1
|
Masenga SK, Desta S, Hatcher M, Kirabo A, Lee DL. How PPAR-alpha mediated inflammation may affect the pathophysiology of chronic kidney disease. Curr Res Physiol 2024; 8:100133. [PMID: 39665027 PMCID: PMC11629568 DOI: 10.1016/j.crphys.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Chronic kidney disease (CKD) is a major risk factor for death in adults. Inflammation plays a role in the pathogenesis of CKD, but the mechanisms are poorly understood. Peroxisome proliferator-activated receptor alpha (PPAR-α) is a nuclear receptor and one of the three members (PPARα, PPARβ/δ, and PPARγ) of the PPARs that plays an important role in ameliorating pathological processes that accelerate acute and chronic kidney disease. Although other PPARs members are well studied, the role of PPAR-α is not well described and its role in inflammation-mediated chronic disease is not clear. Herein, we review the role of PPAR-α in chronic kidney disease with implications for the immune system.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Zambia
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Mark Hatcher
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dexter L. Lee
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
2
|
Castro BBA, Reno PF, Pereira BF, Arriel K, Bonato FB, Colugnati FAB, Cenedeze MA, Saraiva-Camara NO, Sanders-Pinheiro H. Fenofibrate attenuates renal lipotoxicity in uninephrectomized mice with high-fat diet-induced obesity. J Bras Nefrol 2024; 46:e20230148. [PMID: 39412511 PMCID: PMC11539900 DOI: 10.1590/2175-8239-jbn-2023-0148en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/03/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION The objective of this study was to investigate the role of fenofibrate, a peroxisome proliferator-activated receptor-α agonist, in obesity-induced kidney damage (lipotoxicity) in mice with uninephrectomy. METHODS C57BL/6 mice underwent uninephrectomy and sham surgeries and were fed normocaloric or high-fat diets. After 10 weeks, obese mice were administered 0.02% fenofibrate for 10 weeks. Kidney function and morphology were evaluated, as well as levels of inflammatory and fibrotic mediators and lipid metabolism markers. RESULTS High-fat diet-fed mice developed characteristic obesity and hyperlipidemia, with subsequent renal lipid accumulation and damage, including mesangial expansion, interstitial fibrosis, inflammation, and proteinuria. These changes were greater in obese uninephrectomy mice than in obese sham mice. Fenofibrate treatment prevented hyperlipidemia and glomerular lesions, lowered lipid accumulation, ameliorated renal dysfunction, and attenuated inflammation and renal fibrosis. Furthermore, fenofibrate treatment downregulated renal tissue expression of plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, and local expression of fibroblast growth factor-21. CONCLUSION Peroxisome proliferator-activated receptor-α activation by fenofibrate, with subsequent lipolysis, attenuated glomerular and tubulointerstitial lesions induced by renal lipotoxicity, thus protecting the kidneys of uninephrectomy mice from obesity-induced lesions. The study findings suggest a pathway in the pharmacological action of fenofibrate, providing insight into the mechanisms involved in kidney damage caused by obesity in kidney donors.
Collapse
Affiliation(s)
- Barbara Bruna Abreu Castro
- Universidade Federal de Juiz de Fora, Centro de Biologia da Reprodução, Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Juiz de Fora, MG, Brazil
- Universidade Federal de Juiz de Fora, Divisão de Nefrologia, Núcleo Interdisciplinar de Estudos e Pesquisas em Nefrologia, Juiz de Fora, MG, Brazil
| | - Petrus Ferreira Reno
- Universidade Federal de Juiz de Fora, Centro de Biologia da Reprodução, Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Juiz de Fora, MG, Brazil
| | - Bianca Fatima Pereira
- Universidade Federal de Juiz de Fora, Centro de Biologia da Reprodução, Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Juiz de Fora, MG, Brazil
| | - Kaique Arriel
- Universidade Federal de Juiz de Fora, Centro de Biologia da Reprodução, Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Juiz de Fora, MG, Brazil
| | - Fabiana Bastos Bonato
- Universidade Federal de Juiz de Fora, Divisão de Nefrologia, Núcleo Interdisciplinar de Estudos e Pesquisas em Nefrologia, Juiz de Fora, MG, Brazil
| | - Fernando Antonio Basile Colugnati
- Universidade Federal de Juiz de Fora, Divisão de Nefrologia, Núcleo Interdisciplinar de Estudos e Pesquisas em Nefrologia, Juiz de Fora, MG, Brazil
| | - Marcos Antonio Cenedeze
- Universidade Federal de São Paulo, Divisão de Nefrologia, Laboratório de Imunologia Clínica e Experimental, São Paulo, SP, Brazil
| | - Niels Olsen Saraiva-Camara
- Universidade Federal de São Paulo, Divisão de Nefrologia, Laboratório de Imunologia Clínica e Experimental, São Paulo, SP, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, Laboratório de Imunologia de Transplantes, São Paulo, SP, Brazil
| | - Helady Sanders-Pinheiro
- Universidade Federal de Juiz de Fora, Centro de Biologia da Reprodução, Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Juiz de Fora, MG, Brazil
- Universidade Federal de Juiz de Fora, Divisão de Nefrologia, Núcleo Interdisciplinar de Estudos e Pesquisas em Nefrologia, Juiz de Fora, MG, Brazil
| |
Collapse
|
3
|
Ren L, Cui H, Wang Y, Ju F, Cai Y, Gang X, Wang G. The role of lipotoxicity in kidney disease: From molecular mechanisms to therapeutic prospects. Biomed Pharmacother 2023; 161:114465. [PMID: 36870280 DOI: 10.1016/j.biopha.2023.114465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Lipotoxicity is the dysregulation of the lipid environment and/or intracellular composition that leads to accumulation of harmful lipids and ultimately to organelle dysfunction, abnormal activation of intracellular signaling pathways, chronic inflammation and cell death. It plays an important role in the development of acute kidney injury and chronic kidney disease, including diabetic nephropathy, obesity-related glomerulopathy, age-related kidney disease, polycystic kidney disease, and the like. However, the mechanisms of lipid overload and kidney injury remain poorly understood. Herein, we discuss two pivotal aspects of lipotoxic kidney injury. First, we analyzed the mechanism of lipid accumulation in the kidney. Accumulating data indicate that the mechanisms of lipid overload in different kidney diseases are inconsistent. Second, we summarize the multiple mechanisms by which lipotoxic species affect the kidney cell behavior, including oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, dysregulated autophagy, and inflammation, highlighting the central role of oxidative stress. Blocking the molecular pathways of lipid accumulation in the kidney and the damage of the kidney by lipid overload may be potential therapeutic targets for kidney disease, and antioxidant drugs may play a pivotal role in the treatment of kidney disease in the future.
Collapse
Affiliation(s)
- Linan Ren
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Haiying Cui
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Feng Ju
- Department of Orthopedics, Yuci District People's Hospital, Yuci 030600, Shanxi, China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
4
|
Zhang Q, Xiao X, Li M, Yu M, Ping F. Bailing capsule (Cordyceps sinensis) ameliorates renal triglyceride accumulation through the PPARα pathway in diabetic rats. Front Pharmacol 2022; 13:915592. [PMID: 36091833 PMCID: PMC9453879 DOI: 10.3389/fphar.2022.915592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a severe diabetic complication of the kidney and is the main cause of end-stage kidney disease worldwide. Cordyceps sinensis (C. sinensis) is not only a traditional Chinese medicine (TCM) but also a healthy food. In China, C. sinensis has been widely used to treat various kidney diseases. Bailing Capsule, which active ingredient is C. sinensis, is approved to treat kidney disease, respiratory disease, and immune disease. However, its underlying mechanism in DN remains unclear. The purpose of the present study was to investigate the underlying mechanism of Bailing Capsule on kidney in diabetic rats. The DN model was established by streptozotocin (STZ) injection. Low and high doses of Bailing Capsule were orally administrated for 12 weeks after diabetes induction. Renal function was evaluated by serum creatinine, blood urea nitrogen, 24-h urinary protein, and urinary albumin. Mesangial matrix expansion and renal fibrosis were measured using histopathology staining. We found that the disorder of renal function and pathology in DN rats was significantly modified by Bailing Capsule treatment. Consistently, Bailing Capsule markedly alleviated DN rat glomerulosclerosis, tubulointerstitial injury and renal fibrosis as shown by pathological staining. Moreover, Bailing Capsule significantly reduced the kidney triglyceride content and renal lipid droplet formation in DN rats. The renal transcriptome revealed that Bailing Capsule-treated kidneys had 498 upregulated genes and 448 downregulated genes. These differentially expressed genes were enriched in the peroxisome proliferator activated receptor (PPAR) pathway and fatty acid metabolism function ontology. mRNA and protein expression analyses revealed substantial enhancement of the lipolysis pathway and inhibition of lipogenesis in Bailing Capsule-treated rat kidneys compared to DN rats. Bailing Capsule activated the expression of PPARα, ACOX1 (acyl-CoA oxidase 1), and SCD (stearoyl-CoA desaturase) in diabetic nephropathy while suppressing the expression of FASN (fatty acid synthase). In conclusion, Bailing Capsule could attenuate renal triglyceride accumulation in diabetic rats by moderating PPARα pathway.
Collapse
|
5
|
Proteomic analysis reveals USP7 as a novel regulator of palmitic acid-induced hepatocellular carcinoma cell death. Cell Death Dis 2022; 13:563. [PMID: 35732625 PMCID: PMC9217975 DOI: 10.1038/s41419-022-05003-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023]
Abstract
Nutrient surplus and consequent free fatty acid accumulation in the liver cause hepatosteatosis. The exposure of free fatty acids to cultured hepatocyte and hepatocellular carcinoma cell lines induces cellular stress, organelle adaptation, and subsequent cell death. Despite many studies, the mechanism associated with lipotoxicity and subsequent cell death still remains poorly understood. Here, we have used the proteomics approach to circumvent the mechanism for lipotoxicity using hepatocellular carcinoma cells as a model. Our quantitative proteomics data revealed that ectopic lipids accumulation in cells severely affects the ubiquitin-proteasomal system. The palmitic acid (PA) partially lowered the expression of deubiquitinating enzyme USP7 which subsequently destabilizes p53 and promotes mitotic entry of cells. Our global phosphoproteomics analysis also provides strong evidence of an altered cell cycle checkpoint proteins' expression that abrogates early G2/M checkpoints recovery with damaged DNA and induced mitotic catastrophe leading to hepatocyte death. We observe that palmitic acid prefers apoptosis-inducing factor (AIF) mediated cell death by depolarizing mitochondria and translocating AIF to the nucleus. In summary, the present study provides evidence of PA-induced hepatocellular death mediated by deubiquitinase USP7 downregulation and subsequent mitotic catastrophe.
Collapse
|
6
|
Creeden JF, Gordon DM, Stec DE, Hinds TD. Bilirubin as a metabolic hormone: the physiological relevance of low levels. Am J Physiol Endocrinol Metab 2021; 320:E191-E207. [PMID: 33284088 PMCID: PMC8260361 DOI: 10.1152/ajpendo.00405.2020] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent research on bilirubin, a historically well-known waste product of heme catabolism, suggests an entirely new function as a metabolic hormone that drives gene transcription by nuclear receptors. Studies are now revealing that low plasma bilirubin levels, defined as "hypobilirubinemia," are a possible new pathology analogous to the other end of the spectrum of extreme hyperbilirubinemia seen in patients with jaundice and liver dysfunction. Hypobilirubinemia is most commonly seen in patients with metabolic dysfunction, which may lead to cardiovascular complications and possibly stroke. We address the clinical significance of low bilirubin levels. A better understanding of bilirubin's hormonal function may explain why hypobilirubinemia might be deleterious. We present mechanisms by which bilirubin may be protective at mildly elevated levels and research directions that could generate treatment possibilities for patients with hypobilirubinemia, such as targeting of pathways that regulate its production or turnover or the newly designed bilirubin nanoparticles. Our review here calls for a shift in the perspective of an old molecule that could benefit millions of patients with hypobilirubinemia.
Collapse
Affiliation(s)
- Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Darren M Gordon
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
7
|
Żary-Sikorska E, Fotschki B, Kołodziejczyk K, Jurgoński A, Kosmala M, Milala J, Majewski M, Ognik K, Juśkiewicz J. Strawberry phenolic extracts effectively mitigated metabolic disturbances associated with high-fat ingestion in rats depending on the ellagitannin polymerization degree. Food Funct 2021; 12:5779-5792. [PMID: 34038498 DOI: 10.1039/d1fo00894c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present experiment it was hypothesised that dietary strawberry ellagitannin-rich extracts would mitigate negative consequences associated with consumption. Therefore, two extracts rich in dimeric (D-ET) or monomeric (M-ET) ellagitannins (ETs) were added to a standard or high-fat diet fed to rats for four weeks. The D-ET-rich extract contained 82.3% polyphenols, and the M-ET/D-ET ratio was 40 : 60, while the M-ET-rich extract contained 88.0% and 96 : 4, respectively. The experimental feeding with high-fat diets containing extracts resulted in beneficial mitigating effects in the lipid profile, redox status of the rat's liver and blood plasma. According to the accepted hypothesis, the obtained results pointed at increased desired hepatic and plasma modifications when the extract was rich in M-ET, as indicated by favourable changes in the hepatic fat content, GSH and GSSG concentrations and GSH/GSSG ratio as well as blood plasma FRAP, ACL, HDL-cholesterol, and atherogenic coefficient values. These changes were partly connected to the fact that M-ET was more prone vs. D-ET to intestinal microbial conversion into respective metabolites. The urinary daily excretion of ET metabolites and their blood plasma concentrations were higher in rats fed with M-ET vs. D-ET-rich diets. To conclude, the metabolic action of the M-ET-rich extract in the normalization of high-fat-induced disturbances was more pronounced.
Collapse
Affiliation(s)
- Ewa Żary-Sikorska
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland.
| | - Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Krzysztof Kołodziejczyk
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland.
| | - Adam Jurgoński
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Monika Kosmala
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland.
| | - Joanna Milala
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland.
| | - Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, Akademicka 13, 20-950, Lublin, Poland.
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
8
|
Libby AE, Jones B, Lopez-Santiago I, Rowland E, Levi M. Nuclear receptors in the kidney during health and disease. Mol Aspects Med 2020; 78:100935. [PMID: 33272705 DOI: 10.1016/j.mam.2020.100935] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/24/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Over the last 30 years, nuclear receptors (NRs) have been increasingly recognized as key modulators of systemic homeostasis and as contributing factors in many diseases. In the kidney, NRs play numerous important roles in maintaining homeostasis-many of which continue to be unraveled. As "master regulators", these important transcription factors integrate and coordinate many renal processes such as circadian responses, lipid metabolism, fatty acid oxidation, glucose handling, and inflammatory responses. The use of recently-developed genetic tools and small molecule modulators have allowed for detailed studies of how renal NRs contribute to kidney homeostasis. Importantly, while NRs are intimately involved in proper kidney function, they are also implicated in a variety of renal diseases such as diabetes, acute kidney injury, and other conditions such as aging. In the last 10 years, our understanding of renal disease etiology and progression has been greatly shaped by knowledge regarding how NRs are dysregulated in these conditions. Importantly, NRs have also become attractive therapeutic targets for attenuation of renal diseases, and their modulation for this purpose has been the subject of intense investigation. Here, we review the role in health and disease of six key renal NRs including the peroxisome proliferator-activated receptors (PPAR), estrogen-related receptors (ERR), the farnesoid X receptors (FXR), estrogen receptors (ER), liver X receptors (LXR), and vitamin D receptors (VDR) with an emphasis on recent findings over the last decade. These NRs have generated a wealth of data over the last 10 years that demonstrate their crucial role in maintaining normal renal homeostasis as well as their capacity to modulate disease progression.
Collapse
Affiliation(s)
- Andrew E Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Bryce Jones
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Isabel Lopez-Santiago
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Emma Rowland
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| |
Collapse
|
9
|
Ozkul C, Ruiz VE, Battaglia T, Xu J, Roubaud-Baudron C, Cadwell K, Perez-Perez GI, Blaser MJ. A single early-in-life antibiotic course increases susceptibility to DSS-induced colitis. Genome Med 2020; 12:65. [PMID: 32711559 PMCID: PMC7382806 DOI: 10.1186/s13073-020-00764-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background There is increasing evidence that the intestinal microbiota plays a crucial role in the maturation of the immune system and the prevention of diseases during childhood. Early-life short-course antibiotic use may affect the progression of subsequent disease conditions by changing both host microbiota and immunologic development. Epidemiologic studies provide evidence that early-life antibiotic exposures predispose to inflammatory bowel disease (IBD). Methods By using a murine model of dextran sodium sulfate (DSS)-induced colitis, we evaluated the effect on disease outcomes of early-life pulsed antibiotic treatment (PAT) using tylosin, a macrolide and amoxicillin, a beta-lactam. We evaluated microbiota effects at the 16S rRNA gene level, and intestinal T cells by flow cytometry. Antibiotic-perturbed or control microbiota were transferred to pups that then were challenged with DSS. Results A single PAT course early-in-life exacerbated later DSS-induced colitis by both perturbing the microbial community and altering mucosal immune cell composition. By conventionalizing germ-free mice with either antibiotic-perturbed or control microbiota obtained 40 days after the challenge ended, we showed the transferrable and direct effect of the still-perturbed microbiota on colitis severity in the DSS model. Conclusions The findings in this experimental model provide evidence that early-life microbiota perturbation may increase risk of colitis later in life.
Collapse
Affiliation(s)
- Ceren Ozkul
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey.,Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Victoria E Ruiz
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA.,Department of Biology, St. Francis College, Brooklyn, New York, USA
| | - Thomas Battaglia
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Joseph Xu
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Claire Roubaud-Baudron
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA.,CHU Bordeaux, Pôle de Gérontologie Clinique, Bordeaux, France.,INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, F-33000, Bordeaux, France
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA.,Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, NY, 10016, USA
| | - Guillermo I Perez-Perez
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Martin J Blaser
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA. .,Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
10
|
Fang S, Cai Y, Lyu F, Zhang H, Wu C, Zeng Y, Fan C, Zou S, Zhang Y, Li P, Wang L, Guan M. Exendin-4 Improves Diabetic Kidney Disease in C57BL/6 Mice Independent of Brown Adipose Tissue Activation. J Diabetes Res 2020; 2020:9084567. [PMID: 32090125 PMCID: PMC7023845 DOI: 10.1155/2020/9084567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/06/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The role of exendin-4 in brown adipose tissue (BAT) activation was not very clear. This study is to verify the role of BAT involved in renal benefits of exendin-4 in diabetes mellitus (DM). METHODS In vivo, C57BL/6 mice were randomly divided into nondiabetic (control) and diabetic groups (DM). The diabetic mice were randomized into a control group (DM-Con), BAT-excision group (DM+Exc), exendin-4-treated group (DM+E4), and BAT-excision plus exendin-4-treated group (DM+Exc+E4). The weight, blood glucose and lipids, 24 h urine albumin and 8-OH-dG, and renal fibrosis were analyzed. In vitro, we investigated the role of exendin-4 in the differentiation process of 3T3-L1 and brown preadipocytes and its effect on the rat mesangial cells induced by oleate. RESULTS The expressions of UCP-1, PGC-1α, ATGL, and CD36 in BAT of DM mice were all downregulated, which could be upregulated by exendin-4 treatment with significant effects on ATGL and CD36. BAT-excision exacerbated high blood glucose (BG) with no significant effect on the serum lipid level. Exendin-4 significantly lowered the level of serum triglycerides (TG) and low-density lipoprotein- (LDL-) c, 24 h urine albumin, and 8-OH-dG; improved renal fibrosis and lipid accumulation; and activated renal AMP-activated protein kinase (AMPK) in diabetic mice regardless of BAT excision. In vitro, there was no significant effect of exendin-4 on brown or white adipogenesis. However, exendin-4 could improve lipid accumulation and myofibroblast-like phenotype transition of mesangial cells induced by oleate via activating the AMPK pathway. CONCLUSIONS Exendin-4 could decrease the renal lipid deposit and improve diabetic nephropathy via activating the renal AMPK pathway independent of BAT activation.
Collapse
MESH Headings
- 3T3-L1 Cells
- 8-Hydroxy-2'-Deoxyguanosine/urine
- Adenylate Kinase/metabolism
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
- Adipogenesis/drug effects
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/surgery
- Albuminuria
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Blotting, Western
- Body Weight/drug effects
- CD36 Antigens/drug effects
- CD36 Antigens/genetics
- Cholesterol, HDL/drug effects
- Cholesterol, HDL/metabolism
- Cholesterol, LDL/drug effects
- Cholesterol, LDL/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Disease Models, Animal
- Exenatide/pharmacology
- Fibrosis
- Gene Expression/drug effects
- Incretins/pharmacology
- Kidney/drug effects
- Kidney/pathology
- Lipase/drug effects
- Lipase/genetics
- Mesangial Cells/drug effects
- Mesangial Cells/metabolism
- Mesangial Cells/pathology
- Mice
- Mice, Inbred C57BL
- Myofibroblasts/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/drug effects
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Random Allocation
- Rats
- Real-Time Polymerase Chain Reaction
- Triglycerides/metabolism
- Uncoupling Protein 1/drug effects
- Uncoupling Protein 1/genetics
Collapse
Affiliation(s)
- Shu Fang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| | - Yingying Cai
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
- Women and Children's Hospital, Xiamen, Fujian, China 361003
| | - Fuping Lyu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
- Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China 361001
| | - Hongbin Zhang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark 2200
| | - Chunyan Wu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| | - Yanmei Zeng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| | - Cunxia Fan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
- Department of Endocrinology and Metabolism, Hainan General Hospital, Haikou, Hainan, China 570311
| | - Shaozhou Zou
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
- Department of Endocrinology, Dongguan TungWah Hospital, Guangdong, China 523900
| | - Yudan Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| | - Ping Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| | - Ling Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| | - Meiping Guan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| |
Collapse
|
11
|
The metabolic regulation of fenofibrate is dependent on dietary protein content in male juveniles of Nile tilapia (Oreochromis niloticus). Br J Nutr 2019; 122:648-656. [DOI: 10.1017/s0007114519001594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractThe fenofibrate functions in mammals could be affected by many factors such as dietary nutrient levels and physiological status. However, this phenomenon has not been well studied in fish. The goal of our study was to investigate the effect of dietary protein contents on metabolic regulation of fenofibrate in Nile tilapia. An 8-week experiment was conducted to feed fish with four diets at two protein levels (28 and 38 %) with or without the supplementation of fenofibrate (200 mg/kg body weight per d). After the trial, the body morphometric parameters, plasma biochemical parameters and quantitative PCR data were examined. These results showed that fenofibrate significantly reduced the feeding intake and weight gain rate, increased the oxidative stress (increased plasma methane dicarboxylic aldehyde) and liver : body ratio (increased hepatosomatic index) in the low protein (LP)-fed fish. In contrast, fenofibrate exhibited a lipid-lowering (reduced hepatic lipid) effect and up-regulated the expressions of the genes related to lipid catabolism, transport and anabolic metabolism in the high protein (HP)-fed fish. The present study suggested that lipid-lowering effect of fenofibrate would be strengthened in the fish fed with the HP diet containing high energy, but in the fish fed with the LP diet containing low energy, the fenofibrate treatment would cause adverse effects for metabolism. Taking together, our study showed that the metabolic regulation of fenofibrate in Nile tilapia was dependent not only on feed energy content but also on dietary nutrient composition, such as dietary protein and/or lipid levels.
Collapse
|
12
|
Inhibition of lymphatic proliferation by the selective VEGFR-3 inhibitor SAR131675 ameliorates diabetic nephropathy in db/db mice. Cell Death Dis 2019; 10:219. [PMID: 30833548 PMCID: PMC6399322 DOI: 10.1038/s41419-019-1436-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
Abstract
Recent studies have demonstrated that chronic inflammation-induced lymphangiogenesis plays a crucial role in the progression of various renal diseases, including diabetic nephropathy. SAR131675 is a selective vascular endothelial cell growth factor receptor-3 (VEGFR-3)-tyrosine kinase inhibitor that acts as a ligand for VEGF-C and VEGF-D to inhibit lymphangiogenesis. In this study, we evaluated the effect of SAR131675 on renal lymphangiogenesis in a mouse model of type 2 diabetes. Male C57BLKS/J db/m and db/db mice were fed either a regular chow diet or a diet containing SAR131675 for 12 weeks from 8 weeks of age. In addition, we studied palmitate-induced lymphangiogenesis in human kidney-2 (HK2) cells and RAW264.7 monocytes/macrophages, which play a major role in lymphangiogenesis in the kidneys. SAR131475 ameliorated dyslipidemia, albuminuria, and lipid accumulation in the kidneys of db/db mice, with no significant changes in glucose and creatinine levels and body weight. Diabetes-induced systemic inflammation as evidenced by increased systemic monocyte chemoattractant protein-1 and tumor necrosis factor-α level was decreased by SAR131475. SAR131475 ameliorated the accumulation of triglycerides and free fatty acids and reduced inflammation in relation to decreased chemokine expression and pro-inflammatory M1 macrophage infiltration in the kidneys. Downregulation of VEGF-C and VEGFR-3 by SAR131475 inhibited lymphatic growth as demonstrated by decreased expression of LYVE-1 and podoplanin that was further accompanied by reduced tubulointerstitial fibrosis, and inflammation in relation to improvement in oxidative stress and apoptosis. Treatment with SAR131475 improved palmitate-induced increase in the expression of VEGF-C, VEGFR-3, and LYVE-1, along with improvement in cytosolic and mitochondrial oxidative stress in RAW264.7 and HK2 cells. Moreover, the enhanced expression of M1 phenotypes in RAW264.7 cells under palmitate stress was reduced by SAR131475 treatment. The results suggest that modulation of lymphatic proliferation in the kidneys is a new treatment approach for type 2 diabetic nephropathy and that SAR131675 is a promising therapy to ameliorate renal damage by reducing lipotoxicity-induced lymphangiogenesis.
Collapse
|
13
|
A. R, Agrawal N, Kumar H, Nath V, Kumar V. Norbixin, an apocarotenoid derivative activates PPARγ in cardiometabolic syndrome: Validation by in silico and in vivo experimental assessment. Life Sci 2018; 209:69-77. [DOI: 10.1016/j.lfs.2018.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 02/02/2023]
|
14
|
Choi SR, Lim JH, Kim MY, Kim EN, Kim Y, Choi BS, Kim YS, Kim HW, Lim KM, Kim MJ, Park CW. Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy. Metabolism 2018; 85:348-360. [PMID: 29462574 DOI: 10.1016/j.metabol.2018.02.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/15/2018] [Accepted: 02/10/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Adiponectin is known to take part in the regulation of energy metabolism. AdipoRon, an orally-active synthetic adiponectin agonist, binds to both adiponectin receptors (AdipoR)1/R2 and ameliorates diabetic complications. Among the lipid metabolites, the ceramide subspecies of sphingolipids have been linked to features of lipotoxicity, including inflammation, cell death, and insulin resistance. We investigated the role of AdipoRon in the prevention and development of type 2 diabetic nephropathy. METHODS AdipoRon (30 mg/kg) was mixed into the standard chow diet and provided to db/db mice (db + AdipoRon, n = 8) and age-matched male db/m mice (dm + AdipoRon, n = 8) from 17 weeks of age for 4 weeks. Control db/db (db cont, n = 8) and db/m mice (dm cont, n = 8) were fed a normal diet of mouse chow. RESULTS AdipoRon-fed db/db mice showed a decreased amount of albuminuria and lipid accumulation in the kidney with no significant changes in serum adiponectin, glucose, and body weight. Restoring expression of adiponectin receptor-1 and -2 in the renal cortex was observed in db/db mice with AdipoRon administration. Consistent up-regulation of phospho-Thr172 AMP-dependent kinase (AMPK), peroxisome proliferative-activated receptor α (PPARα), phospho-Thr473 Akt, phospho-Ser79Acetyl-CoA carboxylase (ACC), and phospho-Ser1177 endothelial NO synthase (eNOS), and down-regulation of protein phosphatase 2A (PP2A), sterol regulatory element-binding protein-1c (SREBP-1c), and inducible nitric oxide synthase (iNOS) were associated within the same group. AdipoRon lowered cellular ceramide levels by activation of acid ceramidase, which normalized ceramide to sphingosine-1 phosphate (S1P) ratio. In glomerular endothelial cells (GECs) and podocytes, AdipoRon treatment markedly decreased palmitate-induced lipotoxicity, which ultimately ameliorated oxidative stress and apoptosis. CONCLUSIONS AdipoRon may prevent lipotoxicity in the kidney particularly in both GECs and podocytes through an improvement in lipid metabolism, as shown by the ratio of ceramide to sphingosines, and further contribute to prevent deterioration of renal function, independent of the systemic effects of adiponectin. The reduction in oxidative stress and apoptosis by AdipoRon provides protection against renal damage, thereby ameliorating endothelial dysfunction in type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Sun Ryoung Choi
- Division of Nephrology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea
| | - Min Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea
| | - Eun Nim Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea
| | - Beom Soon Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea
| | - Yong-Soo Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea
| | - Hye Won Kim
- Department of Rehabilitation, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacology, Ewha Womans University, Seoul, Republic of Korea
| | - Min Jeong Kim
- College of Pharmacology, Ewha Womans University, Seoul, Republic of Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea.
| |
Collapse
|
15
|
Gallelli CA, Calcagnini S, Romano A, Koczwara JB, de Ceglia M, Dante D, Villani R, Giudetti AM, Cassano T, Gaetani S. Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues. Antioxidants (Basel) 2018; 7:E93. [PMID: 30021985 PMCID: PMC6070960 DOI: 10.3390/antiox7070093] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes. In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55. Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts.
Collapse
Affiliation(s)
- Cristina Anna Gallelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Marialuisa de Ceglia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Donatella Dante
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
16
|
Agrawal R, Nath V, Kumar H, Kumar V. Deciphering PPARγ activation in cardiometabolic syndrome: studies by in silico and in vivo experimental assessment. J Recept Signal Transduct Res 2018; 38:122-132. [PMID: 29485312 DOI: 10.1080/10799893.2018.1436560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cardiometabolic syndrome (CMetS) is a consolidation of metabolic disorders characterized by insulin resistance, dyslipidemia and hypertension. Curcumin, a natural bioactive compound, has been shown to possess notable anti-oxidant activity and it has also been included as a super natural herb in the super natural herbs database. Most of the beneficial effects of Curcumin are possibly due to activation of the nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ). The present study investigates molecular interactions of curcumin with PPARγ protein through molecular docking and molecular dynamics (MD) simulation studies. Further, effect of curcumin on high fat diet induced CMetS was studied in rats along with western blot for PPARγ and nuclear factor-κB (NF-κB) expressions and histopathological studies. Computational studies presented several significant molecular interactions of curcumin including Ser289, His323, His449 and Tyr473 of PPARγ. The in vivo results further confirmed that curcumin was able to ameliorate the abnormal changes and also, increased PPARγ expressions. The results confirm our hypothesis that activation of PPARγ by curcumin possesses the therapeutic potential to ameliorate the altered levels of metabolic changes in rats in the treatment of CMetS. This is the first report of CMetS treatment by curcumin and study of its underlying mechanism through in silico as well as in vivo experiments.
Collapse
Affiliation(s)
- Rohini Agrawal
- a Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Ajmer , India
| | - Virendra Nath
- a Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Ajmer , India
| | - Harish Kumar
- a Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Ajmer , India
| | - Vipin Kumar
- a Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Ajmer , India
| |
Collapse
|
17
|
Kim Y, Lim JH, Kim MY, Kim EN, Yoon HE, Shin SJ, Choi BS, Kim YS, Chang YS, Park CW. The Adiponectin Receptor Agonist AdipoRon Ameliorates Diabetic Nephropathy in a Model of Type 2 Diabetes. J Am Soc Nephrol 2018; 29:1108-1127. [PMID: 29330340 DOI: 10.1681/asn.2017060627] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/07/2017] [Indexed: 01/03/2023] Open
Abstract
Adiponectin exerts renoprotective effects against diabetic nephropathy (DN) by activating the AMP-activated protein kinase (AMPK)/peroxisome proliferative-activated receptor-α (PPARα) pathway through adiponectin receptors (AdipoRs). AdipoRon is an orally active synthetic adiponectin receptor agonist. We investigated the expression of AdipoRs and the associated intracellular pathways in 27 patients with type 2 diabetes and examined the effects of AdipoRon on DN development in male C57BLKS/J db/db mice, glomerular endothelial cells (GECs), and podocytes. The extent of glomerulosclerosis and tubulointerstitial fibrosis correlated with renal function deterioration in human kidneys. Expression of AdipoR1, AdipoR2, and Ca2+/calmodulin-dependent protein kinase kinase-β (CaMKKβ) and numbers of phosphorylated liver kinase B1 (LKB1)- and AMPK-positive cells significantly decreased in the glomeruli of early stage human DN. AdipoRon treatment restored diabetes-induced renal alterations in db/db mice. AdipoRon exerted renoprotective effects by directly activating intrarenal AdipoR1 and AdipoR2, which increased CaMKKβ, phosphorylated Ser431LKB1, phosphorylated Thr172AMPK, and PPARα expression independently of the systemic effects of adiponectin. AdipoRon-induced improvement in diabetes-induced oxidative stress and inhibition of apoptosis in the kidneys ameliorated relevant intracellular pathways associated with lipid accumulation and endothelial dysfunction. In high-glucose-treated human GECs and murine podocytes, AdipoRon increased intracellular Ca2+ levels that activated a CaMKKβ/phosphorylated Ser431LKB1/phosphorylated Thr172AMPK/PPARα pathway and downstream signaling, thus decreasing high-glucose-induced oxidative stress and apoptosis and improving endothelial dysfunction. AdipoRon further produced cardioprotective effects through the same pathway demonstrated in the kidney. Our results show that AdipoRon ameliorates GEC and podocyte injury by activating the intracellular Ca2+/LKB1-AMPK/PPARα pathway, suggesting its efficacy for treating type 2 diabetes-associated DN.
Collapse
Affiliation(s)
- Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, Incheon, Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea; and
| | - Min Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea; and
| | - Eun Nim Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea; and
| | - Hye Eun Yoon
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, Incheon, Korea
| | - Seok Joon Shin
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, Incheon, Korea
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea; and
| | - Yong-Soo Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea; and
| | - Yoon Sik Chang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary's Hospital, Seoul, Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; .,Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea; and
| |
Collapse
|
18
|
Cheng KC, Li Y, Chang WT, Kuo FY, Chen ZC, Cheng JT. Telmisartan is effective to ameliorate metabolic syndrome in rat model - a preclinical report. Diabetes Metab Syndr Obes 2018; 11:901-911. [PMID: 30584345 PMCID: PMC6290862 DOI: 10.2147/dmso.s187092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MS) is known to be associated with hypertension, insulin resistance, and dyslipidemia, and it raises the risk for cardiovascular diseases and diabetes mellitus. Telmisartan is used in clinic as an angiotensin II receptor blocker and it is also identified as activating peroxisome proliferator-activated receptors δ (PPARδ). Activation of PPARδ produced beneficial effects on fatty acid metabolism and glucose metabolism. This study aims to investigate the effects of telmisartan on the modulation of MS in rats fed a high-fat/high-sodium diet. METHODS Rats were fed with a high-fat/high-sodium diet and received injections of streptozotocin at low dose to induce MS. Then, rats with MS were treated with telmisartan. The weight, glucose tolerance, and insulin sensitivity were measured. The lipid profiles were also obtained. The weights of retroperitoneal and epididymal fat pads were determined. The role of PPARδ in telmisartan treatment was identified in rats pretreated with the specific antagonist GSK0660. RESULTS The results showed that telmisartan, but not losartan, significantly reduced plasma glucose and plasma insulin, and improved insulin resistance in rats with MS. Telmisartan also decreased blood pressure and lipids more significantly than losartan. Moreover, GSK0660 effectively reversed the effects of telmisartan in the MS rats. In the MS group, telmisartan activated PPARδ to enhance the levels of phosphorylated GLUT4 in muscle or the expression of phosphoenolpyruvate carboxykinase (PEPCK) in the liver, which was also abolished by GSK0660. Telmisartan is useful to ameliorate hypertension and insulin resistance in rats with MS. Telmisartan improves the insulin resistance through increased expression of GLUT4 and down-regulation of PEPCK via PPARδ-dependent mechanisms. CONCLUSION Telmisartan has been proven to ameliorate MS, particularly in the prediabetes state. Therefore, telmisartan is suitable to develop for the management of MS in clinics.
Collapse
Affiliation(s)
- Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan,
| | - Wei-Ting Chang
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan,
- Department of Cardiology, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan
| | - Feng Yu Kuo
- Cardiovascular Center, Kaohsiung Veterans General Hospital, Kaohsiung City 81362, Taiwan
| | - Zhih-Cherng Chen
- Department of Cardiology, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Jean-Tae, Tainan City 71701, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan,
- Institute of Medical Sciences, Chang Jung Christian University, Gueiren, Tainan City 71101, Taiwan,
| |
Collapse
|
19
|
Ning LJ, He AY, Lu DL, Li JM, Qiao F, Li DL, Zhang ML, Chen LQ, Du ZY. Nutritional background changes the hypolipidemic effects of fenofibrate in Nile tilapia (Oreochromis niloticus). Sci Rep 2017; 7:41706. [PMID: 28139735 PMCID: PMC5282496 DOI: 10.1038/srep41706] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferation activated receptor α (PPARα) is an important transcriptional regulator of lipid metabolism and is activated by high-fat diet (HFD) and fibrates in mammals. However, whether nutritional background affects PPARα activation and the hypolipidemic effects of PPARα ligands have not been investigated in fish. In the present two-phase study of Nile tilapia (Oreochromis niloticus), fish were first fed a HFD (13% fat) or low-fat diet (LFD; 1% fat) diet for 10 weeks, and then fish from the first phase were fed the HFD or LFD supplemented with 200 mg/kg body weight fenofibrate for 4 weeks. The results indicated that the HFD did not activate PPARα or other lipid catabolism-related genes. Hepatic fatty acid β-oxidation increased significantly in the HFD and LFD groups after the fenofibrate treatment, when exogenous substrates were sufficiently provided. Only in the HFD group, fenofibrate significantly increased hepatic PPARα mRNA and protein expression, and decreased liver and plasma triglyceride concentrations. This is the first study to show that body fat deposition and dietary lipid content affects PPARα activation and the hypolipidemic effects of fenofibrate in fish, and this could be due to differences in substrate availability for lipid catabolism in fish fed with different diets.
Collapse
Affiliation(s)
- Li-Jun Ning
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - An-Yuan He
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Dong-Liang Lu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Jia-Min Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Dong-Liang Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
20
|
Shin SJ, Chung S, Kim SJ, Lee EM, Yoo YH, Kim JW, Ahn YB, Kim ES, Moon SD, Kim MJ, Ko SH. Effect of Sodium-Glucose Co-Transporter 2 Inhibitor, Dapagliflozin, on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes. PLoS One 2016; 11:e0165703. [PMID: 27802313 PMCID: PMC5089752 DOI: 10.1371/journal.pone.0165703] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
Background Renal renin-angiotensin system (RAS) activation is one of the important pathogenic mechanisms in the development of diabetic nephropathy in type 2 diabetes. The aim of this study was to investigate the effects of a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, dapagliflozin, on renal RAS in an animal model with type 2 diabetes. Methods Dapagliflozin (1.0 mg/kg, OL-DA) or voglibose (0.6 mg/kg, OL-VO, diabetic control) (n = 10 each) was administered to Otsuka Long-Evans Tokushima Fatty (OLETF) rats for 12 weeks. We used voglibose, an alpha-glucosidase inhibitor, as a comparable counterpart to SGLT2 inhibitor because of its postprandial glucose-lowering effect without proven renoprotective effects. Control Long-Evans Tokushima Otsuka (LT) and OLETF (OL-C) rats received saline (n = 10, each). Changes in blood glucose, urine albumin, creatinine clearance, and oxidative stress were measured. Inflammatory cell infiltration, mesangial widening, and interstitial fibrosis in the kidney were evaluated by histological analysis. The effects of dapagliflozin on renal expression of the RAS components were evaluated by quantitative RT-PCR in renal tissue. Results After treatment, hyperglycemia and urine microalbumin levels were attenuated in both OL-DA and OL-VO rather than in the OL-C group (P < 0.05). The urine angiotensin II (Ang II) and angiotensinogen levels were significantly decreased following treatment with dapagliflozin or voglibose, but suppression of urine Ang II level was more prominent in the OL-DA than the OL-VO group (P < 0.05). The expressions of angiotensin type 1 receptor and tissue oxidative stress markers were markedly increased in OL-C rats, which were reversed by dapagliflozin or voglibose (P < 0.05, both). Inflammatory cell infiltration, mesangial widening, interstitial fibrosis, and total collagen content were significantly increased in OL-C rats, which were attenuated in OL-DA group (P < 0.05). Conclusion Dapagliflozin treatment showed beneficial effects on diabetic nephropathy, which might be via suppression of renal RAS component expression, oxidative stress and interstitial fibrosis in OLETF rats. We suggest that, in addition to control of hyperglycemia, partial suppression of renal RAS with an SGLT2 inhibitor would be a promising strategy for the prevention of treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Seok Joon Shin
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo Jung Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Mi Lee
- Division of Endocrinology & Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Hye Yoo
- Division of Endocrinology & Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Won Kim
- Division of Endocrinology & Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu-Bae Ahn
- Division of Endocrinology & Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Sook Kim
- Division of Endocrinology & Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Dae Moon
- Division of Endocrinology & Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myung-Jun Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hyun Ko
- Division of Endocrinology & Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
21
|
Peroxisome proliferator-activated receptor α-dependent renoprotection of murine kidney by irbesartan. Clin Sci (Lond) 2016; 130:1969-1981. [PMID: 27496805 DOI: 10.1042/cs20160343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/05/2016] [Indexed: 12/27/2022]
Abstract
Activation of renal peroxisome proliferator-activated receptor α (PPARα) is renoprotective, but there is no safe PPARα activator for patients with chronic kidney disease (CKD). Studies have reported that irbesartan (Irbe), an angiotensin II receptor blocker (ARB) widely prescribed for CKD, activates hepatic PPARα. However, Irbe's renal PPARα-activating effects and the role of PPARα signalling in the renoprotective effects of Irbe are unknown. Herein, these aspects were investigated in healthy kidneys of wild-type (WT) and Ppara-null (KO) mice and in the murine protein-overload nephropathy (PON) model respectively. The results were compared with those of losartan (Los), another ARB that does not activate PPARα. PPARα and its target gene expression were significantly increased only in the kidneys of Irbe-treated WT mice and not in KO or Los-treated mice, suggesting that the renal PPARα-activating effect was Irbe-specific. Irbe-treated-PON-WT mice exhibited decreased urine protein excretion, tubular injury, oxidative stress (OS), and pro-inflammatory and apoptosis-stimulating responses, and they exhibited maintenance of fatty acid metabolism. Furthermore, the expression of PPARα and that of its target mRNAs encoding proteins involved in OS, pro-inflammatory responses, apoptosis and fatty acid metabolism was maintained upon Irbe treatment. These renoprotective effects of Irbe were reversed by the PPARα antagonist MK886 and were not detected in Irbe-treated-PON-KO mice. These results suggest that Irbe activates renal PPARα and that the resultant increased PPARα signalling mediates its renoprotective effects.
Collapse
|
22
|
Svensson K, Schnyder S, Cardel B, Handschin C. Loss of Renal Tubular PGC-1α Exacerbates Diet-Induced Renal Steatosis and Age-Related Urinary Sodium Excretion in Mice. PLoS One 2016; 11:e0158716. [PMID: 27463191 PMCID: PMC4963111 DOI: 10.1371/journal.pone.0158716] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
The kidney has a high energy demand and is dependent on oxidative metabolism for ATP production. Accordingly, the kidney is rich in mitochondria, and mitochondrial dysfunction is a common denominator for several renal diseases. While the mitochondrial master regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is highly expressed in kidney, its role in renal physiology is so far unclear. Here we show that PGC-1α is a transcriptional regulator of mitochondrial metabolic pathways in the kidney. Moreover, we demonstrate that mice with an inducible nephron-specific inactivation of PGC-1α in the kidney display elevated urinary sodium excretion, exacerbated renal steatosis during metabolic stress but normal blood pressure regulation. Overall, PGC-1α seems largely dispensable for basal renal physiology. However, the role of PGC-1α in renal mitochondrial biogenesis indicates that activation of PGC-1α in the context of renal disorders could be a valid therapeutic strategy to ameliorate renal mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kristoffer Svensson
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Svenia Schnyder
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Bettina Cardel
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Transcriptomics: A Step behind the Comprehension of the Polygenic Influence on Oxidative Stress, Immune Deregulation, and Mitochondrial Dysfunction in Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9290857. [PMID: 27419142 PMCID: PMC4932167 DOI: 10.1155/2016/9290857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/10/2016] [Indexed: 12/17/2022]
Abstract
Chronic kidney disease (CKD) is an increasing and global health problem with a great economic burden for healthcare system. Therefore to slow down the progression of this condition is a main objective in nephrology. It has been extensively reported that microinflammation, immune system deregulation, and oxidative stress contribute to CKD progression. Additionally, dialysis worsens this clinical condition because of the contact of blood with bioincompatible dialytic devices. Numerous studies have shown the close link between immune system impairment and CKD but most have been performed using classical biomolecular strategies. These methodologies are limited in their ability to discover new elements and enable measuring the simultaneous influence of multiple factors. The “omics” techniques could overcome these gaps. For example, transcriptomics has revealed that mitochondria and inflammasome have a role in pathogenesis of CKD and are pivotal elements in the cellular alterations leading to systemic complications. We believe that a larger employment of this technique, together with other “omics” methodologies, could help clinicians to obtain new pathogenetic insights, novel diagnostic biomarkers, and therapeutic targets. Finally, transcriptomics could allow clinicians to personalize therapeutic strategies according to individual genetic background (nutrigenomic and pharmacogenomic). In this review, we analyzed the available transcriptomic studies involving CKD patients.
Collapse
|
24
|
Park HS, Lim JH, Kim MY, Kim Y, Hong YA, Choi SR, Chung S, Kim HW, Choi BS, Kim YS, Chang YS, Park CW. Resveratrol increases AdipoR1 and AdipoR2 expression in type 2 diabetic nephropathy. J Transl Med 2016; 14:176. [PMID: 27286657 PMCID: PMC4902973 DOI: 10.1186/s12967-016-0922-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/30/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Adiponectin has multiple functions including insulin sensitization, anti-inflammation and antiatherogenesis in various organs. Adiponectin activates 5'-adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR)α via the adiponectin receptor (AdipoR) 1 and 2, which are critical for regulating lipids and glucose homeostasis and for controlling oxidative stress. We investigated whether resveratrol can inhibit renal damage in type 2 diabetic db/db mice and the underlying mechanisms of its effects. METHODS Four groups of male C57 BLKS/J db/m and db/db mice and human glomerular endothelial cells (HGECs) were used. Resveratrol was administered to diabetic and nondiabetic mice by oral gavage for 12 weeks starting at 8 weeks of age. RESULTS In db/db mice, resveratrol increased serum adiponectin levels and decreased albuminuria, glomerular matrix expansion, inflammation and apoptosis in the glomerulus. Resveratrol increased the phosphorylation of AMPK and silent information regulator T1 (SIRT1), and decreased phosphorylation of downstream effectors class O forkhead box (FoxO)1 and FoxO3a via increasing AdipoR1 and AdipoR2 in the renal cortex. Furthermore, resveratrol increased expression of PPARγ coactivator (PGC)-1α, estrogen-related receptor-1α, and phosphorylated acetyl-CoA carboxylase and decreased sterol regulatory element-binding protein 1. This effect lowered the content of nonesterified fatty acid and triacylglycerol in the kidneys, decreasing apoptosis, oxidative stress and activating endothelial nitric oxide synthase. Resveratrol prevented cultured HGECs from undergoing high-glucose-induced oxidative stress and apoptosis by activating the AMPK-SIRT1-PGC-1α axis and PPARα through increases in AdipoR1 and AdipoR2 expression. CONCLUSIONS These results suggest that resveratrol prevents diabetic nephropathy by ameliorating lipotoxicity, oxidative stress, apoptosis and endothelial dysfunction via increasing AdipoR1 and AdipoR2 expression.
Collapse
Affiliation(s)
- Hoon Suk Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - You Ah Hong
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Ryoung Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Wook Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Soo Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Sik Chang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, #505, Banpo-Dong, Seocho-Ku, Seoul, 137-040, Republic of Korea.
| |
Collapse
|
25
|
Filippatos TD, Elisaf MS. Safety considerations with fenofibrate/simvastatin combination. Expert Opin Drug Saf 2015; 14:1481-93. [DOI: 10.1517/14740338.2015.1056778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Koh ES, Lim JH, Kim MY, Chung S, Shin SJ, Choi BS, Kim HW, Hwang SY, Kim SW, Park CW, Chang YS. Anthocyanin-rich Seoritae extract ameliorates renal lipotoxicity via activation of AMP-activated protein kinase in diabetic mice. J Transl Med 2015; 13:203. [PMID: 26116070 PMCID: PMC4482313 DOI: 10.1186/s12967-015-0563-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Anthocyanins are major constituents of food colours and have been reported to possess anti-diabetic activities for potential medicinal use. The precise role of anthocyanins in diabetic nephropathy is poorly understood. We investigated whether anthocyanin-rich Seoritae extract (SE) can potentially prevent oxidative stress and lipotoxicity, which are the main causes of renal damage in diabetic nephropathy, via activation of AMP-activated protein kinase (AMPK) and the consequent effects on its target molecules. METHODS Four groups of male C57BLKS/J db/m and db/db mice were used. Diabetic and non-diabetic mice were orally administered 10 mg/kg body weight SE daily for 12 weeks, starting at 8 weeks of age. RESULTS db/db mice treated with anthocyanins showed decreased albuminuria. Anthocyanins ameliorated intra-renal lipid concentrations in db/db mice with improvement of glomerular matrix expansion and inflammation, which was related to increased phosphorylation of AMPK and activation of peroxisome proliferator-activated receptor (PPAR) α and PPARγ, and inhibited the activity of acetyl-CoA carboxylase and sterol regulatory element-binding protein 1. Anthocyanins reversed diabetes-induced increases in renal apoptosis and oxidative stress. In cultured human glomerular endothelial cells, anthocyanins prevented high glucose-induced oxidative stress and apoptosis through activation of AMPK in the same manner. CONCLUSIONS The results revealed that anthocyanins ameliorated diabetic nephropathy in db/db mice via phosphorylation of AMPK, the major energy-sensing enzyme, and the consequent effects on its target molecules, which appeared to prevent lipotoxicity-related apoptosis and oxidative stress in the kidney.
Collapse
Affiliation(s)
- Eun Sil Koh
- Division of Nephrology, The Catholic University of Korea Yeouido St. Mary's Hospital, 10, 63-ro, Yeongdeungpo-gu, Seoul, 150-713, Republic of Korea.
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 137-701, Republic of Korea.
| | - Ji Hee Lim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 137-701, Republic of Korea.
| | - Min Young Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 137-701, Republic of Korea.
| | - Sungjin Chung
- Division of Nephrology, The Catholic University of Korea Yeouido St. Mary's Hospital, 10, 63-ro, Yeongdeungpo-gu, Seoul, 150-713, Republic of Korea.
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 137-701, Republic of Korea.
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 137-701, Republic of Korea.
- Division of Nephrology, The Catholic University of Korea Incheon St. Mary's Hospital, 56, Dongsu-ro, Bupyeong-gu, Incheon, 403-720, Republic of Korea.
| | - Bum Soon Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 137-701, Republic of Korea.
- Division of Nephrology, The Catholic University of Korea Seoul St. Mary's Hospital, 222 Banpo-daero, Seoul, 137-701, Republic of Korea.
| | - Hye Won Kim
- Department of Rehabilitation Medicine, Bucheon Saint Mary's Hospital, Sosa-dong, Wonmi-gu, Bucheon-si, Geoynggi-do, 420-717, Republic of Korea.
| | - Seong Yeon Hwang
- Korea Bio Medical Science Institute, 652, Nonhyeon-ro, Gangnam-gu, Seoul, 135-829, Republic of Korea.
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 137-701, Republic of Korea.
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 137-701, Republic of Korea.
- Division of Nephrology, The Catholic University of Korea Seoul St. Mary's Hospital, 222 Banpo-daero, Seoul, 137-701, Republic of Korea.
| | - Yoon Sik Chang
- Division of Nephrology, The Catholic University of Korea Yeouido St. Mary's Hospital, 10, 63-ro, Yeongdeungpo-gu, Seoul, 150-713, Republic of Korea.
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 137-701, Republic of Korea.
| |
Collapse
|
27
|
Ismael S, Purushothaman S, Harikrishnan VS, Nair RR. Ligand specific variation in cardiac response to stimulation of peroxisome proliferator-activated receptor-alpha in spontaneously hypertensive rat. Mol Cell Biochem 2015; 406:173-82. [PMID: 25976666 DOI: 10.1007/s11010-015-2435-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/06/2015] [Indexed: 11/30/2022]
Abstract
Left ventricular hypertrophy (LVH) is an independent risk factor for cardiac failure. Reduction of LVH has beneficial effects on the heart. LVH is associated with shift in energy substrate preference from fatty acid to glucose, mediated by down regulation of peroxisome proliferator-activated receptor-alpha (PPAR-α). As long-term dependence on glucose can promote adverse cardiac remodeling, it was hypothesized that, prevention of metabolic shift by averting down regulation of PPAR-α can reduce cardiac remodeling in spontaneously hypertensive rat (SHR). Cardiac response to stimulation of PPAR-α presumably depends on the type of ligand used. Therefore, the study was carried out in SHR, using two different PPAR-α ligands. SHR were treated with either fenofibrate (100 mg/kg/day) or medium-chain triglyceride (MCT) Tricaprylin (5% of diet) for 4 months. Expression of PPAR-α and medium-chain acylCoA dehydrogenase served as markers, for stimulation of PPAR-α. Both ligands stimulated PPAR-α. Decrease of blood pressure was observed only with fenofibrate. LVH was assessed from heart-weight/body weight ratio, histology and brain natriuretic peptide expression. As oxidative stress is linked with hypertrophy, serum and cardiac malondialdehyde and cardiac 3-nitrotyrosine levels were determined. Compared to untreated SHR, LVH and oxidative stress were lower on supplementation with MCT, but higher on treatment with fenofibrate. The observations indicate that reduction of blood pressure is not essentially accompanied by reduction of LVH, and that, progressive cardiac remodeling can be prevented with decrease in oxidative stress. Contrary to the notion that reactivation of PPAR-α is detrimental; the study substantiates that cardiac response to stimulation of PPAR-α is ligand specific.
Collapse
Affiliation(s)
- Saifudeen Ismael
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | | | | | | |
Collapse
|
28
|
Chan SMH, Zeng XY, Sun RQ, Jo E, Zhou X, Wang H, Li S, Xu A, Watt MJ, Ye JM. Fenofibrate insulates diacylglycerol in lipid droplet/ER and preserves insulin signaling transduction in the liver of high fat fed mice. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1511-9. [PMID: 25906681 DOI: 10.1016/j.bbadis.2015.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
Hepatic steatosis is often associated with insulin resistance as a hallmark of the metabolic syndrome in the liver. The present study investigated the effects of PPARα activation induced by fenofibrate (FB) on the relationship of insulin resistance and hepatic steatosis in mice fed a high-fat (HF) diet, which increases lipid influx into the liver. Mice were fed HF diet to induce insulin resistance and hepatic steatosis with or without FB. FB activated PPARα and ameliorated HF diet-induced glucose intolerance and hepatic insulin resistance without altering either hepatic steatosis or inflammation signaling (JNK or IKK). Interestingly, FB treatment simultaneously increased fatty acid (FA) synthesis (50%) and oxidation (66%, both p<0.01) into intermediate lipid metabolites, suggesting a FA oxidation-synthesis cycling in operation. Associated with these effects, diacylglycerols (DAGs) were sequestered within the lipid droplet/ER compartment, thus reducing their deposition in the cellular membrane, which is known to impair insulin signal transduction. These findings suggest that the reduction in membrane DAGs (rather than total hepatic steatosis) may be critical for the protection by fenofibrate-induced PPARα activation against hepatic insulin resistance induced by dietary fat.
Collapse
Affiliation(s)
- Stanley M H Chan
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Xiao-Yi Zeng
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ruo-Qiong Sun
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Eunjung Jo
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Xiu Zhou
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Hao Wang
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Songpei Li
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Matthew J Watt
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Ji-Ming Ye
- Lipid Biology and Metabolic Disease Laboratory, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice. PLoS One 2014; 9:e96147. [PMID: 24801481 PMCID: PMC4011795 DOI: 10.1371/journal.pone.0096147] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-α, a lipid-sensing transcriptional factor, serves an important role in lipotoxicity. We evaluated whether fenofibrate has a renoprotective effect by ameliorating lipotoxicity in the kidney. Eight-week-old male C57BLKS/J db/m control and db/db mice, divided into four groups, received fenofibrate for 12 weeks. In db/db mice, fenofibrate ameliorated albuminuria, mesangial area expansion and inflammatory cell infiltration. Fenofibrate inhibited accumulation of intra-renal free fatty acids and triglycerides related to increases in PPARα expression, phosphorylation of AMP-activated protein kinase (AMPK), and activation of Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α)-estrogen-related receptor (ERR)-1α-phosphorylated acetyl-CoA carboxylase (pACC), and suppression of sterol regulatory element-binding protein (SREBP)-1 and carbohydrate regulatory element-binding protein (ChREBP)-1, key downstream effectors of lipid metabolism. Fenofibrate decreased the activity of phosphatidylinositol-3 kinase (PI3K)-Akt phosphorylation and FoxO3a phosphorylation in kidneys, increasing the B cell leukaemia/lymphoma 2 (BCL-2)/BCL-2-associated X protein (BAX) ratio and superoxide dismutase (SOD) 1 levels. Consequently, fenofibrate recovered from renal apoptosis and oxidative stress, as reflected by 24 hr urinary 8-isoprostane. In cultured mesangial cells, fenofibrate prevented high glucose-induced apoptosis and oxidative stress through phosphorylation of AMPK, activation of PGC-1α-ERR-1α, and suppression of SREBP-1 and ChREBP-1. Our results suggest that fenofibrate improves lipotoxicity via activation of AMPK-PGC-1α-ERR-1α-FoxO3a signaling, showing its potential as a therapeutic modality for diabetic nephropathy.
Collapse
|
30
|
Impellizzeri D, Esposito E, Attley J, Cuzzocrea S. Targeting inflammation: new therapeutic approaches in chronic kidney disease (CKD). Pharmacol Res 2014; 81:91-102. [PMID: 24602801 DOI: 10.1016/j.phrs.2014.02.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/18/2014] [Accepted: 02/24/2014] [Indexed: 01/14/2023]
Abstract
Chronic inflammation and oxidative stress, features that are closely associated with nuclear factor (NF-κB) activation, play a key role in the development and progression of chronic kidney disease (CKD). Several animal models and clinical trials have clearly demonstrated the effectiveness of angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) therapy to improve glomerular/tubulointerstitial damage, reduce proteinuria, and decrease CKD progression, but CKD treatment still represents a clinical challenge. Bardoxolone methyl, a first-in-class oral Nrf-2 (nuclear factor erythroid 2-related factor 2) agonist that until recently showed considerable potential for the management of a range of chronic diseases, had been shown to improve kidney function in patients with advanced diabetic nephropathy (DN) with few adverse events in a phase 2 trial, but a large phase 3 study in patients with diabetes and CKD was halted due to emerging toxicity and death in a number of patients. Instead, palmitoylethanolamide (PEA) a member of the fatty acid ethanolamine family, is a novel non-steroidal, kidney friendly anti-inflammatory and anti-fibrotic agent with a well-documented safety profile, that may represent a potential candidate in treating CKD probably by a combination of pharmacological properties, including some activity at the peroxisome proliferator activated receptor alpha (PPAR-α). The aim of this review is to discuss new therapeutic approaches for the treatment of CKD, with particular reference to the outcome of two therapies, bardoxolone methyl and PEA, to improve our understanding of which pharmacological properties are responsible for the anti-inflammatory effects necessary for the effective treatment of renal disease.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, Messina 31-98166, Italy
| | - Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, Messina 31-98166, Italy
| | | | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, Messina 31-98166, Italy; Manchester Biomedical Research Centre, Manchester Royal Infirmary, University of Manchester, United Kingdom.
| |
Collapse
|
31
|
Speeckaert MM, Vanfraechem C, Speeckaert R, Delanghe JR. Peroxisome proliferator-activated receptor agonists in a battle against the aging kidney. Ageing Res Rev 2014; 14:1-18. [PMID: 24503003 DOI: 10.1016/j.arr.2014.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 12/19/2022]
Abstract
As aging is a complex phenomenon characterized by intraindividual and interindividual diversities in the maintenance of the homeostatic condition of cells and tissues, changes in renal function are not uniform and depend on associated diseases and environmental factors. Multiple studies have investigated the possible underlying mechanisms of age-related decline in kidney function. Evolutionary, molecular, cellular and systemic theories have been postulated to explain the primary disease independent age-related changes and adaptive responses. As peroxisome proliferator-activated receptors (PPARs) are involved in a broad spectrum of biological processes, PPAR activation might have an effect on the prevention of cell senescence. In this review, we will focus on the experimental and clinical evidence of PPAR agonists in a battle against the aging kidney.
Collapse
Affiliation(s)
| | | | | | - Joris R Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, Gent, Belgium
| |
Collapse
|
32
|
Abstract
Incretin-based therapies are now well established for diabetes management and are among the frontline agents for control of hyperglycemia. In addition to their antihyperglycemic effects, evidence is emerging on the role of these agents on blood pressure regulation, cardioprotective and renoprotective properties. Because of the pleiotropic nature of these affects, these agents could offer significant benefits with regards to the cardiorenal metabolic complications that are part of the diabetes and obesity epidemic in the United States and worldwide. We review the various known mechanisms or pathways by which incretin based therapy exerts its regulation of blood pressure with emphasis on novel mechanisms such as inflammation/immunomodulation and oxidative stress.
Collapse
Affiliation(s)
- Akhilesh Rao
- Division of Nephrology, Department of Internal Medicine, University of Missouri-Columbia School of Medicine, 5 Hospital Drive, Columbia, MO, 65212, USA
| | | |
Collapse
|
33
|
N-Palmitoylethanolamide protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress. Pharmacol Res 2013; 76:67-76. [DOI: 10.1016/j.phrs.2013.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 12/26/2022]
|
34
|
Kostapanos MS, Kei A, Elisaf MS. Current role of fenofibrate in the prevention and management of non-alcoholic fatty liver disease. World J Hepatol 2013; 5:470-478. [PMID: 24073298 PMCID: PMC3782684 DOI: 10.4254/wjh.v5.i9.470] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 07/24/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common health problem with a high mortality burden due to its liver- and vascular-specific complications. It is associated with obesity, high-fat diet as well as with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS). Impaired hepatic fatty acid (FA) turnover together with insulin resistance are key players in NAFLD pathogenesis. Peroxisome proliferator-activated receptors (PPARs) are involved in lipid and glucose metabolic pathways. The novel concept is that the activation of the PPARα subunit may protect from liver steatosis. Fenofibrate, by activating PPARα, effectively improves the atherogenic lipid profile associated with T2DM and MetS. Experimental evidence suggested various protective effects of the drug against liver steatosis. Namely, fenofibrate-related PPARα activation may enhance the expression of genes promoting hepatic FA β-oxidation. Furthermore, fenofibrate reduces hepatic insulin resistance. It also inhibits the expression of inflammatory mediators involved in non-alcoholic steatohepatitis pathogenesis. These include tumor necrosis factor-α, intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Consequently, fenofibrate can limit hepatic macrophage infiltration. Other liver-protective effects include decreased oxidative stress and improved liver microvasculature function. Experimental studies showed that fenofibrate can limit liver steatosis associated with high-fat diet, T2DM and obesity-related insulin resistance. Few studies showed that these benefits are also relevant even in the clinical setting. However, these have certain limitations. Namely, these were uncontrolled, their sample size was small, fenofibrate was used as a part of multifactorial approach, while histological data were absent. In this context, there is a need for large prospective studies, including proper control groups and full assessment of liver histology.
Collapse
|
35
|
Marino A, Tannock LR. Role of dyslipidemia in patients with chronic kidney disease. Postgrad Med 2013; 125:28-37. [PMID: 23842535 DOI: 10.3810/pgm.2013.07.2676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anna Marino
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
36
|
Kostapanos MS, Florentin M, Elisaf MS. Fenofibrate and the kidney: an overview. Eur J Clin Invest 2013; 43:522-31. [PMID: 23480615 DOI: 10.1111/eci.12068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/11/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fenofibrate has been used for the management of atherogenic dyslipidaemia for many years. Reports of fenofibrate-associated increases in serum creatinine (SCr) levels raised concerns regarding deleterious effects on renal function. DESIGN In this narrative review, we discuss available literature on the effect of fenofibrate on the kidney. RESULTS Most clinical studies showed a rapid (within weeks) raising effect of fenofibrate on SCr levels. This was often accompanied by declined estimated glomerular filtration rate. Risk predictors of this adverse effect might include increased age, impaired renal function and high-dose treatment. Also, the concomitant use of medications affecting renal hemodynamics (e.g. angiotensin-converting enzyme-inhibitors (ACEi) and angiotensin receptor blockers) may predispose to fenofibrate-associated increased SCr levels. Interestingly, SCr increases by fenofibrate were transient and reversible even without treatment discontinuation. Furthermore, fenofibrate was associated with a slower progression of renal function impairment and albuminuria in a long-term basis. Also, fenofibrate might be protective against pathological changes in diabetic nephropathy and hypertensive glomerulosclerosis. In this context, it is uncertain whether fenofibrate-associated increase in SCr levels mirrors true renal function deterioration. Several theories have been expressed. The most dominant one involved the inhibition of renal vasodilatory prostaglandins reducing renal plasma flow and glomerular pressure. Increased creatinine secretion or reduced creatinine clearance by fenofibrate was also suggested. These hypotheses should be settled by further studies. CONCLUSIONS Fenofibrate may not be a nephrotoxic drug. However, a close monitoring of SCr levels is relevant especially in high-risk patients. Increases in SCr levels ≥30% can impose treatment discontinuation.
Collapse
Affiliation(s)
- Michael S Kostapanos
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | | | | |
Collapse
|
37
|
Kim MY, Lim JH, Youn HH, Hong YA, Yang KS, Park HS, Chung S, Ko SH, Shin SJ, Choi BS, Kim HW, Kim YS, Lee JH, Chang YS, Park CW. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice. Diabetologia 2013; 56:204-17. [PMID: 23090186 DOI: 10.1007/s00125-012-2747-2] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/03/2012] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Many of the effects of resveratrol are consistent with the activation of AMP-activated protein kinase (AMPK), silent information regulator T1 (SIRT1) and peroxisome proliferator-activated receptor (PPAR)γ co-activator 1α (PGC-1α), which play key roles in the regulation of lipid and glucose homeostasis, and in the control of oxidative stress. We investigated whether resveratrol has protective effects on the kidney in type 2 diabetes. METHODS Four groups of male C57BLKS/J db/m and db/db mice were used in this study. Resveratrol was administered via gavage to diabetic and non-diabetic mice, starting at 8 weeks of age, for 12 weeks. RESULTS The db/db mice treated with resveratrol had decreased albuminuria. Resveratrol ameliorated glomerular matrix expansion and inflammation. Resveratrol also lowered the NEFA and triacylglycerol content of the kidney, and this action was related to increases in the phosphorylation of AMPK and the activation of SIRT1-PGC-1α signalling and of the key downstream effectors, the PPARα-oestrogen-related receptor (ERR)-1α-sterol regulatory element-binding protein 1 (SREBP1). Furthermore, resveratrol decreased the activity of phosphatidylinositol-3 kinase (PI3K)-Akt phosphorylation and class O forkhead box (FOXO)3a phosphorylation, which resulted in a decrease in B cell leukaemia/lymphoma 2 (BCL-2)-associated X protein (BAX) and increases in BCL-2, superoxide dismutase (SOD)1 and SOD2 production. Consequently, resveratrol reversed the increase in renal apoptotic cells and oxidative stress, as reflected by renal 8-hydroxy-deoxyguanosine (8-OH-dG), urinary 8-OH-dG and isoprostane concentrations. Resveratrol prevented high-glucose-induced oxidative stress and apoptosis in cultured mesangial cells through the phosphorylation of AMPK and activation of SIRT1-PGC-1α signalling and the downstream effectors, PPARα-ERR-1α-SREBP1. CONCLUSIONS/INTERPRETATION The results suggest that resveratrol prevents diabetic nephropathy in db/db mice by the phosphorylation of AMPK and activation of SIRT1-PGC-1α signalling, which appear to prevent lipotoxicity-related apoptosis and oxidative stress in the kidney.
Collapse
Affiliation(s)
- M Y Kim
- Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, #505, Banpo-Dong, Seocho-Ku, Seoul 137-040, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sesamol alleviates diet-induced cardiometabolic syndrome in rats via up-regulating PPARγ, PPARα and e-NOS. J Nutr Biochem 2012; 23:1482-9. [DOI: 10.1016/j.jnutbio.2011.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/21/2011] [Accepted: 09/27/2011] [Indexed: 01/10/2023]
|
39
|
Makówka A, Dryja P, Chwatko G, Bald E, Nowicki M. Treatment of chronic hemodialysis patients with low-dose fenofibrate effectively reduces plasma lipids and affects plasma redox status. Lipids Health Dis 2012; 11:47. [PMID: 22564753 PMCID: PMC3390906 DOI: 10.1186/1476-511x-11-47] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 05/07/2012] [Indexed: 12/17/2022] Open
Abstract
Dyslipidemia is common in chronic hemodialysis patients and its underlying mechanism is complex. Hemodialysis causes an imbalance between antioxidants and production of reactive oxygen species, which induces the oxidative stress and thereby may lead to accelerated atherosclerosis. Statins have been found to be little effective in end-stage kidney disease and other lipid-lowering therapies have been only scarcely studied. The study aimed to assess the effect of low-dose fenofibrate therapy on plasma lipids and redox status in long-term hemodialysis patients with mild hypertriglyceridemia. Twenty seven chronic hemodialysis patients without any lipid-lowering therapy were included in a double-blind crossover, placebo-controlled study. The patients were randomized into two groups and were given a sequence of either 100 mg of fenofibrate per each hemodialysis day for 4 weeks or placebo with a week-long wash-out period between treatment periods. Plasma lipids, high sensitive C-reactive protein (CRP), urea, creatinine, electrolytes, phosphocreatine kinase (CK), GOT, GPT and plasma thiols (total and free glutathione, homocysteine, cysteine and cysteinylglycine) were measured at baseline and after each of the study periods. Plasma aminothiols were measured by reversed phase HPLC with thiol derivatization with 2-chloro-1-methylquinolinium tetrafluoroborate. Fenofibrate therapy caused a significant decrease of total serum cholesterol, LDL cholesterol and triglycerides and an increase of HDL cholesterol. The treatment was well tolerated with no side-effects but there was a small but significant increase of CK not exceeding the upper limit of normal range. There were no changes of serum CRP, potassium, urea, and creatinine and liver enzymes during the treatment. Neither total nor total free cysteinylglycine and cysteine changed during the study but both total and free glutathione increased during the therapy with fenofibrate and the same was observed in case of plasma homocysteine. The study shows that a treatment with reduced fenofibrate dose is safe and effective in reducing serum triglycerides and cholesterol in chronic dialysis patients and may shift plasma aminothiol balance towards a more antioxidative pattern.
Collapse
Affiliation(s)
- Agnieszka Makówka
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Łódź, Łódź, Poland
| | | | | | | | | |
Collapse
|
40
|
Sakamoto A, Hongo M, Saito K, Nagai R, Ishizaka N. Reduction of renal lipid content and proteinuria by a PPAR-γ agonist in a rat model of angiotensin II-induced hypertension. Eur J Pharmacol 2012; 682:131-6. [DOI: 10.1016/j.ejphar.2012.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
41
|
The renoprotective actions of peroxisome proliferator-activated receptors agonists in diabetes. PPAR Res 2012; 2012:456529. [PMID: 22448165 PMCID: PMC3289856 DOI: 10.1155/2012/456529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 12/17/2022] Open
Abstract
Pharmaceutical agonists of peroxisome proliferator-activated receptors (PPARs) are widely used in the management of type 2 diabetes, chiefly as lipid-lowering agents and oral hypoglycaemic agents. Although most of the focus has been placed on their cardiovascular effects, both positive and negative, these agents also have significant renoprotective actions in the diabetic kidney. Over and above action on metabolic control and effects on blood pressure, PPAR agonists also appear to have independent effects on a number of critical pathways that are implicated in the development and progression of diabetic kidney disease, including oxidative stress, inflammation, hypertrophy, and podocyte function. This review will examine these direct and indirect actions of PPAR agonists in the diabetic kidney and explore recent findings of clinical trials of PPAR agonists in patients with diabetes.
Collapse
|
42
|
Are PPAR alpha agonists a rational therapeutic strategy for preventing abnormalities of the diabetic kidney? Pharmacol Res 2012; 65:430-6. [PMID: 22285932 DOI: 10.1016/j.phrs.2012.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/12/2012] [Accepted: 01/12/2012] [Indexed: 12/14/2022]
Abstract
The uncontrolled diabetes mellitus may result in the induction of diabetic nephropathy, one of the detrimental microvascular complications of diabetes mellitus. Diabetic nephropathy is associated with glomerular hypertrophy, glomerulosclerosis, tubulointerstitial fibrosis, mesangial cell expansion, followed by albuminuria and reduction in glomerular filtration rate. Indeed, no promising therapeutic options are available in the present clinical scenario to manage efficiently the diabetic nephropathy. Nevertheless, angiotensin converting enzyme inhibitors and angiotensin-II-AT(1) receptor blockers are currently employed to improve structural and functional status of the diabetic kidney. These interventions, however, are not optimal in improving overall outcomes of diabetic nephropathy. Hence, there is a continuing need of developing promising therapeutic interventions to manage this insidious condition adequately. Recent bench and clinical studies strongly suggest the potentials of peroxisome proliferator-activated receptor alpha (PPARα) agonists in the management of diabetic nephropathy by keeping the view that renal lipid accumulation-induced lipotoxicity is one of risk factors for nephropathy during chronic diabetes mellitus. As inflammation, oxidative stress and dyslipidemia are common consequences of renal dysfunction, PPARα agonists could serve as promising therapeutic agents for controlling the progression of diabetic nephropathy. In fact, fenofibrate, a hypolipidemic agent acts as a PPARα agonist, reduced renal lipotoxicity, inflammation, fibrosis and oxidative stress, and subsequently prevented the symptoms of diabetic nephropathy. However, fenofibrate has been shown to cause renal dysfunction in established renal disorders. The present review addressed the rationale of employing PPARα agonists in the management of diabetic nephropathy.
Collapse
|
43
|
Chung HW, Lim JH, Kim MY, Shin SJ, Chung S, Choi BS, Kim HW, Kim YS, Park CW, Chang YS. High-fat diet-induced renal cell apoptosis and oxidative stress in spontaneously hypertensive rat are ameliorated by fenofibrate through the PPARα–FoxO3a–PGC-1α pathway. Nephrol Dial Transplant 2011; 27:2213-25. [DOI: 10.1093/ndt/gfr613] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Yang X, Kume S, Tanaka Y, Isshiki K, Araki SI, Chin-Kanasaki M, Sugimoto T, Koya D, Haneda M, Sugaya T, Li D, Han P, Nishio Y, Kashiwagi A, Maegawa H, Uzu T. GW501516, a PPARδ agonist, ameliorates tubulointerstitial inflammation in proteinuric kidney disease via inhibition of TAK1-NFκB pathway in mice. PLoS One 2011; 6:e25271. [PMID: 21966476 PMCID: PMC3178624 DOI: 10.1371/journal.pone.0025271] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 08/31/2011] [Indexed: 12/19/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a nuclear receptor family of ligand-inducible transcription factors, which have three different isoforms: PPARα, δ and γ. It has been demonstrated that PPARα and γ agonists have renoprotective effects in proteinuric kidney diseases; however, the role of PPARδ agonists in kidney diseases remains unclear. Thus, we examined the renoprotective effect of GW501516, a PPARδ agonist, in a protein-overload mouse nephropathy model and identified its molecular mechanism. Mice fed with a control diet or GW501516-containing diet were intraperitoneally injected with free fatty acid (FFA)-bound albumin or PBS(−). In the control group, protein overload caused tubular damages, macrophage infiltration and increased mRNA expression of MCP-1 and TNFα. These effects were prevented by GW501516 treatment. In proteinuric kidney diseases, excess exposure of proximal tubular cells to albumin, FFA bound to albumin or cytokines such as TNFα is detrimental. In vitro studies using cultured proximal tubular cells showed that GW501516 attenuated both TNFα- and FFA (palmitate)-induced, but not albumin-induced, MCP-1 expression via direct inhibition of the TGF-β activated kinase 1 (TAK1)-NFκB pathway, a common downstream signaling pathway to TNFα receptor and toll-like receptor-4. In conclusion, we demonstrate that GW501516 has an anti-inflammatory effect in renal tubular cells and may serve as a therapeutic candidate to attenuate tubulointerstitial lesions in proteinuric kidney diseases.
Collapse
Affiliation(s)
- Xu Yang
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- Department of Medicine, Shengjing Hospital of China Medical University, Shenyang, LiaoNing, China
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yuki Tanaka
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Keiji Isshiki
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shin-ichi Araki
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | - Toshiro Sugimoto
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Daisuke Koya
- Division of Endocrinology and Metabolism, Kanazawa Medical University, Kahoku-Gun, Ishikawa, Japan
| | - Masakazu Haneda
- Department of Medicine, Asahikawa Medical College, Asahikawa, Hokkaido, Japan
| | - Takeshi Sugaya
- Nephrology and Hypertension, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Detian Li
- Department of Medicine, Shengjing Hospital of China Medical University, Shenyang, LiaoNing, China
| | - Ping Han
- Department of Medicine, Shengjing Hospital of China Medical University, Shenyang, LiaoNing, China
| | - Yoshihiko Nishio
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Atsunori Kashiwagi
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Uzu
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- * E-mail:
| |
Collapse
|
45
|
Abstract
With a developing worldwide epidemic of diabetes mellitus, the renal complications associated with diabetes have become a serious health concern. Primary therapy for treating diabetic nephropathy is a multifactorial process. Peroxisome proliferator-activated receptor alpha (PPARα) agonists have been used primarily in clinical practice for the treatment of dyslipidemia and insulin resistance. Given that PPARα expression and regulation of metabolic pathways are involved in oxidative stress, inflammation, blood pressure regulation, and the renin-angiotensin aldosterone system, PPARα likely influences the development and pathogenesis of diabetic nephropathy via indirect effects on glucose and lipid homeostasis and also by direct action on the kidneys. These findings suggest that PPARα may become an important therapeutic target for treating diabetic renal complications.
Collapse
Affiliation(s)
- Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Telmisartan provides better renal protection than valsartan in a rat model of metabolic syndrome. Am J Hypertens 2011; 24:816-21. [PMID: 21415842 DOI: 10.1038/ajh.2011.34] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Angiotensin receptor blockers (ARB), telmisartan, and valsartan were compared for renal protection in spontaneously hypertensive rats (SHR) fed high fat diet. We hypothesized that in cardiometabolic syndrome, telmisartan an ARB with peroxisome proliferators activated receptor-γ (PPAR-γ) activity will offer better renal protection. METHODS SHR were fed either normal (SHR-NF, 7% fat) or high fat (SHR-HF, 36% fat) diet and treated with an ARB for 10 weeks. RESULTS Blood pressure was similar between SHR-NF (190 ± 3 mm Hg) and SHR-HF (192 ± 4 mm Hg) at the end of the 10 week period. Telmisartan and valsartan decreased blood pressure to similar extents in SHR-NF and SHR-HF groups. Body weight was significantly higher in SHR-HF (368 ± 5 g) compared to SHR-NF (328 ± 7 g). Telmisartan but not valsartan significantly reduced the body weight gain in SHR-HF. Telmisartan was also more effective than valsartan in improving glycemic and lipid status in SHR-HF. Monocyte chemoattractant protein-1 (MCP-1), an inflammatory marker, was higher in SHR-HF (24 ± 2 ng/d) compared to SHR-NF (14 ± 5 ng/d). Telmisartan reduced MCP-1 excretion in both SHR-HF and SHR-NF to a greater extent than valsartan. An indicator of renal injury, urinary albumin excretion increased to 85 ± 8 mg/d in SHR-HF compared to 54 ± 9 mg/d in SHR-NF. Telmisartan (23 ± 5 mg/d) was more effective than valsartan (45 ± 3 mg/d) in lowering urinary albumin excretion in SHR-HF. Moreover, telmisartan reduced glomerular damage to a greater extent than valsartan in the SHR-HF. CONCLUSIONS Collectively, our data demonstrate that telmisartan was more effective than valsartan in reducing body weight gain, renal inflammation, and renal injury in a rat model of cardiometabolic syndrome.
Collapse
|
47
|
Levi M. Nuclear receptors in renal disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1061-7. [PMID: 21511032 DOI: 10.1016/j.bbadis.2011.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/21/2011] [Accepted: 04/06/2011] [Indexed: 02/07/2023]
Abstract
Diabetes is the leading cause of end-stage renal disease in developed countries. In spite of excellent glucose and blood pressure control, including administration of angiotensin converting enzyme inhibitors and/or angiotensin II receptor blockers, diabetic nephropathy still develops and progresses. The development of additional protective therapeutic interventions is, therefore, a major priority. Nuclear hormone receptors regulate carbohydrate metabolism, lipid metabolism, the immune response, and inflammation. These receptors also modulate the development of fibrosis. As a result of their diverse biological effects, nuclear hormone receptors have become major pharmaceutical targets for the treatment of metabolic diseases. The increasing prevalence of diabetic nephropathy has led intense investigation into the role that nuclear hormone receptors may have in slowing or preventing the progression of renal disease. This role of nuclear hormone receptors would be associated with improvements in metabolism, the immune response, and inflammation. Several nuclear receptor activating ligands (agonists) have been shown to have a renal protective effect in the context of diabetic nephropathy. This review will discuss the evidence regarding the beneficial effects of the activation of several nuclear, especially the vitamin D receptor (VDR), farnesoid X receptor (FXR), and peroxisome-proliferator-associated receptors (PPARs) in preventing the progression of diabetic nephropathy and describe how the discovery and development of compounds that modulate the activity of nuclear hormone receptors may provide potential additional therapeutic approaches in the management of diabetic nephropathy. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Moshe Levi
- Department of Medicine, Division of Nephrology and Hypertension, University of Colorado Denver,CO 80045, USA.
| |
Collapse
|
48
|
Fenofibrate, a PPARα agonist, has renoprotective effects in mice by enhancing renal lipolysis. Kidney Int 2011; 79:871-82. [PMID: 21270762 DOI: 10.1038/ki.2010.530] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As renal lipotoxicity can lead to chronic kidney disease (CKD), we examined the role of peroxisome proliferator-activated receptor (PPAR)-α, a positive regulator of renal lipolysis. Feeding mice a high-fat diet induced glomerular injury, and treating them with fenofibrate, a PPARα agonist, increased the expression of lipolytic enzymes and reduced lipid accumulation and oxidative stress in glomeruli, while inhibiting the development of albuminuria and glomerular fibrosis. In mice given an overload of free fatty acid-bound albumin to induce tubulointerstitial injury, fenofibrate attenuated the development of oxidative stress, macrophage infiltration, and fibrosis, and enhanced lipolysis in the renal interstitium. Fenofibrate inhibited palmitate-induced expression of profibrotic plasminogen activator inhibitor-1 (PAI-1) in cultured mesangial cells, and the expression of both monocyte chemoattractant protein-1 and PAI-1 in proximal tubular cells along with the overexpression of lipolytic enzymes. Thus, fenofibrate can attenuate lipotoxicity-induced glomerular and tubulointerstitial injuries, with enhancement of renal lipolysis. Whether amelioration of renal lipotoxicity by PPARα agonists will turn out to be a useful strategy against CKD will require direct testing.
Collapse
|
49
|
Panchal SK, Brown L. Rodent models for metabolic syndrome research. J Biomed Biotechnol 2010; 2011:351982. [PMID: 21253582 PMCID: PMC3018657 DOI: 10.1155/2011/351982] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 02/07/2023] Open
Abstract
Rodents are widely used to mimic human diseases to improve understanding of the causes and progression of disease symptoms and to test potential therapeutic interventions. Chronic diseases such as obesity, diabetes and hypertension, together known as the metabolic syndrome, are causing increasing morbidity and mortality. To control these diseases, research in rodent models that closely mimic the changes in humans is essential. This review will examine the adequacy of the many rodent models of metabolic syndrome to mimic the causes and progression of the disease in humans. The primary criterion will be whether a rodent model initiates all of the signs, especially obesity, diabetes, hypertension and dysfunction of the heart, blood vessels, liver and kidney, primarily by diet since these are the diet-induced signs in humans with metabolic syndrome. We conclude that the model that comes closest to fulfilling this criterion is the high carbohydrate, high fat-fed male rodent.
Collapse
Affiliation(s)
- Sunil K. Panchal
- Department of Biological and Physical Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Lindsay Brown
- Department of Biological and Physical Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| |
Collapse
|
50
|
Liang YJ, Jian JH, Liu YC, Juang SJ, Shyu KG, Lai LP, Wang BW, Leu JG. Advanced glycation end products-induced apoptosis attenuated by PPARdelta activation and epigallocatechin gallate through NF-kappaB pathway in human embryonic kidney cells and human mesangial cells. Diabetes Metab Res Rev 2010; 26:406-16. [PMID: 20583309 DOI: 10.1002/dmrr.1100] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Diabetic nephropathy has attracted many researchers' attention. Because of the emerging evidence about the effects of advanced glycation end products (AGEs) and receptor of AGE (RAGE) on the progression of diabetic nephropathy, a number of different therapies to inhibit AGE or RAGE are under investigation. The purpose of the present study was to examine whether peroxisome proliferator-activated receptor delta (PPARdelta) agonist (L-165041) or epigallocatechin gallate (EGCG) alters AGE-induced pro-inflammatory gene expression and apoptosis in human embryonic kidney cells (HEK293) and human mesangial cells (HMCs). METHODS The HEK cells and HMC were separated into the following groups: 100 microg/mL AGE alone for 18 h; AGE treated with 1 microM L-165041 or 10 microM EGCG, and untreated cells. Inflammatory cytokines, nuclear factor-kappaB pathway, RAGE expression, superoxide dismutase and cell apoptosis were determined. RESULTS AGE significantly increased tumour necrosis factor-alpha (TNF-alpha), a major pro-inflammatory cytokine. The mRNA and protein expression of RAGE were up-regulated. These effects were significantly attenuated by pre-treatment with L-165041 or EGCG. AGE-induced nuclear factor-kappaB pathway activation and both cells apoptosis were also inhibited by L-165041 or EGCG. Furthermore, both L-165041 and EGCG increased superoxide dismutase levels in AGE-treated HEK cells and HMC. CONCLUSIONS This study demonstrated that PPARdelta agonist and EGCG decreased the AGE-induced kidney cell inflammation and apoptosis. This study provides important insights into the molecular mechanisms of EGCG and PPARdelta agonist in attenuation of kidney cell inflammation and may serve as a therapeutic modality to treat patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Yao-Jen Liang
- Department and Institute of Life Science, Fu-Jen Catholic University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|