pre-existing antibodies and liver tropism. To overcome these limitations, intratumural (IT) administration of oncolytic viruses have been proposed. However, IT injection of Ads leaves much of the tumor mass unaffected and Ads are not able to disperse more in the tumor microenvironment (TME). To this end, various strategies have been developed to enhance the IT spread of oncolytic adenoviruses, such as using extracellular matrix degradation enzymes, junction opening peptides, and fusogenic proteins. In the present paper, we reviewed different oncolytic adenoviruses, their application in the clinical trials, and strategies for enhancing their IT spread.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajjad Ghorghanlu
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
13
|
Farrera-Sal M, Fillat C, Alemany R. Effect of Transgene Location, Transcriptional Control Elements and Transgene Features in Armed Oncolytic Adenoviruses. Cancers (Basel) 2020; 12:E1034. [PMID: 32340119 PMCID: PMC7226017 DOI: 10.3390/cancers12041034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical results with oncolytic adenoviruses (OAds) used as antitumor monotherapies show limited efficacy. To increase OAd potency, transgenes have been inserted into their genome, a strategy known as "arming OAds". Here, we review different parameters that affect the outcome of armed OAds. Recombinant adenovirus used in gene therapy and vaccination have been the basis for the design of armed OAds. Hence, early region 1 (E1) and early region 3 (E3) have been the most commonly used transgene insertion sites, along with partially or complete E3 deletions. Besides transgene location and orientation, transcriptional control elements, transgene function, either virocentric or immunocentric, and even the codons encoding it, greatly impact on transgene levels and virus fitness.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- VCN Biosciences S.L., 08174 Sant Cugat, Spain
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rare Diseases Networking Biomedical Research Center (CIBERER), University of Barcelona, 08036 Barcelona, Spain;
| | - Ramon Alemany
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
14
|
Jin SY, Jung YT. Construction of a replication-competent retroviral vector for expression of the VSV-G envelope glycoprotein for cancer gene therapy. Arch Virol 2020; 165:1089-1097. [PMID: 32146506 DOI: 10.1007/s00705-020-04585-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 11/28/2022]
Abstract
Gibbon ape leukemia virus (GALV) can infect a wide variety of cells but fails to infect most cells derived from laboratory mice. Transduction of human hematopoietic stem cells with GALV retroviral vectors is more efficient than with amphotropic vectors. In this study, a Moloney murine leukemia virus-gibbon ape leukemia virus (MoMLV-GALV) vector was constructed by replacing the natural env gene of the full-length Moloney MLV genome with the GALV env gene. To monitor viral transmission by green fluorescent protein (GFP) expression, internal ribosomal entry site-enhanced GFP (IRES-EGFP) was positioned between the GALV env gene and the 3' untranslated region (3' UTR) to obtain pMoMLV-GALV-EGFP. The MoMLV-GALV-EGFP vector was able to replicate with high titer in TE671 human rhabdomyosarcoma cells and U-87 human glioma cells. To evaluate the potential of the MoMLV-GALV vector as a therapeutic agent, the gene for the fusogenic envelope G glycoprotein of vesicular stomatitis virus (VSV-G) was incorporated into the vector. Infection with the resulting MoMLV-GALV-VSV-G vector resulted in lysis of the U-87 cells due to syncytium formation. Syncytium formation was also observed in the transfected human prostate cancer cell line LNCaP after extended cultivation of cells. In addition, we deleted the GALV env gene from the MoMLV-GALV-VSV-G vector to improve viral genome stability. This MoMLV-VSV-G vector is also replication competent and induces syncytium formation in 293T, HT1080, TE671 and U-87 cells. These results suggest that replication of the MoMLV-GALV-VSV-G vector or MoMLV-VSV-G vector may directly lead to cytotoxicity. Therefore, the vectors developed in this study are potentially useful tools for cancer gene therapy.
Collapse
Affiliation(s)
- Sae Young Jin
- Department of Microbiology, Dankook University, Cheonan, 330-714, Korea
| | - Yong-Tae Jung
- Department of Microbiology, Dankook University, Cheonan, 330-714, Korea.
| |
Collapse
|
15
|
Kochneva GV, Sivolobova GF, Tkacheva AV, Gorchakov AA, Kulemzin SV. Combination of Oncolytic Virotherapy and CAR T/NK Cell Therapy for the Treatment of Cancer. Mol Biol 2020; 54:3-16. [DOI: 10.1134/s0026893320010100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
|
16
|
Abstract
Oncolytic virotherapy uses replication-competent virus as a means of treating cancer. Whereas this field has shown great promise as a viable treatment method, the limited spread of these viruses throughout the tumor microenvironment remains a major challenge. To overcome this issue, researchers have begun looking at syncytia formation as a novel method of increasing viral spread. Several naturally occurring fusogenic viruses have been shown to possess strong oncolytic potential and have since been studied to gain insight into how this process benefits oncolytic virotherapy. Whereas these naturally fusogenic viruses have been beneficial, there are still challenges associated with their regular use. Because of this, engineered/recombinant fusogenic viruses have also been created that enhance nonfusogenic oncolytic viruses with the beneficial property of syncytia formation. The purpose of this review is to examine the existing body of literature on syncytia formation in oncolytics and offer direction for potential future studies.
Collapse
Affiliation(s)
- Chase Burton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
17
|
Zheng M, Huang J, Tong A, Yang H. Oncolytic Viruses for Cancer Therapy: Barriers and Recent Advances. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:234-247. [PMID: 31872046 PMCID: PMC6911943 DOI: 10.1016/j.omto.2019.10.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oncolytic viruses (OVs) are powerful new therapeutic agents in cancer therapy. With the first OV (talimogene laherparepvec [T-vec]) obtaining US Food and Drug Administration approval, interest in OVs has been boosted greatly. Nevertheless, despite extensive research, oncolytic virotherapy has shown limited efficacy against solid tumors. Recent advances in viral retargeting, genetic editing, viral delivery platforms, tracking strategies, OV-based gene therapy, and combination strategies have the potential to broaden the applications of oncolytic virotherapy in oncology. In this review, we present several insights into the limitations and challenges of oncolytic virotherapy, describe the strategies mentioned above, provide a summary of recent preclinical and clinical trials in the field of oncolytic virotherapy, and highlight the need to optimize current strategies to improve clinical outcomes.
Collapse
Affiliation(s)
- Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Jianhan Huang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, P.R. China
| |
Collapse
|
18
|
Del Papa J, Petryk J, Bell JC, Parks RJ. An Oncolytic Adenovirus Vector Expressing p14 FAST Protein Induces Widespread Syncytium Formation and Reduces Tumor Growth Rate In Vivo. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:107-120. [PMID: 31193718 PMCID: PMC6539411 DOI: 10.1016/j.omto.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/01/2019] [Indexed: 12/24/2022]
Abstract
Intratumoral injection of oncolytic viruses provides a direct means of tumor cell destruction for inoperable tumors. Unfortunately, oncolytic vectors based on human adenovirus (HAdV) typically do not spread efficiently throughout the tumor mass, reducing the efficacy of treatment. In this study, we explore the efficacy of a conditionally replicating HAdV vector expressing the p14 Fusion-Associated Small Transmembrane (FAST) protein (CRAdFAST) in both immunocompetent and immunodeficient mouse models of cancer. The p14 FAST protein mediates cell-cell fusion, which may enhance spread of the virus-mediated, tumor cell-killing effect. In the murine 4T1 model of cancer, treatment with CRAdFAST resulted in enhanced cell death compared to vector lacking the p14 FAST gene, but it did not reduce the tumor growth rate in vivo. In the human A549 lung adenocarcinoma model of cancer, CRAdFAST showed significantly improved oncolytic efficacy in vitro and in vivo. In an A549 xenograft tumor model in vivo, CRAdFAST induced tumor cell fusion, which led to the formation of large acellular regions within the tumor and significantly reduced the tumor growth rate compared to control vector. Our results indicate that expression of p14 FAST from an oncolytic HAdV can improve vector efficacy for the treatment of cancer.
Collapse
Affiliation(s)
- Josh Del Papa
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Julia Petryk
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - John C Bell
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
19
|
Lee ES, Jin SY, Kang BK, Jung YT. Construction of replication-competent oncolytic retroviral vectors expressing R peptide-truncated 10A1 envelope glycoprotein. J Virol Methods 2019; 268:32-36. [PMID: 30898575 DOI: 10.1016/j.jviromet.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 01/27/2023]
Abstract
Replication-deficient retroviral (RDR) vectors have been generally used for gene therapy, but clinically beneficial transduction efficiency is difficult to achieve with these vectors. In recent times, attention has been focused on the use of murine leukemia virus (MLV)-based replication-competent retroviral (RCR) vectors. RCR vectors have been shown to achieve efficient tumor reduction in a wide variety of cancer models. Most RCR vectors have been developed from amphotropic 4070 A MLV env, which is broadly applied in basic research. In this study, we generated RCR vectors based on Moloney MLV by replacing the native env gene in a full-length viral genome with the 10A1 env gene. 10A1 MLV can infect a wide variety of cells. Unlike amphotropic MLV, the 10A1 MLV can use amphotropic MLV receptor Pit2 or gibbon ape leukemia virus (GaLV) receptor Pit1. The resulting construct MoMLV-10A1-EGFP was able to replicate in 293 T, NIH3T3, and Mus dunni cells. To evaluate the potential of MoMLV-10A1 vector as a therapeutic agent, we incorporated the yeast cytosine deaminase (CD) suicide gene into vectors. The resulting vector MoMLV-10A1-CD could inhibit the growth of human 293T cells upon 5-fluorocytosine (5-FC) administration. In addition, to lyse tumor cells by syncytium, MoMLV-10A1-R(-)-EGFP was generated by replacing wild-type 10A1 env with the 16-amino acid R peptide-truncated 10A1 env gene. Syncytium formation was observed in the TE671 human tumor cells, 293 T and PG13 cells upon transfection of the MoMLV-10A1-R(-)-EGFP vector. This result suggests that replication of this vector could be oncolytic in itself. We also found that syncytium could contribute to enhance cell-to-cell transmission of the retroviral vectors. Our results thus show that the MoMLV-10A1 vectors can be potentially useful for cancer gene therapy.
Collapse
Affiliation(s)
- Eun Sik Lee
- Department of Microbiology, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Sae Young Jin
- Department of Microbiology, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Byeng Kwon Kang
- Department of Microbiology, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Yong-Tae Jung
- Department of Microbiology, Dankook University, Cheonan, 330-714, Republic of Korea.
| |
Collapse
|
20
|
Brachtlova T, van Beusechem VW. Unleashing the Full Potential of Oncolytic Adenoviruses against Cancer by Applying RNA Interference: The Force Awakens. Cells 2018; 7:cells7120228. [PMID: 30477117 PMCID: PMC6315459 DOI: 10.3390/cells7120228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Oncolytic virus therapy of cancer is an actively pursued field of research. Viruses that were once considered as pathogens threatening the wellbeing of humans and animals alike are with every passing decade more prominently regarded as vehicles for genetic and oncolytic therapies. Oncolytic viruses kill cancer cells, sparing healthy tissues, and provoke an anticancer immune response. Among these viruses, recombinant adenoviruses are particularly attractive agents for oncolytic immunotherapy of cancer. Different approaches are currently examined to maximize their therapeutic effect. Here, knowledge of virus–host interactions may lead the way. In this regard, viral and host microRNAs are of particular interest. In addition, cellular factors inhibiting viral replication or dampening immune responses are being discovered. Therefore, applying RNA interference is an attractive approach to strengthen the anticancer efficacy of oncolytic viruses gaining attention in recent years. RNA interference can be used to fortify the virus’ cancer cell-killing and immune-stimulating properties and to suppress cellular pathways to cripple the tumor. In this review, we discuss different ways of how RNA interference may be utilized to increase the efficacy of oncolytic adenoviruses, to reveal their full potential.
Collapse
Affiliation(s)
- Tereza Brachtlova
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands.
| | - Victor W van Beusechem
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Guedan S, Alemany R. CAR-T Cells and Oncolytic Viruses: Joining Forces to Overcome the Solid Tumor Challenge. Front Immunol 2018; 9:2460. [PMID: 30405639 PMCID: PMC6207052 DOI: 10.3389/fimmu.2018.02460] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR)-modified T cells has resulted in unprecedented rates of long-lasting complete responses in patients with leukemia and lymphoma. However, despite the impressive results in patients with hematologic malignancies, CAR-T cells have showed limited effect against solid cancers. New approaches will need to simultaneously overcome the multiple challenges that CAR-T cells encounter in solid tumors, including the immunosuppressive tumor microenvironment and heterogeneity of antigen expression. Oncolytic viruses are lytic and immunogenic anti-cancer agents with the potential to synergize with CAR-T cells for the treatment of solid tumors. In addition, viruses can be further modified to deliver therapeutic transgenes selectively to the tumor microenvironment, which could enhance the effector functions of tumor-specific T cells. This review summarizes the major limitations of CAR-T cells in solid tumors and discusses the potential role for oncolytic viruses as partners for CAR-T cells in the fight against cancer.
Collapse
Affiliation(s)
- Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ramon Alemany
- ProCure Program, IDIBELL-Institut Catala d'Oncologia, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
22
|
Sprague L, Braidwood L, Conner J, Cassady KA, Benencia F, Cripe TP. Please stand by: how oncolytic viruses impact bystander cells. Future Virol 2018; 13:671-680. [PMID: 30416535 DOI: 10.2217/fvl-2018-0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
Oncolytic viruses (OVs) do more than simply infect and kill host cells. The accepted mechanism of action for OVs consists of a primary lytic phase and a subsequent antitumor and antiviral immune response. However, not all cells are subject to the direct effects of OV therapy, and it is becoming clear that OVs can also impact uninfected cells in the periphery. This review discusses the effects of OVs on uninfected neighboring cells, so-called bystander effects, and implications for OV therapies alone or in combination with other standard of care chemotherapy.
Collapse
Affiliation(s)
- Leslee Sprague
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, 43201 OH, USA.,The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, 43201 OH, USA
| | - Lynne Braidwood
- Virttu Biologics, BioCity, Scotland, UK.,Virttu Biologics, BioCity, Scotland, UK
| | - Joe Conner
- Virttu Biologics, BioCity, Scotland, UK.,Virttu Biologics, BioCity, Scotland, UK
| | - Kevin A Cassady
- Nationwide Children's Hospital, Division of Infectious Diseases, Columbus, 43205 OH, USA.,Nationwide Children's Hospital, Division of Hematology/Oncology/BMT & Center for Childhood Cancer & Blood Diseases, Columbus, 43205 OH, USA.,Nationwide Children's Hospital, Division of Infectious Diseases, Columbus, 43205 OH, USA.,Nationwide Children's Hospital, Division of Hematology/Oncology/BMT & Center for Childhood Cancer & Blood Diseases, Columbus, 43205 OH, USA
| | - Fabian Benencia
- Ohio University Russ College of Engineering & Technology, Biomedical Engineering, Athens, 45701 OH, USA.,Ohio University Russ College of Engineering & Technology, Biomedical Engineering, Athens, 45701 OH, USA
| | - Timothy P Cripe
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, 43201 OH, USA.,Nationwide Children's Hospital, Division of Hematology/Oncology/BMT & Center for Childhood Cancer & Blood Diseases, Columbus, 43205 OH, USA.,The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, 43201 OH, USA.,Nationwide Children's Hospital, Division of Hematology/Oncology/BMT & Center for Childhood Cancer & Blood Diseases, Columbus, 43205 OH, USA
| |
Collapse
|
23
|
Fusogenic Viruses in Oncolytic Immunotherapy. Cancers (Basel) 2018; 10:cancers10070216. [PMID: 29949934 PMCID: PMC6070779 DOI: 10.3390/cancers10070216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 01/09/2023] Open
Abstract
Oncolytic viruses are under intense development and have earned their place among the novel class of cancer immunotherapeutics that are changing the face of cancer therapy. Their ability to specifically infect and efficiently kill tumor cells, while breaking immune tolerance and mediating immune responses directed against the tumor, make oncolytic viruses highly attractive candidates for immunotherapy. Increasing evidence indicates that a subclass of oncolytic viruses, which encodes for fusion proteins, could outperform non-fusogenic viruses, both in their direct oncolytic potential, as well as their immune-stimulatory properties. Tumor cell infection with these viruses leads to characteristic syncytia formation and cell death due to fusion, as infected cells become fused with neighboring cells, which promotes intratumoral spread of the infection and releases additional immunogenic signals. In this review, we discuss the potential of fusogenic oncolytic viruses as optimal candidates to enhance immunotherapy and initiate broad antitumor responses. We provide an overview of the cytopathic mechanism of syncytia formation through viral-mediated expression of fusion proteins, either endogenous or engineered, and their benefits for cancer therapy. Growing evidence indicates that fusogenicity could be an important feature to consider in the design of optimal oncolytic virus platforms for combinatorial oncolytic immunotherapy.
Collapse
|
24
|
Wing A, Fajardo CA, Posey AD, Shaw C, Da T, Young RM, Alemany R, June CH, Guedan S. Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus-Driven Production of a Bispecific T-cell Engager. Cancer Immunol Res 2018; 6:605-616. [PMID: 29588319 PMCID: PMC6688490 DOI: 10.1158/2326-6066.cir-17-0314] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/08/2017] [Accepted: 03/12/2018] [Indexed: 01/23/2023]
Abstract
T cells expressing chimeric antigen receptors (CART) have shown significant promise in clinical trials to treat hematologic malignancies, but their efficacy in solid tumors has been limited. Oncolytic viruses have the potential to act in synergy with immunotherapies due to their immunogenic oncolytic properties and the opportunity of incorporating therapeutic transgenes in their genomes. Here, we hypothesized that an oncolytic adenovirus armed with an EGFR-targeting, bispecific T-cell engager (OAd-BiTE) would improve the outcome of CART-cell therapy in solid tumors. We report that CART cells targeting the folate receptor alpha (FR-α) successfully infiltrated preestablished xenograft tumors but failed to induce complete responses, presumably due to the presence of antigen-negative cancer cells. We demonstrated that OAd-BiTE-mediated oncolysis significantly improved CART-cell activation and proliferation, while increasing cytokine production and cytotoxicity, and showed an in vitro favorable safety profile compared with EGFR-targeting CARTs. BiTEs secreted from infected cells redirected CART cells toward EGFR in the absence of FR-α, thereby addressing tumor heterogeneity. BiTE secretion also redirected CAR-negative, nonspecific T cells found in CART-cell preparations toward tumor cells. The combinatorial approach improved antitumor efficacy and prolonged survival in mouse models of cancer when compared with the monotherapies, and this was the result of an increased BiTE-mediated T-cell activation in tumors. Overall, these results demonstrated that the combination of a BiTE-expressing oncolytic virus with adoptive CART-cell therapy overcomes key limitations of CART cells and BiTEs as monotherapies in solid tumors and encourage its further evaluation in human trials. Cancer Immunol Res; 6(5); 605-16. ©2018 AACR.
Collapse
Affiliation(s)
- Anna Wing
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carlos Alberto Fajardo
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona
| | - Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carolyn Shaw
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tong Da
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Regina M Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramon Alemany
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Sonia Guedan
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
25
|
Le Boeuf F, Gebremeskel S, McMullen N, He H, Greenshields AL, Hoskin DW, Bell JC, Johnston B, Pan C, Duncan R. Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models. MOLECULAR THERAPY-ONCOLYTICS 2017; 6:80-89. [PMID: 28856238 PMCID: PMC5562180 DOI: 10.1016/j.omto.2017.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
Abstract
The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral fusogens (∼100–150 amino acids) and efficiently induce cell-cell fusion and syncytium formation in multiple cell types. Syncytium formation enhances cell-cell virus transmission and may also induce immunogenic cell death, a form of apoptosis that stimulates immune recognition of tumor cells. These properties suggest that FAST proteins might serve to enhance oncolytic virotherapy. The oncolytic activity of recombinant VSVΔM51 (an interferon-sensitive vesicular stomatitis virus [VSV] mutant) encoding the p14 FAST protein (VSV-p14) was compared with a similar construct encoding GFP (VSV-GFP) in cell culture and syngeneic BALB/c tumor models. Compared with VSV-GFP, VSV-p14 exhibited increased oncolytic activity against MCF-7 and 4T1 breast cancer spheroids in culture and reduced primary 4T1 breast tumor growth in vivo. VSV-p14 prolonged survival in both primary and metastatic 4T1 breast cancer models, and in a CT26 metastatic colon cancer model. As with VSV-GFP, VSV-p14 preferentially replicated in vivo in tumors and was cleared rapidly from other sites. Furthermore, VSV-p14 increased the numbers of activated splenic CD4, CD8, natural killer (NK), and natural killer T (NKT) cells, and increased the number of activated CD4 and CD8 cells in tumors. FAST proteins may therefore provide a multi-pronged approach to improving oncolytic virotherapy via syncytium formation and enhanced immune stimulation.
Collapse
Affiliation(s)
- Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Simon Gebremeskel
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Nichole McMullen
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Han He
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | | | - David W Hoskin
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - John C Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada.,Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada.,Department of Pediatrics, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Chungen Pan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada.,Department of Pediatrics, Dalhousie University, Halifax, NS B3H4R2, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H4R2, Canada
| |
Collapse
|
26
|
Maroun J, Muñoz-Alía M, Ammayappan A, Schulze A, Peng KW, Russell S. Designing and building oncolytic viruses. Future Virol 2017; 12:193-213. [PMID: 29387140 PMCID: PMC5779534 DOI: 10.2217/fvl-2016-0129] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Oncolytic viruses (OVs) are engineered and/or evolved to propagate selectively in cancerous tissues. They have a dual mechanism of action; direct killing of infected cancer cells cross-primes anticancer immunity to boost the killing of uninfected cancer cells. The goal of the field is to develop OVs that are easily manufactured, efficiently delivered to disseminated sites of cancer growth, undergo rapid intratumoral spread, selectively kill tumor cells, cause no collateral damage and pose no risk of transmission in the population. Here we discuss the many virus engineering strategies that are being pursued to optimize delivery, intratumoral spread and safety of OVs derived from different virus families. With continued progress, OVs have the potential to transform the paradigm of cancer care.
Collapse
Affiliation(s)
- Justin Maroun
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Miguel Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Autumn Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Stephen Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents. Viruses 2017; 9:v9010013. [PMID: 28106842 PMCID: PMC5294982 DOI: 10.3390/v9010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 01/15/2017] [Indexed: 01/26/2023] Open
Abstract
Cancer is a devastating disease that affects millions of patients every year, and causes an enormous economic burden on the health care system and emotional burden on affected families. The first line of defense against solid tumors is usually extraction of the tumor, when possible, by surgical methods. In cases where solid tumors can not be safely removed, chemotherapy is often the first line of treatment. As metastatic cancers often become vigorously resistant to treatments, the development of novel, more potent and selective anti-cancer strategies is of great importance. Adenovirus (Ad) is the most commonly used virus in cancer clinical trials, however, regardless of the nature of the Ad-based therapeutic, complete responses to treatment remain rare. A number of pre-clinical studies have shown that, for all vector systems, viral spread throughout the tumor mass can be a major limiting factor for complete tumor elimination. By expressing exogenous cell-fusion proteins, many groups have shown improved spread of Ad-based vectors. This review summarizes the research done to examine the potency of Ad vectors expressing fusogenic proteins as anti-cancer therapeutics.
Collapse
|
28
|
Expression of the fusogenic p14 FAST protein from a replication-defective adenovirus vector does not provide a therapeutic benefit in an immunocompetent mouse model of cancer. Cancer Gene Ther 2016; 23:355-364. [PMID: 27740615 PMCID: PMC5095592 DOI: 10.1038/cgt.2016.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 01/21/2023]
Abstract
When injected directly into a tumor mass, adenovirus (Ad) vectors only transduce cells immediately along the injection tract. Expression of fusogenic proteins from the Ad vector can lead to syncytium formation, which efficiently spreads the therapeutic effect. Fusogenic proteins can also cause cancer cell death directly, and enhance the release of exosome-like particles containing tumor-associated antigens, which boosts the anti-tumor immune response. In this study, we have examined whether delivery of an early region 1 (E1)-deleted, replication-defective Ad vector encoding the reptilian reovirus p14 fusion-associated small transmembrane (FAST) protein can provide therapeutic efficacy in an immunocompetent mouse tumor model. A high multiplicity of infection of AdFAST is required to induce cell fusion in mouse mammary carcinoma 4T1 cells in vitro, and FAST protein expression caused a modest reduction in cell membrane integrity and metabolic activity compared with cells infected with a control vector. Cells expressing FAST protein released significantly higher quantities of exosomes. In immunocompetent Balb/C mice harboring subcutaneous 4T1 tumors, AdFAST did not induce detectable cancer cell fusion, promote tumor regression or prolong mouse survival compared with untreated mice. This study suggests that in the context of the 4T1 model, Ad-mediated FAST protein expression did not elicit a therapeutic effect.
Collapse
|
29
|
Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer. PLoS One 2016; 11:e0151516. [PMID: 26986751 PMCID: PMC4795661 DOI: 10.1371/journal.pone.0151516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
Adenoviruses (Ads) are used in numerous preclinical and clinical studies for delivery of anti-cancer therapeutic genes. Unfortunately, Ad has a poor ability to distribute throughout a tumor mass after intratumoral injection, and infects cells primarily within the immediate area of the injection tract. Thus, Ad-encoded transgene expression is typically limited to only a small percentage of cells within the tumor. One method to increase the proportion of the tumor impacted by Ad is through expression of fusogenic proteins. Infection of a single cell with an Ad vector encoding a fusogenic protein should lead to syncytium formation with adjacent cells, effectively spreading the effect of Ad and Ad-encoded therapeutic transgenes to a greater percentage of the tumor mass. Moreover, syncytium formation can be cytotoxic, suggesting that such proteins may be effective sole therapeutics. We show that an early region 1 (E1)-deleted Ad expressing reptilian reovirus p14 fusion-associated small transmembrane (FAST) protein caused extensive cell fusion in the replication-permissive 293 cell line and at high multiplicity of infection in non-permissive human lung adenocarcinoma A549 cells in vitro. FAST protein expression in the A549 cancer cell line led to a loss of cellular metabolic activity and membrane integrity, which correlated with induction of apoptosis. However, in an A549 xenograft CD-1 nude mouse cancer model, Ad-mediated FAST gene delivery did not induce detectable cell fusion, reduce tumor burden nor enhance mouse survival compared to controls. Taken together, our results show that, although AdFAST can enhance cancer cell killing in vitro, it is not effective as a sole therapeutic in the A549 tumor model in vivo.
Collapse
|
30
|
Tsun A, Miao XN, Wang CM, Yu DC. Oncolytic Immunotherapy for Treatment of Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:241-83. [PMID: 27240460 DOI: 10.1007/978-94-017-7555-7_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Immunotherapy entails the treatment of disease by modulation of the immune system. As detailed in the previous chapters, the different modes of achieving immune modulation are many, including the use of small/large molecules, cellular therapy, and radiation. Oncolytic viruses that can specifically attack, replicate within, and destroy tumors represent one of the most promising classes of agents for cancer immunotherapy (recently termed as oncolytic immunotherapy). The notion of oncolytic immunotherapy is considered as the way in which virus-induced tumor cell death (known as immunogenic cancer cell death (ICD)) allows the immune system to recognize tumor cells and provide long-lasting antitumor immunity. Both immune responses toward the virus and ICD together contribute toward successful antitumor efficacy. What is now becoming increasingly clear is that monotherapies, through any of the modalities detailed in this book, are neither sufficient in eradicating tumors nor in providing long-lasting antitumor immune responses and that combination therapies may deliver enhanced efficacy. After the rise of the genetic engineering era, it has been possible to engineer viruses to harbor combination-like characteristics to enhance their potency in cancer immunotherapy. This chapter provides a historical background on oncolytic virotherapy and its future application in cancer immunotherapy, especially as a combination therapy with other treatment modalities.
Collapse
Affiliation(s)
- A Tsun
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - X N Miao
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - C M Wang
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - D C Yu
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China.
| |
Collapse
|
31
|
Enhancing the bystander killing effect of an oncolytic HSV by arming it with a secretable apoptosis activator. Gene Ther 2015; 22:237-46. [PMID: 25567538 PMCID: PMC4352111 DOI: 10.1038/gt.2014.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/04/2014] [Accepted: 09/15/2014] [Indexed: 12/31/2022]
Abstract
Although oncolytic viruses have shown great promise as cancer therapeutics, results from a recent phase III clinical trial indicate that their potency may need further improvement for a clear clinical benefit. Here, we report a novel strategy to increase the bystander effect of virotherapy by arming an oncolytic virus with a secreted form of a Her2 single chain antibody linked to a self-multimerizing Fas ligand extracellular domain (Her2-COL-sFasL). The rationale is that, due to its much smaller size, this apoptosis activator can overcome obstacles such as the dense collagen in the tumor tissues to spread more freely than the viral particles. When measured in vitro, Her2-COL-sFasL was found to efficiently induce caspase cleavage, resulting in an 80% reduction in cell viability. Once incorporated into the genome of an oncolytic type 2 herpes simplex virus, FusOn-H3, Her2-COL-sFasL potentiates the therapeutic efficacy of the virus in an aggressive syngeneic mammary tumor model. Our data suggest that arming an oncolytic virus with a secretable and self-multimerizing apoptosis inducer is a feasible strategy to improve the potency of virotherapy.
Collapse
|
32
|
Coughlan L, Mullarkey C, Gilbert S. Adenoviral vectors as novel vaccines for influenza. ACTA ACUST UNITED AC 2015; 67:382-99. [PMID: 25560474 DOI: 10.1111/jphp.12350] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/05/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Influenza is a viral respiratory disease causing seasonal epidemics, with significant annual illness and mortality. Emerging viruses can pose a major pandemic threat if they acquire the capacity for sustained human-to-human transmission. Vaccination reduces influenza-associated mortality and is critical in minimising the burden on the healthcare system. However, current vaccines are not always effective in at-risk populations and fail to induce long-lasting protective immunity against a range of viruses. KEY FINDINGS The development of 'universal' influenza vaccines, which induce heterosubtypic immunity capable of reducing disease severity, limiting viral shedding or protecting against influenza subtypes with pandemic potential, has gained interest in the research community. To date, approaches have focused on inducing immune responses to conserved epitopes within the stem of haemagglutinin, targeting the ectodomain of influenza M2e or by stimulating cellular immunity to conserved internal antigens, nucleoprotein or matrix protein 1. SUMMARY Adenoviral vectors are potent inducers of T-cell and antibody responses and have demonstrated safety in clinical applications, making them an excellent choice of vector for delivery of vaccine antigens. In order to circumvent pre-existing immunity in humans, serotypes from non-human primates have recently been investigated. We will discuss the pre-clinical development of these novel vectors and their advancement to clinical trials.
Collapse
|
33
|
Rodríguez-García A, Giménez-Alejandre M, Rojas JJ, Moreno R, Bazan-Peregrino M, Cascalló M, Alemany R. Safety and efficacy of VCN-01, an oncolytic adenovirus combining fiber HSG-binding domain replacement with RGD and hyaluronidase expression. Clin Cancer Res 2014; 21:1406-18. [PMID: 25391696 DOI: 10.1158/1078-0432.ccr-14-2213] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor targeting upon intravenous administration and subsequent intratumoral virus dissemination are key features to improve oncolytic adenovirus therapy. VCN-01 is a novel oncolytic adenovirus that combines selective replication conditional to pRB pathway deregulation, replacement of the heparan sulfate glycosaminoglycan putative-binding site KKTK of the fiber shaft with an integrin-binding motif RGDK for tumor targeting, and expression of hyaluronidase to degrade the extracellular matrix. In this study, we evaluate the safety and efficacy profile of this novel oncolytic adenovirus. EXPERIMENTAL DESIGN VCN-01 replication and potency were assessed in a panel of tumor cell lines. VCN-01 tumor-selective replication was evaluated in human fibroblasts and pancreatic islets. Preclinical toxicity, biodistribution, and efficacy studies were conducted in mice and Syrian hamsters. RESULTS Toxicity and biodistribution preclinical studies support the selectivity and safety of VCN-01. Antitumor activity after intravenous or intratumoral administration of the virus was observed in all tumor models tested, including melanoma and pancreatic adenocarcinoma, both in immunodeficient mice and immunocompetent hamsters. CONCLUSIONS Oncolytic adenovirus VCN-01 characterized by the expression of hyaluronidase and the RGD shaft retargeting ligand shows an efficacy-toxicity prolife in mice and hamsters by intravenous and intratumoral administration that warrants clinical testing.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Translational Research Laboratory, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Juan J Rojas
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rafael Moreno
- Translational Research Laboratory, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Manel Cascalló
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain
| | - Ramon Alemany
- Translational Research Laboratory, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
34
|
Ciechonska M, Key T, Duncan R. Efficient reovirus- and measles virus-mediated pore expansion during syncytium formation is dependent on annexin A1 and intracellular calcium. J Virol 2014; 88:6137-47. [PMID: 24648446 PMCID: PMC4093853 DOI: 10.1128/jvi.00121-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Orthoreovirus fusion-associated small transmembrane (FAST) proteins are dedicated cell-cell fusogens responsible for multinucleated syncytium formation and are virulence determinants of the fusogenic reoviruses. While numerous studies on the FAST proteins and enveloped-virus fusogens have delineated steps involved in membrane fusion and pore formation, little is known about the mechanics of pore expansion needed for syncytiogenesis. We now report that RNA interference (RNAi) knockdown of annexin A1 (AX1) expression dramatically reduced both reptilian reovirus p14 and measles virus F and H protein-mediated pore expansion during syncytiogenesis but had no effect on pore formation. A similar effect was obtained by chelating intracellular calcium, which dramatically decreased syncytiogenesis in the absence of detectable effects on p14-induced pore formation. Coimmunoprecipitation revealed calcium-dependent interaction between AX1 and p14 or measles virus F and H proteins, and fluorescence resonance energy transfer (FRET) demonstrated calcium-dependent p14-AX1 interactions in cellulo. Furthermore, antibody inhibition of extracellular AX1 had no effect on p14-induced syncytium formation but did impair cell-cell fusion mediated by the endogenous muscle cell fusion machinery in C2C12 mouse myoblasts. AX1 can therefore exert diverse, fusogen-specific effects on cell-cell fusion, functioning as an extracellular mediator of differentiation-dependent membrane fusion or as an intracellular promoter of postfusion pore expansion and syncytium formation following virus-mediated cell-cell fusion. IMPORTANCE Numerous enveloped viruses and nonenveloped fusogenic orthoreoviruses encode membrane fusion proteins that induce syncytium formation, which has been linked to viral pathogenicity. Considerable insights into the mechanisms of membrane fusion have been obtained, but processes that drive postfusion expansion of fusion pores to generate syncytia are poorly understood. This study identifies intracellular calcium and annexin A1 (AX1) as key factors required for efficient pore expansion during syncytium formation mediated by the reptilian reovirus p14 and measles virus F and H fusion protein complexes. Involvement of intracellular AX1 in syncytiogenesis directly correlates with a requirement for intracellular calcium in p14-AX1 interactions and pore expansion but not membrane fusion and pore formation. This is the first demonstration that intracellular AX1 is involved in pore expansion, which suggests that the AX1 pathway may be a common host cell response needed to resolve virus-induced cell-cell fusion pores.
Collapse
Affiliation(s)
- Marta Ciechonska
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tim Key
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Roy Duncan
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
35
|
Tumor Restrictions to Oncolytic Virus. Biomedicines 2014; 2:163-194. [PMID: 28548066 PMCID: PMC5423468 DOI: 10.3390/biomedicines2020163] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/17/2014] [Accepted: 03/28/2014] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy has advanced since the days of its conception but therapeutic efficacy in the clinics does not seem to reach the same level as in animal models. One reason is premature oncolytic virus clearance in humans, which is a reasonable assumption considering the immune-stimulating nature of the oncolytic agents. However, several studies are beginning to reveal layers of restriction to oncolytic virotherapy that are present before an adaptive neutralizing immune response. Some of these barriers are present constitutively halting infection before it even begins, whereas others are raised by minute cues triggered by virus infection. Indeed, we and others have noticed that delivering viruses to tumors may not be the biggest obstacle to successful therapy, but instead the physical make-up of the tumor and its capacity to mount antiviral defenses seem to be the most important efficacy determinants. In this review, we summarize the constitutive and innate barriers to oncolytic virotherapy and discuss strategies to overcome them.
Collapse
|
36
|
Gil-Hoyos R, Miguel-Camacho J, Alemany R. Oncolytic adenovirus characterization: activity and immune responses. Methods Mol Biol 2014; 1089:117-132. [PMID: 24132482 DOI: 10.1007/978-1-62703-679-5_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Virotherapy in one of the main current applications of recombinant adenoviruses. Oncolytic adenovirus are designed to target tumors, replicate selectively in tumor cells, and elicit immune responses against tumor antigens. Transgene expression in replication-competent oncolytic vectors allows to explore multiple strategies to enhance the potential of virotherapy. In this chapter we describe common in vivo and in vitro techniques used to evaluate the potency and biodistribution of oncolytic viruses. Monitoring immune responses against viral and tumor antigens is crucial as the immune system determines the outcome of virotherapy.
Collapse
Affiliation(s)
- Raul Gil-Hoyos
- Institut Catala d'Oncologia, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | |
Collapse
|
37
|
Msaouel P, Opyrchal M, Domingo Musibay E, Galanis E. Oncolytic measles virus strains as novel anticancer agents. Expert Opin Biol Ther 2013; 13:483-502. [PMID: 23289598 DOI: 10.1517/14712598.2013.749851] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Replication-competent oncolytic measles virus (MV) strains preferentially infect and destroy a wide variety of cancer tissues. Clinical translation of engineered attenuated MV vaccine derivatives is demonstrating the therapeutic potential and negligible pathogenicity of these strains in humans. AREAS COVERED The present review summarizes the mechanisms of MV tumor selectivity and cytopathic activity as well as the current data on the oncolytic efficacy and preclinical testing of MV strains. Investigational strategies to reprogram MV selectivity, escape antiviral immunity and modulate the immune system to enhance viral delivery and tumor oncolysis are also discussed. EXPERT OPINION Clinical viral kinetic data derived from noninvasive monitoring of reporter transgene expression will guide future protocols to enhance oncolytic MV efficacy. Anti-measles immunity is a major challenge of measles-based therapeutics and various strategies are being investigated to modulate immunity. These include the combination of MV therapy with immunosuppressive drugs, such as cyclophosphamide, the use of cell carriers and the introduction of immunomodulatory transgenes and wild-type virulence genes. Available MV retargeting technologies can address safety considerations that may arise as more potent oncolytic MV vectors are being developed.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Albert Einstein College of Medicine, Jacobi Medical Center, Department of Internal Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
38
|
Coughlan L, Vallath S, Gros A, Giménez-Alejandre M, Van Rooijen N, Thomas GJ, Baker AH, Cascalló M, Alemany R, Hart IR. Combined Fiber Modifications Both to Target αvβ6and Detarget the Coxsackievirus–Adenovirus Receptor Improve Virus Toxicity ProfilesIn Vivobut Fail to Improve Antitumoral Efficacy Relative to Adenovirus Serotype 5. Hum Gene Ther 2012; 23:960-79. [DOI: 10.1089/hum.2011.218] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lynda Coughlan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Sabari Vallath
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Alena Gros
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge, Institut Català d'Oncologia, Barcelona 08907, Spain
| | - Marta Giménez-Alejandre
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge, Institut Català d'Oncologia, Barcelona 08907, Spain
| | - N. Van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam 1007 MB, The Netherlands
| | - Gareth J. Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton S016 6YD, United Kingdom
| | - Andrew H. Baker
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Manel Cascalló
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge, Institut Català d'Oncologia, Barcelona 08907, Spain
| | - Ramon Alemany
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge, Institut Català d'Oncologia, Barcelona 08907, Spain
| | - Ian R. Hart
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|