1
|
Parvan R, Aboumsallem JP, Meijers WC, De Boer RA, Danser AHJ. Innovative hypertension treatments: Transitioning from conventional therapies to siRNA-based solutions. Eur J Pharmacol 2024; 985:177110. [PMID: 39547406 DOI: 10.1016/j.ejphar.2024.177110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Hypertension remains a critical global health issue, despite significant advancements in treatment, management and preventive approaches. Current antihypertensive drugs have limitations, such as low adherence, renin-angiotensin-aldosterone system reactivation, and drug resistance,. Ongoing preclinical and clinical studies for siRNA therapies show promising results, demonstrating significant blood pressure reductions and their potential as effective, durable treatments. This narrative review explores the potential of siRNA therapies in transforming hypertension management covering the literature until May 2024 and offering a precision medicine approach. We searched various databases, including PubMed, http://www.clinicaltrial.gov, and www.Espacenet.com, using 'hypertension' and 'siRNA' as the main keywords to retrieve relevant studies. The impact of these therapies could be profound, offering improved efficacy, reduced side effects, and enhanced patient adherence. As research continues to validate their safety and effectiveness, siRNA therapies may become integral components of hypertension management.
Collapse
Affiliation(s)
- Reza Parvan
- Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands
| | - Joseph Pierre Aboumsallem
- Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands.
| | - Wouter C Meijers
- Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands
| | - Rudolf A De Boer
- Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands
| |
Collapse
|
2
|
Mastana S, Halai KC, Akam L, Hunter DJ, Singh P. Genetic Polymorphisms and Genetic Risk Scores Contribute to the Risk of Coronary Artery Disease (CAD) in a North Indian Population. Int J Mol Sci 2024; 25:8552. [PMID: 39126122 PMCID: PMC11313018 DOI: 10.3390/ijms25158552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death in India. Many genetic polymorphisms play a role in regulating oxidative stress, blood pressure and lipid metabolism, contributing to the pathophysiology of CAD. This study examined the association between ten polymorphisms and CAD in the Jat Sikh population from Northern India, also considering polygenic risk scores. This study included 177 CAD cases and 175 healthy controls. The genetic information of GSTM1 (rs366631), GSTT1 (rs17856199), ACE (rs4646994), AGT M235T (rs699), AGT T174M (rs4762), AGTR1 A1166C (rs5186), APOA5 (rs3135506), APOC3 (rs5128), APOE (rs7412) and APOE (rs429358) and clinical information was collated. Statistical analyses were performed using SPSS version 27.0 and SNPstats. Significant independent associations were found for GST*M1, GST*T1, ACE, AGT M235T, AGT T174M, AGTR1 A1166C and APOA5 polymorphisms and CAD risk (all p < 0.05). The AGT CT haplotype was significantly associated with a higher CAD risk, even after controlling for covariates (adjusted OR = 3.93, 95% CI [2.39-6.48], p < 0.0001). The APOA5/C3 CC haplotype was also significantly associated with CAD (adjusted OR = 1.86, 95% CI [1.14-3.03], p < 0.05). A higher polygenic risk score was associated with increased CAD risk (adjusted OR = 1.98, 95% CI [1.68-2.34], p < 0.001). Seven polymorphisms were independently associated with an increase in the risk of CAD in this North Indian population. A considerable risk association of AGT, APOA5/C3 haplotypes and higher genetic risk scores is documented, which may have implications for clinical and public health applications.
Collapse
Affiliation(s)
- Sarabjit Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK (L.A.); (D.J.H.)
| | - Kushni Charisma Halai
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK (L.A.); (D.J.H.)
| | - Liz Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK (L.A.); (D.J.H.)
| | - David John Hunter
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK (L.A.); (D.J.H.)
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India;
| |
Collapse
|
3
|
Xu Y, Wu J, Gao L, Lin H, Yang Z, Liu X, Niu Y. α-Mangostin reduces hypertension in spontaneously hypertensive rats and inhibits EMT and fibrosis in Ang II-induced HK-2 cells. Int J Med Sci 2024; 21:1681-1688. [PMID: 39006850 PMCID: PMC11241103 DOI: 10.7150/ijms.94236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Hypertension affects a large number of individuals globally and is a common cause of nephropathy, stroke, ischaemic heart disease and other vascular diseases. While many anti-hypertensive medications are used safely and effectively in clinic practice, controlling hypertensive complications solely by reducing blood pressure (BP) can be challenging. α-Mangostin, a xanthone molecule extracted from the pericarp of Garcinia mangostana L., has shown various beneficial effects such as anti-tumor, anti-hyperuricemia, and anti-inflammatory properties. However, the effects of α-Mangostin on hypertension remain unknown. In this study, we observed that α-Mangostin significantly decreased systolic and diastolic blood pressure in spontaneously hypertensive rats (SHR), possibly through the down-regulation of angiotensin II (Ang II). We also identified early markers of hypertensive nephropathy, including urinary N-acetyl-β-D-glucosaminidase (NAG) and β2-microglobulin (β2-MG), which were reduced by α-Mangostin treatment. Mechanistic studies suggested that α-Mangostin may inhibit renal tubular epithelial-to-mesenchymal transformation (EMT) by down-regulating the TGF-β signaling pathway, thus potentially offering a new therapeutic approach for hypertension and hypertensive nephropathy.
Collapse
Affiliation(s)
- Yuhui Xu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Jianhua Wu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Lihui Gao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Hua Lin
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Zhiqiang Yang
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Xiao Liu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Yanfen Niu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
4
|
Yang S, Li K, Huang Z, Xu Y, Liang J, Sun Y, Li A. Risk factors of acute ischemic stroke and the role of angiotensin I in predicting prognosis of patients undergoing endovascular thrombectomy. Front Endocrinol (Lausanne) 2024; 15:1388871. [PMID: 38919492 PMCID: PMC11196596 DOI: 10.3389/fendo.2024.1388871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Purpose The interaction between the renin-angiotensin system (RAS) and the acute ischemic stroke (AIS) is definite but not fully understood. This study aimed to analyze the risk factors of AIS and explore the role of serum indicators such as angiotensin I (Ang I) in the prognosis of patients undergoing endovascular thrombectomy (EVT). Patients and methods Patients with AIS who underwent EVT and healthy controls were retrospectively enrolled in this study, and the patients were divided into a good or a poor prognosis group. We compared Ang I, blood routine indexes, biochemical indexes, electrolyte indexes, and coagulation indexes between patients and controls. We used univariate and multivariate logistic regression analyses to evaluate possible risk factors for AIS and the prognosis of patients undergoing EVT. Independent risk factors for the prognosis of patients undergoing EVT were identified through multifactorial logistic regression analyses to construct diagnostic nomograms, further assessed by receiver operating characteristic curves (ROC). Results Consistent with previous studies, advanced age, high blood glucose, high D-dimer, and high prothrombin activity are risk factors for AIS. In addition, Ang I levels are lower in AIS compared to the controls. The level of Ang I was higher in the good prognosis group. Furthermore, we developed a nomogram to evaluate its ability to predict the prognosis of AIS after EVT. The AUC value of the combined ROC model (Ang I and albumin-globulin ratio (AGR)) was 0.859. Conclusions In conclusion, advanced age, high blood glucose, high D-dimer, and high prothrombin activity are risk factors for AIS. The combined Ang I and AGR model has a good predictive ability for the prognosis of AIS patients undergoing arterial thrombectomy.
Collapse
Affiliation(s)
- Shengkai Yang
- Department of Neurosurgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Neurosurgery, Binhai County People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Yancheng, Jiangsu, China
| | - Kemian Li
- Department of Neurosurgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Neurosurgery, Binhai County People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Yancheng, Jiangsu, China
| | - Zhengqian Huang
- Department of Neurosurgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Yingda Xu
- Department of Neurosurgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Jingshan Liang
- Department of Neurosurgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Yong Sun
- Department of Neurosurgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Aimin Li
- Department of Neurosurgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
5
|
Cagan Efe S, Buğrahan Cicek M, Unkun T, Yucel E, Karagöz A, Doğan C, Bayram Z, Tekatlı AF, Bozan B, Karaçam M, Halil GS, Karabağ T, Kaymaz C, Ozdemir N. Usability of myocardial work parameters to demonstrate subclinical myocardial involvement in normotensive individuals with exaggerated hypertensive response in treadmill exercise testing. J Clin Hypertens (Greenwich) 2024; 26:687-695. [PMID: 38605567 PMCID: PMC11180695 DOI: 10.1111/jch.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Early determination of changes in myocardial functions is essential for the protection of cardiovascular diseases. This study aimed to evaluate myocardial work parameters in healthy individuals who developed an exaggerated hypertensive response during the treadmill exercise test procedure. The study included a total of 64 patients for whom an exercise electrocardiography test was planned for functional capacity evaluation. The study population was divided according to the presence of exaggerated hypertensive response to exercise (EBPRE) (SBP/DBP ≥210/105 mmHg in males ≥190/105 mmHg in females) and normal blood pressure response to exercise (NBPRE). Patients' echocardiographic evaluations were made at rest, and myocardial work parameters were calculated. There was no statistical difference between the groups (NBPRE vs. EBPRE, respectively) in terms of left ventricular 2,3 and 4 chamber strains and global longitudinal strain (GLS) values (-20.6 ± -2.3, -19.7 ± -1.9, p:.13; -21.3 ± -2.7, -21 ± -2.4, p:.68; -21.2 ± -2.2, -21.2 ± -2.3, p:.93; and -20.8 ± -1.5, -20.4 ± -1.5, p:.23, respectively). Global constrictive work (GCW), global waste work (GWW), and global work efficiency (GWE) were not statistically different between the two groups (2374 ± 210, 2465 ± 204, p:.10; 142 ± 64, 127 ± 42, p:.31; 94.3 ± 2.5, 95.1 ± 1.5, p:.18, respectively). In contrast, global work index (GWI) parameters were different between the two groups (2036 ± 149, 2147 ± 150, p < .001). The GWI was independently associated with EBPRE (odds ratio with 95% 3.32 (1.02-11.24), p = .03). The partial effect plots were used for GWI to predict EBPRE, according to the results, an increase in GWI predicts probability of exaggerated hypertensive response. In conclusion, Myocardial work analyses might be used to identify early signs of myocardial involvement in normotensive patients with EBPRE.
Collapse
Affiliation(s)
- Süleyman Cagan Efe
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| | - Mahmut Buğrahan Cicek
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| | - Tuba Unkun
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| | - Enver Yucel
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| | - Ali Karagöz
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| | - Cem Doğan
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| | - Zübeyde Bayram
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| | - Ali Furkan Tekatlı
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| | - Baver Bozan
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| | - Murat Karaçam
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| | - Gülümser Sevgin Halil
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| | - Turgut Karabağ
- Department of CardiologyIstanbul Education and Research HospitalIstanbulTurkey
| | - Cihangir Kaymaz
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| | - Nihal Ozdemir
- Department of CardiologyKartal Kosuyolu Education and Research HospitalIstanbulTurkey
| |
Collapse
|
6
|
Lin JS, Petrera A, Hauck SM, Müller CL, Peters A, Thorand B. Associations of Proteomics With Hypertension and Systolic Blood Pressure: KORA S4/F4/FF4 and KORA Age1/Age2 Cohort Studies. Hypertension 2024; 81:1156-1166. [PMID: 38445514 PMCID: PMC11025610 DOI: 10.1161/hypertensionaha.123.22614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Hypertension, a complex condition, is primarily defined based on blood pressure readings without involving its pathophysiological mechanisms. We aimed to identify biomarkers through a proteomic approach, thereby enhancing the future definition of hypertension with insights into its molecular mechanisms. METHODS The discovery analysis included 1560 participants, aged 55 to 74 years at baseline, from the KORA (Cooperative Health Research in the Region of Augsburg) S4/F4/FF4 cohort study, with 3332 observations over a median of 13.4 years of follow-up. Generalized estimating equations were used to estimate the associations of 233 plasma proteins with hypertension and systolic blood pressure (SBP). For validation, proteins significantly associated with hypertension or SBP in the discovery analysis were validated in the KORA Age1/Age2 cohort study (1024 participants, 1810 observations). A 2-sample Mendelian randomization analysis was conducted to infer causalities of validated proteins with SBP. RESULTS Discovery analysis identified 49 proteins associated with hypertension and 99 associated with SBP. Validation in the KORA Age1/Age2 study replicated 7 proteins associated with hypertension and 23 associated with SBP. Three proteins, NT-proBNP (N-terminal pro-B-type natriuretic peptide), KIM1 (kidney injury molecule 1), and OPG (osteoprotegerin), consistently showed positive associations with both outcomes. Five proteins demonstrated potential causal associations with SBP in Mendelian randomization analysis, including NT-proBNP and OPG. CONCLUSIONS We identified and validated 7 hypertension-associated and 23 SBP-associated proteins across 2 cohort studies. KIM1, NT-proBNP, and OPG demonstrated robust associations, and OPG was identified for the first time as associated with blood pressure. For NT-proBNP (protective) and OPG, causal associations with SBP were suggested.
Collapse
Affiliation(s)
- Jie-sheng Lin
- Institute of Epidemiology (J.-s.L., A. Peters, B.T.), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany (J.-s.L., B.T.)
| | - Agnese Petrera
- Metabolomics and Proteomics Core (A. Petrera, S.M.H.), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core (A. Petrera, S.M.H.), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Christian L. Müller
- Institute of Computational Biology (C.L.M.), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Department of Statistics (C.L.M.), Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Computational Mathematics, Flatiron Institute, New York, NY (C.L.M.)
| | - Annette Peters
- Institute of Epidemiology (J.-s.L., A. Peters, B.T.), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty (A. Peters), Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research, Partner München-Neuherberg, Germany (A. Peters, B.T.)
| | - Barbara Thorand
- Institute of Epidemiology (J.-s.L., A. Peters, B.T.), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany (J.-s.L., B.T.)
- German Center for Diabetes Research, Partner München-Neuherberg, Germany (A. Peters, B.T.)
| |
Collapse
|
7
|
Matsumura T, Nishikawa T, Nakazaki A. Total Synthesis of 19-Nordigitoxigenin, An Antiaroside Y Aglycon. J Org Chem 2023; 88:15142-15150. [PMID: 37824414 DOI: 10.1021/acs.joc.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The first total synthesis of 19-nordigitoxigenin, an aglycon of antiroside Y, has been achieved. The key steps of our synthesis are (i) construction of the 19-norsteroid ring system via a Mizoroki-Heck reaction between a bromoanisole corresponding to the A-ring and cyclic alkene incorporating the CD-rings, followed by a Friedel-Crafts-type cyclodehydration, and (ii) incorporation of the butenolide moiety at C17 via a silyl-tethered radical cyclization and subsequent ozone oxidation.
Collapse
Affiliation(s)
- Taishi Matsumura
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa, Nagoya 464-8601, Japan
- Faculty of Science and Engineering, Iwate University, Ueda, Morioka 020-8551, Japan
| |
Collapse
|
8
|
Champaneria MK, Patel RS, Oroszi TL. When blood pressure refuses to budge: exploring the complexity of resistant hypertension. Front Cardiovasc Med 2023; 10:1211199. [PMID: 37416924 PMCID: PMC10322223 DOI: 10.3389/fcvm.2023.1211199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Abstract
Resistant hypertension, defined as blood pressure that remains above goal despite using three or more antihypertensive medications, including a diuretic, affects a significant proportion of the hypertensive population and is associated with increased cardiovascular morbidity and mortality. Despite the availability of a wide range of pharmacological therapies, achieving optimal blood pressure control in patients with resistant hypertension remains a significant challenge. However, recent advances in the field have identified several promising treatment options, including spironolactone, mineralocorticoid receptor antagonists, and renal denervation. In addition, personalized management approaches based on genetic and other biomarkers may offer new opportunities to tailor therapy and improve outcomes. This review aims to provide an overview of the current state of knowledge regarding managing resistant hypertension, including the epidemiology, pathophysiology, and clinical implications of the condition, as well as the latest developments in therapeutic strategies and future prospects.
Collapse
|
9
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
10
|
Sykora M, Andelova K, Szeiffova Bacova B, Egan Benova T, Martiskova A, Knezl V, Tribulova N. Hypertension Induces Pro-arrhythmic Cardiac Connexome Disorders: Protective Effects of Treatment. Biomolecules 2023; 13:biom13020330. [PMID: 36830700 PMCID: PMC9953310 DOI: 10.3390/biom13020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
Prolonged population aging and unhealthy lifestyles contribute to the progressive prevalence of arterial hypertension. This is accompanied by low-grade inflammation and over time results in heart dysfunction and failure. Hypertension-induced myocardial structural and ion channel remodeling facilitates the development of both atrial and ventricular fibrillation, and these increase the risk of stroke and sudden death. Herein, we elucidate hypertension-induced impairment of "connexome" cardiomyocyte junctions. This complex ensures cell-to-cell adhesion and coupling for electrical and molecular signal propagation. Connexome dysfunction can be a key factor in promoting the occurrence of both cardiac arrhythmias and heart failure. However, the available literature indicates that arterial hypertension treatment can hamper myocardial structural remodeling, hypertrophy and/or fibrosis, and preserve connexome function. This suggests the pleiotropic effects of antihypertensive agents, including anti-inflammatory. Therefore, further research is required to identify specific molecular targets and pathways that will protect connexomes, and it is also necessary to develop new approaches to maintain heart function in patients suffering from primary or pulmonary arterial hypertension.
Collapse
|
11
|
Im ST, Lee SH. Structure Characterization and Antihypertensive Effect of an Antioxidant Peptide Purified from Alcalase Hydrolysate of Velvet Antler. Food Sci Anim Resour 2023; 43:184-194. [PMID: 36789190 PMCID: PMC9890357 DOI: 10.5851/kosfa.2022.e70] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Recently, interest in food-derived bioactive peptides as promising ingredients for the prevention and improvement of hypertension is increasing. The purpose of this study was to determine the structure and antihypertensive effect of an antioxidant peptide purified from velvet antler in a previous study and evaluate its potential as a various bioactive peptide. Molecular weight (MW) and amino acid sequences of the purified peptide were determined by quadrupole time-of-flight electrospray ionization mass spectroscopy. The angiotensin I-converting enzyme (ACE) inhibition activity of the purified peptide was assessed by enzyme reaction methods and in silico molecular docking analysis to determine the interaction between the purified peptide and ACE. Also, antihypertensive effect of the purified peptide in spontaneously hypertensive rats (SHRs) was investigated. The purified antioxidant peptide was identified to be a pentapeptide Asp-Asn-Arg-Tyr-Tyr with a MW of 730.31 Da. This pentapeptide showed potent inhibition activity against ACE (IC50 value, 3.72 μM). Molecular docking studies revealed a good and stable binding affinity between purified peptide and ACE and indicated that the purified peptide could interact with HOH2570, ARG522, ARG124, GLU143, HIS387, TRP357, and GLU403 residues of ACE. Furthermore, oral administration of the pentapeptide significantly reduced blood pressure in SHRs. The pentapeptide derived from enzymatic hydrolysate of velvet antler is an excellent ACE inhibitor. It might be effectively applied as an animal-based functional food ingredient.
Collapse
Affiliation(s)
- Seung Tae Im
- Department of Medical Science,
Soonchunhyang University, Asan 31538, Korea
| | - Seung-Hong Lee
- Department of Medical Science,
Soonchunhyang University, Asan 31538, Korea,Department of Pharmaceutical Engineering,
Soonchunhyang University, Asan 31538, Korea,Corresponding author:
Seung-Hong Lee, Department of Pharmaceutical Engineering, Soonchunhyang
University, Asan 31538, Korea, Tel: +82-41-530-4980, Fax:
+82-41-530-3085, E-mail:
| |
Collapse
|
12
|
Chew NWS, Loong SSE, Foo R. Progress in molecular biology and translational science: Epigenetics in cardiovascular health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:105-134. [PMID: 37019589 DOI: 10.1016/bs.pmbts.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Conrad Waddington's epigenetics landscape has provided a metaphorical framework for how cells progress from undifferentiated states to one of several discrete, distinct, differentiated cell fates. The understanding of epigenetics has evolved over time, with DNA methylation being the most studied epigenetic modification, followed by histone modifications and non-coding RNA. Cardiovascular diseases (CVD) are leading contributors to death worldwide, with the prevalence of CVDs increasing across the last couple of decades. Significant amount of resources being poured into researching key mechanisms and underpinnings of the various CVDs. These molecular studies looked at the genetics, epigenetics as well as the transcriptomics of various cardiovascular conditions, aiming to provide mechanistic insights. It has paved the way for therapeutics to be developed and in recent years, epi-drugs for the treatment of CVDs. This chapter aims to cover the various roles of epigenetics in the context of cardiovascular health and disease. The following will be examined in detail: the developments in basic experimental techniques used to study epigenetics, the role of epigenetics in various CVDs (hypertension, atrial fibrillation, atherosclerosis, and heart failure), and current advances in epi-therapeutics, providing a holistic view of the current concerted efforts in advancing the field of epigenetics in CVDs.
Collapse
Affiliation(s)
- Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore.
| | - Shaun S E Loong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Akhavanfar R, Hojati A, Kahrizi MS, Farhangi MA, Ardekani AM. Adherence to lifelines diet score and risk factors of metabolic syndrome among overweight and obese adults: A cross-sectional study. Front Nutr 2022; 9:961468. [PMID: 36466413 PMCID: PMC9713010 DOI: 10.3389/fnut.2022.961468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Background Metabolic syndrome (MetS) is one of the most significant public health issues worldwide, and diet quality is an important controllable environmental factor influencing the incidence of MetS. Numerous dietary scores have been established to assess compliance with dietary recommendations or eating patterns, many of which are not entirely food-based. Hence, Lifelines Diet Score (LLDS) was developed in response to the shortcomings of existing tools. This study aimed to assess any possible links between total food quality and cardiometabolic risk factors among overweight and obese adults. Methods This cross-sectional study included 338 overweight and obese individuals [body mass index (BMI) > 25 kg/m2] aged 20-50 years in Tabriz, Iran. To collect dietary data, we used a validated semi-quantitative Food Frequency Questionnaire (FFQ) for Iranian population. Enzymatic-colorimetric methods were used to assess serum glucose and lipids, and enzyme-linked immunosorbent assay (ELISA) kits were used to measure insulin levels. In addition, the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and Quantitative Insulin Sensitivity Check Index (QUICKI) were calculated. Results BMI and hip circumference (HC) were significantly different (P < 0.05) amongst LLDS tertiles. Adherence to the highest tertile of LLDS was associated with lower SBP, and the subjects in higher LLDS tertiles significantly had lower systolic blood pressure (SBP) (P = 0.04). Triglyceride (TG) levels were also lower in the third tertile of LLDS with a near-significant P-value (P = 0.05). Conclusion According to our results, a higher diet quality score, determined by LLDS, can be associated with a lower risk of MetS. Further experimental and longitudinal studies are needed to better understand this relationship.
Collapse
Affiliation(s)
- Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Hojati
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abnoos Mokhtari Ardekani
- Endocrinoligy and Metabolism Research Center, Institute of Basic and Clinical Physiology Science and Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Ameer OZ. Hypertension in chronic kidney disease: What lies behind the scene. Front Pharmacol 2022; 13:949260. [PMID: 36304157 PMCID: PMC9592701 DOI: 10.3389/fphar.2022.949260] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is a frequent condition encountered during kidney disease development and a leading cause in its progression. Hallmark factors contributing to hypertension constitute a complexity of events that progress chronic kidney disease (CKD) into end-stage renal disease (ESRD). Multiple crosstalk mechanisms are involved in sustaining the inevitable high blood pressure (BP) state in CKD, and these play an important role in the pathogenesis of increased cardiovascular (CV) events associated with CKD. The present review discusses relevant contributory mechanisms underpinning the promotion of hypertension and their consequent eventuation to renal damage and CV disease. In particular, salt and volume expansion, sympathetic nervous system (SNS) hyperactivity, upregulated renin–angiotensin–aldosterone system (RAAS), oxidative stress, vascular remodeling, endothelial dysfunction, and a range of mediators and signaling molecules which are thought to play a role in this concert of events are emphasized. As the control of high BP via therapeutic interventions can represent the key strategy to not only reduce BP but also the CV burden in kidney disease, evidence for major strategic pathways that can alleviate the progression of hypertensive kidney disease are highlighted. This review provides a particular focus on the impact of RAAS antagonists, renal nerve denervation, baroreflex stimulation, and other modalities affecting BP in the context of CKD, to provide interesting perspectives on the management of hypertensive nephropathy and associated CV comorbidities.
Collapse
Affiliation(s)
- Omar Z. Ameer
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Department of Biomedical Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Omar Z. Ameer,
| |
Collapse
|
15
|
Cavalcanti ALDM, Rocha PKL, Zhuge Z, Paulo LL, Mendes-Júnior LDG, Brandão MCR, Athayde-Filho PF, Lundberg JO, Weitzberg E, Carlström M, Braga VDA, Montenegro MF. Cardiovascular characterization of the novel organic mononitrate NDIBP in rats. Nitric Oxide 2022; 119:50-60. [PMID: 34958954 DOI: 10.1016/j.niox.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Organic nitrates are widely used to restore endogenous nitric oxide (NO) levels reduced by endothelial nitric oxide synthase dysfunction. However, these drugs are associated with undesirable side effects, including tolerance. This study aims to investigate the cardiovascular effects of the new organic nitrate 1,3-diisobutoxypropan-2-yl nitrate (NDIBP). Specifically, we assessed its effects on blood pressure, vascular reactivity, acute toxicity, and the ability to induce tolerance. In vitro and ex vivo techniques showed that NDIBP released NO both in a cell-free system and in isolated mesenteric arteries preparations through a process catalyzed by xanthine oxidoreductase. NDIBP also evoked endothelium-independent vasorelaxation, which was significantly attenuated by 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO, 300 μM), a nitric oxide scavenger; 1-H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM), a soluble guanylyl cyclase inhibitor; tetraethylammonium (TEA, 3 mM), a potassium channel blocker; febuxostat (500 nM), a xanthine oxidase inhibitor; and proadifen (10 μM), an inhibitor of cytochrome P450 enzyme. Furthermore, this organic nitrate did not induce tolerance in isolated vessels and presented low toxicity following acute oral administration. In vivo changes on cardiovascular parameters were assessed using normotensive and renovascular hypertensive rats. NDIBP evoked a reduction of blood pressure that was significantly higher in hypertensive animals. Our results suggest that NDIBP acts as a NO donor, inducing blood pressure reduction without having the undesirable effects of tolerance. Those effects seem to be mediated by activation of NO-sGC-cGMP pathway and positive modulation of K+ channels in vascular smooth muscle.
Collapse
Affiliation(s)
| | - Patrícia Keytth Lins Rocha
- Biotechnology Center, Federal University of Paraíba, Cidade Universitária, 58051970, João Pessoa, PB, Brazil
| | - Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Luciano Leite Paulo
- Biotechnology Center, Federal University of Paraíba, Cidade Universitária, 58051970, João Pessoa, PB, Brazil
| | | | | | - Petrônio F Athayde-Filho
- Department of Chemistry, Federal University of Paraíba, Cidade Universitária, 58059900, João Pessoa, PB, Brazil
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Valdir de Andrade Braga
- Biotechnology Center, Federal University of Paraíba, Cidade Universitária, 58051970, João Pessoa, PB, Brazil.
| | - Marcelo F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| |
Collapse
|
16
|
Palmer BF, Clegg DJ. Extrarenal Effects of Aldosterone on Potassium Homeostasis. KIDNEY360 2022; 3:561-568. [PMID: 35582177 PMCID: PMC9034816 DOI: 10.34067/kid.0006762021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
The role of aldosterone in regulating K+ excretion in the distal nephron is well established in kidney physiology. In addition to effects on the kidney, aldosterone modulates K+ and Na+ transport in salivary fluid, sweat, airway epithelia, and colonic fluid. More controversial and less well defined is the role of aldosterone in determining the internal distribution of K+ across cell membranes in nontransporting epithelia. In vivo studies have been limited by the difficulty in accurately measuring overall K+ balance and factoring in both variability and secondary changes in acid-base balance, systemic hemodynamics, and other K+-regulatory factors such as hormones and adrenergic activity. Despite these limitations, the aggregate data support a contributory role of aldosterone along with insulin and catecholamines in the normal physiologic regulation of internal K+ distribution. The authors speculate differences in tissue sensitivity to aldosterone may also contribute to differential tissue response of cardiac and skeletal muscle to conditions of total body K+ depletion.
Collapse
Affiliation(s)
- Biff F. Palmer
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | |
Collapse
|
17
|
Sukumaran V, Gurusamy N, Yalcin HC, Venkatesh S. Understanding diabetes-induced cardiomyopathy from the perspective of renin angiotensin aldosterone system. Pflugers Arch 2021; 474:63-81. [PMID: 34967935 DOI: 10.1007/s00424-021-02651-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
Experimental and clinical evidence suggests that diabetic subjects are predisposed to a distinct cardiovascular dysfunction, known as diabetic cardiomyopathy (DCM), which could be an autonomous disease independent of concomitant micro and macrovascular disorders. DCM is one of the prominent causes of global morbidity and mortality and is on a rising trend with the increase in the prevalence of diabetes mellitus (DM). DCM is characterized by an early left ventricle diastolic dysfunction associated with the slow progression of cardiomyocyte hypertrophy leading to heart failure, which still has no effective therapy. Although the well-known "Renin Angiotensin Aldosterone System (RAAS)" inhibition is considered a gold-standard treatment in heart failure, its role in DCM is still unclear. At the cellular level of DCM, RAAS induces various secondary mechanisms, adding complications to poor prognosis and treatment of DCM. This review highlights the importance of RAAS signaling and its major secondary mechanisms involving inflammation, oxidative stress, mitochondrial dysfunction, and autophagy, their role in establishing DCM. In addition, studies lacking in the specific area of DCM are also highlighted. Therefore, understanding the complex role of RAAS in DCM may lead to the identification of better prognosis and therapeutic strategies in treating DCM.
Collapse
Affiliation(s)
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Al-Tarfa, 2371, Doha, Qatar
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
18
|
Improta-Caria AC, Aras MG, Nascimento L, De Sousa RAL, Aras-Júnior R, Souza BSDF. MicroRNAs Regulating Renin-Angiotensin-Aldosterone System, Sympathetic Nervous System and Left Ventricular Hypertrophy in Systemic Arterial Hypertension. Biomolecules 2021; 11:biom11121771. [PMID: 34944415 PMCID: PMC8698399 DOI: 10.3390/biom11121771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate gene and protein expression. MicroRNAs also regulate several cellular processes such as proliferation, differentiation, cell cycle, apoptosis, among others. In this context, they play important roles in the human body and in the pathogenesis of diseases such as cancer, diabetes, obesity and hypertension. In hypertension, microRNAs act on the renin-angiotensin-aldosterone system, sympathetic nervous system and left ventricular hypertrophy, however the signaling pathways that interact in these processes and are regulated by microRNAs inducing hypertension and the worsening of the disease still need to be elucidated. Thus, the aim of this review is to analyze the pattern of expression of microRNAs in these processes and the possible associated signaling pathways.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil;
- Department of Physical Education in Cardiology of the State of Bahia, Brazilian Society of Cardiology, Salvador 41170-130, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil
- Correspondence: (A.C.I.-C.); (B.S.d.F.S.)
| | - Marcela Gordilho Aras
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | - Luca Nascimento
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | | | - Roque Aras-Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil;
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 22281-100, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Correspondence: (A.C.I.-C.); (B.S.d.F.S.)
| |
Collapse
|
19
|
Chang SC, Hsu CY, Liu LK, Lu YW, Tsai YL, Chou RH, Huang PH, Chen LK, Lin SJ. The association between serum activin A levels and albuminuria among community-dwelling middle-aged and older adults in Taiwan. Sci Rep 2021; 11:20032. [PMID: 34625604 PMCID: PMC8501133 DOI: 10.1038/s41598-021-99081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/13/2021] [Indexed: 11/12/2022] Open
Abstract
Activin A, a cytokine belonging to the transforming growth factor-β family, has been shown to play pivotal roles in tissue remodeling after renal injury and is present in elevated levels in diabetic patients. However, the association between activin A and albuminuria remains unclear. We aimed to evaluate their association by using cross-sectional data from community-dwelling middle-aged and older adults in Taiwan. We assessed 466 participants (67% male; mean age 71 ± 13 years) from the I-Lan Longitudinal Aging study for whom data pertaining to serum activin A level and urine albumin-to-creatinine ratio (UACR) were available. Of these, 323 (69%) had normal albuminuria, 123 (26%) had microalbuminuria, and 20 (4%) had overt albuminuria. Patients with overt albuminuria and microalbuminuria had significantly higher activin A concentrations than those in the normal albuminuria group (p < 0.001). Circulating activin A was significantly correlated with multiple risk factors, including higher systolic blood pressure and higher UACR. Univariate and multivariate results indicated that activin A level was an independent variable for albuminuria. The cutoff value of 602 pg/mL of activin A demonstrated a sensitivity of 70.6% and specificity of 75.7% (AUC 0.774) in diagnosing overt albuminuria. In conclusion, middle-aged and older adults with elevated activin A levels were associated with a higher incidence of albuminuria.
Collapse
Affiliation(s)
- Shih-Chen Chang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Yi Hsu
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, No. 252, Wuxing St, Xinyi District, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Kuo Liu
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Wen Lu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Tsai
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ruey-Hsing Chou
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, 112, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Critical Care Medicine, Taipei Veterans General Hospital, 112, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Liang-Kung Chen
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Taipei Municipal Gan-Dau Hospital, (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Shing-Jong Lin
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan. .,Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, No. 252, Wuxing St, Xinyi District, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
20
|
Li Y, Lyu Y, Huang J, Huang K, Yu J. Transcriptome sequencing reveals high-salt diet-induced abnormal liver metabolic pathways in mice. BMC Gastroenterol 2021; 21:335. [PMID: 34454434 PMCID: PMC8397858 DOI: 10.1186/s12876-021-01912-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Although salt plays an important role in maintaining the normal physiological metabolism of the human body, many abnormalities in the liver caused by a high-salt diet, especially with normal pathological results, are not well characterized. METHODS Eight-week-old female C57BL/6 mice were randomly divided into a normal group and a high salt group. These groups were then fed with normal or sodium-rich chow (containing 6% NaCl) for 6 weeks. Liver injury was evaluated, and the influences of a high-salt diet on the liver were analyzed by transcriptome sequencing at the end of week 6. RESULTS We found that although no liver parenchymal injury could be found after high-salt feeding, many metabolic abnormalities had formed based on transcriptome sequencing results. GO and KEGG enrichment analyses of differentially expressed genes revealed that at least 15 enzymatic activities and the metabolism of multiple substances were affected by a high-salt diet. Moreover, a variety of signaling and metabolic pathways, as well as numerous biological functions, were involved in liver dysfunction due to a high-salt diet. This included some known pathways and many novel ones, such as retinol metabolism, linoleic acid metabolism, steroid hormone biosynthesis, and signaling pathways. CONCLUSIONS A high-salt diet can induce serious abnormal liver metabolic activities in mice at the transcriptional level, although substantial physical damage may not yet be visible. This study, to our knowledge, was the first to reveal the impact of a high-salt diet on the liver at the omics level, and provides theoretical support for potential clinical risk evaluation, pathogenic mechanisms, and drug design for combating liver dysfunction. This study also provides a serious candidate direction for further research on the physiological impacts of high-salt diets.
Collapse
Affiliation(s)
- Yanping Li
- Department of Gastroenterology, Civil Aviation General Hospital, No. 1, Gaojingjia, Chaoyang District, China
| | - Yufei Lyu
- Beijing Institute of Biotecnology, No. 20, Dongda Street, Fengtai District, Beijing, China
| | - Jing Huang
- Beijing Institute of Biotecnology, No. 20, Dongda Street, Fengtai District, Beijing, China
| | - Kun Huang
- Department of Gastroenterology, Civil Aviation General Hospital, No. 1, Gaojingjia, Chaoyang District, China.
| | - Jiufei Yu
- Department of Gastroenterology, Civil Aviation General Hospital, No. 1, Gaojingjia, Chaoyang District, China.
| |
Collapse
|
21
|
Liu Z, Liu J, Sun T, Zeng D, Yang C, Wang H, Yang C, Guo J, Wu Q, Chen HJ, Xie X. Integrated Multiplex Sensing Bandage for In Situ Monitoring of Early Infected Wounds. ACS Sens 2021; 6:3112-3124. [PMID: 34347450 DOI: 10.1021/acssensors.1c01279] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infection, the most common complication of chronic wounds, has placed tremendous burden on patients and society. Existing care strategies could hardly reflect in situ wound status, resulting in overly aggressive or conservative therapeutic options. Multiplexed tracking of wound markers to obtain diagnostic information in a more accurate way is highly promising and in great demand for the emerging development of personalized medicine. Here, an integrated multiplex sensing bandage (MSB) system, including a multiplex sensor array (MSA), a corresponding flexible circuit, and a mobile application, was developed for real-time monitoring of sodium, potassium, calcium, pH, uric acid, and temperature indicators in the wound site to provide a quantitative diagnostic basis. The MSB was optimized for wound-oriented management applications, which exhibits a broad linear response, excellent selectivity, temporal stability, mechanical stability, reproducibility, and reliable signal transmission performance on the aforementioned physiological indicators. The results of in vivo experiments demonstrate that the MSA is capable of real-time monitoring of actual wounds as well as early prediction of infection. The results ultimately point to the potential clinical applicability of the MSB, which might benefit the quantifications of the complexity and diversity of the wound healing process. This work provides a unique strategy that holds promise for broad application in optimizing wound management and even coping with other diseases.
Collapse
Affiliation(s)
- Ziqi Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Junqing Liu
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Tiancheng Sun
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deke Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cheng Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
22
|
Rodionova K, Hilgers KF, Rafii-Tabrizi S, Doellner J, Cordasic N, Linz P, Karl AL, Ott C, Schmieder RE, Schiffer M, Amann K, Veelken R, Ditting T. Responsiveness of afferent renal nerve units in renovascular hypertension in rats. Pflugers Arch 2021; 473:1617-1629. [PMID: 34232378 PMCID: PMC8433106 DOI: 10.1007/s00424-021-02591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022]
Abstract
Previous data suggest that renal afferent nerve activity is increased in hypertension exerting sympathoexcitatory effects. Hence, we wanted to test the hypothesis that in renovascular hypertension, the activity of dorsal root ganglion (DRG) neurons with afferent projections from the kidneys is augmented depending on the degree of intrarenal inflammation. For comparison, a nonhypertensive model of mesangioproliferative nephritis was investigated. Renovascular hypertension (2-kidney, 1-clip [2K1C]) was induced by unilateral clipping of the left renal artery and mesangioproliferative glomerulonephritis (anti-Thy1.1) by IV injection of a 1.75-mg/kg BW OX-7 antibody. Neuronal labeling (dicarbocyanine dye [DiI]) in all rats allowed identification of renal afferent dorsal root ganglion (DRG) neurons. A current clamp was used to characterize neurons as tonic (sustained action potential [AP] firing) or phasic (1–4 AP) upon stimulation by current injection. All kidneys were investigated using standard morphological techniques. DRG neurons exhibited less often tonic response if in vivo axonal input from clipped kidneys was received (30.4% vs. 61.2% control, p < 0.05). However, if the nerves to the left clipped kidneys were cut 7 days prior to investigation, the number of tonic renal neurons completely recovered to well above control levels. Interestingly, electrophysiological properties of neurons that had in vivo axons from the right non-clipped kidneys were not distinguishable from controls. Renal DRG neurons from nephritic rats also showed less often tonic activity upon current injection (43.4% vs. 64.8% control, p < 0.05). Putative sympathoexcitatory and impaired sympathoinhibitory renal afferent nerve fibers probably contribute to increased sympathetic activity in 2K1C hypertension.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Karl F Hilgers
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Salman Rafii-Tabrizi
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Johannes Doellner
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Nada Cordasic
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Peter Linz
- Department of Radiology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Anna-Lena Karl
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Christian Ott
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 - Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
| | - Roland E Schmieder
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany. .,Department of Radiology, Friedrich-Alexander University Erlangen, Erlangen, Germany.
| | - Tilmann Ditting
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 - Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
| |
Collapse
|
23
|
Geist D, Hönes GS, Gassen J, Kerp H, Kleinbongard P, Heusch G, Führer D, Moeller LC. Noncanonical Thyroid Hormone Receptor α Action Mediates Arterial Vasodilation. Endocrinology 2021; 162:6276892. [PMID: 33999131 DOI: 10.1210/endocr/bqab099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Hypothyroidism impairs cardiovascular health and contributes to endothelial dysfunction with reduced vasodilation. How 3,5,3'-triiodothyronine (T3) and its receptors are involved in the regulation of vasomotion is not yet fully understood. In general, thyroid hormone receptors (TRs) either influence gene expression (canonical action) or rapidly activate intracellular signaling pathways (noncanonical action). OBJECTIVE Here we aimed to characterize the T3 action underlying the mechanism of arterial vasodilation and blood pressure (BP) regulation. METHODS Mesenteric arteries were isolated from male rats, wild-type (WT) mice, TRα knockout (TRα 0) mice, and from knockin mice with a mutation in the DNA-binding domain (TRα GS). In this mutant, DNA binding and thus canonical action is abrogated while noncanonical signaling is preserved. In a wire myograph system, the isolated vessels were preconstricted with norepinephrine. The response to T3 was measured, and the resulting vasodilation (Δ force [mN]) was normalized to maximum contraction with norepinephrine and expressed as percentage vasodilation after maximal preconstriction with norepinephrine (%NE). Isolated vessels were treated with T3 (1 × 10-15 to 1 × 10-5 mol/L) alone and in combination with the endothelial nitric oxide-synthase (eNOS) inhibitor L-NG-nitroarginine methyl ester (L-NAME) or the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. The endothelium was removed to determine the contribution of T3 to endothelium-dependent vasodilation. The physiological relevance of T3-induced vasodilation was determined by in vivo arterial BP measurements in male and female mice. RESULTS T3 treatment induced vasodilation of mesenteric arteries from WT mice within 2 minutes (by 21.5 ± 1.7%NE). This effect was absent in arteries from TRα 0 mice (by 5.3 ± 0.6%NE, P < .001 vs WT) but preserved in TRα GS arteries (by 17.2 ± 1.1%NE, not significant vs WT). Inhibition of either eNOS or PI3K reduced T3-mediated vasodilation from 52.7 ± 4.5%NE to 28.5 ± 4.1%NE and 22.7 ± 2.9%NE, respectively. Removal of the endothelium abolished the T3-mediated vasodilation in rat mesenteric arteries (by 36.7 ± 5.4%NE vs 3.5 ± 6.2%NE). In vivo, T3 injection led to a rapid decrease of arterial BP in WT (by 13.9 ± 1.9 mm Hg) and TRα GS mice (by 12.4 ± 1.9 mm Hg), but not in TRα 0 mice (by 4.1 ± 1.9 mm Hg). CONCLUSION These results demonstrate that T3 acting through noncanonical TRα action affects cardiovascular physiology by inducing endothelium-dependent vasodilation within minutes via PI3K and eNOS activation.
Collapse
Affiliation(s)
- Daniela Geist
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - G Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Janina Gassen
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Helena Kerp
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Petra Kleinbongard
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Gerd Heusch
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lars C Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
24
|
Hsu JCN, Sekizawa SI, Tochinai R, Kuwahara M. Chronic stimulation of group II metabotropic glutamate receptors in the medulla oblongata attenuates hypertension development in spontaneously hypertensive rats. PLoS One 2021; 16:e0251495. [PMID: 34010316 PMCID: PMC8133461 DOI: 10.1371/journal.pone.0251495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
Baroreflex dysfunction is partly implicated in hypertension and one responsible region is the dorsal medulla oblongata including the nucleus tractus solitarius (NTS). NTS neurons receive and project glutamatergic inputs to subsequently regulate blood pressure, while G-protein-coupled metabotropic glutamate receptors (mGluRs) play a modulatory role for glutamatergic transmission in baroreflex pathways. Stimulating group II mGluR subtype 2 and 3 (mGluR2/3) in the brainstem can decrease blood pressure and sympathetic nervous activity. Here, we hypothesized that the chronic stimulation of mGluR2/3 in the dorsal medulla oblongata can alleviate hypertensive development via the modulation of autonomic nervous activity in young, spontaneously hypertensive rats (SHRs). Compared with that in the sham control group, chronic LY379268 application (mGluR2/3 agonist; 0.40 μg/day) to the dorsal medulla oblongata for 6 weeks reduced the progression of hypertension in 6-week-old SHRs as indicated by the 40 mmHg reduction in systolic blood pressure and promoted their parasympathetic nervous activity as evidenced by the heart rate variability. No differences in blood catecholamine levels or any echocardiographic indices were found between the two groups. The improvement of reflex bradycardia, a baroreflex function, appeared after chronic LY379268 application. The mRNA expression level of mGluR2, but not mGluR3, in the dorsal medulla oblongata was substantially reduced in SHRs compared to that of the control strain. In conclusion, mGluR2/3 signaling might be responsible for hypertension development in SHRs, and modulating mGluR2/3 expression/stimulation in the dorsal brainstem could be a novel therapeutic strategy for hypertension via increasing the parasympathetic activity.
Collapse
Affiliation(s)
- Julia Chu-Ning Hsu
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-ichi Sekizawa
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Horikawa C, Aida R, Tanaka S, Kamada C, Tanaka S, Yoshimura Y, Kodera R, Fujihara K, Kawasaki R, Moriya T, Yamashita H, Ito H, Sone H, Araki A. Sodium Intake and Incidence of Diabetes Complications in Elderly Patients with Type 2 Diabetes-Analysis of Data from the Japanese Elderly Diabetes Intervention Study (J-EDIT). Nutrients 2021; 13:nu13020689. [PMID: 33670045 PMCID: PMC7926689 DOI: 10.3390/nu13020689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/02/2022] Open
Abstract
This study investigates the associations between sodium intake and diabetes complications in a nationwide cohort of elderly Japanese patients with type 2 diabetes aged 65–85. Data from 912 individuals regarding their dietary intake at baseline is analyzed and assessed by the Food Frequency Questionnaire based on food groups. Primary outcomes are times to diabetic retinopathy, overt nephropathy, cardiovascular disease (CVD), and all-cause mortality during six years. We find that mean sodium intake in quartiles ranges from 2.5 g to 5.9 g/day. After adjustment for confounders, no significant associations are observed between sodium intake quartiles and incidence of diabetes complications and mortality, except for a significant trend for an increased risk of diabetic retinopathy (p = 0.039). Among patients whose vegetable intake was less than the average of 268.7 g, hazard ratios (HRs) for diabetic retinopathy in patients in the second, third, and fourth quartiles of sodium intake compared with the first quartile were 0.87 (95% CI, 0.31–2.41), 2.61 (1.00–6.83), and 3.70 (1.37–10.02), respectively. Findings indicate that high sodium intake under conditions of low vegetable intake is associated with an elevated incidence of diabetic retinopathy in elderly patients with type 2 diabetes.
Collapse
Affiliation(s)
- Chika Horikawa
- Department of Health and Nutrition, University of Niigata Prefecture Faculty of Human Life Studies, 471 Ebigase, Higashi-ku, Niigata 950-8680, Japan;
| | - Rei Aida
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; (R.A.); (S.T.)
| | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; (R.A.); (S.T.)
| | - Chiemi Kamada
- Training Department of Administrative Dietitians, Shikoku University, 123-1 Ebisuno, Furukawa, Ojin-cho, Tokushima 771-1151, Japan; (C.K.); (Y.Y.)
| | - Sachiko Tanaka
- Department of Public Health, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Sihga 520-2192, Japan;
| | - Yukio Yoshimura
- Training Department of Administrative Dietitians, Shikoku University, 123-1 Ebisuno, Furukawa, Ojin-cho, Tokushima 771-1151, Japan; (C.K.); (Y.Y.)
| | - Remi Kodera
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan; (R.K.); (H.I.)
- Department of Hematology, Endocrinology, and Metabolism, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuoh-ku, Niigata 951-8510, Japan; (K.F.); (H.S.)
| | - Kazuya Fujihara
- Department of Hematology, Endocrinology, and Metabolism, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuoh-ku, Niigata 951-8510, Japan; (K.F.); (H.S.)
| | - Ryo Kawasaki
- Department of Vision Informatics, Graduate School of Medicine Faculty of Medicine, Osaka University, Osaka, 2-2 Yamadaoka, Suita 565-0871, Japan;
| | - Tatsumi Moriya
- Health Care Center, Kitasato University, 1-15-1, Kitazato, Minami-ku, Sagamihara-shi 252-0373, Japan;
| | - Hidetoshi Yamashita
- Department of Ophthalmology and Visual Science, Yamagata University Faculty of Medicine, 2-2-2 Iidanishi, Yamagata-shi 990-8560, Japan;
| | - Hideki Ito
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan; (R.K.); (H.I.)
| | - Hirohito Sone
- Department of Hematology, Endocrinology, and Metabolism, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuoh-ku, Niigata 951-8510, Japan; (K.F.); (H.S.)
| | - Atsushi Araki
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan; (R.K.); (H.I.)
- Correspondence: ; Tel.: +81-03-3964-1141; Fax: +81-03-3964-1982
| |
Collapse
|
26
|
Li Q, Fung E. Multifaceted Functions of Epithelial Na + Channel in Modulating Blood Pressure. Hypertension 2019; 73:273-281. [PMID: 30580685 DOI: 10.1161/hypertensionaha.118.12330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qi Li
- From the Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Q.L., E.F.).,Laboratory for Heart Failure and Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR (Q.L., E.F.)
| | - Erik Fung
- From the Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Q.L., E.F.).,Gerald Choa Cardiac Research Centre, Faculty of Medicine, The Chinese University of Hong Kong (E.F.).,Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong (E.F.).,Laboratory for Heart Failure and Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR (Q.L., E.F.)
| |
Collapse
|
27
|
Andreeva–Gateva PA, Mihaleva ID, Dimova II. Type 2 diabetes mellitus and cardiovascular risk; what the pharmacotherapy can change through the epigenetics. Postgrad Med 2019; 132:109-125. [DOI: 10.1080/00325481.2019.1681215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pavlina A. Andreeva–Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Department of Pharmacology, Medical Faculty, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Ivelina D. Mihaleva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivanka I. Dimova
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
28
|
Iqbal S, Klammer N, Ekmekcioglu C. The Effect of Electrolytes on Blood Pressure: A Brief Summary of Meta-Analyses. Nutrients 2019; 11:nu11061362. [PMID: 31212974 PMCID: PMC6627949 DOI: 10.3390/nu11061362] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Nutrition is known to exert an undeniable impact on blood pressure with especially salt (sodium chloride), but also potassium, playing a prominent role. The aim of this review was to summarize meta-analyses studying the effect of different electrolytes on blood pressure or risk for hypertension, respectively. Overall, 32 meta-analyses evaluating the effect of sodium, potassium, calcium and magnesium on human blood pressure or hypertension risk were included after literature search. Most of the meta-analyses showed beneficial blood pressure lowering effects with the extent of systolic blood pressure reduction ranging between -0.7 (95% confidence interval: -2.6 to 1.2) to -8.9 (-14.1 to -3.7) mmHg for sodium/salt reduction, -3.5 (-5.2 to -1.8) to -9.5 (-10.8 to -8.1) mmHg for potassium, and -0.2 (-0.4 to -0.03) to -18.7 (-22.5 to -15.0) mmHg for magnesium. The range for diastolic blood pressure reduction was 0.03 (-0.4 to 0.4) to -5.9 (-9.7 to -2.1) mmHg for sodium/salt reduction, -2 (-3.1 to -0.9) to -6.4 (-7.3 to -5.6) mmHg for potassium, and -0.3 (-0.5 to -0.03) to -10.9 (-13.1 to -8.7) mmHg for magnesium. Moreover, sufficient calcium intake was found to reduce the risk of gestational hypertension.
Collapse
Affiliation(s)
- Sehar Iqbal
- Department of Environmental Health, Center for Public Health, Medical University Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria.
| | - Norbert Klammer
- Department of Environmental Health, Center for Public Health, Medical University Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria.
| | - Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria.
| |
Collapse
|
29
|
Paczula A, Wiecek A, Piecha G. Cardiotonic Steroids-A Possible Link Between High-Salt Diet and Organ Damage. Int J Mol Sci 2019; 20:ijms20030590. [PMID: 30704040 PMCID: PMC6386955 DOI: 10.3390/ijms20030590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
High dietary salt intake has been listed among the top ten risk factors for disability-adjusted life years. We discuss the role of endogenous cardiotonic steroids in mediating the dietary salt-induced hypertension and organ damage.
Collapse
Affiliation(s)
- Aneta Paczula
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland.
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland.
| | - Grzegorz Piecha
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland.
| |
Collapse
|
30
|
Simonini M, Casanova P, Citterio L, Messaggio E, Lanzani C, Manunta P. Reply: "Comment on: Endogenous Ouabain and Related Genes in the Translation from Hypertension to Renal Diseases". Int J Mol Sci 2019; 20:ijms20030542. [PMID: 30696018 PMCID: PMC6387140 DOI: 10.3390/ijms20030542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Marco Simonini
- Genomics of Renal Disease and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Università Vita Salute San Raffaele, 20132 Milan, Italy.
| | - Paola Casanova
- Genomics of Renal Disease and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Università Vita Salute San Raffaele, 20132 Milan, Italy.
| | - Lorena Citterio
- Genomics of Renal Disease and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Università Vita Salute San Raffaele, 20132 Milan, Italy.
| | - Elisabetta Messaggio
- Genomics of Renal Disease and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Università Vita Salute San Raffaele, 20132 Milan, Italy.
| | - Chiara Lanzani
- Genomics of Renal Disease and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Università Vita Salute San Raffaele, 20132 Milan, Italy.
| | - Paolo Manunta
- Genomics of Renal Disease and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Università Vita Salute San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
31
|
Chronic Intracerebroventricular Infusion of Metformin Inhibits Salt-Sensitive Hypertension via Attenuation of Oxidative Stress and Neurohormonal Excitation in Rat Paraventricular Nucleus. Neurosci Bull 2018; 35:57-66. [PMID: 30426340 DOI: 10.1007/s12264-018-0308-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/26/2018] [Indexed: 01/15/2023] Open
Abstract
Metformin (MET), an antidiabetic agent, also has antioxidative effects in metabolic-related hypertension. This study was designed to determine whether MET has anti-hypertensive effects in salt-sensitive hypertensive rats by inhibiting oxidative stress in the hypothalamic paraventricular nucleus (PVN). Salt-sensitive rats received a high-salt (HS) diet to induce hypertension, or a normal-salt (NS) diet as control. At the same time, they received intracerebroventricular (ICV) infusion of MET or vehicle for 6 weeks. We found that HS rats had higher oxidative stress levels and mean arterial pressure (MAP) than NS rats. ICV infusion of MET attenuated MAP and reduced plasma norepinephrine levels in HS rats. It also decreased reactive oxygen species and the expression of subunits of NAD(P)H oxidase, improved the superoxide dismutase activity, reduced components of the renin-angiotensin system, and altered neurotransmitters in the PVN. Our findings suggest that central MET administration lowers MAP in salt-sensitive hypertension via attenuating oxidative stress, inhibiting the renin-angiotensin system, and restoring the balance between excitatory and inhibitory neurotransmitters in the PVN.
Collapse
|
32
|
Kopp W. Diet-Induced Hyperinsulinemia as a Key Factor in the Etiology of Both Benign Prostatic Hyperplasia and Essential Hypertension? Nutr Metab Insights 2018; 11:1178638818773072. [PMID: 30455570 PMCID: PMC6238249 DOI: 10.1177/1178638818773072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/04/2018] [Indexed: 01/09/2023] Open
Abstract
Benign prostatic hyperplasia and hypertension are common age-related comorbidities. Although the etiology of benign prostatic hyperplasia (BPH) is still largely unresolved and poorly understood, a significant age-independent association was found between BPH and hypertension, indicating a common pathophysiological factor for both diseases. It has previously been suggested that the development of essential hypertension may be related to diet-induced hyperinsulinemia. This study follows the question, whether BPH may develop due to the same mechanism, thereby explaining the well-known comorbidity of these 2 disorders. The scientific evidence presented shows that BPH and hypertension share the same pathophysiological changes, with hyperinsulinemia as the driving force. It further shows that significant dietary changes during human history cause disruption of a finely tuned metabolic balance that has evolved over millions of years of evolution: high-insulinemic food, typical of current “Western” diets, has the potential to cause hyperinsulinemia and insulin resistance, as well as an abnormally increased activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, alterations that play a pivotal role in the pathogenesis of BPH and hypertension.
Collapse
Affiliation(s)
- Wolfgang Kopp
- Former head of the Diagnostikzentrum Graz, Graz, Austria
| |
Collapse
|
33
|
Yu HR, Tain YL, Tiao MM, Chen CC, Sheen JM, Lin IC, Li SW, Tsai CC, Lin YJ, Hsieh KS, Huang LT. Prenatal dexamethasone and postnatal high-fat diet have a synergistic effect of elevating blood pressure through a distinct programming mechanism of systemic and adipose renin-angiotensin systems. Lipids Health Dis 2018. [PMID: 29540174 PMCID: PMC5853160 DOI: 10.1186/s12944-018-0701-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Hypertension may result from high-fat (HF) diet induced-obesity and overexposure to glucocorticoids in utero. Recent studies demonstrated the potent contribution of adipose tissue’s renin-angiotensin system (RAS) to systemic RAS, which plays a key role in regulating blood pressure (BP). In this study, we investigated the effects of prenatal dexamethasone (DEX) exposure and postnatal HF diet on RAS of adipose tissue. Methods RAS and BP of 6-month old rats exposed to prenatal DEX and/or postnatal HF diet were examined. Results Prenatal DEX plus postnatal HF exerted a synergistic effect on systolic BP. Prenatal DEX exposure suppressed plasma angiotensin (ANG) I and ANG II, whereas postnatal HF suppressed plasma ANG-(1–7) level. Prenatal DEX increased prorenin receptor and renin levels, but suppressed angiotensinogen (AGT) and angiotensin-converting-enzyme 1 (ACE1) mRNA expressions in adipose tissue. Postnatal HF increased AGT mRNA expression, but suppressed prorenin receptor, renin, ACE2, ANG II type 2 receptor (AT2R), and Mas receptor (MasR) mRNA expression levels. Conclusions Prenatal GC exposure altered the ACE1/ANG II/ANG II type 1 receptor (AT1R) axis, whereas postnatal HF negatively impacted the ACE2/ANG-(1–7)/MasR axis. Prenatal DEX exposure and postnatal HF synergistically elevated BP through a distinct programming mechanism of systemic and adipose RAS. Adipose RAS might be a target for precise hypertension treatment. Electronic supplementary material The online version of this article (10.1186/s12944-018-0701-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mao-Meng Tiao
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - I-Chun Lin
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Wen Li
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
34
|
Tsai YL, Chang CC, Liu LK, Huang PH, Chen LK, Lin SJ. The Association Between Serum Activin A Levels and Hypertension in the Elderly: A Cross-Sectional Analysis From I-Lan Longitudinal Aging Study. Am J Hypertens 2018; 31:369-374. [PMID: 29182731 DOI: 10.1093/ajh/hpx185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hypertension is an important risk factor for cardiovascular disease. Activin A, a member of the transforming growth factor-β cytokine family, has been shown to regulate blood pressure through the renin-angiotensin system. However, the relationship between activin A and blood pressure remains uncertain. The objective of this study was to determine whether serum activin A levels are associated with blood pressure. METHOD A total of 470 participants of I-Lan longitudinal Aging Study (ILAS) were eligible for this study. Serum levels of activin A were assessed by enzyme-linked immunosorbent assay. Cross-sectional analyses were performed, including comparisons of demographic characteristics, hypertensive status, and activin A levels. RESULTS Among the study participants (50% men, mean age, 69 years), 236 (50.2%) were hypertensive and 234 (49.8%) were normotensive. Hypertensive patients had significantly higher serum activin A levels than normotensives (normotensive vs. hypertensive: 507 ± 169 vs. 554 ± 176 pg/ml, mean ± SD, P < 0.001). All subjects were divided into 3 tertiles on the basis of serum activin A levels. Increasing tertiles of activin A were associated with higher systolic blood pressure (SBP), diastolic blood pressure and pulse pressure (PP) (all P < 0.001). After adjusting for all the potential confounding factors, serum activin A concentration was still significantly associated with SBP (P = 0.02) and PP (P = 0.03). CONCLUSIONS Serum activin A level was associated with SBP and PP. Further studies are required to assess their causal relationship and the clinical relevance.
Collapse
Affiliation(s)
- Yi-Lin Tsai
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Chin Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-Kuo Liu
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Liang-Kung Chen
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
35
|
Nowak KL, Fried L, Jovanovich A, Ix J, Yaffe K, You Z, Chonchol M. Dietary Sodium/Potassium Intake Does Not Affect Cognitive Function or Brain Imaging Indices. Am J Nephrol 2018; 47:57-65. [PMID: 29393090 DOI: 10.1159/000486580] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/02/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Dietary sodium may influence cognitive function through its effects on cerebrovascular function and cerebral blood flow. METHODS The aim of this study was to evaluate the association of dietary sodium intake with cognitive decline in community-dwelling older adults. We also evaluated the associations of dietary potassium and sodium:potassium intake with cognitive decline, and associations of these nutrients with micro- and macro-structural brain magnetic resonance imaging (MRI) indices. In all, 1,194 participants in the Health Aging and Body Composition study with measurements of dietary sodium intake (food frequency questionnaire [FFQ]) and change in the modified Mini Mental State Exam (3MS) were included. RESULTS The age of participants was 74 ± 3 years with a mean dietary sodium intake of 2,677 ± 1,060 mg/day. During follow-up (6.9 ± 0.1 years), 340 (28%) had a clinically significant decline in 3MS score (≥1.5 SD of mean decline). After adjustment, dietary sodium intake was not associated with odds of cognitive decline (OR 0.96, 95% CI 0.50-1.84 per doubling of sodium). Similarly, potassium was not associated with cognitive decline; however, higher sodium:potassium intake was associated with increased odds of cognitive decline (OR 2.02 [95% CI 1.01-4.03] per unit increase). Neither sodium or potassium alone nor sodium:potassium were associated with micro- or macro-structural brain MRI indices. These results are limited by the use of FFQ. CONCLUSIONS In community-dwelling older adults, higher sodium:potassium, but not sodium or potassium intake alone, was associated with decline in cognitive function, with no associations observed with micro- and macro-structural brain MRI indices. These findings do not support reduction dietary sodium/increased potassium intake to prevent cognitive decline with aging.
Collapse
Affiliation(s)
- Kristen L Nowak
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Linda Fried
- Division of Renal-Electrolyte, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Renal Section, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Anna Jovanovich
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
- Renal Section, Medical Service, Denver Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Joachim Ix
- Division of Nephrology, University of California San Diego, San Diego, California, USA
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology, University of California San Francisco, San Francisco, California, USA
| | - Zhiying You
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
36
|
Peng M, Yang M, Ding Y, Yu L, Deng Y, Lai W, Hu Y. Mechanism of endogenous digitalis-like factor‑induced vascular endothelial cell damage in patients with severe preeclampsia. Int J Mol Med 2017; 41:985-994. [PMID: 29251320 DOI: 10.3892/ijmm.2017.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
Although endogenous digitalis‑like factor (EDLF) is associated with the development of various physical disorders, the role in preeclampsia remains unclear. This study investigated the effects of EDLF on vascular endothelial cell damage in patients with preeclampsia and the potential mechanisms. From July 2014 to July 2015, 120 singleton pregnancy cases underwent a prenatal examination, inpatient delivery and had normal blood pressure were included in the study, either as patients with severe preeclampsia or the control patients. Serum EDLF levels were compared in these two groups, and an in vitro hypoxic trophocyte‑induced vascular endothelial cell damage model was established to explore the changes in hypoxic trophocyte EDLF level and the subsequent effects on human umbilical vein endothelial cells (HUVECs). Nuclear factor‑κB (NF‑κB) p65 gene expression was silenced in hypoxic trophocytes, and EDLF levels and HUVEC damage were subsequently assessed. Serum EDLF levels were significantly higher in the severe preeclampsia cases than in the controls at the same gestational week (P<0.001). EDLF levels in hypoxic trophocytes increased with the increasing co‑culture duration. Damage to the biofunctions of HUVECs co‑cultured with hypoxic trophocytes also increased with co‑culture duration. However, silencing of NF‑κB p65 in the hypoxic trophocytes reduced the EDLF levels. Annexin A2 was highly expressed in HUVECs, and no biofunctions were significantly damaged (P<0.05) compared with the group without receiving NF‑κB p65 silencing. Serum EDLF levels were significantly higher in patients with severe preeclampsia compared with the controls. The results of the current study indicate that NF‑κB p65 has a role in regulating EDLF production in hypoxic trophocytes.
Collapse
Affiliation(s)
- Mei Peng
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mengyuan Yang
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yiling Ding
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ling Yu
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yali Deng
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Weisi Lai
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yun Hu
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
37
|
Nakazaki A, Hashimoto K, Ikeda A, Shibata T, Nishikawa T. De Novo Synthesis of Possible Candidates for the Inagami-Tamura Endogenous Digitalis-like Factor. J Org Chem 2017; 82:9097-9111. [PMID: 28787161 DOI: 10.1021/acs.joc.7b01640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
De novo synthesis of possible candidates for the Inagami-Tamura endogenous digitalis-like factor (EDLF) was achieved to validate a previously proposed structure. Our synthetic approach involves a highly regio- and diastereoselective Mizoroki-Heck reaction and a Friedel-Crafts-type cyclodehydration to construct steroidal tetracycle 14 as a versatile common intermediate leading to seven 2,14β-dihydroxyestradiol analogues 1a-c, 2a-c, and 3 as possible candidates. By comparing the potency of inhibitory activity against Na+/K+-ATPase between the synthesized candidates and the EDLF, it was found that the proposed structure is not likely to be a true structure of the Inagami-Tamura EDLF.
Collapse
Affiliation(s)
- Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Keiko Hashimoto
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Ai Ikeda
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
38
|
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 2017; 94:317-325. [PMID: 28772209 DOI: 10.1016/j.biopha.2017.07.091] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Renin-angiotensin-aldosterone system (RAAS) is a vital system of human body, as it maintains plasma sodium concentration, arterial blood pressure and extracellular volume. Kidney-secreted renin enzyme acts on its substrate to form angiotensin II, a versatile effector peptide hormone. Every organ is affected by RAAS activation and the resultant hypertension, cell proliferation, inflammation, and fibrosis. The imbalance of renin and angiotensin II can result in an overwhelming number of chronic and acute diseases. RAAS is influenced by other enzymes, hormones, pumps and signaling pathways, hence, this review discusses important facets of this system, its crosstalk with other crucial factors like estrogen, thyroid, cortisol, kallikrein-kinin system, Wnt/β-catenin signaling, and sodium-potassium pump. The nexus of RAAS with the above-discussed systems was scantily explored before. So, this review furnishes a new perspective in comprehension of inflammation diseases. It is followed by the formulation of hypotheses, which can contribute to better management of an array of pathologies plaguing mankind. Manipulation of RAAS, by bending it towards ACE2 expression can regulate endocrine functions, which can be critical for a number of pathological management. Dietary intervention can restore RAAS to normalcy.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 42, Saudi Arabia
| |
Collapse
|
39
|
Hypothalamic and inflammatory basis of hypertension. Clin Sci (Lond) 2017; 131:211-223. [PMID: 28057892 DOI: 10.1042/cs20160001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is a major health problem with great consequences for public health. Despite its role as the primary cause of significant morbidity and mortality associated with cardiovascular disease, the pathogenesis of essential hypertension remains largely unknown. The central nervous system (CNS) in general, and the hypothalamus in particular, are intricately involved in the development and maintenance of hypertension. Over the last several decades, the understanding of the brain's role in the development of hypertension has dramatically increased. This brief review is to summarize the neural mechanisms of hypertension with a focus on neuroendocrine and neurotransmitter involvement, highlighting recent findings that suggest that hypothalamic inflammation disrupts key signalling pathways to affect the central control of blood pressure, and therefore suggesting future development of interventional strategies that exploit recent findings pertaining to the hypothalamic control of blood pressure as well as the inflammatory-sympathetic mechanisms involved in hypertension.
Collapse
|
40
|
Duan Q, Song P, Ding Y, Zou MH. Activation of AMP-activated protein kinase by metformin ablates angiotensin II-induced endoplasmic reticulum stress and hypertension in mice in vivo. Br J Pharmacol 2017; 174:2140-2151. [PMID: 28436023 DOI: 10.1111/bph.13833] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/29/2017] [Accepted: 04/16/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Metformin, one of the most frequently prescribed medications for type 2 diabetes, reportedly exerts BP-lowering effects in patients with diabetes. However, the effects and underlying mechanisms of metformin on BP in non-diabetic conditions remain to be determined. The aim of the present study was to determine the effects of metformin on angiotensin II (Ang II) infusion-induced hypertension in vivo. EXPERIMENTAL APPROACH The effects of metformin on BP were investigated in wild-type (WT) C57BL/6J mice and in mice lacking AMP-activated protein kinase α2 (AMPKα2) mice with or without Ang II infusion. Also, the effect of metformin on Ang II-induced endoplasmic reticulum (ER) stress was explored in cultured human vascular smooth muscle cells (hVSMCs). KEY RESULTS Metformin markedly reduced BP in Ang II-infused WT mice but not in AMPKα2-deficient mice. In cultured hVSMCs, Ang II treatment resulted in inactivation of AMPK, as well as the subsequent induction of spliced X-box binding protein-1, phosphorylation of eukaryotic translation initiation factor 2α and expression of glucose-regulated protein 78 kDa, representing three well-characterized ER stress biomarkers. Moreover, AMPK activation by metformin ablated Ang II-induced ER stress in hVSMCs. Mechanistically, metformin-activated AMPKα2 suppressed ER stress by increasing phospholamban phosphorylation. CONCLUSION AND IMPLICATIONS Metformin alleviates Ang II-triggered hypertension in mice by activating AMPKα2, which mediates phospholamban phosphorylation and inhibits Ang II-induced ER stress in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Quanlu Duan
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA.,Division of Cardiology, Department Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
41
|
Wang ZR, Liu HB, Sun YY, Hu QQ, Li YX, Zheng WW, Yu CJ, Li XY, Wu MM, Song BL, Mu JJ, Yuan ZY, Zhang ZR, Ma HP. Dietary salt blunts vasodilation by stimulating epithelial sodium channels in endothelial cells from salt-sensitive Dahl rats. Br J Pharmacol 2017; 175:1305-1317. [PMID: 28409833 DOI: 10.1111/bph.13817] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/26/2017] [Accepted: 04/04/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Our recent studies show that the reduced activity of epithelial sodium channels (ENaC) in endothelial cells accounts for the adaptation of vasculature to salt in Sprague-Dawley rats. The present study examines a hypothesis that enhanced ENaC activity mediates the loss of vasorelaxation in Dahl salt-sensitive (SS) rats. EXPERIMENTAL APPROACH We used the cell-attached patch-clamp technique to record ENaC activity in split-open mesenteric arteries. Western blot and immunofluorescence staining were used to evaluate the levels of aldosterone, ENaC, eNOS and NO. Blood pressure was measured with the tail-cuff method and the artery relaxation was measured with the wire myograph assay. KEY RESULTS High-salt (HS) diet significantly increased plasma aldosterone and ENaC activity in the endothelial cells of Dahl SS rats. The endothelium-dependent artery relaxation was blunted by HS challenge in these rats. Amiloride, a potent blocker of ENaC, increased both phosphorylated eNOS and NO and therefore prevented the HS-induced loss of vasorelaxation. As, in SS rats, endogenous aldosterone was already elevated by HS challenge, exogenous aldosterone did not further elevate ENaC activity in the rats fed with HS. Eplerenone, a mineralocorticoid receptor antagonist, attenuated the effects of HS on both ENaC activity and artery relaxation. CONCLUSIONS AND IMPLICATIONS These data suggest that HS diet blunts artery relaxation and causes hypertension via a pathway associated with aldosterone-dependent activation of ENaC in endothelial cells. This pathway provides one of the mechanisms by which HS causes hypertension in Dahl SS rats. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Zi-Rui Wang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Hui-Bin Liu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying-Ying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing-Qing Hu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Yu-Xia Li
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Wei-Wan Zheng
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Chang-Jiang Yu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Xin-Yuan Li
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ming-Ming Wu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Bin-Lin Song
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Jian-Jun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, Xi'an, China
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, Xi'an, China
| | - Zhi-Ren Zhang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.,Department of Clinical Pharmacy, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
42
|
Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Renal Physiol 2016; 313:F135-F140. [PMID: 28003189 DOI: 10.1152/ajprenal.00427.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
Salt-sensitive hypertension is associated with renal and vascular dysfunctions, which lead to impaired fluid excretion, increased cardiac output, and total peripheral resistance. It is commonly accepted that increased renal sodium handling and plasma volume expansion are necessary factors for the development of salt-induced hypertension. The epithelial sodium channel (ENaC) is a trimeric ion channel expressed in the distal nephron that plays a critical role in the regulation of sodium reabsorption in both normal and pathological conditions. In this mini-review, we summarize recent studies investigating the role of ENaC in the development of salt-sensitive hypertension. On the basis of experimental data obtained from the Dahl salt-sensitive rats, we and others have demonstrated that abnormal ENaC activation in response to a dietary NaCl load contributes to the development of high blood pressure in this model. The role of different humoral factors, such as the components of the renin-angiotensin-aldosterone system, members of the epidermal growth factors family, arginine vasopressin, and oxidative stress mediating the effects of dietary salt on ENaC are discussed in this review to highlight future research directions and to determine potential molecular targets for drug development.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan; and
| | | |
Collapse
|
43
|
The adipose tissue and the involvement of the renin-angiotensin-aldosterone system in cardiometabolic syndrome. Cell Tissue Res 2016; 366:543-548. [PMID: 27734151 DOI: 10.1007/s00441-016-2515-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/14/2016] [Indexed: 01/17/2023]
Abstract
Cardiometabolic diseases are linked to a cluster of modifiable factors, including risk factors closely related to central adiposity. Chronic renin-angiotensin-aldosterone system (RAAS) activation has far-reaching effects on cardiometabolic risk and is a substantial contributor to this clinical condition. RAAS components are locally expressed in the vessels and adipose tissue. This review appoints RAAS, through the classical and the alternative view, as the main mediator of the cross-talk in cardiometabolic syndrome.
Collapse
|
44
|
Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2483163. [PMID: 27668035 PMCID: PMC5030421 DOI: 10.1155/2016/2483163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS) causes cardiovascular diseases (CVDs), atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs), for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair.
Collapse
|
45
|
Affiliation(s)
- John M Hamlyn
- From the Departments of Physiology (J.M.H., M.P.B.) and Medicine (M.P.B.), University of Maryland School of Medicine, Baltimore.
| | - Mordecai P Blaustein
- From the Departments of Physiology (J.M.H., M.P.B.) and Medicine (M.P.B.), University of Maryland School of Medicine, Baltimore.
| |
Collapse
|
46
|
Xu W, Hong SJ, Zhong A, Xie P, Jia S, Xie Z, Zeitchek M, Niknam-Bienia S, Zhao J, Porterfield DM, Surmeier DJ, Leung KP, Galiano RD, Mustoe TA. Sodium channel Nax is a regulator in epithelial sodium homeostasis. Sci Transl Med 2016; 7:312ra177. [PMID: 26537257 DOI: 10.1126/scitranslmed.aad0286] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanisms by which the epidermis responds to disturbances in barrier function and restores homeostasis are unknown. With a perturbation of the epidermal barrier, water is lost, resulting in an increase in extracellular sodium concentration. We demonstrate that the sodium channel Nax functions as a sodium sensor. With increased extracellular sodium, Nax up-regulates prostasin, which results in activation of the sodium channel ENaC, resulting in increased sodium flux and increased downstream mRNA synthesis of inflammatory mediators. Nax is present in multiple epithelial tissues, and up-regulation of its downstream genes is found in hypertrophic scars. In animal models, blocking Nax expression results in improvement in scarring and atopic dermatitis-like symptoms, both of which are pathological conditions characterized by perturbations in barrier function. These findings support an important role for Nax in maintaining epithelial homeostasis.
Collapse
Affiliation(s)
- Wei Xu
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Seok Jong Hong
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aimei Zhong
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ping Xie
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shengxian Jia
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhong Xie
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael Zeitchek
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Solmaz Niknam-Bienia
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jingling Zhao
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. Department of Burns, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - D James Surmeier
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kai P Leung
- Microbiology Branch, U.S. Army Dental and Trauma Research Detachment, Institute of Surgical Research, JB Fort Sam Houston, San Antonio, TX 78234, USA
| | - Robert D Galiano
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Thomas A Mustoe
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
47
|
Hydrogen Peroxide and Sodium Transport in the Lung and Kidney. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9512807. [PMID: 27073804 PMCID: PMC4814630 DOI: 10.1155/2016/9512807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
Renal and lung epithelial cells are exposed to some significant concentrations of H2O2. In urine it may reach 100 μM, while in the epithelial lining fluid in the lung it is estimated to be in micromolar to tens-micromolar range. Hydrogen peroxide has a stimulatory action on the epithelial sodium channel (ENaC) single-channel activity. It also increases stability of the channel at the membrane and slows down the transcription of the ENaC subunits. The expression and the activity of the channel may be inhibited in some other, likely higher, oxidative states of the cell. This review discusses the role and the origin of H2O2 in the lung and kidney. Concentration-dependent effects of hydrogen peroxide on ENaC and the mechanisms of its action have been summarized. This review also describes outlooks for future investigations linking oxidative stress, epithelial sodium transport, and lung and kidney function.
Collapse
|
48
|
Poudyal H. Mechanisms for the cardiovascular effects of glucagon-like peptide-1. Acta Physiol (Oxf) 2016; 216:277-313. [PMID: 26384481 DOI: 10.1111/apha.12604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022]
Abstract
Over the past three decades, at least 10 hormones secreted by the enteroendocrine cells have been discovered, which directly affect the cardiovascular system through their innate receptors expressed in the heart and blood vessels or through a neural mechanism. Glucagon-like peptide-1 (GLP-1), an important incretin, is perhaps best studied of these gut-derived hormones with important cardiovascular effects. In this review, I have discussed the mechanism of GLP-1 release from the enteroendocrine L-cells and its physiological effects on the cardiovascular system. Current evidence suggests that GLP-1 has positive inotropic and chronotropic effects on the heart and may be important in preserving left ventricular structure and function by direct and indirect mechanisms. The direct effects of GLP-1 in the heart may be mediated through GLP-1R expressed in atria as well as arteries and arterioles in the left ventricle and mainly involve in the activation of multiple pro-survival kinases and enhanced energy utilization. There is also good evidence to support the involvement of a second, yet to be identified, GLP-1 receptor. Further, GLP-1(9-36)amide, which was previously thought to be the inactive metabolite of the active GLP-1(7-36)amide, may also have direct cardioprotective effects. GLP-1's action on GLP-1R expressed in the central nervous system, kidney, vasculature and the pancreas may indirectly contribute to its cardioprotective effects.
Collapse
Affiliation(s)
- H. Poudyal
- Department of Diabetes, Endocrinology and Nutrition; Graduate School of Medicine and Hakubi Centre for Advanced Research; Kyoto University; Kyoto Japan
| |
Collapse
|
49
|
Ji LD, Tang NLS, Xu J. AGTR1 has undergone natural selection in Euro-Asian populations in relation to ambient temperature that predisposes Chinese populations to essential hypertension. Int J Cardiol 2016; 209:278-80. [PMID: 26901789 DOI: 10.1016/j.ijcard.2016.02.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/01/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Lin-Dan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Nelson L S Tang
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Laboratory for Genetics of Disease Susceptibility, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jin Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China.
| |
Collapse
|
50
|
Abstract
Alkali metals, especially sodium and potassium, are plentiful and vital in biological systems. They take on important roles in health and disease. Such roles include the regulation of homeostasis, osmosis, blood pressure, electrolytic equilibria, and electric current. However, there is a limit to our present understanding; the ions have a great ability and capacity for action in health and disease, much greater than our current understanding. For the regulation of physiological homeostasis, there is a crucial regulator (renin-angiotensin system, RAS), found at both peripheral and central levels. Misregulation of the Na(+)-K(+) pump, and sodium channels in RAS are important for the understanding of disease progression, hypertension, diabetes, and neurodegenerative diseases, etc. In particular, RAS displays direct or indirect interaction important to Parkinson's disease (PD). In this chapter, the relationship between the regulation of sodium/potassium concentration and PD was sought. In addition, some recent biochemical and clinical findings are also discussed that help describe sodium and potassium in the context of traumatic brain injury (TBI). TBI is caused from the heavy striking of the head; this strongly affects ion flux in the affected tissue (brain) and damages cellular regulation systems. Thus, inappropriate concentrations of ions (hyper- and hyponatremia, and hyper- and hypokalemia) will perturb homeostasis giving rise to important and far reaching effects. These changes also impact osmotic pressure and the concentration of other metal ions, such as the calcium(II) ion.
Collapse
|