1
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
2
|
Marie C, Scherman D. Antibiotic-Free Gene Vectors: A 25-Year Journey to Clinical Trials. Genes (Basel) 2024; 15:261. [PMID: 38540320 PMCID: PMC10970329 DOI: 10.3390/genes15030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 06/15/2024] Open
Abstract
Until very recently, the major use, for gene therapy, specifically of linear or circular DNA, such as plasmids, was as ancillary products for viral vectors' production or as a genetic template for mRNA production. Thanks to targeted and more efficient physical or chemical delivery techniques and to the refinement of their structure, non-viral plasmid DNA are now under intensive consideration as pharmaceutical drugs. Plasmids traditionally carry an antibiotic resistance gene for providing the selection pressure necessary for maintenance in a bacterial host. Nearly a dozen different antibiotic-free gene vectors have now been developed and are currently assessed in preclinical assays and phase I/II clinical trials. Their reduced size leads to increased transfection efficiency and prolonged transgene expression. In addition, associating non-viral gene vectors and DNA transposons, which mediate transgene integration into the host genome, circumvents plasmid dilution in dividing eukaryotic cells which generate a loss of the therapeutic gene. Combining these novel molecular tools allowed a significantly higher yield of genetically engineered T and Natural Killer cells for adoptive immunotherapies due to a reduced cytotoxicity and increased transposition rate. This review describes the main progresses accomplished for safer, more efficient and cost-effective gene and cell therapies using non-viral approaches and antibiotic-free gene vectors.
Collapse
Affiliation(s)
- Corinne Marie
- Université Paris Cité, CNRS, Inserm, UTCBS, 75006 Paris, France;
- Chimie ParisTech, Université PSL, 75005 Paris, France
| | - Daniel Scherman
- Université Paris Cité, CNRS, Inserm, UTCBS, 75006 Paris, France;
- Fondation Maladies Rares, 75014 Paris, France
| |
Collapse
|
3
|
Okuda T, Okazaki M, Hayano A, Okamoto H. Stability of Naked Nucleic Acids under Physical Treatment and Powder Formation: Suitability for Development as Dry Powder Formulations for Inhalation. Pharmaceutics 2023; 15:2786. [PMID: 38140126 PMCID: PMC10747740 DOI: 10.3390/pharmaceutics15122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
A number of functional nucleic acids, including plasmid DNA (pDNA) and small interfering RNA (siRNA), have been attracting increasing attention as new therapeutic modalities worldwide. Dry pDNA and siRNA powder formulations for inhalation are considered practical in clinical applications for respiratory diseases. However, physical stresses in the powder-forming process may destabilize nucleic acids, particularly when vectors with stabilizing effects are not used. We herein compare the stability of naked pDNA and siRNA through various physical treatments and two powder-forming processes. The structural and functional integrities of pDNA were markedly reduced via sonication, heating, and atomization, whereas those of siRNA were preserved throughout all of the physical treatments investigated. Spray-dried and spray-freeze-dried powders of siRNA maintained their structural and functional integrities, whereas those of pDNA did not. These results demonstrate that siRNA is more suitable for powder formation in the naked state than pDNA due to its higher stability under physical treatments. Furthermore, a spray-freeze-dried powder with a high content of naked siRNA (12% of the powder) was successfully produced that preserved its structural and functional integrities, achieving high aerosol performance with a fine particle fraction of approximately 40%.
Collapse
Affiliation(s)
- Tomoyuki Okuda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan; (M.O.); (A.H.); (H.O.)
| | | | | | | |
Collapse
|
4
|
Staňo R, Smrek J, Likos CN. Cluster Formation in Solutions of Polyelectrolyte Rings. ACS NANO 2023; 17:21369-21382. [PMID: 37729077 PMCID: PMC10655244 DOI: 10.1021/acsnano.3c06083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
We use molecular dynamics simulations to explore concentrated solutions of semiflexible polyelectrolyte ring polymers, akin to the DNA mini-circles, with counterions of different valences. We find that the assembly of rings into nanoscopic cylindrical stacks is a generic feature of the systems, but the morphology and dynamics of such a cluster can be steered by the counterion conditions. In general, a small addition of trivalent ions can stabilize the emergence of clusters due to the counterion condensation, which mitigates the repulsion between the like-charged rings. Stoichiometric addition of trivalent ions can even lead to phase separation of the polyelectrolyte ring phase due to the ion-bridging effects promoting otherwise entropically driven clustering. On the other hand, monovalent counterions cause the formation of stacks to be re-entrant with density. The clusters are stable within a certain window of concentration, while above the window the polyelectrolytes undergo an osmotic collapse, disfavoring ordering. The cluster phase exhibits characteristic cluster glass dynamics with arrest of collective degrees of freedom but not the self-ones. On the other hand, the collapsed phase shows arrest on both the collective and single level, suggesting an incipient glass-to-glass transition, from a cluster glass of ring clusters to a simple glass of rings.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse
5, 1090 Vienna, Austria
| | - Jan Smrek
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christos N. Likos
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
5
|
Ruzycki CA, Montoya D, Irshad H, Cox J, Zhou Y, McDonald JD, Kuehl PJ. Inhalation delivery of nucleic acid gene therapies in preclinical drug development. Expert Opin Drug Deliv 2023; 20:1097-1113. [PMID: 37732957 DOI: 10.1080/17425247.2023.2261369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Inhaled gene therapy programs targeting diseases of the lung have seen increasing interest in recent years, though as of yet no product has successfully entered the market. Preclinical research to support such programs is critically important in maximizing the chances of developing successful candidates. AREAS COVERED Aspects of inhalation delivery of gene therapies are reviewed, with a focus on preclinical research in animal models. Various barriers to inhalation delivery of gene therapies are discussed, including aerosolization stresses, aerosol behavior in the respiratory tract, and disposition processes post-deposition. Important aspects of animal models are considered, including determinations of biologically relevant determinations of dose and issues related to translatability. EXPERT OPINION Development of clinically-efficacious inhaled gene therapies has proven difficult owing to numerous challenges. Fit-for-purpose experimental and analytical methods are necessary for determinations of biologically relevant doses in preclinical animal models. Further developments in disease-specific animal models may aid in improving the translatability of results in future work, and we expect to see accelerated interests in inhalation gene therapies for various diseases. Sponsors, researchers, and regulators are encouraged to engage in early and frequent discussion regarding candidate therapies, and additional dissemination of preclinical methodologies would be of immense value in avoiding common pitfalls.
Collapse
Affiliation(s)
- Conor A Ruzycki
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Derek Montoya
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Jason Cox
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Yue Zhou
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | | | - Philip J Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
6
|
Xu H, Moon C, Sahakijpijarn S, Dao HM, Alzhrani RF, Wang JL, Williams RO, Cui Z. Aerosolizable Plasmid DNA Dry Powders Engineered by Thin-film Freezing. Pharm Res 2023; 40:1141-1152. [PMID: 36703028 PMCID: PMC9879621 DOI: 10.1007/s11095-023-03473-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE This study was designed to test the feasibility of using thin-film freezing (TFF) to prepare aerosolizable dry powders of plasmid DNA (pDNA) for pulmonary delivery. METHODS Dry powders of pDNA formulated with mannitol/leucine (70/30, w/w) with various drug loadings, solid contents, and solvents were prepared using TFF, their aerosol properties (i.e., mass median aerodynamic diameter (MMAD) and fine particle fraction (FPF)) were determined, and selected powders were used for further characterization. RESULTS Of the nine dry powders prepared, their MMAD values were about 1-2 µm, with FPF values (delivered) of 40-80%. The aerosol properties of the powders were inversely correlated with the pDNA loading and the solid content in the pDNA solution before TFF. Powders prepared with Tris-EDTA buffer or cosolvents (i.e., 1,4-dioxane or tert-butanol in water), instead of water, showed slightly reduced aerosol properties. Ultimately, powders prepared with pDNA loading at 5% (w/w), 0.25% of solid content, with or without Tris-EDTA were selected for further characterization due to their overall good aerosol performance. The pDNA powders exhibited a porous matrix structure, with a moisture content of < 2% (w/w). Agarose gel electrophoresis confirmed the chemical integrity of the pDNA after it was subjected to TFF and after the TFF powder was actuated. A cell transfection study confirmed that the activity of the pDNA did not change after it was subjected to TFF. CONCLUSION It is feasible to use TFF to produce aerosolizable pDNA dry powder for pulmonary delivery, while preserving the integrity and activity of the pDNA.
Collapse
Affiliation(s)
- Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | | | - Huy M. Dao
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Riyad F. Alzhrani
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jie-liang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Robert O. Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
7
|
Foley RA, Sims RA, Duggan EC, Olmedo JK, Ma R, Jonas SJ. Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. Front Bioeng Biotechnol 2022; 10:973326. [PMID: 36225598 PMCID: PMC9549251 DOI: 10.3389/fbioe.2022.973326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 (CRISPR/Cas9) has transformed our ability to edit the human genome selectively. This technology has quickly become the most standardized and reproducible gene editing tool available. Catalyzing rapid advances in biomedical research and genetic engineering, the CRISPR/Cas9 system offers great potential to provide diagnostic and therapeutic options for the prevention and treatment of currently incurable single-gene and more complex human diseases. However, significant barriers to the clinical application of CRISPR/Cas9 remain. While in vitro, ex vivo, and in vivo gene editing has been demonstrated extensively in a laboratory setting, the translation to clinical studies is currently limited by shortfalls in the precision, scalability, and efficiency of delivering CRISPR/Cas9-associated reagents to their intended therapeutic targets. To overcome these challenges, recent advancements manipulate both the delivery cargo and vehicles used to transport CRISPR/Cas9 reagents. With the choice of cargo informing the delivery vehicle, both must be optimized for precision and efficiency. This review aims to summarize current bioengineering approaches to applying CRISPR/Cas9 gene editing tools towards the development of emerging cellular therapeutics, focusing on its two main engineerable components: the delivery vehicle and the gene editing cargo it carries. The contemporary barriers to biomedical applications are discussed within the context of key considerations to be made in the optimization of CRISPR/Cas9 for widespread clinical translation.
Collapse
Affiliation(s)
- Ruth A. Foley
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Ruby A. Sims
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, CA, United States
| | - Emily C. Duggan
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Jessica K. Olmedo
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Rachel Ma
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Steven J. Jonas
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Quantitative assessment reveals the dominance of duplicated sequences in germline-derived extrachromosomal circular DNA. Proc Natl Acad Sci U S A 2021; 118:2102842118. [PMID: 34789574 PMCID: PMC8617514 DOI: 10.1073/pnas.2102842118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) plays a role in human diseases such as cancer, but little is known about the impact of eccDNA in healthy human biology. Since eccDNA is a tiny fraction of nuclear DNA, artificial amplification has been employed to increase eccDNA amounts, resulting in the loss of native compositions. We developed an approach to enrich eccDNA populations at the native state (naïve small circular DNA, nscDNA) and investigated their origins in the human genome. We found that, in human sperm, the vast majority of nscDNA came from high-copy genomic regions, including the most variable regions between individuals. Because eccDNA can be incorporated back into chromosomes, eccDNA may promote human genetic variation. Extrachromosomal circular DNA (eccDNA) originates from linear chromosomal DNA in various human tissues under physiological and disease conditions. The genomic origins of eccDNA have largely been investigated using in vitro–amplified DNA. However, in vitro amplification obscures quantitative information by skewing the total population stoichiometry. In addition, the analyses have focused on eccDNA stemming from single-copy genomic regions, leaving eccDNA from multicopy regions unexamined. To address these issues, we isolated eccDNA without in vitro amplification (naïve small circular DNA, nscDNA) and assessed the populations quantitatively by integrated genomic, molecular, and cytogenetic approaches. nscDNA of up to tens of kilobases were successfully enriched by our approach and were predominantly derived from multicopy genomic regions including segmental duplications (SDs). SDs, which account for 5% of the human genome and are hotspots for copy number variations, were significantly overrepresented in sperm nscDNA, with three times more sequencing reads derived from SDs than from the entire single-copy regions. SDs were also overrepresented in mouse sperm nscDNA, which we estimated to comprise 0.2% of nuclear DNA. Considering that eccDNA can be integrated into chromosomes, germline-derived nscDNA may be a mediator of genome diversity.
Collapse
|
10
|
Fogg JM, Judge AK, Stricker E, Chan HL, Zechiedrich L. Supercoiling and looping promote DNA base accessibility and coordination among distant sites. Nat Commun 2021; 12:5683. [PMID: 34584096 PMCID: PMC8478907 DOI: 10.1038/s41467-021-25936-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
DNA in cells is supercoiled and constrained into loops and this supercoiling and looping influence every aspect of DNA activity. We show here that negative supercoiling transmits mechanical stress along the DNA backbone to disrupt base pairing at specific distant sites. Cooperativity among distant sites localizes certain sequences to superhelical apices. Base pair disruption allows sharp bending at superhelical apices, which facilitates DNA writhing to relieve torsional strain. The coupling of these processes may help prevent extensive denaturation associated with genomic instability. Our results provide a model for how DNA can form short loops, which are required for many essential processes, and how cells may use DNA loops to position nicks to facilitate repair. Furthermore, our results reveal a complex interplay between site-specific disruptions to base pairing and the 3-D conformation of DNA, which influences how genomes are stored, replicated, transcribed, repaired, and many other aspects of DNA activity.
Collapse
Affiliation(s)
- Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Houston, TX, USA
| | - Allison K Judge
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA
| | - Erik Stricker
- Department of Molecular Virology and Microbiology, Houston, TX, USA
| | - Hilda L Chan
- Graduate Program in Immunology and Microbiology, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Houston, TX, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA.
- Department of Pharmacology and Chemical Biology, Houston, TX, USA.
- Graduate Program in Immunology and Microbiology, Houston, TX, USA.
| |
Collapse
|
11
|
Wong YC, Osahor A, Al-Ajli FOM, Narayanan K. Large BACs transfect more efficiently in circular topology. Anal Biochem 2021; 630:114324. [PMID: 34363787 DOI: 10.1016/j.ab.2021.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
The effect of DNA topology on transfection efficiency of mammalian cells has been widely tested on plasmids smaller than 10 kb, but little is known for larger DNA vectors carrying intact genomic DNA containing introns, exons, and regulatory regions. Here, we demonstrate that circular BACs transfect more efficiently than covalently closed linear BACs. We found up to 3.1- and 8.9- fold higher eGFP expression from circular 11 kb and 100 kb BACs, respectively, compared to linear BACs. These findings provide insights for improved vector development for gene delivery and expression studies of large intact transgenes in mammalian cells.
Collapse
Affiliation(s)
- Yin Cheng Wong
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Andrew Osahor
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | - Kumaran Narayanan
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia.
| |
Collapse
|
12
|
Chang RYK, Chow MY, Khanal D, Chen D, Chan HK. Dry powder pharmaceutical biologics for inhalation therapy. Adv Drug Deliv Rev 2021; 172:64-79. [PMID: 33705876 DOI: 10.1016/j.addr.2021.02.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Therapeutic biologics such as genes, peptides, proteins, virus and cells provide clinical benefits and are becoming increasingly important tools in respiratory medicine. Pulmonary delivery of therapeutic biologics enables the potential for safe and effective treatment option for respiratory diseases due to high bioavailability while minimizing absorption into the systemic circulation, reducing off-target toxicity to other organs. Development of inhalable powder formulation requires stabilization of complex biological materials, and each type of biologics may present unique challenges and require different formulation strategy combined with manufacture process to ensure biological and physical stabilities during production and over shelf-life. This review examines key formulation strategies for stabilizing proteins, nucleic acids, virus (bacteriophages) and bacterial cells in inhalable powders. It also covers characterization methods used to assess physicochemical properties and aerosol performance of the powders, biological activity and structural integrity of the biologics, and chemical analysis at the nanoscale. Furthermore, the review includes manufacture technologies which are based on lyophilization and spray-drying as they have been applied to manufacture Food and Drug Administration (FDA)-approved protein powders. In perspective, formulation and manufacture of inhalable powders for biologic are highly challenging but attainable. The key requirements are the stability of both the biologics and the powder, along with the powder dispersibility. The formulation to be developed depends on the manufacture process as it will subject the biologics to different stresses (temperature, mechanical and chemical) which could lead to degradation by different pathways. Stabilizing excipients coupled with the suitable choice of process can alleviate the stability issues of inhaled powders of biologics.
Collapse
|
13
|
Krizek J, Lavickova B, Moser C. Degradation study on molecules released from laser-based jet injector. Int J Pharm 2021; 602:120664. [PMID: 33933639 DOI: 10.1016/j.ijpharm.2021.120664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Development of needle-free methods to administer injectable therapeutics has been researched for a few decades. We focused our attention on a laser-based jet injection technique where the liquid-jet actuation mechanism is based on optical cavitation. This study investigates the potential damage to therapeutic molecules which are exposed to nanosecond laser pulses in the configuration of a compact laser-based jet injection device. Implementation of a pulsed laser source at 1574 nm wavelength allowed us to generate jets from pure water solutions and circumvent the need to reformulate therapeutics with absorbing dyes. We performed H1-NMR analysis on exposed samples of Lidocaine and δ-Aminolevulinic acid. We made several tests with linear and plasmid DNA to assess the structural integrity and functional potency after ejection with our device. The tests showed no significant degradation or detectable side products, which is promising for further development and eventually clinical applications.
Collapse
Affiliation(s)
- Jan Krizek
- School of Engineering, Laboratory of Applied Photonics Devices, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 17, 1015 Lausanne, Switzerland.
| | - Barbora Lavickova
- School of Engineering, Laboratory of Biological Network Characterisation, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 17, 1015 Lausanne, Switzerland
| | - Christophe Moser
- School of Engineering, Laboratory of Applied Photonics Devices, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 17, 1015 Lausanne, Switzerland.
| |
Collapse
|
14
|
Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007096. [PMID: 34366761 PMCID: PMC8336227 DOI: 10.1002/adfm.202007096] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 05/05/2023]
Abstract
Cancer is a genetic disease originating from the accumulation of gene mutations in a cellular subpopulation. Although many therapeutic approaches have been developed to treat cancer, recent studies have revealed an irrefutable challenge that tumors evolve defenses against some therapies. Gene therapy may prove to be the ultimate panacea for cancer by correcting the fundamental genetic errors in tumors. The engineering of nanoscale inorganic carriers of cancer therapeutics has shown promising results in the efficacious and safe delivery of nucleic acids to treat oncological diseases in small-animal models. When these nanocarriers are used for co-delivery of gene therapeutics along with auxiliary treatments, the synergistic combination of therapies often leads to an amplified health benefit. In this review, an overview of the inorganic nanomaterials developed for combinatorial therapies of gene and other treatment modalities is presented. First, the main principles of using nucleic acids as therapeutics, inorganic nanocarriers for medical applications and delivery of gene/drug payloads are introduced. Next, the utility of recently developed inorganic nanomaterials in different combinations of gene therapy with each of chemo, immune, hyperthermal, and radio therapy is examined. Finally, current challenges in the clinical translation of inorganic nanomaterial-mediated therapies are presented and outlooks for the field are provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Wang T, Chen Y, Goodale D, Allan AL, Ronald JA. A survivin-driven, tumor-activatable minicircle system for prostate cancer theranostics. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:209-219. [PMID: 33665359 PMCID: PMC7889447 DOI: 10.1016/j.omto.2021.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Gene vectors regulated by tumor-specific promoters to express transgenes specifically in cancer cells are an emerging approach for cancer diagnosis and treatment. Minicircles are shortened plasmids stripped of prokaryotic sequences that have potency and safety characteristics beneficial for clinical translation. Previously, we developed minicircles driven by the tumor-specific survivin promoter, which exhibits elevated transcriptional activity in aggressive cancers, to express a secreted reporter for blood-based cancer detection. Here we present the first activatable, cancer theranostic minicircle system featuring a pair of diagnostic and therapeutic minicircles expressing Gaussia luciferase for urine-based cancer detection or cytosine deaminase:uracil phosphoribosyltransferase for gene-directed enzyme prodrug therapy. Diagnostic minicircles revealed urinary reporter output related to cellular survivin levels. Notably, mice with aggressive prostate tumors exhibited significantly higher urine reporter activity than mice with non-aggressive tumors and healthy mice after intratumoral minicircle administration. Therapeutic minicircles displayed specific cytotoxicity in survivin-rich cancer cells and significantly attenuated growth of aggressive orthotopic prostate tumors in mice. Use of these minicircles together creates a theranostic system that can first identify individuals carrying aggressive prostate cancer via a urinary test, followed by stringent control of tumor progression in stratified individuals who carry high-risk prostate lesions.
Collapse
Affiliation(s)
- TianDuo Wang
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada.,Robarts Research Institute - Imaging Research Laboratories, London, ON N6A 3K7, Canada
| | - Yuanxin Chen
- Robarts Research Institute - Imaging Research Laboratories, London, ON N6A 3K7, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Science Centre, London, ON N6C 2R5, Canada
| | - Alison L Allan
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada.,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada.,London Regional Cancer Program, London Health Science Centre, London, ON N6C 2R5, Canada.,Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - John A Ronald
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada.,Robarts Research Institute - Imaging Research Laboratories, London, ON N6A 3K7, Canada.,Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
16
|
Pardridge WM. Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:602236. [PMID: 35047884 PMCID: PMC8757841 DOI: 10.3389/fmedt.2020.602236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Non-viral gene therapy of the brain is enabled by the development of plasmid DNA brain delivery technology, which requires the engineering and manufacturing of nanomedicines that cross the blood-brain barrier (BBB). The development of such nanomedicines is a multi-faceted problem that requires progress at multiple levels. First, the type of nanocontainer, e.g., nanoparticle or liposome, which encapsulates the plasmid DNA, must be developed. Second, the type of molecular Trojan horse, e.g., peptide or receptor-specific monoclonal antibody (MAb), must be selected for incorporation on the surface of the nanomedicine, as this Trojan horse engages specific receptors expressed on the BBB, and the brain cell membrane, to trigger transport of the nanomedicine from blood into brain cells beyond the BBB. Third, the plasmid DNA must be engineered without bacterial elements, such as antibiotic resistance genes, to enable administration to humans; the plasmid DNA must also be engineered with tissue-specific gene promoters upstream of the therapeutic gene, to insure gene expression in the target organ with minimal off-target expression. Fourth, upstream manufacturing of the nanomedicine must be developed and scalable so as to meet market demand for the target disease, e.g., annual long-term treatment of 1,000 patients with an orphan disease, short term treatment of 10,000 patients with malignant glioma, or 100,000 patients with new onset Parkinson's disease. Fifth, downstream manufacturing problems, such as nanomedicine lyophilization, must be solved to ensure the nanomedicine has a commercially viable shelf-life for treatment of CNS disease in humans.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Arévalo-Soliz LM, Hardee CL, Fogg JM, Corman NR, Noorbakhsh C, Zechiedrich L. Improving therapeutic potential of non-viral minimized DNA vectors. CELL & GENE THERAPY INSIGHTS 2020; 6:1489-1505. [PMID: 33953961 PMCID: PMC8095377 DOI: 10.18609/cgti.2020.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tragic deaths of three patients in a recent AAV-based X-linked myotubular myopathy clinical trial highlight once again the pressing need for safe and reliable gene delivery vectors. Non-viral minimized DNA vectors offer one possible way to meet this need. Recent pre-clinical results with minimized DNA vectors have yielded promising outcomes in cancer therapy, stem cell therapy, stem cell reprograming, and other uses. Broad clinical use of these vectors, however, remains to be realized. Further advances in vector design and production are ongoing. An intriguing and promising potential development results from manipulation of the specific shape of non-viral minimized DNA vectors. By improving cellular uptake and biodistribution specificity, this approach could impact gene therapy, DNA nanotechnology, and personalized medicine.
Collapse
Affiliation(s)
- Lirio M Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cinnamon L Hardee
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan R Corman
- Rural Medical Education Program, University of Illinois College of Medicine, Rockford, IL 61107, USA
| | - Cameron Noorbakhsh
- Weiss School of Natural Sciences, Rice University, Houston, TX 77005, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
18
|
Alexiou TS, Alatas PV, Tsalikis DG, Mavrantzas VG. Conformational and Dynamic Properties of Short DNA Minicircles in Aqueous Solution from Atomistic Molecular Dynamics Simulations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Terpsichori S. Alexiou
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece
| | - Panagiotis V. Alatas
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece
| | - Dimitrios G. Tsalikis
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece
- Department of Mechanical and Process Engineering, Particle Technology Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
19
|
Zechiedrich L, Fogg JM. BIOPHYSICS MEETS GENE THERAPY: HOW EXPLORING SUPERCOILING-DEPENDENT STRUCTURAL CHANGES IN DNA LED TO THE DEVELOPMENT OF MINIVECTOR DNA. TECHNOLOGY AND INNOVATION 2019; 20:427-439. [PMID: 33815681 DOI: 10.21300/20.4.2019.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Supercoiling affects every aspect of DNA function (replication, transcription, repair, recombination, etc.), yet the vast majority of studies on DNA and crystal structures of the molecule utilize short linear duplex DNA, which cannot be supercoiled. To study how supercoiling drives DNA biology, we developed and patented methods to make milligram quantities of tiny supercoiled circles of DNA called minicircles. We used a collaborative and multidisciplinary approach, including computational simulations (both atomistic and coarse-grained), biochemical experimentation, and biophysical methods to study these minicircles. By determining the three-dimensional conformations of individual supercoiled DNA minicircles, we revealed the structural diversity of supercoiled DNA and its highly dynamic nature. We uncovered profound structural changes, including sequence-specific base-flipping (where the DNA base flips out into the solvent), bending, and denaturing in negatively supercoiled minicircles. Counterintuitively, exposed DNA bases emerged in the positively supercoiled minicircles, which may result from inside-out DNA (Pauling-like, or "P-DNA"). These structural changes strongly influence how enzymes interact with or act on DNA. We hypothesized that, because of their small size and lack of bacterial sequences, these small supercoiled DNA circles may be efficient at delivering DNA into cells for gene therapy applications. "Minivectors," as we named them for this application, have proven to have therapeutic potential. We discovered that minivectors efficiently transfect a wide range of cell types, including many clinically important cell lines that are refractory to transfection with conventional plasmid vectors. Minivectors can be aerosolized for delivery to lungs and transfect human cells in culture to express RNA or genes. Importantly, minivectors demonstrate no obvious vector-associated toxicity. Minivectors can be repeatedly delivered and are long-lasting without integrating into the genome. Requests from colleagues around the world for minicircle and minivector DNA revealed a demand for our invention. We successfully obtained start-up funding for Twister Biotech, Inc. to help fulfill this demand, providing DNA for those who needed it, with a long-term goal of developing human therapeutics. In summary, what started as a tool for studying DNA structure has taken us in new and unanticipated directions.
Collapse
Affiliation(s)
- Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Engineering a minimal cloning vector from a pUC18 plasmid backbone with an extended multiple cloning site. Biotechniques 2019; 66:254-259. [DOI: 10.2144/btn-2019-0014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Minimal plasmids play an essential role in many intermediate steps in molecular biology. For example, they can be used to assemble building blocks in synthetic biology or be used as intermediate cloning plasmids that are ideal for PCR-based mutagenesis methods. A small backbone also opens up for additional unique restriction enzyme cloning sites. Here we describe the generation of pICOz, a 1185-bp fully functional high-copy cloning plasmid with an extended multiple cloning site. We believe that this is the smallest high-copy cloning vector ever described.
Collapse
|
21
|
Pranke I, Golec A, Hinzpeter A, Edelman A, Sermet-Gaudelus I. Emerging Therapeutic Approaches for Cystic Fibrosis. From Gene Editing to Personalized Medicine. Front Pharmacol 2019; 10:121. [PMID: 30873022 PMCID: PMC6400831 DOI: 10.3389/fphar.2019.00121] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
An improved understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein structure and the consequences of CFTR gene mutations have allowed the development of novel therapies targeting specific defects underlying CF. Some strategies are mutation specific and have already reached clinical development; some strategies include a read-through of the specific premature termination codons (read-through therapies, nonsense mediated decay pathway inhibitors for Class I mutations); correction of CFTR folding and trafficking to the apical plasma membrane (correctors for Class II mutations); and an increase in the function of CFTR channel (potentiators therapy for Class III mutations and any mutant with a residual function located at the membrane). Other therapies that are in preclinical development are not mutation specific and include gene therapy to edit the genome and stem cell therapy to repair the airway tissue. These strategies that are directed at the basic CF defects are now revolutionizing the treatment for patients and should positively impact their survival rates.
Collapse
Affiliation(s)
- Iwona Pranke
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Anita Golec
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Alexandre Hinzpeter
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Aleksander Edelman
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France.,Centre de Référence Maladie Rare, Mucoviscidose et Maladies de CFTR, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France
| |
Collapse
|
22
|
Caballero I, Riou M, Hacquin O, Chevaleyre C, Barc C, Pezant J, Pinard A, Fassy J, Rezzonico R, Mari B, Heuzé-Vourc'h N, Pitard B, Vassaux G. Tetrafunctional Block Copolymers Promote Lung Gene Transfer in Newborn Piglets. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:186-193. [PMID: 30897407 PMCID: PMC6426709 DOI: 10.1016/j.omtn.2019.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
Tetrafunctional block copolymers are molecules capable of complexing DNA. Although ineffective in vitro, studies in mice have shown that the tetrafunctional block copolymer 704 is a more efficient lung gene transfer agent than the cationic liposome GL67A, previously used in a phase II clinical trial in cystic fibrosis patients. In the present study, we compared the gene transfer capacity of the 704-DNA formulation and a cationic liposome-DNA formulation equivalent to GL67A in a larger-animal model, the newborn piglet. Our results indicate an efficacy of the 704-DNA formulation well above one order of magnitude higher than that of the cationic liposome-DNA formulation, with no elevated levels of interleukin-6 (IL-6), taken as a marker of inflammation. Transgene expression was heterogeneous within lung lobes, with expression levels that were below the detection threshold in some samples, while high in other samples. This heterogeneity is likely to be due to the bolus injection procedure as well as to the small volume of injection. The present study highlights the potential of tetrafunctional block copolymers as non-viral vectors for lung gene therapy.
Collapse
Affiliation(s)
- Ignacio Caballero
- INRA Centre Val de Loire - Université de Tours, UMR-1282 Infectiologie et Santé Publique (ISP), 37380 Nouzilly, France
| | - Mickaël Riou
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), 37380 Nouzilly, France
| | - Océane Hacquin
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France; FHU-OncoAge, Nice, France
| | - Claire Chevaleyre
- INRA Centre Val de Loire - Université de Tours, UMR-1282 Infectiologie et Santé Publique (ISP), 37380 Nouzilly, France
| | - Céline Barc
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), 37380 Nouzilly, France
| | - Jérémy Pezant
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), 37380 Nouzilly, France
| | - Anne Pinard
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), 37380 Nouzilly, France
| | - Julien Fassy
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France; FHU-OncoAge, Nice, France
| | - Roger Rezzonico
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France; FHU-OncoAge, Nice, France
| | - Bernard Mari
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France; FHU-OncoAge, Nice, France
| | | | - Bruno Pitard
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Georges Vassaux
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France; FHU-OncoAge, Nice, France.
| |
Collapse
|
23
|
Haridhasapavalan KK, Borgohain MP, Dey C, Saha B, Narayan G, Kumar S, Thummer RP. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2018; 686:146-159. [PMID: 30472380 DOI: 10.1016/j.gene.2018.11.069] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Over a decade ago, a landmark study that reported derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming fibroblasts has transformed stem cell research attracting the interest of the scientific community worldwide. These cells circumvent the ethical and immunological concerns associated with embryonic stem cells, and the limited self-renewal ability and restricted differentiation potential linked to adult stem cells. iPSCs hold great potential for understanding basic human biology, in vitro disease modeling, high-throughput drug testing and discovery, and personalized regenerative medicine. The conventional reprogramming methods involving retro- and lenti-viral vectors to deliver reprogramming factors in somatic cells to generate iPSCs nullify the clinical applicability of these cells. Although these gene delivery systems are efficient and robust, they carry an enormous risk of permanent genetic modifications and are potentially tumorigenic. To evade these safety concerns and derive iPSCs for human therapy, tremendous technological advancements have resulted in the development of non-integrating viral- and non-viral approaches. These gene delivery techniques curtail or eliminate the risk of any genomic alteration and enhance the prospects of iPSCs from bench-to-bedside. The present review provides a comprehensive overview of non-integrating viral (adenoviral vectors, adeno-associated viral vectors, and Sendai virus vectors) and DNA-based, non-viral (plasmid transfection, minicircle vectors, transposon vectors, episomal vectors, and liposomal magnetofection) approaches that have the potential to generate transgene-free iPSCs. The understanding of these techniques could pave the way for the use of iPSCs for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Bitan Saha
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
24
|
Delivery of pDNA Polyplexes to Bronchial and Alveolar Epithelial Cells Using a Mesh Nebulizer. Pharm Res 2018; 36:14. [DOI: 10.1007/s11095-018-2542-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
|
25
|
Makhija H, Roy S, Hoon S, Ghadessy FJ, Wong D, Jaiswal R, Campana D, Dröge P. A novel λ integrase-mediated seamless vector transgenesis platform for therapeutic protein expression. Nucleic Acids Res 2018; 46:e99. [PMID: 29893931 PMCID: PMC6144826 DOI: 10.1093/nar/gky500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Advances in stem cell engineering, gene therapy and molecular medicine often involve genome engineering at a cellular level. However, functionally large or multi transgene cassette insertion into the human genome still remains a challenge. Current practices such as random transgene integration or targeted endonuclease-based genome editing are suboptimal and might pose safety concerns. Taking this into consideration, we previously developed a transgenesis tool derived from phage λ integrase (Int) that precisely recombines large plasmid DNA into an endogenous sequence found in human Long INterspersed Elements-1 (LINE-1). Despite this advancement, biosafety concerns associated with bacterial components of plasmids, enhanced uptake and efficient transgene expression remained problematic. We therefore further improved and herein report a more superior Int-based transgenesis tool. This novel Int platform allows efficient and easy derivation of sufficient amounts of seamless supercoiled transgene vectors from conventional plasmids via intramolecular recombination as well as subsequent intermolecular site-specific genome integration into LINE-1. Furthermore, we identified certain LINE-1 as preferred insertion sites for Int-mediated seamless vector transgenesis, and showed that targeted anti-CD19 chimeric antigen receptor gene integration achieves high-level sustained transgene expression in human embryonic stem cell clones for potential downstream therapeutic applications.
Collapse
Affiliation(s)
- Harshyaa Makhija
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Suki Roy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Shawn Hoon
- Molecular Engineering Lab, Biomedical Sciences Institute, Agency for Science Technology and Research, 61 Biopolis Drive, Singapore 138673
| | | | - Desmond Wong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Rahul Jaiswal
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.,Nanyang Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building (EMB), 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
26
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
27
|
Wang X, Kawabe Y, Hada T, Ito A, Kamihira M. Cre-Mediated Transgene Integration in Chinese Hamster Ovary Cells Using Minicircle DNA Vectors. Biotechnol J 2018; 13:e1800063. [DOI: 10.1002/biot.201800063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/26/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Xue Wang
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| | - Takeshi Hada
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| |
Collapse
|
28
|
Sutthibutpong T, Noy A, Harris S. Atomistic Molecular Dynamics Simulations of DNA Minicircle Topoisomers: A Practical Guide to Setup, Performance, and Analysis. Methods Mol Biol 2017; 1431:195-219. [PMID: 27283311 DOI: 10.1007/978-1-4939-3631-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
While DNA supercoiling is ubiquitous in vivo, the structure of supercoiled DNA is more challenging to study experimentally than simple linear sequences because the DNA must have a closed topology in order to sustain superhelical stress. DNA minicircles, which are closed circular double-stranded DNA sequences typically containing between 60 and 500 base pairs, have proven to be useful biochemical tools for the study of supercoiled DNA mechanics. We present detailed protocols for constructing models of DNA minicircles in silico, for performing atomistic molecular dynamics (MD) simulations of supercoiled minicircle DNA, and for analyzing the results of the calculations. These simulations are computationally challenging due to the large system sizes. However, improvements in parallel computing software and hardware promise access to improve conformational sampling and simulation timescales. Given the concurrent improvements in the resolution of experimental techniques such as atomic force microscopy (AFM) and cryo-electron microscopy, the study of DNA minicircles will provide a more complete understanding of both the structure and the mechanics of supercoiled DNA.
Collapse
Affiliation(s)
- Thana Sutthibutpong
- Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand.
| | - Agnes Noy
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Sarah Harris
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
29
|
Enhancement of lung gene delivery after aerosol: a new strategy using non-viral complexes with antibacterial properties. Biosci Rep 2017; 37:BSR20160618. [PMID: 29046368 PMCID: PMC5691145 DOI: 10.1042/bsr20160618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of obstructive pulmonary diseases, such as cystic fibrosis (CF), leads to the development of chronic infections in the respiratory tract. Thus, the symptomatic management of the disease requires, in particular, repetitive antibiotherapy. Besides these antibacterial treatments, certain pathologies, such as CF or chronic obstructive pulmonary disease (COPD), require the intake of many drugs. This simultaneous absorption may lead to undesirable drug interactions. For example, Orkambi® (lumacaftor/Ivacaftor, Vertex), a pharmacological drug employed to treat F508del patients, cannot be used with antibiotics such as rifampicin or rifabutin (rifamycin family) which are necessary to treat Mycobacteriaceae. As far as gene therapy is concerned, bacteria and/or biofilm in the airways present an additional barrier for gene transfer. Thus, aerosol administration of nanoparticles have to overcome many obstacles before allowing cellular penetration of therapeutic compounds. This review focusses on the development of aerosol formulations adapted to the respiratory tract and its multiple barriers. Then, formulations that are currently used in clinical applications are summarized depending on the active molecule delivered. Finally, we focus on new therapeutic approaches to reduce possible drug interactions by transferring the antibacterial activity to the nanocarrier while ensuring the transfection efficiency.
Collapse
|
30
|
Mechta M, Ingerslev LR, Fabre O, Picard M, Barrès R. Evidence Suggesting Absence of Mitochondrial DNA Methylation. Front Genet 2017; 8:166. [PMID: 29163634 PMCID: PMC5671948 DOI: 10.3389/fgene.2017.00166] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/16/2017] [Indexed: 11/28/2022] Open
Abstract
Methylation of nuclear genes encoding mitochondrial proteins participates in the regulation of mitochondria function. The existence of cytosine methylation in the mitochondrial genome is debated. To investigate whether mitochondrial DNA (mtDNA) is methylated, we used both targeted- and whole mitochondrial genome bisulfite sequencing in cell lines and muscle tissue from mouse and human origin. While unconverted cytosines were detected in some portion of the mitochondrial genome, their abundance was inversely associated to the sequencing depth, indicating that sequencing analysis can bias the estimation of mtDNA methylation levels. In intact mtDNA, few cytosines remained 100% unconverted. However, removal of supercoiled structures of mtDNA with the restriction enzyme BamHI prior to bisulfite sequencing decreased cytosine unconversion rate to <1.5% at all the investigated regions: D-loop, tRNA-F+12S, 16S, ND5 and CYTB, suggesting that mtDNA supercoiled structure blocks the access to bisulfite conversion. Here, we identified an artifact of mtDNA bisulfite sequencing that can lead to an overestimation of mtDNA methylation levels. Our study supports that cytosine methylation is virtually absent in mtDNA.
Collapse
Affiliation(s)
- Mie Mechta
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars R Ingerslev
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Odile Fabre
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Picard
- Department of Psychiatry and Neurology, Division of Behavioral Medicine, Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, United States
| | - Romain Barrès
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Wang Q, Irobalieva RN, Chiu W, Schmid MF, Fogg JM, Zechiedrich L, Pettitt BM. Influence of DNA sequence on the structure of minicircles under torsional stress. Nucleic Acids Res 2017; 45:7633-7642. [PMID: 28609782 PMCID: PMC5737869 DOI: 10.1093/nar/gkx516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023] Open
Abstract
The sequence dependence of the conformational distribution of DNA under various levels of torsional stress is an important unsolved problem. Combining theory and coarse-grained simulations shows that the DNA sequence and a structural correlation due to topology constraints of a circle are the main factors that dictate the 3D structure of a 336 bp DNA minicircle under torsional stress. We found that DNA minicircle topoisomers can have multiple bend locations under high torsional stress and that the positions of these sharp bends are determined by the sequence, and by a positive mechanical correlation along the sequence. We showed that simulations and theory are able to provide sequence-specific information about individual DNA minicircles observed by cryo-electron tomography (cryo-ET). We provided a sequence-specific cryo-ET tomogram fitting of DNA minicircles, registering the sequence within the geometric features. Our results indicate that the conformational distribution of minicircles under torsional stress can be designed, which has important implications for using minicircle DNA for gene therapy.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rossitza N. Irobalieva
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F. Schmid
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan M. Fogg
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX, 77030, USA
| | - Lynn Zechiedrich
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX, 77030, USA
| | - B. Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
32
|
Thibault T, Degrouard J, Baril P, Pichon C, Midoux P, Malinge JM. Production of DNA minicircles less than 250 base pairs through a novel concentrated DNA circularization assay enabling minicircle design with NF-κB inhibition activity. Nucleic Acids Res 2017; 45:e26. [PMID: 27899652 PMCID: PMC5389552 DOI: 10.1093/nar/gkw1034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
Double-stranded DNA minicircles of less than 1000 bp in length have great interest in both fundamental research and therapeutic applications. Although minicircles have shown promising activity in gene therapy thanks to their good biostability and better intracellular trafficking, minicircles down to 250 bp in size have not yet been investigated from the test tube to the cell for lack of an efficient production method. Herein, we report a novel versatile plasmid-free method for the production of DNA minicircles comprising fewer than 250 bp. We designed a linear nicked DNA double-stranded oligonucleotide blunt-ended substrate for efficient minicircle production in a ligase-mediated and bending protein-assisted circularization reaction at high DNA concentration of 2 μM. This one pot multi-step reaction based-method yields hundreds of micrograms of minicircle with sequences of any base composition and position and containing or not a variety of site-specifically chemical modifications or physiological supercoiling. Biochemical and cellular studies were then conducted to design a 95 bp minicircle capable of binding in vitro two NF-κB transcription factors per minicircle and to efficiently inhibiting NF-κB-dependent transcriptional activity in human cells. Therefore, our production method could pave the way for the design of minicircles as new decoy nucleic acids.
Collapse
Affiliation(s)
- Thomas Thibault
- Centre de Biophysique Moléculaire, CNRS UPR 4301, affiliated to the University of Orléans and Inserm, 45071 Orléans Cedex 02 France
| | - Jeril Degrouard
- Laboratoire de Physique des Solides, Université Paris Sud, CNRS UMR 8502, 91405 Orsay Cedex, France
| | - Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR 4301, affiliated to the University of Orléans and Inserm, 45071 Orléans Cedex 02 France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, affiliated to the University of Orléans and Inserm, 45071 Orléans Cedex 02 France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR 4301, affiliated to the University of Orléans and Inserm, 45071 Orléans Cedex 02 France
| | - Jean-Marc Malinge
- Centre de Biophysique Moléculaire, CNRS UPR 4301, affiliated to the University of Orléans and Inserm, 45071 Orléans Cedex 02 France
| |
Collapse
|
33
|
Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes (Basel) 2017; 8:E65. [PMID: 28208635 PMCID: PMC5333054 DOI: 10.3390/genes8020065] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023] Open
Abstract
Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic.
Collapse
Affiliation(s)
- Cinnamon L. Hardee
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lirio Milenka Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin D. Hornstein
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lynn Zechiedrich
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
34
|
Šimčíková M, Prather KLJ, Prazeres DMF, Monteiro GA. Towards effective non-viral gene delivery vector. Biotechnol Genet Eng Rev 2017; 31:82-107. [PMID: 27160661 DOI: 10.1080/02648725.2016.1178011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite very good safety records, clinical trials using plasmid DNA failed due to low transfection efficiency and brief transgene expression. Although this failure is both due to poor plasmid design and to inefficient delivery methods, here we will focus on the former. The DNA elements like CpG motifs, selection markers, origins of replication, cryptic eukaryotic signals or nuclease-susceptible regions and inverted repeats showed detrimental effects on plasmids' performance as biopharmaceuticals. On the other hand, careful selection of promoter, polyadenylation signal, codon optimization and/or insertion of introns or nuclear-targeting sequences for therapeutic protein expression can enhance the clinical efficacy. Minimal vectors, which are devoid of the bacterial backbone and consist exclusively of the eukaryotic expression cassette, demonstrate better performance in terms of expression levels, bioavailability, transfection rates and increased therapeutic effects. Although the results are promising, minimal vectors have not taken over the conventional plasmids in clinical trials due to challenging manufacturing issues.
Collapse
Affiliation(s)
- Michaela Šimčíková
- a MIT-Portugal Program.,b iBB-Institute for Bioengineering and Biosciences , Lisbon , Portugal
| | - Kristala L J Prather
- a MIT-Portugal Program.,c Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Duarte M F Prazeres
- a MIT-Portugal Program.,c Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA.,d Department of Bioengineering , Instituto Superior Técnico , Lisbon , Portugal
| | - Gabriel A Monteiro
- a MIT-Portugal Program.,c Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA.,d Department of Bioengineering , Instituto Superior Técnico , Lisbon , Portugal
| |
Collapse
|
35
|
Hornstein BD, Roman D, Arévalo-Soliz LM, Engevik MA, Zechiedrich L. Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells. PLoS One 2016; 11:e0167537. [PMID: 27918590 PMCID: PMC5137892 DOI: 10.1371/journal.pone.0167537] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/15/2016] [Indexed: 12/16/2022] Open
Abstract
The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery.
Collapse
Affiliation(s)
- Benjamin D. Hornstein
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Dany Roman
- Post-Baccaleureate Research Education Program, Baylor College of Medicine, Houston, TX, United States of America
| | - Lirio M. Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States of America
| | - Melinda A. Engevik
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States of America
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
36
|
Gomes Dos Reis L, Svolos M, Hartwig B, Windhab N, Young PM, Traini D. Inhaled gene delivery: a formulation and delivery approach. Expert Opin Drug Deliv 2016; 14:319-330. [PMID: 27426972 DOI: 10.1080/17425247.2016.1214569] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Gene therapy is a potential alternative to treat a number of diseases. Different hurdles are associated with aerosol gene delivery due to the susceptibility of plasmid DNA (pDNA) structure to be degraded during the aerosolization process. Different strategies have been investigated in order to protect and efficiently deliver pDNA to the lungs using non-viral vectors. To date, no successful therapy involving non-viral vectors has been marketed, highlighting the need for further investigation in this field. Areas covered: This review is focused on the formulation and delivery of DNA to the lungs, using non-viral vectors. Aerosol gene formulations are divided according to the current delivery systems for the lung: nebulizers, dry powder inhalers and pressurized metered dose inhalers; highlighting its benefits, challenges and potential application. Expert opinion: Successful aerosol delivery is achieved when the supercoiled DNA structure is protected during aerosolization. A formulation strategy or compounds that can protect, stabilize and efficiently transfect DNA into the cells is desired in order to produce an effective, low-cost and safe formulation. Nebulizers and dry powder inhalers are the most promising approaches to be used for aerosol delivery, due to the lower shear forces involved. In this context it is also important to highlight the importance of considering the 'pDNA-formulation-device system' as an integral part of the formulation development for a successful nucleic acid delivery.
Collapse
Affiliation(s)
- Larissa Gomes Dos Reis
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| | - Maree Svolos
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| | - Benedikt Hartwig
- b Evonik Industries, Nutrition and Care AG , Darmstadt , Germany
| | - Norbert Windhab
- b Evonik Industries, Nutrition and Care AG , Darmstadt , Germany
| | - Paul M Young
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| | - Daniela Traini
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| |
Collapse
|
37
|
Construction of minicircle DNA vectors capable of correcting familial hypercholesterolemia phenotype in a LDLR-deficient mouse model. Gene Ther 2016; 23:657-63. [PMID: 27092942 DOI: 10.1038/gt.2016.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/29/2016] [Accepted: 04/05/2016] [Indexed: 01/05/2023]
Abstract
Familial hypercholesterolemia (FH) caused by defect in low-density lipoprotein receptor (LDLR) is a life-threatening disease with poor response to conventional treatments. Earlier gene therapy studies have generated promising results, but further development is hampered because the cells harboring the viral vectors were eliminated by host immune system soon after delivery, whereas the nonviral vectors were too bulky to be delivered to target cells. To overcome these problems, we constructed multiple minicircle (MC) DNA vectors to express the therapeutic LDLR. MC is an optimized nonviral vector that is capable of expressing high level of transgene product persistently. We found that among the seven MCs tested, the best is MC5 with multiple advanced features. First, the LDLr gene was placed under the control of sterol regulatory element (SRE) using LDLr gene promoter or apoprotein E (ApoE) promoter, allowing the transcription of the LDLr gene to be regulated by serum low-density lipoprotein (LDL) cholesterol as its functional gene counterpart. Second, a hepatic control region (HCR) was placed upstream of the promoter that serves as a controller to ensure liver-specific expression. Third, the modified Kozak sequence was placed in front of the LDLr gene start codon to enhance its translation efficiency. MC5 was 5.23 kb in size, and was capable of tight physiological control in intracellular LDL cholesterol level even when challenged with high dose of sterols in vitro. Importantly, it was able to correct the phenotype of LDLR-deficient mice C57BL/6 LDLR(-/-) for more than 105 days without detectable toxicity. Therefore, this MC has the clinical application potential for treating FH.
Collapse
|
38
|
Wong S, Lam P, Nafissi N, Denniss S, Slavcev R. Production of Double-stranded DNA Ministrings. J Vis Exp 2016:53177. [PMID: 26967586 PMCID: PMC4828204 DOI: 10.3791/53177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We constructed linear covalently closed (LCC) DNA minivectors as a non-viral gene-delivery vector alternative produced via a simple platform in vivo. DNA ministrings possess a heightened safety profile and also efficiently deliver DNA cargo to targeted cells. Conventional DNA vectors carry undesirable prokaryotic sequences, including antibiotic resistance genes, CpG motifs, and bacterial origins of replication, which may lead to the stimulation of host immunological responses. The bioavailability of conventional DNA vectors is also compromised due to their larger molecular size. Their circular nature may also impart chromosomal integration, leading to insertional mutagenesis. Bacterial sequences are excised from DNA minivectors, leaving only the gene of interest (GOI) and necessary eukaryotic expression elements. Our LCC DNA minivectors, or DNA ministrings, are devoid of immunogenic bacterial sequences; therefore improving their bioavailability and GOI expression. In the event of vector integration into the chromosome, the LCC DNA ministring will lethally disrupt the host chromosome, thereby removing the potentially dangerous mutant from the proliferating cell population. Consequently, DNA ministrings offer the benefits of 'minicircle' DNA while eliminating the potential for undesirable vector integration events. In comparison to conventional plasmids and their isogenic circular covalently closed (CCC) counterparts, DNA ministrings demonstrate superior bioavailability, transfection efficiency, and cytoplasmic kinetics - they thus require lower amounts of cationic surfactants for effective transfection of target cells. We have constructed a one-step inducible in vivo system for the production of DNA ministrings in Escherichia coli that is simple to use, rapid, and scalable.
Collapse
Affiliation(s)
| | - Peggy Lam
- School of Pharmacy, University of Waterloo
| | | | | | | |
Collapse
|
39
|
Nebulisation of IVT mRNA Complexes for Intrapulmonary Administration. PLoS One 2015; 10:e0137504. [PMID: 26352268 PMCID: PMC4564175 DOI: 10.1371/journal.pone.0137504] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022] Open
Abstract
During the last years the potential role of in vitro transcribed (IVT) mRNA as a vehicle to deliver genetic information has come into focus. IVT mRNA could be used for anti-cancer therapies, vaccination purposes, generation of pluripotent stem cells and also for genome engineering or protein replacement. However, the administration of IVT mRNA into the target organ is still challenging. The lung with its large surface area is not only of interest for delivery of genetic information for treatment of e.g. for cystic fibrosis or alpha-1-antitrypsin deficiency, but also for vaccination purposes. Administration of IVT mRNA to the lung can be performed by direct intratracheal instillation or by aerosol inhalation/nebulisation. The latter approach shows a non-invasive tool, although it is not known, if IVT mRNA is resistant during the process of nebulisation. Therefore, we investigated the transfection efficiency of non-nebulised and nebulised IVT mRNA polyplexes and lipoplexes in human bronchial epithelial cells (16HBE). A slight reduction in transfection efficiency was observed for lipoplexes (Lipofectamine 2000) in the nebulised part compared to the non-nebulised which can be overcome by increasing the amount of Lipofectamine. However, Lipofectamine was more than three times more efficient in transfecting 16HBE than DMRIE and linear PEI performed almost 10 times better than its branched derivative. By contrast, the nebulisation process did not affect the cationic polymer complexes. Furthermore, aerosolisation of IVT mRNA complexes did neither affect the protein duration nor the toxicity of the cationic complexes. Taken together, these data show that aerosolisation of cationic IVT mRNA complexes constitute a potentially powerful means to transfect cells in the lung with the purpose of protein replacement for genetic diseases such as cystic fibrosis or alpha-1-antitrypsin deficiency or for infectious disease vaccines, while bringing along the advantages of IVT mRNA as compared to pDNA as transfection agent.
Collapse
|
40
|
Pandey N, Nobles CL, Zechiedrich L, Maresso AW, Silberg JJ. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions. ACS Synth Biol 2015; 4:615-24. [PMID: 25265085 PMCID: PMC4487222 DOI: 10.1021/sb5002938] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.
Collapse
Affiliation(s)
- Naresh Pandey
- Department
of Biosciences, Rice University, Houston, Texas 77005, United States
| | | | | | | | - Jonathan J. Silberg
- Department
of Biosciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
41
|
Gaspar VM, Gonçalves C, de Melo-Diogo D, Costa EC, Queiroz JA, Pichon C, Sousa F, Correia IJ. Poly(2-ethyl-2-oxazoline)-PLA-g-PEI amphiphilic triblock micelles for co-delivery of minicircle DNA and chemotherapeutics. J Control Release 2014; 189:90-104. [PMID: 24984013 DOI: 10.1016/j.jconrel.2014.06.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/21/2014] [Accepted: 06/21/2014] [Indexed: 12/24/2022]
Abstract
The design of nanocarriers for the delivery of drugs and nucleic-acids remains a very challenging goal due to their physicochemical differences. In addition, the reported accelerated clearance and immune response of pegylated nanomedicines highlight the necessity to develop carriers using new materials. Herein, we describe the synthesis of amphiphilic triblock poly(2-ethyl-2-oxazoline)-PLA-g-PEI (PEOz-PLA-g-PEI) micelles for the delivery of minicircle DNA (mcDNA) vectors. In this copolymer the generally used PEG moieties are replaced by the biocompatible PEOz polymer backbone that assembles the hydrophilic shell. The obtained results show that amphiphilic micelles have low critical micellar concentration, are hemocompatible and exhibit stability upon incubation in serum. The uptake in MCF-7 cells was efficient and the nanocarriers achieved 2.7 fold higher expression than control particles. Moreover, mcDNA-loaded micelleplexes penetrated into 3D multicellular spheroids and promoted widespread gene expression. Additionally, to prove the concept of co-delivery, mcDNA and doxorubicin (Dox) were simultaneously encapsulated in PEOz-PLA-g-PEI carriers, with high efficiency. Dox-mcDNA micelleplexes exhibited extensive cellular uptake and demonstrated anti-tumoral activity. These findings led us to conclude that this system has a potential not only for the delivery of novel mcDNA vectors, but also for the co-delivery of drug-mcDNA combinations without PEG functionalization.
Collapse
Affiliation(s)
- Vítor M Gaspar
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France
| | - Duarte de Melo-Diogo
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisabete C Costa
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - João A Queiroz
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France
| | - Fani Sousa
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
42
|
Rajapaksa A, Qi A, Yeo LY, Coppel R, Friend JR. Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation. LAB ON A CHIP 2014; 14:1858-65. [PMID: 24740643 DOI: 10.1039/c4lc00232f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A practical, commercially viable microfluidic device relies upon the miniaturization and integration of all its components--including pumps, circuitry, and power supply--onto a chip-based platform. Surface acoustic waves (SAW) have become popular in microfluidic manipulation, in solving the problems of microfluidic manipulation, but practical applications employing SAW still require more power than available via a battery. Introducing amplitude modulation at 0.5-40 kHz in SAW nebulization, which requires the highest energy input levels of all known SAW microfluidic processes, halves the power required to 1.5 W even while including the power in the sidebands, suitable for small lithium ion batteries, and maintains the nebulization rate, size, and size distributions vital to drug inhalation therapeutics. This simple yet effective means to enable an integrated SAW microfluidics device for nebulization exploits the relatively slow hydrodynamics and is furthermore shown to deliver shear-sensitive biomolecules--plasmid DNA and antibodies as exemplars of future pulmonary gene and vaccination therapies--undamaged in the nebulized mist. Altogether, the approach demonstrates a means to offer truly micro-scale microfluidics devices in a handheld, battery powered SAW nebulization device.
Collapse
Affiliation(s)
- Anushi Rajapaksa
- Micro/Nanophysics Research Laboratory, Monash University, Clayton, VIC 3800 Australia
| | | | | | | | | |
Collapse
|
43
|
Rajapaksa AE, Ho JJ, Qi A, Bischof R, Nguyen TH, Tate M, Piedrafita D, McIntosh MP, Yeo LY, Meeusen E, Coppel RL, Friend JR. Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization. Respir Res 2014; 15:60. [PMID: 24884387 PMCID: PMC4040411 DOI: 10.1186/1465-9921-15-60] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pulmonary-delivered gene therapy promises to mitigate vaccine safety issues and reduce the need for needles and skilled personnel to use them. While plasmid DNA (pDNA) offers a rapid route to vaccine production without side effects or reliance on cold chain storage, its delivery to the lung has proved challenging. Conventional methods, including jet and ultrasonic nebulizers, fail to deliver large biomolecules like pDNA intact due to the shear and cavitational stresses present during nebulization. METHODS In vitro structural analysis followed by in vivo protein expression studies served in assessing the integrity of the pDNA subjected to surface acoustic wave (SAW) nebulisation. In vivo immunization trials were then carried out in rats using SAW nebulized pDNA (influenza A, human hemagglutinin H1N1) condensate delivered via intratracheal instillation. Finally, in vivo pulmonary vaccinations using pDNA for influenza was nebulized and delivered via a respirator to sheep. RESULTS The SAW nebulizer was effective at generating pDNA aerosols with sizes optimal for deep lung delivery. Successful gene expression was observed in mouse lung epithelial cells, when SAW-nebulized pDNA was delivered to male Swiss mice via intratracheal instillation. Effective systemic and mucosal antibody responses were found in rats via post-nebulized, condensed fluid instillation. Significantly, we demonstrated the suitability of the SAW nebulizer to administer unprotected pDNA encoding an influenza A virus surface glycoprotein to respirated sheep via aerosolized inhalation. CONCLUSION Given the difficulty of inducing functional antibody responses for DNA vaccination in large animals, we report here the first instance of successful aerosolized inhalation delivery of a pDNA vaccine in a large animal model relevant to human lung development, structure, physiology, and disease, using a novel, low-power (<1 W) surface acoustic wave (SAW) hand-held nebulizer to produce droplets of pDNA with a size range suitable for delivery to the lower respiratory airways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - James R Friend
- RMIT University, Micro Nano Research Facility, 124 La Trobe Street, 3000 Melbourne, Australia.
| |
Collapse
|
44
|
Stenler S, Blomberg P, Smith CIE. Safety and efficacy of DNA vaccines: plasmids vs. minicircles. Hum Vaccin Immunother 2014; 10:1306-8. [PMID: 24553064 PMCID: PMC4896608 DOI: 10.4161/hv.28077] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 01/05/2023] Open
Abstract
While DNA vaccination using plasmid vectors is highly attractive, there is a need for further vector optimization regarding safety, stability, and efficiency. In this commentary, we review the minicircle vector (MC), which is an entity devoid of plasmid bacterial sequences, as an alternative to the traditional plasmid construct. The commentary highlights the recent discovery by Stenler et al. (2014) that the small size of an MC enables improved resistance to the shearing forces associated with e.g. pneumatic delivery methods. This observation may have implications for the regulatory agencies' requirement of plasmid integrity and quality.
Collapse
Affiliation(s)
- Sofia Stenler
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Stockholm, Sweden
| | - Pontus Blomberg
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Stockholm, Sweden
- Vecura; Clinical Research Center, Karolinska University Hospital; Stockholm, Sweden
| | - CI Edvard Smith
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Stockholm, Sweden
| |
Collapse
|
45
|
Micro-minicircle Gene Therapy: Implications of Size on Fermentation, Complexation, Shearing Resistance, and Expression. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 2:e140. [PMID: 24399204 PMCID: PMC3910003 DOI: 10.1038/mtna.2013.67] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
The minicircle (MC), composed of eukaryotic sequences only, is an interesting approach to increase the safety and efficiency of plasmid-based vectors for gene therapy. In this paper, we investigate micro-MC (miMC) vectors encoding small regulatory RNA. We use a construct encoding a splice-correcting U7 small nuclear RNA, which results in a vector of 650 base pairs (bp), as compared to a conventional 3600 bp plasmid carrying the same expression cassette. Furthermore, we construct miMCs of varying sizes carrying different number of these cassettes. This allows us to evaluate how size influences production, super-coiling, stability and efficiency of the vector. We characterize coiling morphology by atomic force microscopy and measure the resistance to shearing forces caused by an injector device, the Biojector. We compare the behavior of miMCs and plasmids in vitro using lipofection and electroporation, as well as in vivo in mice. We here show that when the size of the miMC is reduced, the formation of dimers and trimers increases. There seems to be a lower size limit for efficient expression. We demonstrate that miMCs are more robust than plasmids when exposed to shearing forces, and that they show extended expression in vivo.
Collapse
|
46
|
Elmer JJ, Christensen MD, Rege K. Applying horizontal gene transfer phenomena to enhance non-viral gene therapy. J Control Release 2013; 172:246-257. [PMID: 23994344 PMCID: PMC4258102 DOI: 10.1016/j.jconrel.2013.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 12/25/2022]
Abstract
Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases.
Collapse
Affiliation(s)
- Jacob J Elmer
- Department of Chemical Engineering, Villanova University, Villanova 19085, USA.
| | | | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe 85287-6106, USA.
| |
Collapse
|
47
|
Zarogoulidis P, Hohenforst-Schmidt W, Darwiche K, Krauss L, Sparopoulou D, Sakkas L, Gschwendtner A, Huang H, Turner FJ, Freitag L, Zarogoulidis K. 2-diethylaminoethyl-dextran methyl methacrylate copolymer nonviral vector: still a long way toward the safety of aerosol gene therapy. Gene Ther 2013; 20:1022-8. [PMID: 23719068 DOI: 10.1038/gt.2013.27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/15/2013] [Accepted: 04/24/2013] [Indexed: 12/21/2022]
Abstract
Revealing the lung tumor genome has directed the current treatment strategies toward targeted therapy. First line treatments targeting the genome of lung tumor cells have been approved and are on the market. However, they are limited by the small number of patients with the current investigated genetic mutations. Novel treatment administration modalities have been also investigated in an effort to increase the local drug deposition and disease control. In the current study, we investigated the safety of the new nonviral vector 2-diethylaminoethyl-dextran methyl methacrylate copolymer (DDMC; Ryujyu Science), which belongs to the 2-diethylaminoethyl-dextran family by aerosol administration. Thirty male BALBC mice, 2 month old, were included and divided into three groups. However, pathological findings indicated severe emphysema within three aerosol sessions. In addition, the CytoViva technique was applied for the first time to display the nonviral particles within the pulmonary tissue and emphysema lesions, and a spectral library of the nonviral vector was also established. Although our results in BALBC mice prevented us from further investigation of the DDMC nonviral vector as a vehicle for gene therapy, further investigation in animals with larger airways is warranted to properly evaluate the safety of the vector.
Collapse
Affiliation(s)
- P Zarogoulidis
- 1] Pulmonary Department-Oncology Unit, 'G. Papanikolaou' General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece [2] Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nafissi N, Slavcev R. Construction and characterization of an in-vivo linear covalently closed DNA vector production system. Microb Cell Fact 2012; 11:154. [PMID: 23216697 PMCID: PMC3540006 DOI: 10.1186/1475-2859-11-154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/25/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND While safer than their viral counterparts, conventional non-viral gene delivery DNA vectors offer a limited safety profile. They often result in the delivery of unwanted prokaryotic sequences, antibiotic resistance genes, and the bacterial origins of replication to the target, which may lead to the stimulation of unwanted immunological responses due to their chimeric DNA composition. Such vectors may also impart the potential for chromosomal integration, thus potentiating oncogenesis. We sought to engineer an in vivo system for the quick and simple production of safer DNA vector alternatives that were devoid of non-transgene bacterial sequences and would lethally disrupt the host chromosome in the event of an unwanted vector integration event. RESULTS We constructed a parent eukaryotic expression vector possessing a specialized manufactured multi-target site called "Super Sequence", and engineered E. coli cells (R-cell) that conditionally produce phage-derived recombinase Tel (PY54), TelN (N15), or Cre (P1). Passage of the parent plasmid vector through R-cells under optimized conditions, resulted in rapid, efficient, and one step in vivo generation of mini lcc--linear covalently closed (Tel/TelN-cell), or mini ccc--circular covalently closed (Cre-cell), DNA constructs, separated from the backbone plasmid DNA. Site-specific integration of lcc plasmids into the host chromosome resulted in chromosomal disruption and 10(5) fold lower viability than that seen with the ccc counterpart. CONCLUSION We offer a high efficiency mini DNA vector production system that confers simple, rapid and scalable in vivo production of mini lcc DNA vectors that possess all the benefits of "minicircle" DNA vectors and virtually eliminate the potential for undesirable vector integration events.
Collapse
Affiliation(s)
- Nafiseh Nafissi
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | | |
Collapse
|
49
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Tolmachov OE. Self-entanglement of long linear DNA vectors using transient non-B-DNA attachment points: a new concept for improvement of non-viral therapeutic gene delivery. Med Hypotheses 2012; 78:632-5. [PMID: 22356834 DOI: 10.1016/j.mehy.2012.01.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/25/2012] [Indexed: 12/18/2022]
Abstract
The cell-specific and long-term expression of therapeutic transgenes often requires a full array of native gene control elements including distal enhancers, regulatory introns and chromatin organisation sequences. The delivery of such extended gene expression modules to human cells can be accomplished with non-viral high-molecular-weight DNA vectors, in particular with several classes of linear DNA vectors. All high-molecular-weight DNA vectors are susceptible to damage by shear stress, and while for some of the vectors the harmful impact of shear stress can be minimised through the transformation of the vectors to compact topological configurations by supercoiling and/or knotting, linear DNA vectors with terminal loops or covalently attached terminal proteins cannot be self-compacted in this way. In this case, the only available self-compacting option is self-entangling, which can be defined as the folding of single DNA molecules into a configuration with mutual restriction of molecular motion by the individual segments of bent DNA. A negatively charged phosphate backbone makes DNA self-repulsive, so it is reasonable to assume that a certain number of 'sticky points' dispersed within DNA could facilitate the entangling by bringing DNA segments into proximity and by interfering with the DNA slipping away from the entanglement. I propose that the spontaneous entanglement of vector DNA can be enhanced by the interlacing of the DNA with sites capable of mutual transient attachment through the formation of non-B-DNA forms, such as interacting cruciform structures, inter-segment triplexes, slipped-strand DNA, left-handed duplexes (Z-forms) or G-quadruplexes. It is expected that the non-B-DNA based entanglement of the linear DNA vectors would consist of the initial transient and co-operative non-B-DNA mediated binding events followed by tight self-ensnarement of the vector DNA. Once in the nucleoplasm of the target human cells, the DNA can be disentangled by type II topoisomerases. The technology for such self-entanglement can be an avenue for the improvement of gene delivery with high-molecular-weight naked DNA using therapeutically important methods associated with considerable shear stress. Priority applications include in vivo muscle electroporation and sonoporation for Duchenne muscular dystrophy patients, aerosol inhalation to reach the target lung cells of cystic fibrosis patients and bio-ballistic delivery to skin melanomas with the vector DNA adsorbed on gold or tungsten projectiles.
Collapse
Affiliation(s)
- Oleg E Tolmachov
- Cardiovascular Science, National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|