1
|
Nazarizadeh M, Nováková M, Drábková M, Catchen J, Olson PD, Štefka J. Highly resolved genome assembly and comparative transcriptome profiling reveal genes related to developmental stages of tapeworm Ligula intestinalis. Proc Biol Sci 2024; 291:20232563. [PMID: 38290545 PMCID: PMC10827431 DOI: 10.1098/rspb.2023.2563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Ligula intestinalis (Cestoda: Diphyllobothriidae) is an emerging model organism for studies on parasite population biology and host-parasite interactions. However, a well-resolved genome and catalogue of its gene content has not been previously developed. Here, we present the first genome assembly of L. intestinalis, based on Oxford Nanopore Technologies, Illumina and Omni-C sequencing methodologies. We use transcriptome profiling to compare plerocercoid larvae and adult worms and identify differentially expressed genes (DEGs) associated with these life stages. The genome assembly is 775.3 mega (M)bp in size, with scaffold N50 value of 118 Mbp and encodes 27 256 predicted protein-coding sequences. Over 60% of the genome consists of repetitive sequences. Synteny analyses showed that the 10 largest scaffolds representing 75% of the genome display high correspondence to full chromosomes of cyclophyllidean tapeworms. Mapping RNA-seq data to the new reference genome, we identified 3922 differentially expressed genes in adults compared with plerocercoids. Gene ontology analyses revealed over-represented genes involved in reproductive development of the adult stage (e.g. sperm production) and significantly enriched DEGs associated with immune evasion of plerocercoids in their fish host. This study provides the first insights into the molecular biology of L. intestinalis and provides the most highly contiguous assembly to date of a diphyllobothriid tapeworm useful for population and comparative genomic investigations of parasitic flatworms.
Collapse
Affiliation(s)
- Masoud Nazarizadeh
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Milena Nováková
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Marie Drábková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Julian Catchen
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Peter D. Olson
- Life Sciences Department, Natural History Museum, London, UK
| | - Jan Štefka
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Hu B, Han S, He H. Effect of epidemic diseases on wild animal conservation. Integr Zool 2023; 18:963-980. [PMID: 37202360 DOI: 10.1111/1749-4877.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Louizi H, Hill-Spanik KM, Qninba A, Connors VA, Belafhaili A, Agnèse JF, Pariselle A, de Buron I. Parasites of Moroccan desert Coptodon guineensis (Pisces, Cichlidae): transition and resilience in a simplified hypersaline ecosystem. Parasite 2022; 29:64. [PMID: 36562431 PMCID: PMC9879152 DOI: 10.1051/parasite/2022064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Sebkha Imlili (Atlantic Sahara) is a salt flat with over 160 permanent holes of hypersaline water generated in the Holocene and inhabited by euryhaline organisms that are considered to be relics of the past, including the cichlid fish Coptodon guineensis. We surveyed the fish parasites four times over one year, to i) identify the parasites, and ii) determine possible seasonality in infection patterns. Over 60% of the fish were infected by one to three helminths: an acanthocephalan in the intestine and two digenean metacercariae in the kidney, spleen, liver, muscle, and mesenteries. The acanthocephalan Acanthogyrus (Acanthosentis) cf. tilapiae was identified morphologically and molecularly; only one digenean (the heterophyid Pygidiopsis genata) could be identified molecularly. Both identified parasites were present throughout the sampling periods; the unidentified metacercariae were present only in summer and fall. Mean intensities, but not prevalence of infection by the acanthocephalan, reflected a biannual pattern of transmission. Infection accrued with fish size, possibly due to cannibalism. Because the water holes include only a few invertebrates, the intermediate hosts of these parasites can be inferred to be the gastropod Ecrobia ventrosa for the digeneans and either the copepod Cletocamtpus retrogressus or the ostracod Cyprideis torosa for the acanthocephalan. This ecosystem appears stable and provides a window into the past, as the acanthocephalan likely switched from freshwater tilapia to C. guineensis when the Sebkha formed. However, this is a vulnerable environment where the survival of these parasites depends on interactions maintained among only very few hosts.
Collapse
Affiliation(s)
- Halima Louizi
-
Laboratory Biodiversity, Ecology and Genome, Mohammed V University in Rabat, Faculty of Sciences 10000 Rabat Morocco
| | | | - Abdeljebbar Qninba
-
Mohammed V University in Rabat, Institut Scientifique, Avenue Ibn Batouta B.P. 703 10090 Agdal Rabat Morocco
| | - Vincent A. Connors
-
Division of Natural Sciences, University of South Carolina-Upstate 800 University Way Spartanburg SC 29303 USA
| | - Amine Belafhaili
-
LMNE, Mohammed V University in Rabat, Faculty of Sciences 10000 Rabat Morocco
| | | | - Antoine Pariselle
-
Laboratory Biodiversity, Ecology and Genome, Mohammed V University in Rabat, Faculty of Sciences 10000 Rabat Morocco
,
ISEM, CNRS, Université de Montpellier, IRD, EPHE 34095 Montpellier France
,Corresponding authors: ;
| | - Isaure de Buron
-
Department of Biology, College of Charleston 205 Fort Johnson Road Charleston SC 29412 USA
,Corresponding authors: ;
| |
Collapse
|
4
|
De Vivo M, Huang J. Modeling the geographical distributions of Chordodes formosanus and its mantis hosts in Taiwan, with considerations for their niche overlaps. Ecol Evol 2022; 12:e9546. [PMID: 36447597 PMCID: PMC9702995 DOI: 10.1002/ece3.9546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Species distribution models (SDMs) have conventionally been used for evaluating the distribution of individual species, but they can also be used, through comparing different SDMs, to evaluate the geographic similarity between taxa. In this study, we used a parasite and host system to infer the geographic overlaps between species with tight biological interaction, for example, parasites and their obligate host. Specifically, we used the horsehair worm Chordodes formosanus and its three mantis hosts to study the extent of niche overlap. We retrieved presence points for the host species and the parasite, and then we built SDMs with MaxEnt implemented in ENMeval using selected bioclim variables (based on variance inflation factor values) at 30s scale. The models showed that the hosts and parasite do not occur in the high elevation areas in Taiwan, which is expected based on their biology. Interestingly, the predicted parasite distribution included areas without collection records, implying local extinction or sampling bias. We subsequently evaluated niche overlap between hosts and the parasite according to five similarity indices (Schoener's D, I statistic, relative rank, Pearson correlation coefficient, and the rank correlation coefficient rho). Our models showed a high similarity of SDM predictions between hosts and the parasite. There were differences among metrics for which host shared the highest similarity with the parasite, but the majority of the results indicated that the Japanese boxing mantis had the highest niche similarity with the horsehair worm. The choice of the niche overlap metric to use can uncover information on the parasite's ecology, which can be important for endangered species. SDMs are reliable tools for host and parasite conservation management and could help improve our understanding of parasite biology and ecology.
Collapse
Affiliation(s)
- Mattia De Vivo
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
| | - Jen‐Pan Huang
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
5
|
Evolutionary consequences of vector-borne transmission: how using vectors shapes host, vector and pathogen evolution. Parasitology 2022; 149:1667-1678. [PMID: 36200511 PMCID: PMC10090782 DOI: 10.1017/s0031182022001378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transmission mode is a key factor that influences host–parasite coevolution. Vector-borne pathogens are among the most important disease agents for humans and wildlife due to their broad distribution, high diversity, prevalence and lethality. They comprise some of the most important and widespread human pathogens, such as yellow fever, leishmania and malaria. Vector-borne parasites (in this review, those transmitted by blood-feeding Diptera) follow unique transmission routes towards their vertebrate hosts. Consequently, each part of this tri-partite (i.e. parasite, vector and host) interaction can influence co- and counter-evolutionary pressures among antagonists. This mode of transmission may favour the evolution of greater virulence to the vertebrate host; however, pathogen–vector interactions can also have a broad spectrum of fitness costs to the insect vector. To complete their life cycle, vector-borne pathogens must overcome immune responses from 2 unrelated organisms, since they can activate responses in both vertebrate and invertebrate hosts, possibly creating a trade-off between investments against both types of immunity. Here, we assess how dipteran vector-borne transmission shapes the evolution of hosts, vectors and the pathogens themselves. Hosts, vectors and pathogens co-evolve together in a constant antagonistic arms race with each participant's primary goal being to maximize its performance and fitness.
Collapse
|
6
|
Yevstafieva V, Khorolskyi A, Kravchenko S, Melnychuk V, Nikiforova O, Reshetylo O. Features of the exogenic development of Passalurus ambiguus (Nematoda, Oxyuroidae) at different temperature regimes. BIOSYSTEMS DIVERSITY 2022. [DOI: 10.15421/012207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Passalurosis is a prevalent disease among helminthiases of domestic rabbits. This invasion is caused by the nematode Passalurus ambiguus (Nematoda, Oxyuroidae), which is cosmopolitan and localized in the cecum and colon of rabbits. Passalurosis is highly contagious and capable of unlimited spread, due to the biological characteristics of its pathogen, such as the conditions that ensure maximum preservation of parasites at exogenous stages of their development. Experimental research in the laboratory established the timing of development of P. ambiguus eggs isolated from the gonads of female helminths, depending on temperature regimes and features of their growth and development. According to the morphological features of Passalurus eggs, four stages were distinguished in their exogenous development: zygote, cleavage and formation of blastomeres, formation of larvae and motile larvae. Depending on the cultivation temperature, the duration of embryogenesis ranged from 4 to 9 days, and egg viability ranged from 59.3% to 72.7%. The most favourable temperature regime for the development of P. ambiguus eggs was the temperature of 35 °C, at which 72.7% of eggs with motile larvae were formed within 4 days. At this temperature, the zygote stage lasted for 1 day of cultivation, the stage of cleaving and formation of blastomeres occurred on days 1–2, the stage of larval formation on days 1–3, and the stage of formation of motile larva on days 3–4. At lower temperatures, the term of development of Passalurus eggs increased, and the number of viable eggs decreased. At temperatures of 30 °С and 25 °С, the development of Passalurus eggs took place during 5 and 7 days, respectively, and the viability was 66.7% and 62.7%. At these temperatures, the zygote stage lasted 1–2 and 1–3 days, the stage of cleaving and formation of blastomeres occurred on days 1–3 and 1–4, the stage of larval formation lasted from days 2–4 and 2–6, and the stage of formation of motile larvae took place on days 3–5 and 4–7, respectively. The least favourable temperature for the development of P. ambiguus eggs was the temperature of 20 °С, at which the formation of motile larvae occurred in 9 days, and their viability was only 59.3%. At this temperature, the zygote stage lasted 1–4 days, the stage of cleaving and blastomere formation occurred on days 2–6, and the larval formation stage on days 3–8, and the motile larval stage happened on days 5–9. The growth and development of P. ambiguus eggs was accompanied by significant changes in morphometric parameters, such as the increase in egg width and thinning of egg shell at the egg shell plug. The obtained data will allow preventive measures to be effectively implemented on rabbit farms that are susceptible to pinworms, taking into account the terms of exogenous development of pathogens in different seasons.
Collapse
|
7
|
De Baets K, Huntley JW, Scarponi D, Klompmaker AA, Skawina A. Phanerozoic parasitism and marine metazoan diversity: dilution versus amplification. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200366. [PMID: 34538136 PMCID: PMC8450635 DOI: 10.1098/rstb.2020.0366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Growing evidence suggests that biodiversity mediates parasite prevalence. We have compiled the first global database on occurrences and prevalence of marine parasitism throughout the Phanerozoic and assess the relationship with biodiversity to test if there is support for amplification or dilution of parasitism at the macroevolutionary scale. Median prevalence values by era are 5% for the Paleozoic, 4% for the Mesozoic, and a significant increase to 10% for the Cenozoic. We calculated period-level shareholder quorum sub-sampled (SQS) estimates of mean sampled diversity, three-timer (3T) origination rates, and 3T extinction rates for the most abundant host clades in the Paleobiology Database to compare to both occurrences of parasitism and the more informative parasite prevalence values. Generalized linear models (GLMs) of parasite occurrences and SQS diversity measures support both the amplification (all taxa pooled, crinoids and blastoids, and molluscs) and dilution hypotheses (arthropods, cnidarians, and bivalves). GLMs of prevalence and SQS diversity measures support the amplification hypothesis (all taxa pooled and molluscs). Though likely scale-dependent, parasitism has increased through the Phanerozoic and clear patterns primarily support the amplification of parasitism with biodiversity in the history of life. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.
Collapse
Affiliation(s)
- Kenneth De Baets
- GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-University Erlangen-Nürnberg, Loewenichstraße 28, 91054 Erlangen, Germany
| | - John Warren Huntley
- Department of Geological Sciences, University of Missouri, 101 Geological Sciences Building, Columbia, MO 65211, USA
| | - Daniele Scarponi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Piazza di Porta San Donato 1, 40131 Bologna, Italy
| | - Adiël A Klompmaker
- Department of Museum Research and Collections and Alabama Museum of Natural History, University of Alabama, Box 870340, Tuscaloosa, AL 35487, USA
| | - Aleksandra Skawina
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warszawa, Poland
| |
Collapse
|
8
|
Vostinar AE, Skocelas KG, Lalejini A, Zaman L. Symbiosis in Digital Evolution: Past, Present, and Future. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.739047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Symbiosis, the living together of unlike organisms as symbionts, is ubiquitous in the natural world. Symbioses occur within and across all scales of life, from microbial to macro-faunal systems. Further, the interactions between symbionts are multimodal in both strength and type, can span from parasitic to mutualistic within one partnership, and persist over generations. Studying the ecological and evolutionary dynamics of symbiosis in natural or laboratory systems poses a wide range of challenges, including the long time scales at which symbioses evolve de novo, the limited capacity to experimentally control symbiotic interactions, the weak resolution at which we can quantify interactions, and the idiosyncrasies of current model systems. These issues are especially challenging when seeking to understand the ecological effects and evolutionary pressures on and of a symbiosis, such as how a symbiosis may shift between parasitic and mutualistic modes and how that shift impacts the dynamics of the partner population. In digital evolution, populations of computational organisms compete, mutate, and evolve in a virtual environment. Digital evolution features perfect data tracking and allows for experimental manipulations that are impractical or impossible in natural systems. Furthermore, modern computational power allows experimenters to observe thousands of generations of evolution in minutes (as opposed to several months or years), which greatly expands the range of possible studies. As such, digital evolution is poised to become a keystone technique in our methodological repertoire for studying the ecological and evolutionary dynamics of symbioses. Here, we review how digital evolution has been used to study symbiosis, and we propose a series of open questions that digital evolution is well-positioned to answer.
Collapse
|
9
|
Campos TL, Korhonen PK, Hofmann A, Gasser RB, Young ND. Harnessing model organism genomics to underpin the machine learning-based prediction of essential genes in eukaryotes - Biotechnological implications. Biotechnol Adv 2021; 54:107822. [PMID: 34461202 DOI: 10.1016/j.biotechadv.2021.107822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
The availability of high-quality genomes and advances in functional genomics have enabled large-scale studies of essential genes in model eukaryotes, including the 'elegant worm' (Caenorhabditis elegans; Nematoda) and the 'vinegar fly' (Drosophila melanogaster; Arthropoda). However, this is not the case for other, much less-studied organisms, such as socioeconomically important parasites, for which functional genomic platforms usually do not exist. Thus, there is a need to develop innovative techniques or approaches for the prediction, identification and investigation of essential genes. A key approach that could enable the prediction of such genes is machine learning (ML). Here, we undertake an historical review of experimental and computational approaches employed for the characterisation of essential genes in eukaryotes, with a particular focus on model ecdysozoans (C. elegans and D. melanogaster), and discuss the possible applicability of ML-approaches to organisms such as socioeconomically important parasites. We highlight some recent results showing that high-performance ML, combined with feature engineering, allows a reliable prediction of essential genes from extensive, publicly available 'omic data sets, with major potential to prioritise such genes (with statistical confidence) for subsequent functional genomic validation. These findings could 'open the door' to fundamental and applied research areas. Evidence of some commonality in the essential gene-complement between these two organisms indicates that an ML-engineering approach could find broader applicability to ecdysozoans such as parasitic nematodes or arthropods, provided that suitably large and informative data sets become/are available for proper feature engineering, and for the robust training and validation of algorithms. This area warrants detailed exploration to, for example, facilitate the identification and characterisation of essential molecules as novel targets for drugs and vaccines against parasitic diseases. This focus is particularly important, given the substantial impact that such diseases have worldwide, and the current challenges associated with their prevention and control and with drug resistance in parasite populations.
Collapse
Affiliation(s)
- Tulio L Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia; Bioinformatics Core Facility, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-Fiocruz), Recife, Pernambuco, Brazil
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
10
|
Parasite protein phosphatases: biological function, virulence, and host immune evasion. Parasitol Res 2021; 120:2703-2715. [PMID: 34309709 DOI: 10.1007/s00436-021-07259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Protein phosphatases are enzymes that dephosphorylate tyrosine and serine/threonine amino acid residues. Although their role in cellular processes has been best characterized in higher eukaryotes, they have also been identified and studied in different pathogenic microorganisms (e.g., parasites) in the last two decades. Whereas some parasite protein phosphatases carry out functions similar to those of their homologs in yeast and mammalian cells, others have unique structural and/or functional characteristics. Thus, the latter unique phosphatases may be instrumental as targets for drug therapy or as markers for diagnosis. It is important to better understand the involvement of protein phosphatases in parasites in relation to their cell cycle, metabolism, virulence, and evasion of the host immune response. The up-to-date information about parasite phosphatases of medical and veterinarian relevance is herein reviewed.
Collapse
|
11
|
Alternative transmission pathways for guinea worm in dogs: implications for outbreak risk and control. Int J Parasitol 2021; 51:1027-1034. [PMID: 34246634 DOI: 10.1016/j.ijpara.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
Guinea worm (Dracunculus medinensis) has exerted a high human health burden in parts of Africa. Complete eradication of Guinea worm disease (dracunculiasis) may be delayed by the circulation of the parasite in domestic dogs. As with humans, dogs acquire the parasite by directly ingesting infected copepods, and recent evidence suggests that consuming frogs that ingested infected copepods as tadpoles may be a viable transmission route (paratenic route). To understand the relative contributions of direct and paratenic transmission routes, we developed a mathematical model that describes transmission of Guinea worm between dogs, copepods and frogs. We explored how the parasite basic reproductive number (R0) depends on parameters amenable to actionable interventions under three scenarios: frogs/tadpoles do not consume copepods; tadpoles consume copepods but frogs do not contribute to transmission; and frogs are paratenic hosts. We found a non-monotonic relationship between the number of dogs and R0. Generally, frogs can contribute to disease control by removing infected copepods from the waterbody even when paratenic transmission can occur. However, paratenic transmission could play an important role in maintaining the parasite when direct transmission is reduced by interventions focused on reducing copepod ingestion by dogs. Together, these suggest that the most effective intervention strategies may be those which focus on the reduction of copepods, as this reduces outbreak potential irrespective of the importance of the paratenic route.
Collapse
|
12
|
Wilcox JJS, Lopez-Cotto JJ, Hollocher H. Historical contingency, geography and anthropogenic patterns of exposure drive the evolution of host switching in the Blastocystis species-complex. Parasitology 2021; 148:985-993. [PMID: 33775262 PMCID: PMC11010051 DOI: 10.1017/s003118202100055x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/24/2021] [Accepted: 03/21/2021] [Indexed: 11/05/2022]
Abstract
Parasites have the power to impose significant regulatory pressures on host populations, making evolutionary patterns of host switching by parasites salient to a range of contemporary ecological issues. However, relatively little is known about the colonization of new hosts by parasitic, commensal and mutualistic eukaryotes of metazoans. As ubiquitous symbionts of coelomate animals, Blastocystis spp. represent excellent candidate organisms for the study of evolutionary patterns of host switching by protists. Here, we apply a big-data phylogenetic approach using archival sequence data to assess the relative roles of several host-associated traits in shaping the evolutionary history of the Blastocystis species-complex within an ecological framework. Patterns of host usage were principally determined by geographic location and shared environments of hosts, suggesting that weight of exposure (i.e. propagule pressure) represents the primary force for colonization of new hosts within the Blastocystis species-complex. While Blastocystis lineages showed a propensity to recolonize the same host taxa, these taxa were often evolutionarily unrelated, suggesting that historical contingency and retention of previous adaptions by the parasite were more important to host switching than host phylogeny. Ultimately, our findings highlight the ability of ecological theory (i.e. ‘ecological fitting’) to explain host switching and host specificity within the Blastocystis species-complex.
Collapse
Affiliation(s)
- Justin J. S. Wilcox
- Department of Biological Sciences, Galvin Life Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - John J. Lopez-Cotto
- Department of Biological Sciences, Galvin Life Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hope Hollocher
- Department of Biological Sciences, Galvin Life Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
13
|
Hill-Spanik KM, Sams C, Connors VA, Bricker T, de Buron I. Molecular data reshape our understanding of the life cycles of three digeneans (Monorchiidae and Gymnophallidae) infecting the bivalve, Donax variabilis: it's just a facultative host! ACTA ACUST UNITED AC 2021; 28:34. [PMID: 33835020 PMCID: PMC8034251 DOI: 10.1051/parasite/2021027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 11/15/2022]
Abstract
The coquina, Donax variabilis, is a known intermediate host of monorchiid and gymnophallid digeneans. Limited morphological criteria for the host and the digeneans' larval stages have caused confusion in records. Herein, identities of coquinas from the United States (US) Atlantic coast were verified molecularly. We demonstrate that the current GenBank sequences for D. variabilis are erroneous, with the US sequence referring to D. fossor. Two cercariae and three metacercariae previously described in the Gulf of Mexico and one new cercaria were identified morphologically and molecularly, with only metacercariae occurring in both hosts. On the Southeast Atlantic coast, D. variabilis' role is limited to being a facultative second intermediate host, and D. fossor, an older species, acts as both first and second intermediate hosts. Sequencing demonstrated 100% similarities between larval stages for each of the three digeneans. Sporocysts, single tail cercariae, and metacercariae in the incurrent siphon had sequences identical to those of monorchiid Lasiotocus trachinoti, for which we provide the complete life cycle. Adults are not known for the other two digeneans, and sequences from their larval stages were not identical to any in GenBank. Large sporocysts, cercariae (Cercaria choanura), and metacercariae in the coquinas' foot were identified as Lasiotocus choanura (Hopkins, 1958) n. comb. Small sporocysts, furcocercous cercariae, and metacercariae in the mantle were identified as gymnophallid Parvatrema cf. donacis. We clarify records wherein authors recognized the three digenean species but confused their life stages, and probably the hosts, as D. variabilis is sympatric with cryptic D. texasianus in the Gulf of Mexico.
Collapse
Affiliation(s)
- Kristina M Hill-Spanik
- Department of Biology, 205 Fort Johnson Road, College of Charleston, Charleston, 29412 SC, USA
| | - Claudia Sams
- Department of Biology, 205 Fort Johnson Road, College of Charleston, Charleston, 29412 SC, USA
| | - Vincent A Connors
- Department of Biology, Division of Natural Sciences, University of South Carolina Upstate, 1800 University Way, Spartanburg, 29303 SC, USA
| | - Tessa Bricker
- Department of Biology, 205 Fort Johnson Road, College of Charleston, Charleston, 29412 SC, USA
| | - Isaure de Buron
- Department of Biology, 205 Fort Johnson Road, College of Charleston, Charleston, 29412 SC, USA
| |
Collapse
|
14
|
Ecology directs host-parasite coevolutionary trajectories across Daphnia-microparasite populations. Nat Ecol Evol 2021; 5:480-486. [PMID: 33589801 DOI: 10.1038/s41559-021-01390-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
Host-parasite interactions often fuel coevolutionary change. However, parasitism is one of a myriad of possible ecological interactions in nature. Biotic (for example, predation) and abiotic (for example, temperature) variation can amplify or dilute parasitism as a selective force on hosts and parasites, driving population variation in (co)evolutionary trajectories. We dissected the relationships between wider ecology and coevolutionary trajectory using 16 ecologically complex Daphnia magna-Pasteuria ramosa ponds seeded with an identical starting host (Daphnia) and parasite (Pasteuria) population. We show, using a time-shift experiment and outdoor population data, how multivariate biotic and abiotic ecological differences between ponds caused coevolutionary divergence. Wider ecology drove variation in host evolution of resistance, but not parasite infectivity; parasites subsequently coevolved in response to the changing complement of host genotypes, such that parasites adapted to historically resistant host genotypes. Parasitism was a stronger interaction for the parasite than for its host, probably because the host is the principal environment and selective force, whereas for hosts, parasite-mediated selection is one of many sources of selection. Our findings reveal the mechanisms through which wider ecology creates coevolutionary hotspots and coldspots in biologically realistic arenas of host-parasite interaction, and sheds light on how the ecological theatre can affect the (co)evolutionary play.
Collapse
|
15
|
Magalhães L, Freitas R, de Montaudouin X. How costly are metacercarial infections in a bivalve host? Effects of two trematode species on biochemical performance of cockles. J Invertebr Pathol 2020; 177:107479. [PMID: 33039398 DOI: 10.1016/j.jip.2020.107479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Bivalve stocks have been decreasing in the last decades largely due to emergent diseases and consequent mass mortality episodes. Cerastoderma edule (the edible cockle) is one of the most exploited bivalves in Europe and is among the most common hosts for trematodes, the most prevalent macroparasites in coastal waters but yet poorly studied. Therefore, in the present study, this bivalve species was used as host model to determine if trematode infection exerts a negative effect on bivalve energy metabolism and balance and if the tissues targeted by different trematodes influence the metabolic cost, with physiological and biochemical consequences. Cockles were experimentally infected with two trematode species, Himasthla elongata and Renicola roscovitus, that infect the foot and palps, respectively. Trematode infection exerted a negative effect on the metabolism of C. edule, the second intermediate host, by reduction of oxygen consumption. A different host biochemical response was found depending on trematode species, especially in regard to the level of oxygen consumption decrease and the preferential accumulation of lipids and glycogen. This study represents a step towards the understanding of host-trematode relationships that can be used to better predict potential conservation threats to bivalve populations and to maximize the success of stock and disease management.
Collapse
Affiliation(s)
- Luísa Magalhães
- CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
| | - Rosa Freitas
- CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Xavier de Montaudouin
- CNRS, UMR EPOC, Université de Bordeaux, Station Marine, 2, rue du Pr Jolyet, F-33120 Arcachon, France
| |
Collapse
|
16
|
Collet J, Fellous S. Do traits separated by metamorphosis evolve independently? Concepts and methods. Proc Biol Sci 2020; 286:20190445. [PMID: 30966980 DOI: 10.1098/rspb.2019.0445] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the ubiquity of complex life cycles, we know little of the evolutionary constraints exerted by metamorphosis. Here, we present pitfalls and methods to answer whether animals with a complex life cycle can independently adapt to the environments encountered at each life stage, with a specific focus on the microevolution of quantitative characters. We first discuss challenges associated with study traits and populations. We further emphasize the benefits of using a combination of approaches. We then develop how multivariate methods can limit several issues by revealing genetic patterns that are invisible when only considering trait-by-trait genetic correlations. Finally, we detail how Lande's work on sexual dimorphism can be applied in measuring G matrices across life stages. The methods and tools described here will contribute towards building a predictive framework for trait evolution across life stages.
Collapse
Affiliation(s)
- Julie Collet
- 1 CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier , Montpellier , France.,2 CEFE, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, EPHE, IRD , Montpellier , France
| | - Simon Fellous
- 1 CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier , Montpellier , France
| |
Collapse
|
17
|
Chubb JC, Benesh D, Parker GA. Ungulate Helminth Transmission and Two Evolutionary Puzzles. Trends Parasitol 2020; 36:64-79. [DOI: 10.1016/j.pt.2019.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022]
|
18
|
Margos G, Fingerle V, Reynolds S. Borrelia bavariensis: Vector Switch, Niche Invasion, and Geographical Spread of a Tick-Borne Bacterial Parasite. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00401] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Lasprilla-Mantilla MI, Wagner V, Pena J, Frechette A, Thivierge K, Dufour S, Fernandez-Prada C. Effects of recycled manure solids bedding on the spread of gastrointestinal parasites in the environment of dairies and milk. J Dairy Sci 2019; 102:11308-11316. [PMID: 31548050 DOI: 10.3168/jds.2019-16866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/09/2019] [Indexed: 11/19/2022]
Abstract
The primary aim of this work was to isolate common bovine digestive tract parasites in recycled manure bedding (RMS), as well as to determine the ability of current RMS preparation procedures to eliminate these pathogens. Other objectives were to assess whether any of the aforementioned parasites could be retrieved in bulk milk from dairies using RMS and to study whether the prevalence of these parasites differed among manure of cows housed on RMS versus on straw bedding. For the study, 27 RMS farms and 61 control farms were recruited. Samples of manure from the pre-pit and milk from the bulk tank were recovered from straw-bedding farms and RMS-based farms. In addition, samples from the manure solid fraction after liquid extraction, RMS before use, and RMS currently in use were recovered from RMS herds. Parasites were first detected by double centrifugation zinc sulfate flotation to enhance isolation of gastrointestinal protozoa, and by modified Wisconsin sugar flotation for the appraisal of gastrointestinal nematodes. Cryptosporidium parasites were confirmed by nested PCR amplification and sequencing of a portion of the gene encoding the small subunit rRNA. Results revealed a high prevalence of Cryptosporidium spp. (C. parvum, C. andersoni, and C. meleagridis, identified by PCR) and Eimeria spp. (mainly E. bovis and E. zuernii) parasites in both types of farms, with a larger proportion of manure samples from RMS-bedded farms testing positive for Cryptosporidium parasites compared with manure from straw-bedded farms. Both Cryptosporidium spp. and Eimeria spp. oocysts were found at every step of RMS preparation and transformation, showing that current RMS preparation strategies do not guarantee the destruction of protozoan parasites. Cryptosporidium parvum, a potential zoonotic risk for professionals in close contact with livestock, was found to be present in 32 out of 61 straw-bedded and 24 of 27 RMS farms. No protozoan parasites were found in any sample derived from bulk milk, neither by microscopy analysis nor by molecular methods.
Collapse
Affiliation(s)
- Marlen I Lasprilla-Mantilla
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Groupe de recherche sur les maladies infectieuses des animaux de production (GREMIP), Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Regroupement de recherche Op+Lait, Saint-Hyacinthe, Québec J2S 2M2 Canada
| | - Victoria Wagner
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Groupe de recherche sur les maladies infectieuses des animaux de production (GREMIP), Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada
| | - Joan Pena
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Groupe de recherche sur les maladies infectieuses des animaux de production (GREMIP), Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada
| | - Annie Frechette
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Regroupement de recherche Op+Lait, Saint-Hyacinthe, Québec J2S 2M2 Canada
| | - Karine Thivierge
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec H9X 3R5 Canada; Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Québec H9X 3V9 Canada
| | - Simon Dufour
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Regroupement de recherche Op+Lait, Saint-Hyacinthe, Québec J2S 2M2 Canada
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Groupe de recherche sur les maladies infectieuses des animaux de production (GREMIP), Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Regroupement de recherche Op+Lait, Saint-Hyacinthe, Québec J2S 2M2 Canada.
| |
Collapse
|
20
|
Fasciola hepatica in Brazil: genetic diversity provides insights into its origin and geographic dispersion. J Helminthol 2019; 94:e83. [PMID: 31495340 DOI: 10.1017/s0022149x19000774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fasciola hepatica is a trematode parasite that affects mammals, including humans. In Brazil, fascioliasis, a disease caused by the parasite, is of great importance. The disorder affects the welfare of the Brazilian population through impairing the agricultural production of cattle, where the disease causes weight loss as a result of liver damage. This study aimed to evaluate the genetic diversity of F. hepatica throughout Southern Brazil to determine its geographic origin and estimate the colonization route of the parasite. To accomplish these aims, flukes were collected from slaughterhouses in three endemic areas of Rio Grande do Sul and Paraná states. DNA was isolated using the phenol-chloroform protocol from single flukes and two mitochondrial genes, cytochrome oxidase subunit I (COI) and nicotinamide dehydrogenase subunit 1 (Nad1), were amplified and sequenced. Ten haplotypes of COI were found from 75 isolated parasites and the total haplotype and nucleotide diversity observed were 0.475 and 0.002, respectively. Using the Nad1 gene, we found 24 haplotypes from 79 samples, resulting in haplotype and nucleotide diversity values of 0.756 and 0.004, respectively. An analysis of molecular variance showed that 57.4% and 77.5% of variation was within populations (FST), while 9.0 and 36.8% of variation was among groups (FCT) when considering COI and Nad1 genes, respectively. For COI, the fixation index values of 0.425 and 0.368 were obtained for FST and FCT, respectively, while analysis of Nad1 0.225 and 0.089 index values were obtained for FST and FCT, respectively. We have determined that F. hepatica found in the two distinct areas originated from several geographical regions, since we found haplotypes that were shared with at least three different continents. These data are in accordance with the recent colonization of Brazil, and the recent import of cattle from South American, European and, possibly, some African countries. The observed FST and FCT values for COI and Nad1 genes of F. hepatica may be a result of limited movement of animals within states and support the lack of geographical structure of the parasite in Brazil, which are in agreement with the observed cattle production systems in this region.
Collapse
|
21
|
Numminen E, Vaumourin E, Parratt SR, Poulin L, Laine AL. Variation and correlations between sexual, asexual and natural enemy resistance life-history traits in a natural plant pathogen population. BMC Evol Biol 2019; 19:142. [PMID: 31299905 PMCID: PMC6624897 DOI: 10.1186/s12862-019-1468-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Understanding the mechanisms by which diversity is maintained in pathogen populations is critical for epidemiological predictions. Life-history trade-offs have been proposed as a hypothesis for explaining long-term maintenance of variation in pathogen populations, yet the empirical evidence supporting trade-offs has remained mixed. This is in part due to the challenges of documenting successive pathogen life-history stages in many pathosystems. Moreover, little is understood of the role of natural enemies of pathogens on their life-history evolution. RESULTS We characterize life-history-trait variation and possible trade-offs in fungal pathogen Podosphaera plantaginis infecting the host plant Plantago lanceolata. We measured the timing of both asexual and sexual stages, as well as resistance to a hyperparasite of seven pathogen strains that vary in their prevalence in nature. We find significant variation among the strains in their life-history traits that constitute the infection cycle, but no evidence for trade-offs among pathogen development stages, apart from fast pathogen growth coninciding with fast hyperparasite growth. Also, the seemingly least fit pathogen strain was the most prevalent in the nature. CONCLUSIONS We conclude that in the nature environmental variation, and interactions with the antagonists of pathogens themselves may maintain variation in pathogen populations.
Collapse
Affiliation(s)
- Elina Numminen
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.
| | - Elise Vaumourin
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland
| | - Steven R Parratt
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.,University of Liverpool, Institute of Integrative Biology, Liverpool, L69 3BX, UK
| | - Lucie Poulin
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.,Université de Nantes, Faculté des Sciences et des Techniques, Laboratoire de Biologie et de Pathologie Végétales (LBPV), EA 1157, SFR 4207 QUASAV, 2, rue de la Houssinière, BP 92 208, F-44322, Nantes Cedex 3, France
| | - Anna-Liisa Laine
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
22
|
Landscapes within landscapes: A parasite utilizes different ecological niches on the host landscapes of two host species. Acta Trop 2019; 193:60-65. [PMID: 30807751 DOI: 10.1016/j.actatropica.2019.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 11/22/2022]
Abstract
Parasites are distributed across populations of hosts, but also across microhabitats on or inside hosts: together the host population distribution and "host landscape" distribution comprise a part of the ecological niche of a parasite. In this paper we examine how a generalist parasite, the tick Ixodes holocyclus, is distributed at both the host population and host landscape scales in two species of host (Perameles nasuta and Rattus rattus) that co-occur. We anaesthetized wildlife to locate ticks from five generalized host body regions; we then analysed the distribution of ticks among the populations of hosts (aggregation) and the distribution of ticks among the available host body regions as niches. Ixodes holocyclus is more aggregated in the R. rattus population. At the host landscape scale, I. holocyclus's utilized niche includes the entire surface of P. nasuta equally, while the niche on R. rattus is focused on the head. Differences in tick aggregation between host species may reflect tick habitat suitability at the host landscape scale, as well as differences in ecological and evolutionary histories. By exploring the distribution of parasites at multiple scales, including host landscapes, we can better understand the complex ecology of parasites.
Collapse
|
23
|
Shao S, Sun X, Chen Y, Zhan B, Zhu X. Complement Evasion: An Effective Strategy That Parasites Utilize to Survive in the Host. Front Microbiol 2019; 10:532. [PMID: 30949145 PMCID: PMC6435963 DOI: 10.3389/fmicb.2019.00532] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
Parasitic infections induce host immune responses that eliminate the invading parasites. However, parasites have evolved to develop many strategies to evade host immune attacks and survive in a hostile environment. The complement system acts as the first line of immune defense to eliminate the invading parasites by forming the membrane attack complex (MAC) and promoting an inflammatory reaction on the surface of invading parasites. To date, the complement activation pathway has been precisely delineated; however, the manner in which parasites escape complement attack, as a survival strategy in the host, is not well understood. Increasing evidence has shown that parasites develop sophisticated strategies to escape complement-mediated killing, including (i) recruitment of host complement regulatory proteins on the surface of the parasites to inhibit complement activation; (ii) expression of orthologs of host RCA to inhibit complement activation; and (iii) expression of parasite-encoded proteins, specifically targeting different complement components, to inhibit complement function and formation of the MAC. In this review, we compiled information regarding parasitic abilities to escape host complement attack as a survival strategy in the hostile environment of the host and the mechanisms underlying complement evasion. Effective escape of host complement attack is a crucial step for the survival of parasites within the host. Therefore, those proteins expressed by parasites and involved in the regulation of the complement system have become important targets for the development of drugs and vaccines against parasitic infections.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Øverli Ø, Johansen IB. Kindness to the Final Host and Vice Versa: A Trend for Parasites Providing Easy Prey? Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
25
|
Pramanik PK, Alam MN, Roy Chowdhury D, Chakraborti T. Drug Resistance in Protozoan Parasites: An Incessant Wrestle for Survival. J Glob Antimicrob Resist 2019; 18:1-11. [PMID: 30685461 DOI: 10.1016/j.jgar.2019.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 11/19/2022] Open
Abstract
Nowadays, drug resistance in parasites is considered to be one of the foremost concerns in health and disease management. It is interconnected worldwide and undermines the health of millions of people, threatening to grow worse. Unfortunately, it does not receive serious attention from every corner of society. Consequently, drug resistance in parasites is gradually complicating and challenging the treatment of parasitic diseases. In this context, we have dedicated ourselves to review the incidence of drug resistance in the protozoan parasites Plasmodium, Leishmania, Trypanosoma, Entamoeba and Toxoplasma gondii. Moreover, understanding the role of ATP-binding cassette (ABC) transporters in drug resistance is essential in the control of parasitic diseases. Therefore, we also focused on the involvement of ABC transporters in drug resistance, which will be a superior approach to find ways for better regulation of diseases caused by parasitic infections.
Collapse
Affiliation(s)
- Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Md Nur Alam
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Dibyapriya Roy Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
26
|
Kasl EL, Font WF, Criscione CD. Resolving evolutionary changes in parasite life cycle complexity: Molecular phylogeny of the trematode genus Alloglossidium indicates more than one origin of precociousness. Mol Phylogenet Evol 2018; 126:371-381. [DOI: 10.1016/j.ympev.2018.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/17/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
27
|
Aminzare M, Hashemi M, Faz SY, Raeisi M, Hassanzadazar H. Prevalence of liver flukes infections and hydatidosis in slaughtered sheep and goats in Nishapour, Khorasan Razavi, Iran. Vet World 2018; 11:146-150. [PMID: 29657395 PMCID: PMC5891866 DOI: 10.14202/vetworld.2018.146-150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/26/2017] [Indexed: 12/04/2022] Open
Abstract
Background: Food-borne trematode infections and hydatidosis are endemic diseases caused by helminths in Iran that are responsible for great economic loss and getting public health at risk. Aim: Aim of this study was to determine the prevalence of fasciolosis, dicrocoeliasis, and hydatidosis infections in slaughtered sheep and goats in Nishapour, Khorasan Razavi province of Iran. Materials and Methods: A survey was implemented on 130,107 sheep and goats slaughtered at an abattoir in Nishapour (Neyshbur) city, north central Khorasan Razavi Province, Iran, to determine the prevalence of fascioliasis, dicrocoeliosis and presence of hydatidosis. Results: During a 1-year period of study, among 130,107 of sheep and goats slaughtered at Nishapour abattoir, 1064 and 7124 livers were condemned totally and partially, respectively. A total of 255 (0.19%), 181 (0.12 %), and 7751 (5.95%) of livers were condemned due to cysts of Echinococcus granulosus, flukes of Fasciola spp., and Dicrocoelium dendriticum, respectively. Totally, 1932 (1.48%) lungs were condemned due to hydatidosis. The significant seasonal pattern was seen for fasciolosis, dicrocoeliosis, and hydatidosis, statistically (p<0.01). Conclusion: According to this study, it seems that Neyshabour is considered as an endemic region for Fasciola spp. and D. dendriticum infections and D. dendriticum is the most widespread liver fluke found in sheep and goats.
Collapse
Affiliation(s)
- Majid Aminzare
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Hashemi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Yaghoobi Faz
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mojtaba Raeisi
- Cereal Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
28
|
Clonorchis sinensis and Clonorchiasis: The Relevance of Exploring Genetic Variation. ADVANCES IN PARASITOLOGY 2018; 100:155-208. [PMID: 29753338 DOI: 10.1016/bs.apar.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parasitic trematodes (flukes) cause substantial mortality and morbidity in humans. The Chinese liver fluke, Clonorchis sinensis, is one of the most destructive parasitic worms in humans in China, Vietnam, Korea and the Russian Far East. Although C. sinensis infection can be controlled relatively well using anthelmintics, the worm is carcinogenic, inducing cholangiocarcinoma and causing major suffering in ~15 million people in Asia. This chapter provides an account of C. sinensis and clonorchiasis research-covering aspects of biology, epidemiology, pathogenesis and immunity, diagnosis, treatment and control, genetics and genomics. It also describes progress in the area of molecular biology (genetics, genomics, transcriptomics and proteomics) and highlights challenges associated with comparative genomics and population genetics. It then reviews recent advances in the sequencing and characterisation of the mitochondrial and nuclear genomes for a Korean isolate of C. sinensis and summarises salient comparative genomic work and the implications thereof. The chapter concludes by considering how advances in genomic and informatics will enable research on the genetics of C. sinensis and related parasites, as well as the discovery of new fluke-specific intervention targets.
Collapse
|
29
|
Kada S, McCoy KD, Boulinier T. Impact of life stage-dependent dispersal on the colonization dynamics of host patches by ticks and tick-borne infectious agents. Parasit Vectors 2017; 10:375. [PMID: 28778181 PMCID: PMC5544987 DOI: 10.1186/s13071-017-2261-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/22/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND When colonization and gene flow depend on host-mediated dispersal, a key factor affecting vector dispersal potential is the time spent on the host for the blood meal, a characteristic that can vary strongly among life history stages. Using a 2-patch vector-pathogen population model and seabird ticks as biological examples, we explore how vector colonization rates and the spread of infectious agents may be shaped by life stage-dependent dispersal. We contrast hard (Ixodidae) and soft (Argasidae) tick systems, which differ strongly in blood- feeding traits. RESULTS We find that vector life history characteristics (i.e. length of blood meal) and demographic constraints (Allee effects) condition the colonization potential of ticks; hard ticks, which take a single, long blood meal per life stage, should have much higher colonization rates than soft ticks, which take repeated short meals. Moreover, this dispersal potential has direct consequences for the spread of vector-borne infectious agents, in particular when transmission is transovarial. CONCLUSIONS These results have clear implications for predicting the dynamics of vector and disease spread in the context of large-scale environmental change. The findings highlight the need to include life-stage dispersal in models that aim to predict species and disease distributions, and provide testable predictions related to the population genetic structure of vectors and pathogens along expansion fronts.
Collapse
Affiliation(s)
- Sarah Kada
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) - CNRS Université Montpellier UMR 5175, 1919 route de Mende, 34293 Montpellier, France
| | - Karen D. McCoy
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR CNRS 5290 - UR IRD 224 - Université Montpellier, Centre IRD, 34394 Montpellier, France
| | - Thierry Boulinier
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) - CNRS Université Montpellier UMR 5175, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
30
|
Hamley M, Franke F, Kurtz J, Scharsack JP. An experimental approach to the immuno-modulatory basis of host-parasite local adaptation in tapeworm-infected sticklebacks. Exp Parasitol 2017; 180:119-132. [PMID: 28322743 DOI: 10.1016/j.exppara.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/21/2017] [Accepted: 03/12/2017] [Indexed: 01/08/2023]
Abstract
The evolutionary arms race of hosts and parasites often results in adaptations, which may differ between populations. Investigation of such local adaptation becomes increasingly important to understand dynamics of host-parasite interactions and co-evolution. To this end we performed an infection experiment involving pairs of three-spined sticklebacks and their tapeworm parasite Schistocephalus solidus from three geographically separated origins (Germany, Spain and Iceland) in a fully-crossed design for sympatric and allopatric host/parasite combinations. We hypothesized that local adaptation of the hosts results in differences in parasite resistance with variation in parasite infection rates and leukocyte activation, whereas parasites from different origins might differ in virulence reflected in host exploitation rates (parasite indices) and S. solidus excretory-secretory products (SsESP) involved in immune manipulation. In our experimental infections, sticklebacks from Iceland were more resistant to S. solidus infection compared to Spanish and German sticklebacks. Higher resistance of Icelandic sticklebacks seemed to depend on adaptive immunity, whereas sticklebacks of German origin, which were more heavily afflicted by S. solidus, showed elevated activity of innate immune traits. German S. solidus were less successful in infecting and exploiting allopatric hosts compared to their Icelandic and Spanish conspecifics. Nevertheless, exclusively SsESP from German S. solidus triggered significant in vitro responses of leukocytes from naïve sticklebacks. Interestingly, parasite indices were almost identical across the sympatric combinations. Differences in host resistance and parasite virulence between the origins were most evident in allopatric combinations and were consistent within origin; i.e. Icelandic sticklebacks were more resistant and their S. solidus were more virulent in all allopatric combinations, whereas German sticklebacks were less resistant and their parasites less virulent. Despite such differences between origins, the degree of host exploitation was almost identical in the sympatric host-parasite combinations, suggesting that the local evolutionary arms race of hosts and parasites resulted in an optimal virulence, maximising parasite fitness while avoiding host overexploitation.
Collapse
Affiliation(s)
- Madeleine Hamley
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany.
| | - Frederik Franke
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany.
| | - Joachim Kurtz
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany.
| | - Jörn Peter Scharsack
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany.
| |
Collapse
|
31
|
Hébert FO, Grambauer S, Barber I, Landry CR, Aubin-Horth N. Major host transitions are modulated through transcriptome-wide reprogramming events in Schistocephalus solidus, a threespine stickleback parasite. Mol Ecol 2017; 26:1118-1130. [PMID: 27997044 DOI: 10.1111/mec.13970] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 12/26/2022]
Abstract
Parasites with complex life cycles have developed numerous phenotypic strategies, closely associated with developmental events, to enable the exploitation of different ecological niches and facilitate transmission between hosts. How these environmental shifts are regulated from a metabolic and physiological standpoint, however, still remain to be fully elucidated. We examined the transcriptomic response of Schistocephalus solidus, a trophically transmitted parasite with a complex life cycle, over the course of its development in an intermediate host, the threespine stickleback, and the final avian host. Results from our differential gene expression analysis show major reprogramming events among developmental stages. The final host stage is characterized by a strong activation of reproductive pathways and redox homoeostasis. The attainment of infectivity in the fish intermediate host-which precedes sexual maturation in the final host and is associated with host behaviour changes-is marked by transcription of genes involved in neural pathways and sensory perception. Our results suggest that un-annotated and S. solidus-specific genes could play a determinant role in host-parasite molecular interactions required to complete the parasite's life cycle. Our results permit future comparative analyses to help disentangle species-specific patterns of infection from conserved mechanisms, ultimately leading to a better understanding of the molecular control and evolution of complex life cycles.
Collapse
Affiliation(s)
- François Olivier Hébert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Stephan Grambauer
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Adrian Building, University Road, Leicester, LE1 7RH, UK
| | - Iain Barber
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Adrian Building, University Road, Leicester, LE1 7RH, UK
| | - Christian R Landry
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Nadia Aubin-Horth
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
32
|
Abstract
SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.
Collapse
|
33
|
Echaubard P, Sripa B, Mallory FF, Wilcox BA. The role of evolutionary biology in research and control of liver flukes in Southeast Asia. INFECTION GENETICS AND EVOLUTION 2016; 43:381-97. [PMID: 27197053 DOI: 10.1016/j.meegid.2016.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/12/2016] [Accepted: 05/14/2016] [Indexed: 01/04/2023]
Abstract
Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework.
Collapse
Affiliation(s)
- Pierre Echaubard
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Tropical Disease Research laboratory, Department of Experimental Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Biology, Laurentian University, Sudbury, Ontario P3E 2C6, Canada; Global Health Asia, Faculty of Public Health, Mahidol University, Bangkok, Thailand.
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Tropical Disease Research laboratory, Department of Experimental Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Department of Parasitology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Frank F Mallory
- Department of Biology, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Bruce A Wilcox
- Global Health Asia, Faculty of Public Health, Mahidol University, Bangkok, Thailand; Cummings School of Veterinary Medicine, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
34
|
Dobson ADM, Auld SKJR. Epidemiological Implications of Host Biodiversity and Vector Biology: Key Insights from Simple Models. Am Nat 2016; 187:405-22. [PMID: 27028070 DOI: 10.1086/685445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Models used to investigate the relationship between biodiversity change and vector-borne disease risk often do not explicitly include the vector; they instead rely on a frequency-dependent transmission function to represent vector dynamics. However, differences between classes of vector (e.g., ticks and insects) can cause discrepancies in epidemiological responses to environmental change. Using a pair of disease models (mosquito- and tick-borne), we simulated substitutive and additive biodiversity change (where noncompetent hosts replaced or were added to competent hosts, respectively), while considering different relationships between vector and host densities. We found important differences between classes of vector, including an increased likelihood of amplified disease risk under additive biodiversity change in mosquito models, driven by higher vector biting rates. We also draw attention to more general phenomena, such as a negative relationship between initial infection prevalence in vectors and likelihood of dilution, and the potential for a rise in density of infected vectors to occur simultaneously with a decline in proportion of infected hosts. This has important implications; the density of infected vectors is the most valid metric for primarily zoonotic infections, while the proportion of infected hosts is more relevant for infections where humans are a primary host.
Collapse
|
35
|
Dobson ADM, Auld SKJR, Tinsley MC. Insufficient evidence of infection-induced phototactic behaviour in Spodoptera exigua: a comment on van Houte et al. (2014). Biol Lett 2015; 11:rsbl.2015.0132. [PMID: 26445986 DOI: 10.1098/rsbl.2015.0132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Andrew D M Dobson
- Biological and Environmental Sciences, Stirling University, Stirling FK9 4LA, UK
| | - Stuart K J R Auld
- Biological and Environmental Sciences, Stirling University, Stirling FK9 4LA, UK
| | - Matthew C Tinsley
- Biological and Environmental Sciences, Stirling University, Stirling FK9 4LA, UK
| |
Collapse
|
36
|
Biard C, Monceau K, Motreuil S, Moreau J. Interpreting immunological indices: The importance of taking parasite community into account. An example in blackbirds
Turdus merula. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12371] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clotilde Biard
- Sorbonne Université UPMC Univ Paris 06 UPEC, Paris 7, CNRS, INRA, IRD Institut d'Écologie et des Sciences de l'Environnement de Paris F‐75005 Paris France
| | - Karine Monceau
- UMR CNRS 6282 Biogéosciences Equipe Ecologie‐Evolutive Université de Bourgogne 6 Bd Gabriel F‐21000 Dijon France
| | - Sébastien Motreuil
- UMR CNRS 6282 Biogéosciences Equipe Ecologie‐Evolutive Université de Bourgogne 6 Bd Gabriel F‐21000 Dijon France
| | - Jérôme Moreau
- UMR CNRS 6282 Biogéosciences Equipe Ecologie‐Evolutive Université de Bourgogne 6 Bd Gabriel F‐21000 Dijon France
| |
Collapse
|