1
|
Carneiro de Oliveira K, Wei Y, Repetti RL, Meth J, Majumder N, Sapkota A, Gusella GL, Rohatgi R. Tubular deficiency of ABCA1 augments cholesterol- and Na +-dependent effects on systemic blood pressure in male mice. Am J Physiol Renal Physiol 2024; 326:F265-F277. [PMID: 38153852 PMCID: PMC11207546 DOI: 10.1152/ajprenal.00154.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Dyslipidemia, with changes in plasma membrane (PM) composition, is associated with hypertension, while rising PM cholesterol induces Na+ channel activity. We hypothesize that ablation of renal tubular ABCA1, a cholesterol efflux protein, leads to cholesterol- and Na+-dependent changes in blood pressure (BP). Transgenic mice (TgPAX8rtTA;tetO-Cre/+) expressing a doxycycline (dox)-inducible CRE recombinase were bred with mice expressing floxed ABCA1 to generate renal tubules deficient in ABCA1 (ABCA1FF). Tail-cuff systolic BP (SBP) was measured in mice on specific diets. Immunoblotting was performed on whole and PM protein lysates of kidney from mice completing experimental diets. Cortical PM of ABCA1FF showed reduced ABCA1 (60 ± 28%; n = 10, P < 0.05) compared with wild-type littermates (WT; n = 9). Tail-cuff SBP of ABCA1FF (n = 11) was not only greater post dox, but also during cholesterol or high Na+ feeding (P < 0.05) compared with WT mice (n = 15). A Na+-deficient diet abolished the difference, while 6 wk of cholesterol diet raised SBP in ABCA1FF compared with mice before cholesterol feeding (P < 0.05). No difference in α-ENaC protein abundance was noted in kidney lysate; however, γ-ENaC increased in ABCA1FF mice versus WT mice. In kidney membranes, NKCC2 abundance was greater in ABCA1FF versus WT mice. Cortical lysates of ABCA1FF mouse kidneys expressed less renin and angiotensin I receptor than WT mouse kidneys. Furosemide injection induced a greater diuretic effect in ABCA1FF (n = 7; 45.2 ± 8.7 µL/g body wt) versus WT (n = 7; 33.1 ± 6.9 µL/g body wt; P < 0.05) but amiloride did not. Tubular ABCA1 deficiency induces cholesterol-dependent rise in SBP and modest Na+ sensitivity of SBP, which we speculate is partly related to Na+ transporters and channels.NEW & NOTEWORTHY Cholesterol has been linked to greater Na+ channel activity in kidney cells, which may predispose to systemic hypertension. We showed that when ABCA1, a protein that removes cholesterol from tissues, is ablated from mouse kidneys, systemic blood pressure is greater than normal mice. Dietary cholesterol further increases blood pressure in transgenic mice, whereas low dietary salt intake reduced blood pressure to that of normal mice. Thus, we speculate that diseases and pharmaceuticals that reduce renal ABCA1 expression, like diabetes and calcineurin inhibitors, respectively, contribute to the prominence of hypertension in their clinical presentation.
Collapse
Affiliation(s)
- Karin Carneiro de Oliveira
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Yuan Wei
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Robert L Repetti
- Renal Section, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Jennifer Meth
- Renal Section, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
| | - Nomrota Majumder
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Ananda Sapkota
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - G Luca Gusella
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Rajeev Rohatgi
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
2
|
Jin J, Zhao X, Zhu C, Li M, Wang J, Fan Y, Liu C, Shen C, Yang R. Hypomethylation of ABCG1 in peripheral blood as a potential marker for the detection of coronary heart disease. Clin Epigenetics 2023; 15:120. [PMID: 37507725 PMCID: PMC10375639 DOI: 10.1186/s13148-023-01533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Novel molecular biomarkers for the risk assessment and early detection of coronary heart disease (CHD) are urgently needed for disease prevention. Altered methylation of ATP-binding cassette subfamily G member 1 (ABCG1) has been implicated in CHD but was mostly studied in Caucasians. Exploring the potential relationship between ABCG1 methylation in blood and CHD among the Chinese population would yield valuable insights. METHODS Peripheral blood samples were obtained from a case-control study (287 CHD patients vs. 277 controls) and a prospective nested case-control study (171 CHD patients and 197 matched controls). DNA extraction and bisulfite-specific PCR amplification techniques were employed for sample processing. Quantitative assessment of methylation levels was conducted using mass spectrometry. Statistical analyses involved the utilization of logistic regression and nonparametric tests. RESULTS We found hypomethylation of ABCG1 in whole blood was associated with the risk of CHD in both studies, which was enhanced in heart failure (HF) patients, female and younger subjects. When combined with baseline characteristics, altered ABCG1 methylation showed improved predictive effect for differentiating CHD cases, ischemic cardiomyopathy (ICM) cases, younger than 60 years CHD cases, and female CHD cases from healthy controls (area under the curve (AUC) = 0.68, 0.71, 0.74, and 0.73, respectively). CONCLUSIONS We demonstrated a robust link between ABCG1 hypomethylation in whole blood and CHD risk in the Chinese population and provided novel evidence indicating that aberrant ABCG1 methylation in peripheral blood can serve as an early detection biomarker for CHD patients.
Collapse
Affiliation(s)
- Jialie Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Xiaojing Zhao
- Military Translational Medicine Lab, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100000, People's Republic of China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100000, People's Republic of China
| | - Chao Zhu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100000, People's Republic of China
| | - Mengxia Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Jinxin Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, 100000, People's Republic of China
| | - Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, People's Republic of China.
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, People's Republic of China.
| |
Collapse
|
3
|
Abdalla M, El‐Arabey AA, Gai Z. Hypertension is still a moving target in the context of COVID-19 and post-acute COVID-19 syndrome. J Med Virol 2022; 95:e28128. [PMID: 36068170 PMCID: PMC9539041 DOI: 10.1002/jmv.28128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Mohnad Abdalla
- Research Institute of PediatricsChildren's Hospital Affiliated to Shandong University (Jinan Children's Hospital)JinanChina
| | - Amr Ahmed El‐Arabey
- Department of Pharmacology and Toxicology, Faculty of PharmacyAl‐Azhar UniversityCairoEgypt
| | - Zhongtao Gai
- Research Institute of PediatricsChildren's Hospital Affiliated to Shandong University (Jinan Children's Hospital)JinanChina
| |
Collapse
|
4
|
Ren Y, Tong E, Di C, Zhang Y, Xu L, Tan X, Yang L. Association Between ABCA1 Gene Polymorphisms and the Risk of Hypertension in the Chinese Han Population. Front Public Health 2022; 10:878610. [PMID: 35669754 PMCID: PMC9163321 DOI: 10.3389/fpubh.2022.878610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022] Open
Abstract
Background Hypertension is rising as a major public health burden around the world. This study explored the association between single-nucleotide polymorphisms (SNPs) in the adenosine triphosphate (ATP)-Binding Cassette Subfamily A1 (ABCA1) gene and hypertension among Chinese Han adults. Method A total of 2,296 Han Chinese in southeast China were recruited for this study. We collected medical reports, lifestyle details, and blood samples from individuals. The polymerase chain reaction-ligase detection reaction (PCR-LDR) method was used to detect the genotypes of these SNPs in the ABCA1 gene. Results After adjusting some covariates, the additive and recessive models of the rs2472510 and rs2515614 were significantly associated with hypertension. The haplotypes TCTA (rs2297406-rs2472433-rs2472510-rs2515614) were associated with high SBP, and the haplotypes CCTA, TCTA, and TTTA were associated with high diastolic blood pressure (DBP). Conclusion The results of the relationship between the polymorphisms of rs2297406, rs2472433, rs2472510, and rs2515614 in ABCA1 and hypertension in southeastern China would provide a theoretical basis for genetic screening and disease prevention.
Collapse
Affiliation(s)
- Yanli Ren
- Medical School, Hangzhou Normal University, Hangzhou, China
| | - Enyu Tong
- Medical School, Hangzhou Normal University, Hangzhou, China
| | - Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yunheng Zhang
- Medical School, Hangzhou Normal University, Hangzhou, China
| | - Liangwen Xu
- Medical School, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Tan
- Medical School, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xiaohua Tan
| | - Lei Yang
- Medical School, Hangzhou Normal University, Hangzhou, China
- Lei Yang
| |
Collapse
|
5
|
Apolipoprotein-AI and AIBP synergetic anti-inflammation as vascular diseases therapy: the new perspective. Mol Cell Biochem 2021; 476:3065-3078. [PMID: 33811580 DOI: 10.1007/s11010-020-04037-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
Vascular diseases (VDs) including pulmonary arterial hypertension (PAH), atherosclerosis (AS) and coronary arterial diseases (CADs) contribute to the higher morbidity and mortality worldwide. Apolipoprotein A-I (Apo A-I) binding protein (AIBP) and Apo-AI negatively correlate with VDs. However, the mechanism by which AIBP and apo-AI regulate VDs still remains unexplained. Here, we provide an overview of the role of AIBP and apo-AI regulation of vascular diseases molecular mechanisms such as vascular energy homeostasis imbalance, oxidative and endoplasmic reticulum stress and inflammation in VDs. In addition, the role of AIBP and apo-AI in endothelial cells (ECs), vascular smooth muscle (VSMCs) and immune cells activation in the pathogenesis of VDs are explained. The in-depth understanding of AIBP and apo-AI function in the vascular system may lead to the discovery of VDs therapy.
Collapse
|
6
|
Li Y, Zhang Q, Di Zhang, Cai Q, Fan J, Venners SA, Jiang S, Li J, Xu X. The effect of ABCA1 gene DNA methylation on blood pressure levels in a Chinese hyperlipidemic population. J Hum Hypertens 2021; 35:1139-1148. [PMID: 33462393 DOI: 10.1038/s41371-020-00479-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/08/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022]
Abstract
Hypertension is an important public health challenge worldwide. Epigenetic studies are providing novel insight into the underlying mechanisms of hypertension. We investigated the effect of DNA methylation in ATP-binding cassette transporter 1 (ABCA1) gene on blood pressure levels in a Chinese hyperlipidemic population. We randomly selected 211 individuals with hyperlipidemia who had not received any lipid-lowering treatment at baseline from our previous statin pharmacogenetics study (n = 734). DNA methylation loci at the ABCA1 gene were measured by MethylTarget, a next generation bisulfite sequencing-based multiple targeted cytosine-guanine dinucleotide methylation analysis method. Mean DNA methylation level was used in statistical analysis. In all subjects, higher mean ABCA1_B methylation was positively associated with systolic blood pressure (SBP) (β = 8.27, P = 0.008; β = 8.78, P = 0.005) and explained 2.7% and 5.8% of SBP variation before and after adjustment for lipids, respectively. We further divided all patients into three groups based on the tertile of body mass index (BMI) distribution. In the middle tertile of BMI, there was a significantly positive relationship between mean ABCA1_A methylation and SBP (β = 0.89, P = 0.003) and DBP (β = 0.32, P = 0.030). Mean ABCA1_A methylation explained 11.0% of SBP variation and 5.3% of DBP variation, respectively. Furthermore, mean ABCA1_A methylation (β = 0.79; P = 0.007) together with age and gender explained up to 24.1% of SBP variation. Our study provides new evidence that the ABCA1 DNA methylation profile is associated with blood pressure levels, which highlights that DNA methylation might be a significant molecular mechanism involved in the pathophysiological process of hypertension.
Collapse
Affiliation(s)
- Yajie Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Qian Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Di Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Qianru Cai
- School of Life Sciences, Anhui University, Hefei, China
| | - Juanlin Fan
- School of Life Sciences, Anhui University, Hefei, China
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China. .,Institute of Biomedicine, Anhui Medical University, Hefei, China.
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China.
| | - Xiping Xu
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Huang Y, Ollikainen M, Muniandy M, Zhang T, van Dongen J, Hao G, van der Most PJ, Pan Y, Pervjakova N, Sun YV, Hui Q, Lahti J, Fraszczyk E, Lu X, Sun D, Richard MA, Willemsen G, Heikkila K, Leach IM, Mononen N, Kähönen M, Hurme MA, Raitakari OT, Drake AJ, Perola M, Nuotio ML, Huang Y, Khulan B, Räikkönen K, Wolffenbuttel BHR, Zhernakova A, Fu J, Zhu H, Dong Y, van Vliet-Ostaptchouk JV, Franke L, Eriksson JG, Fornage M, Milani L, Lehtimäki T, Vaccarino V, Boomsma DI, van der Harst P, de Geus EJC, Salomaa V, Li S, Chen W, Su S, Wilson J, Snieder H, Kaprio J, Wang X. Identification, Heritability, and Relation With Gene Expression of Novel DNA Methylation Loci for Blood Pressure. Hypertension 2020; 76:195-205. [PMID: 32520614 PMCID: PMC7295009 DOI: 10.1161/hypertensionaha.120.14973] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/23/2020] [Indexed: 02/05/2023]
Abstract
We conducted an epigenome-wide association study meta-analysis on blood pressure (BP) in 4820 individuals of European and African ancestry aged 14 to 69. Genome-wide DNA methylation data from peripheral leukocytes were obtained using the Infinium Human Methylation 450k BeadChip. The epigenome-wide association study meta-analysis identified 39 BP-related CpG sites with P<1×10-5. In silico replication in the CHARGE consortium of 17 010 individuals validated 16 of these CpG sites. Out of the 16 CpG sites, 13 showed novel association with BP. Conversely, out of the 126 CpG sites identified as being associated (P<1×10-7) with BP in the CHARGE consortium, 21 were replicated in the current study. Methylation levels of all the 34 CpG sites that were cross-validated by the current study and the CHARGE consortium were heritable and 6 showed association with gene expression. Furthermore, 9 CpG sites also showed association with BP with P<0.05 and consistent direction of the effect in the meta-analysis of the Finnish Twin Cohort (199 twin pairs and 4 singletons; 61% monozygous) and the Netherlands Twin Register (266 twin pairs and 62 singletons; 84% monozygous). Bivariate quantitative genetic modeling of the twin data showed that a majority of the phenotypic correlations between methylation levels of these CpG sites and BP could be explained by shared unique environmental rather than genetic factors, with 100% of the correlations of systolic BP with cg19693031 (TXNIP) and cg00716257 (JDP2) determined by environmental effects acting on both systolic BP and methylation levels.
Collapse
Affiliation(s)
- Yisong Huang
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, PO Box 20 (Tukholmankatu 8), Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, PO Box 20 (Tukholmankatu 8), Helsinki, Finland
| | - Maheswary Muniandy
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, PO Box 20 (Tukholmankatu 8), Helsinki, Finland
| | - Tao Zhang
- Department of Biostatistics, Shandong University School of Public Health, Jinan, China
| | - Jenny van Dongen
- Department of Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-9, 1081BT, Amsterdam, The Netherlands
| | - Guang Hao
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Peter J. van der Most
- University of Groningen, University Medical Center Groningen, Groningen, Department of Epidemiology, the Netherlands
| | - Yue Pan
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Natalia Pervjakova
- Estonian Genome Center, Institute of Genomics, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia
| | - Yan V. Sun
- Department of Epidemiology, Emory Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Qin Hui
- Department of Epidemiology, Emory Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jari Lahti
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Eliza Fraszczyk
- University of Groningen, University Medical Center Groningen, Groningen, Department of Epidemiology, the Netherlands
| | - Xueling Lu
- University of Groningen, University Medical Center Groningen, Groningen, Department of Epidemiology, the Netherlands
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Guangdong, China
| | - Dianjianyi Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Melissa A. Richard
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine
| | - Gonneke Willemsen
- Department of Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-9, 1081BT, Amsterdam, The Netherlands
| | - Kauko Heikkila
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, PO Box 20 (Tukholmankatu 8), Helsinki, Finland
| | - Irene Mateo Leach
- University of Groningen, University Medical Center Groningen, Groningen, Department of Cardiology, the Netherlands
| | - Nina Mononen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland; Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Finnish Cardiovascular Research Center – Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland; Department of Clinical Physiology, Tampere University Hospital, Tampere 33521
| | - Mikko A. Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20014, Finland
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
| | - Markus Perola
- National Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland
| | - Marja-Liisa Nuotio
- National Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland
| | - Yunfeng Huang
- Department of Epidemiology, Emory Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Batbayar Khulan
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Bruce HR Wolffenbuttel
- University of Groningen, University Medical Center Groningen, Department of Endocrinology, the Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Jingyuan Fu
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen and University Medical Center Groningen, Groningen, Department of Pediatrics, The Netherlands
| | - Haidong Zhu
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yanbin Dong
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jana V. van Vliet-Ostaptchouk
- University of Groningen, University Medical Center Groningen, Groningen, Department of Epidemiology, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Endocrinology, the Netherlands
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Department of Genetics, Groningen, The Netherlands
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Johan G Eriksson
- Department of General Practice and Primary health Care, Tukholmankatu 8 B, University of Helsinki, Finland and Helsinki University Hospital, Unit of General Practice, Helsinki, Finland
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, Mc Govern Medical School, University of Texas Health Science Center at Houston
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland; Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
| | - Viola Vaccarino
- Department of Epidemiology, Emory Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dorret I. Boomsma
- Department of Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-9, 1081BT, Amsterdam, The Netherlands
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Groningen, Department of Cardiology, the Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eco J. C. de Geus
- Department of Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-9, 1081BT, Amsterdam, The Netherlands
| | - Veikko Salomaa
- National Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland
| | - Shengxu Li
- Children’s Minnesota Research Institute, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Shaoyong Su
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - James Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216 USA
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Groningen, Department of Epidemiology, the Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, PO Box 20 (Tukholmankatu 8), Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, PO Box 20 (Tukholmankatu 8), Helsinki, Finland
| | - Xiaoling Wang
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
8
|
Wu M, Liang C, Yu X, Song B, Yue Q, Zhai Y, Linck V, Cai Y, Niu N, Yang X, Zhang B, Wang Q, Zou L, Zhang S, Thai TL, Ma J, Sutliff RL, Zhang Z, Ma H. Lovastatin attenuates hypertension induced by renal tubule-specific knockout of ATP-binding cassette transporter A1, by inhibiting epithelial sodium channels. Br J Pharmacol 2019; 176:3695-3711. [PMID: 31222723 PMCID: PMC6715779 DOI: 10.1111/bph.14775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 05/12/2019] [Accepted: 06/08/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE We have shown that cholesterol is synthesized in the principal cells of renal cortical collecting ducts (CCD) and stimulates the epithelial sodium channels (ENaC). Here we have determined whether lovastatin, a cholesterol synthesis inhibitor, can antagonize the hypertension induced by activated ENaC, following deletion of the cholesterol transporter (ATP-binding cassette transporter A1; ABCA1). EXPERIMENTAL APPROACH We selectively deleted ABCA1 in the principal cells of mouse CCD and used the cell-attached patch-clamp technique to record ENaC activity. Western blot and immunofluorescence staining were used to evaluate protein expression levels. Systolic BP was measured with the tail-cuff method. KEY RESULTS Specific deletion of ABCA1 elevated BP and ENaC single-channel activity in the principal cells of CCD in mice. These effects were antagonized by lovastatin. ABCA1 deletion elevated intracellular cholesterol levels, which was accompanied by elevated ROS, increased expression of serum/glucocorticoid regulated kinase 1 (Sgk1), phosphorylated neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) and furin, along with shorten the primary cilium, and reduced ATP levels in urine. CONCLUSIONS AND IMPLICATIONS These data suggest that specific deletion of ABCA1 in principal cells increases BP by stimulating ENaC channels via a cholesterol-dependent pathway which induces several secondary responses associated with oxidative stress, activated Sgk1/Nedd4-2, increased furin expression, and reduced cilium-mediated release of ATP. As ABCA1 can be blocked by cyclosporine A, these results suggest further investigation of the possible use of statins to treat CsA-induced hypertension.
Collapse
Affiliation(s)
- Ming‐Ming Wu
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Chen Liang
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Xiao‐Di Yu
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Bin‐Lin Song
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Qiang Yue
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Yu‐Jia Zhai
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Valerie Linck
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Yong‐Xu Cai
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Na Niu
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Xu Yang
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Bao‐Long Zhang
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Qiu‐Shi Wang
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - Li Zou
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Shuai Zhang
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Tiffany L. Thai
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| | - Jing Ma
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineAtlanta Veterans Affairs Medical CenterDecaturGeorgia
| | - Roy L. Sutliff
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineAtlanta Veterans Affairs Medical CenterDecaturGeorgia
| | - Zhi‐Ren Zhang
- Departments of Cardiology and Clinic Pharmacy, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and TreatmentHarbin Medical University Cancer HospitalHarbinChina
| | - He‐Ping Ma
- Department of PhysiologyEmory University School of MedicineAtlantaGeorgia
| |
Collapse
|
9
|
Liao S, Zhou Q, Zhang Y. Elastic aortic wrap reduced aortic stiffness by partially alleviating the impairment of cholesterol efflux capacity in pigs. J Diabetes Metab Disord 2019; 17:101-109. [PMID: 30918842 DOI: 10.1007/s40200-018-0345-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
Purpose Metabolic syndrome patients exhibit impaired cholesterol efflux capacity. Previous studies have shown a positive association between aortic stiffness and metabolic syndrome. However, it is unknown whether cholesterol efflux capacity participates in the process of aortic stiffness. This study sought to determine the effect of metabolic syndrome on aortic stiffening, and to investigate the effectiveness of aortic wraps on aortic compliance and the underlying mechanisms. Methods In a swine model of metabolic syndrome, we compared the cholesterol efflux capacity and aortic compliance responding to diet modifications and aortic wrap applications. Results Metabolic syndrome induced by high cholesterol diet significantly decreased cholesterol efflux capacity and aortic compliance. Elastic aortic wrap application increased aortic compliance and partially restored cholesterol efflux capacity via ATP binding cassette transporter A1 (ABCA1) pathway. Conclusions Cholesterol efflux plays a role in aortic stiffening. Elastic aortic wrap application could be a potential treatment for aortic stiffness related to metabolic syndrome.
Collapse
Affiliation(s)
- Shutan Liao
- 1Rural Clinical School, University of New South Wales, Sydney, NSW Australia.,2The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Zhou
- 3Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, 53 Taohua Road, Nanchang, 330008 Jiangxi China
| | - Yang Zhang
- 3Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, 53 Taohua Road, Nanchang, 330008 Jiangxi China
| |
Collapse
|
10
|
Cholesterol Efflux: Does It Contribute to Aortic Stiffening? J Cardiovasc Dev Dis 2018; 5:jcdd5020023. [PMID: 29724005 PMCID: PMC6023341 DOI: 10.3390/jcdd5020023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Aortic stiffness during cardiac contraction is defined by the rigidity of the aorta and the elastic resistance to deformation. Recent studies suggest that aortic stiffness may be associated with changes in cholesterol efflux in endothelial cells. This alteration in cholesterol efflux may directly affect endothelial function, extracellular matrix composition, and vascular smooth muscle cell function and behavior. These pathological changes favor an aortic stiffness phenotype. Among all of the proteins participating in the cholesterol efflux process, ATP binding cassette transporter A1 (ABCA1) appears to be the main contributor to arterial stiffness changes in terms of structural and cellular function. ABCA1 is also associated with vascular inflammation mediators implicated in aortic stiffness. The goal of this mini review is to provide a conceptual hypothesis of the recent advancements in the understanding of ABCA1 in cholesterol efflux and its role and association in the development of aortic stiffness, with a particular emphasis on the potential mechanisms and pathways involved.
Collapse
|
11
|
Yin RX, Aung LHH, Long XJ, Yan TT, Cao XL, Huang F, Wu JZ, Yang DZ, Lin WX, Pan SL. Interactions of several genetic polymorphisms and alcohol consumption on blood pressure levels. Biofactors 2015; 41:339-51. [PMID: 26354227 DOI: 10.1002/biof.1234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 11/09/2022]
Abstract
This study aimed to detect the interactions of several single nucleotide polymorphisms (SNPs) and alcohol consumption on blood pressure levels. Genotypes of 10 SNPs in the ATP-binding cassette transporter A1 (ABCA-1), acyl-CoA:cholesterol acyltransferase-1 (ACAT-1), low density lipoprotein receptor (LDLR), hepatic lipase gene (LIPC), endothelial lipase gene (LIPG), methylenetetrahydrofolate reductase (MTHFR), the E3 ubiquitin ligase myosin regulatory light chain-interacting protein (MYLIP), proprotein convertase subtilisin-like kexin type 9 (PCSK9), peroxisome proliferator-activated receptor delta (PPARD), and Scavenger receptor class B type 1 (SCARB1) genes were determined in 616 nondrinkers and 608 drinkers. The genotypic frequencies of LDLR rs5925, LIPC rs2070895, MTHFR rs1801133, and MYLIP rs3757354 SNPs were significantly different between nondrinkers and drinkers. The levels of systolic blood pressure (ABCA-1 rs2066715 and rs2070895), diastolic blood pressure (rs2070895), and pulse pressure (PP) (rs2066715, ACAT-1 rs1044925, and rs1801133) in nondrinkers, and systolic blood pressure (rs1044925 and SCARB1 rs5888), diastolic blood pressure (rs1044925 and LIPG rs2000813), and PP (PCSK9 rs505151 and rs5888) in drinkers were different among the genotypes (P < 0.005-0.001). The interactions of several SNPs and alcohol consumption on systolic blood pressure (rs2066715, rs1044925, rs5925, rs2070895, rs1801133, rs3757354, PPARD rs2016520, and rs5888), diastolic blood pressure (rs2066715, rs1044925, rs5925, rs2000813, rs3757354, and rs2016520), and PP (rs1044925, rs2070895, rs1801133, rs3757354, rs505151, and rs5888) were observed (P < 0.005-0.001). The differences in blood pressure levels between the nondrinkers and drinkers might be partially attributed to the interactions of these SNPs and alcohol consumption.
Collapse
Affiliation(s)
- Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Lynn Htet Htet Aung
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Xing-Jiang Long
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Ting-Ting Yan
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Xiao-Li Cao
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jin-Zhen Wu
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - De-Zhai Yang
- Department of Molecular Genetics, Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Wei-Xiong Lin
- Department of Molecular Genetics, Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| |
Collapse
|
12
|
Egg intake during carbohydrate restriction alters peripheral blood mononuclear cell inflammation and cholesterol homeostasis in metabolic syndrome. Nutrients 2014; 6:2650-67. [PMID: 25045936 PMCID: PMC4113762 DOI: 10.3390/nu6072650] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 01/14/2023] Open
Abstract
Egg yolk contains bioactive components that improve plasma inflammatory markers and HDL profiles in metabolic syndrome (MetS) under carbohydrate restriction. We further sought to determine whether egg yolk intake affects peripheral blood mononuclear cell (PBMC) inflammation and cholesterol homeostasis in MetS, as HDL and its associated lipid transporter ATP-binding cassette transporter A1 (ABCA1) reduce the inflammatory potential of leukocytes through modulation of cellular cholesterol content and distribution. Thirty-seven men and women classified with MetS consumed a moderate carbohydrate-restricted diet (25%–30% of energy) for 12 weeks, in addition to consuming either three whole eggs per day (EGG) or the equivalent amount of yolk-free egg substitute (SUB). Interestingly, lipopolysaccharide-induced PBMC IL-1β and TNFα secretion increased from baseline to week 12 in the SUB group only, despite increases in PBMC toll-like receptor 4 (TLR4) mRNA expression in the EGG group. Compared to baseline, ABCA1 and 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase mRNA expression increased by week 12 in the EGG group only, whereas changes in PBMC total cholesterol positively correlated with changes in lipid raft content. Together, these findings suggest that intake of whole eggs during carbohydrate restriction alters PBMC inflammation and cholesterol homeostasis in MetS.
Collapse
|
13
|
Andersen CJ, Fernandez ML. Dietary approaches to improving atheroprotective HDL functions. Food Funct 2014; 4:1304-13. [PMID: 23921436 DOI: 10.1039/c3fo60207a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-density lipoproteins (HDL) are known to protect against cardiovascular disease (CVD). In addition to facilitating reverse cholesterol transport to remove excess lipids from the body - including atherosclerotic plaques - HDL exhibits antioxidant, anti-inflammatory, vasodilatory, and antithrombotic activities. Together, these properties contribute to the overall atheroprotective nature of HDL. However, similar to many other physiological pathways, these HDL parameters are known to become dysregulated in conditions of metabolic disease. Further, research suggests these alternative HDL properties may be regulated independently of blood HDL-cholesterol (HDL-C) levels, and must therefore be considered when designing HDL-targeted therapies. To date, a number of dietary strategies have been investigated to assess the effect of dietary components on functional properties of HDL beyond HDL-C. This review will highlight the bioactive nutrients, functional foods, and dietary programs known to modulate HDL function as a means of reducing CVD.
Collapse
Affiliation(s)
- Catherine J Andersen
- Department of Nutritional Sciences, University of Connecticut, 3624 Horsebarn Road Ext., Unit 4017, Storrs, CT 06269-4017, USA
| | | |
Collapse
|
14
|
Andersen CJ, Blesso CN, Lee J, Barona J, Shah D, Thomas MJ, Fernandez ML. Egg consumption modulates HDL lipid composition and increases the cholesterol-accepting capacity of serum in metabolic syndrome. Lipids 2013; 48:557-67. [PMID: 23494579 DOI: 10.1007/s11745-013-3780-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/21/2013] [Indexed: 02/02/2023]
Abstract
We recently demonstrated that daily whole egg consumption during moderate carbohydrate restriction leads to greater increases in plasma HDL-cholesterol (HDL-C) and improvements in HDL profiles in metabolic syndrome (MetS) when compared to intake of a yolk-free egg substitute. We further investigated the effects of this intervention on HDL composition and function, hypothesizing that the phospholipid species present in egg yolk modulate HDL lipid composition to increase the cholesterol-accepting capacity of subject serum. Men and women classified with MetS were randomly assigned to consume either three whole eggs (EGG, n = 20) per day or the equivalent amount of egg substitute (SUB, n = 17) throughout a 12-week moderate carbohydrate-restricted (25-30 % of energy) diet. Relative to other HDL lipids, HDL-cholesteryl ester content increased in all subjects, with greater increases in the SUB group. Further, HDL-triacylglycerol content was reduced in EGG group subjects with normal baseline plasma HDL-C, resulting in increases in HDL-CE/TAG ratios in both groups. Phospholipid analysis by mass spectrometry revealed that HDL became enriched in phosphatidylethanolamine in the EGG group, and that EGG group HDL better reflected sphingomyelin species present in the whole egg product at week 12 compared to baseline. Further, macrophage cholesterol efflux to EGG subject serum increased from baseline to week 12, whereas no changes were observed in the SUB group. Together, these findings suggest that daily egg consumption promotes favorable shifts in HDL lipid composition and function beyond increasing plasma HDL-C in MetS.
Collapse
Affiliation(s)
- Catherine J Andersen
- Department of Nutritional Sciences, University of Connecticut, 3624 Horsebarn Road Ext., Unit 4017, Storrs, CT 06269-4017, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
The transcription levels of ABCA1, ABCG1 and SR-BI are negatively associated with plasma CRP in Chinese populations with various risk factors for atherosclerosis. Inflammation 2013; 35:1641-8. [PMID: 22614118 DOI: 10.1007/s10753-012-9479-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ATP binding cassette transporters (ABCA1, ABCG1) and scavenger receptor class B type I (SR-BI) are the three most important cellular cholesterol transporters that may prevent atherogenesis. The aim of this study was to investigate whether they were altered in Chinese populations with various risk factors for atherosclerosis and their potential associations with C-reactive protein (CRP). Healthy female controls (n = 30) and populations with various risk factors for atherosclerosis, such as type 2 diabetes (n = 17), hypertension (n = 12), overweight/obesity (n = 10), incipient nephropathy (n = 10), postmenopausal women (n = 9), male (n = 19), ageing male (n = 22), or smoking (n = 16), were recruited. ABCA1, ABCG1 and SR-BI mRNA levels in peripheral monocytes was determined. ABCG1 was decreased in all the risk populations except ageing. ABCA1 was decreased in all the risk populations except diabetes and male. SR-BI was decreased in those with overweight/obesity and incipient nephropathy. Circulating CRP was increased almost in all the risk populations except in males. The levels of ABCA1, ABCG1 and SR-BI were reduced in those with subclinically high CRP, and negatively associated with CRP level. These data indicates that ABCA1, ABCG1, and SR-BI are reduced in various populations under subclinically inflammatory conditions, which may potentially lead to impairing reverse cholesterol transport and developing atherosclerosis.
Collapse
|
16
|
Association of several lipid-related gene polymorphisms and blood pressure variation in the Bai Ku Yao population. Am J Hypertens 2012; 25:927-36. [PMID: 22573014 DOI: 10.1038/ajh.2012.55] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sex differences in hypertension are not well known. The present study was undertaken to detect the association of nine lipid-related gene polymorphisms and blood pressure variation beween men and women in the Bai Ku Yao population. METHODS Genotyping of ATP-binding cassette transporter A1 (ABCA-1) V825I, acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) rs1044925, low-density lipoprotein receptor (LDL-R) AvaII, hepatic lipase gene (LIPC) -250G>A, endothelial lipase gene (LIPG) 584C>T, methylenetetrahydrofolate reductase (MTHFR) 677C>T, proprotein convertase subtilisin-like kexin type 9 (PCSK9) E670G, peroxisome proliferator-activated receptor delta (PPARD) +294T>C, and Scavenger receptor class B type 1 (SCARB1) rs5888 was performed in 682 normotensives and 670 hypertensives. RESULTS The genotypic frequencies of LDL-R and SCARB1 in normotensives and ABCA-1, ACAT-1, LDL-R, LIPC, and MTHFR in hypertensives were different between males and females (P < 0.05-0.001). The genotypic frequencies of ABCA-1, ACAT-1, LDL-R, LIPC, MTHFR, PPARD, and SCARB1 in males and ABCA-1, LDL-R, LIPC, LIPG, and MTHFR in females were different between normotensives and hypertensives (P < 0.05-0.001). Systolic blood pressure (SBP) levels in male hypertensives were different among the LIPC, LIPG, PCSK9, and SCARB1 genotypes (P < 0.05-0.01); and diastolic blood pressure (DBP) levels were different among the ABCA-1, LDL-R, LIPC, LIPG, MTHFR, PCSK9, and PPARD genotypes (P < 0.05-0.001). SBP levels in female hypertensives were different among the LIPC, MTHFR, PCSK9, and PPARD genotypes (P < 0.05-0.01); and DBP levels were different among ABCA-1, ACAT-1, MTHFR, PCSK9, PPARD, and SCARB1 genotypes (P <0.05-0.001). The correlations between these polymorphisms and blood pressure levels were also observed. CONCLUSIONS Sex differences in blood pressure levels in this population may partly attribute to the differences in some lipid-related gene polymorphisms.
Collapse
|
17
|
Cerda Á, Genvigir FDV, Rodrigues AC, Willrich MAV, Dorea EL, Bernik MMS, Arazi SS, Oliveira RD, Hirata MH, Hirata RDC. Influence of polymorphisms and cholesterol-lowering treatment on SCARB1 mRNA expression. J Atheroscler Thromb 2011; 18:640-51. [PMID: 21512283 DOI: 10.5551/jat.6544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM This study evaluated the influence of polymorphisms and cholesterol-lowering treatments on SCARB1 mRNA expression in peripheral blood mononuclear cells and in HepG2 and Caco-2 cells. METHODS Blood samples were drawn from normolipidemic (NL, n = 166) and hypercholesterolemic (HC, n = 123) individuals to extract DNA and total RNA and to analyze the lipid profile. After a 4-week washout period, 98 HC individuals were treated with atorvastatin (10 mg/day/4 weeks) whereas 25 were treated with ezetimibe (10 mg/day/4 weeks), followed by simvastatin (10 mg/day/8 weeks) and simvastatin plus ezetimibe (10 mg each/day/4 weeks). HepG2 and Caco-2 cells were treated with atorvastatin, simvastatin and ezetimibe at various concentrations for 12 and 24 h and collected for RNA extraction. SCARB1 mRNA expression was measured by TaqMan® assay and SCARB1 c.4G> A, c.726 + 54C> T and c.1080C> T polymorphisms were detected by PCR-RFLP. RESULTS High LDL cholesterol (> 160 mg/dL) values were associated with low baseline SCARB1 mRNA expression in PBMC. Allele T carriers for SCARB1 c.726+54C> T had lower basal SCARB1 transcription in PBMC (p < 0.05). Simvastatin, atorvastatin and ezetimibe treatments did not modify the SCARB1 mRNA level in PBMC from HC patients. Similarly, these cholesterol-lowering drugs did not modulate the SCARB1 expression in HepG2 and Caco-2 cells in spite of the concentration and time of exposure (p > 0.05). CONCLUSION LDL cholesterol levels and SCARB1 c.726 + 54C> T are associated with low mRNA expression in mononuclear cells. Cholesterol-lowering drugs do not modulate SCARB1 expression in PBMC from HC subjects or in HepG2 and Caco-2 cells.
Collapse
Affiliation(s)
- Álvaro Cerda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Darabi M, Ani M, Movahedian A, Rabbani M, Zarean E, Panjehpour M. Lack of association between circulating levels of oxidized LDL/beta2-glycoprotein I complexes and leukocyte ABCA1 gene expression. Ann Clin Biochem 2011; 48:291-2. [PMID: 21478209 DOI: 10.1258/acb.2011.010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Korkor MT, Meng FB, Xing SY, Zhang MC, Guo JR, Zhu XX, Yang P. Microarray analysis of differential gene expression profile in peripheral blood cells of patients with human essential hypertension. Int J Med Sci 2011; 8:168-79. [PMID: 21369372 PMCID: PMC3047082 DOI: 10.7150/ijms.8.168] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 02/21/2011] [Indexed: 12/20/2022] Open
Abstract
The polygenic nature of essential hypertension and its dependence on environmental factors pose a challenge for biomedical research. We hypothesized that the analysis of gene expression profiles from peripheral blood cells would distinguish patients with hypertension from normotensives. In order to test this, total RNA from peripheral blood cells was isolated. RNA was reversed-transcribed and labeled and gene expression analyzed using significance Analysis Microarrays (Stanford University, CA, USA). Briefly, Significance Analysis Microarrays (SAM) thresholding identified 31 up-regulated and 18 down-regulated genes with fold changes of ≥2 or ≤0.5 and q-value≤5% in expression. Statistically significantly gene ontology (GO) function and biological process differentially expressed in essential hypertension were MHC class II receptor activity and immune response respectively. Biological pathway analysis identified several related pathways which are associated with immune/inflammatory responses. Quantitative Real-Time RT-PCR results were consistent with the microarray results. The levels of C-reactive protein were higher in hypertensive patients than normotensives and inflammation-related genes were increased as well. In conclusion, genes enriched for "immune/inflammatory responses" may be associated with essential hypertension. In addition, there is a correlation between systemic inflammation and hypertension. It is anticipated that these findings may provide accurate and efficient strategies for prevention, diagnosis and control of this disorder.
Collapse
Affiliation(s)
- Melvin T Korkor
- Department of Internal Medicine and Cardiology, China-Japan Union Hospital, Norman Bethune College of Medicine, Jilin University, China
| | | | | | | | | | | | | |
Collapse
|