1
|
Tang S, Zhang J, Lou F, Zhou H, Cai X, Wang Z, Sun L, Sun Y, Li X, Fan L, Li Y, Jin X, Deng S, Yin Q, Bai J, Wang H, Wang H. A lncRNA Dleu2-encoded peptide relieves autoimmunity by facilitating Smad3-mediated Treg induction. EMBO Rep 2024; 25:1208-1232. [PMID: 38291338 PMCID: PMC10933344 DOI: 10.1038/s44319-024-00070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Micropeptides encoded by short open reading frames (sORFs) within long noncoding RNAs (lncRNAs) are beginning to be discovered and characterized as regulators of biological and pathological processes. Here, we find that lncRNA Dleu2 encodes a 17-amino-acid micropeptide, which we name Dleu2-17aa, that is abundantly expressed in T cells. Dleu2-17aa promotes inducible regulatory T (iTreg) cell generation by interacting with SMAD Family Member 3 (Smad3) and enhancing its binding to the Foxp3 conserved non-coding DNA sequence 1 (CNS1) region. Importantly, the genetic deletion of Dleu2-17aa in mice by start codon mutation impairs iTreg generation and worsens experimental autoimmune encephalomyelitis (EAE). Conversely, the exogenous supplementation of Dleu2-17aa relieves EAE. Our findings demonstrate an indispensable role of Dleu2-17aa in maintaining immune homeostasis and suggest therapeutic applications for this peptide in treating autoimmune diseases.
Collapse
Affiliation(s)
- Sibei Tang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Junxun Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fangzhou Lou
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Hong Zhou
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Xiaojie Cai
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Zhikai Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Libo Sun
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Yang Sun
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Xiangxiao Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Li Fan
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Xinping Jin
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siyu Deng
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Qianqian Yin
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Bai
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Hong Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China.
| |
Collapse
|
2
|
Byeon HE, Choi SE, Kim Y, Choi S, Lee SJ, Kim DH, Mo JS, Jeon JY. HDAC11 Regulates Palmitate-induced NLRP3 Inflammasome Activation by Inducing YAP Expression in THP-1 Cells and PBMCs. Endocrinology 2024; 165:bqae011. [PMID: 38366363 DOI: 10.1210/endocr/bqae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 02/18/2024]
Abstract
Histone deacetylase 11 (HDAC11) has been implicated in the pathogenesis of metabolic diseases characterized by chronic low-grade inflammation, such as obesity. However, the influence of HDAC11 on inflammation and the specific effect of HDAC11 on the palmitic acid (PA)-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation are poorly understood. The effect of PA treatment on HDAC11 activity and the NLRP3 inflammasome was investigated in human peripheral blood mononuclear cells and THP-1 cells. The PA-induced responses of key markers of NLRP3 inflammasome activation, including NLRP3 gene expression, caspase-1 p10 activation, cleaved IL-1β production, and extracellular IL-1β release, were assessed as well. The role of HDAC11 was explored using a specific inhibitor of HDAC11 and by knockdown using small interfering (si)HDAC11 RNA. The relationship between HDAC11 and yes-associated protein (YAP) in the PA-induced NLRP3 inflammasome was investigated in THP-1 cells with HDAC11 or YAP knockdown. Following PA treatment, HDAC11 activity and protein levels increased significantly, concomitant with activation of the NLRP3 inflammasome. Notably, PA-induced the upregulation of NLRP3, caspase-1 p10 activation, the production of cleaved IL-1β, and the release of IL-1β into the extracellular space, all of which were attenuated by FT895 treatment and by HDAC11 knockdown. In THP-1 cells, PA induced the expression of YAP and its interaction with NLRP3, resulting in NLRP3 inflammasome activation, whereas both were inhibited by FT895 and siHDAC11 RNA. These findings demonstrate a pivotal role for HDAC11 in the PA-induced activation of the NLRP3 inflammasome. HDAC11 inhibition thus represents a promising therapeutic strategy for mitigating NLRP3 inflammasome-related inflammation in the context of obesity.
Collapse
Affiliation(s)
- Hye-Eun Byeon
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Yujin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Suji Choi
- Department of Biological Sciences, Hyupsung University, Hwasung-si, Gyeonggi-do 18330, Republic of Korea
| | - Soo-Jin Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Dong Hyun Kim
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Jung-Soon Mo
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| |
Collapse
|
3
|
Holay N, Somma A, Duchow M, Soleimani M, Capasso A, Kottapalli S, Rios J, Giri U, Diamond J, Schreiber A, Piscopio AD, Van Den Berg C, Eckhardt SG, Triplett TA. Elucidating the direct effects of the novel HDAC inhibitor bocodepsin (OKI-179) on T cells to rationally design regimens for combining with immunotherapy. Front Immunol 2023; 14:1260545. [PMID: 37744352 PMCID: PMC10513502 DOI: 10.3389/fimmu.2023.1260545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Histone deacetylase inhibitors (HDACi) are currently being explored for the treatment of both solid and hematological malignancies. Although originally thought to exert cytotoxic responses through tumor-intrinsic mechanisms by increasing expression of tumor suppressor genes, several studies have demonstrated that therapeutic responses depend on an intact adaptive immune system: particularly CD8 T cells. It is therefore critical to understand how HDACi directly affects T cells in order to rationally design regimens for combining with immunotherapy. In this study, we evaluated T cell responses to a novel class-selective HDACi (OKI-179, bocodepsin) by assessing histone acetylation levels, which revealed rapid responsiveness accompanied by an increase in CD4 and CD8 T cell frequencies in the blood. However, these rapid responses were transient, as histone acetylation and frequencies waned within 24 hours. This contrasts with in vitro models where high acetylation was sustained and continuous exposure to HDACi suppressed cytokine production. In vivo comparisons demonstrated that stopping OKI-179 treatment during PD-1 blockade was superior to continuous treatment. These findings provide novel insight into the direct effects of HDAC inhibitors on T cells and that treatment schedules that take into account acute T cell effects should be considered when combined with immunotherapies in order to fully harness the tumor-specific T cell responses in patients.
Collapse
Affiliation(s)
- Nisha Holay
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Alexander Somma
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Mark Duchow
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Milad Soleimani
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Anna Capasso
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Srividya Kottapalli
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Joshua Rios
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Uma Giri
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Jennifer Diamond
- OnKure Therapeutics, Boulder, CO, United States
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | - Anna Schreiber
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | | | - Carla Van Den Berg
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, United States
| | - S. Gail Eckhardt
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Todd A. Triplett
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Immunotherapeutics & Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
4
|
Chen H, Xie C, Chen Q, Zhuang S. HDAC11, an emerging therapeutic target for metabolic disorders. Front Endocrinol (Lausanne) 2022; 13:989305. [PMID: 36339432 PMCID: PMC9631211 DOI: 10.3389/fendo.2022.989305] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylase 11 (HDAC11) is the only member of the class IV HDAC, and the latest member identified. It is highly expressed in brain, heart, kidney and some other organs, and located in mitochondria, cytoplasm and nuclei, depending on the tissue and cell types. Although studies in HDAC11 total knockout mice suggest its dispensable features for tissue development and life, it participates in diverse pathophysiological processes, such as DNA replication, tumor growth, immune regulation, oxidant stress injury and neurological function of cocaine. Recent studies have shown that HDAC11 is also critically involved in the pathogenesis of some metabolic diseases, including obesity, diabetes and complications of diabetes. In this review, we summarize the recent progress on the role and mechanism of HDAC11 in the regulation of metabolic disorders, with the focus on its regulation on adipogenesis, lipid metabolism, metabolic inflammation, glucose tolerance, immune responses and energy consumption. We also discuss the property and selectivity of HDAC11 inhibitors and their applications in a variety of in vitro and in vivo models of metabolic disorders. Given that pharmacological and genetic inhibition of HDAC11 exerts a beneficial effect on various metabolic disorders, HDAC11 may be a potential therapeutic target to treat chronic metabolic diseases.
Collapse
Affiliation(s)
- Huizhen Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunguang Xie
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
5
|
Hagiwara R, Kageyama K, Iwasaki Y, Niioka K, Daimon M. Effects of tubastatin A on adrenocorticotropic hormone synthesis and proliferation of AtT-20 corticotroph tumor cells. Endocr J 2022; 69:1053-1060. [PMID: 35296577 DOI: 10.1507/endocrj.ej21-0778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cushing's disease is an endocrine disorder characterized by hypercortisolism, mainly caused by autonomous production of ACTH from pituitary adenomas. Autonomous ACTH secretion results in excess cortisol production from the adrenal glands, and corticotroph adenoma cells disrupt the normal cortisol feedback mechanism. Pan-histone deacetylase (HDAC) inhibitors inhibit cell proliferation and ACTH production in AtT-20 corticotroph tumor cells. A selective HDAC6 inhibitor has been known to exert antitumor effects and reduce adverse effects related to the inhibition of other HDACs. The current study demonstrated that the potent and selective HDAC6 inhibitor tubastatin A has inhibitory effects on proopiomelanocortin (Pomc) and pituitary tumor-transforming gene 1 (Pttg1) mRNA expression, involved in cell proliferation. The phosphorylated Akt/Akt protein levels were increased after treatment with tubastatin A. Therefore, the proliferation of corticotroph cells may be regulated through the Akt-Pttg1 pathway. Dexamethasone treatment also decreased the Pomc mRNA level. Combined tubastatin A and dexamethasone treatment showed additive effects on the Pomc mRNA level. Thus, tubastatin A may have applications in the treatment of Cushing's disease.
Collapse
Affiliation(s)
- Rie Hagiwara
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | | | - Kanako Niioka
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
6
|
Manipulating Microbiota to Treat Atopic Dermatitis: Functions and Therapies. Pathogens 2022; 11:pathogens11060642. [PMID: 35745496 PMCID: PMC9228373 DOI: 10.3390/pathogens11060642] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a globally prevalent skin inflammation with a particular impact on children. Current therapies for AD are challenged by the limited armamentarium and the high heterogeneity of the disease. A novel promising therapeutic target for AD is the microbiota. Numerous studies have highlighted the involvement of the skin and gut microbiota in the pathogenesis of AD. The resident microbiota at these two epithelial tissues can modulate skin barrier functions and host immune responses, thus regulating AD progression. For example, the pathogenic roles of Staphylococcus aureus in the skin are well-established, making this bacterium an attractive target for AD treatment. Targeting the gut microbiota is another therapeutic strategy for AD. Multiple oral supplements with prebiotics, probiotics, postbiotics, and synbiotics have demonstrated promising efficacy in both AD prevention and treatment. In this review, we summarize the association of microbiota dysbiosis in both the skin and gut with AD, and the current knowledge of the functions of commensal microbiota in AD pathogenesis. Furthermore, we discuss the existing therapies in manipulating both the skin and gut commensal microbiota to prevent or treat AD. We also propose potential novel therapies based on the cutting-edge progress in this area.
Collapse
|
7
|
Torabijahromi M, Roozbeh J, Raeesjalali G, Shafiee M, Rasaei N, Heidari M, Karimi MH. Comparison of FOXP3 and Interleukin 35 Expression Profiles in Kidney Transplant Recipients With Excellent Long-Term Graft Function and Acute Rejection. EXP CLIN TRANSPLANT 2021; 19:1142-1148. [PMID: 34812705 DOI: 10.6002/ect.2021.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Transplant tolerance is defined as graft acceptance without long-term use of immunosuppressive agents. Regulatory T cells are involved in the maintenance of peripheral self-tolerance by actively suppressing the activation and expansion of autoreactive T cells. In the present study, we compared the expression profiles of forkhead box protein P3 (FOXP3) and interleukin 35 in kidney transplant recipients who had excellent long-term graft function under immunosuppression versus recipients who had acute rejection. MATERIALS AND METHODS The 40 kidney transplant recipients included in this study were divided into 2 groups: 27 recipients with excellent long-term graft function and 13 recipients with acute rejection. After collection of whole peripheral blood, peripheral blood mononuclear cells were isolated from the blood samples. After RNAextraction and cDNAsynthesis from each collected sample, expression levels of interleukin 35 and FOXP3 were determined using in-house SYBER green-based real-time polymerase chain reaction. We used t tests to analyze data. RESULTS Mean ages of recipients with excellent longterm graft function and recipients with acute rejection were 42.1 and 45.5 years, respectively. We found that FOXP3 and interleukin 35 expression levels were significantly increased in recipients with excellentlongterm graftfunction comparedwith recipientswith acute rejection. FOXP3 expression levels were significantly higher in those with excellent long-term graft function with graft survivalrate of <10 years,whereas interleukin 35 expression levels were significantly higher in patients with graft survival rate >10 years (P < .05). Expression levels of FOXP3 and interleukin 35 were greater in those from 35 to 50 years old versus with those in the other age ranges. CONCLUSIONS Expression patterns of FOXP3 and interleukin 35 may have the potential to be used as prognostic biomarkers for kidney transplant outcomes.
Collapse
Affiliation(s)
- Mahsa Torabijahromi
- From the Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | | | |
Collapse
|
8
|
Cui J, Xu H, Yu J, Li Y, Chen Z, Zou Y, Zhang X, Du Y, Xia J, Wu J. IL-4 inhibits regulatory T cells differentiation by HDAC9-mediated epigenetic regulation. Cell Death Dis 2021; 12:501. [PMID: 34006836 PMCID: PMC8131756 DOI: 10.1038/s41419-021-03769-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Regulatory T cells play a crucial role in orchestrating immune response and maintaining immune tolerance, and the expression of the Foxp3 gene is indispensable to the differentiation of regulatory T cells. IL-4 shows strong inhibitory effects on Foxp3 expression and regulatory T cells differentiation, but the detailed mechanisms are still unclear. Here, we revealed that epigenetic modulations are key to this process. Specifically, the inhibition was found to be STAT6 dependent, and HDAC9 was involved with the process of histone deacetylation at the Foxp3 locus, subsequently decreasing chromatin accessibility and Foxp3 gene transcription. Pan-histone deacetylation inhibitors, especially sodium butyrate, notably abolished the inhibitory effects of IL-4 and ameliorated allergic airway inflammation in mouse models. Our research provides important mechanistic insights into how IL-4 inhibits regulatory T cells differentiation and suggests the therapeutic potential of the sodium butyrate in allergic airway disease.
Collapse
Affiliation(s)
- Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Hagiwara R, Kageyama K, Niioka K, Takayasu S, Tasso M, Daimon M. Involvement of histone deacetylase 1/2 in adrenocorticotropic hormone synthesis and proliferation of corticotroph tumor AtT-20 cells. Peptides 2021; 136:170441. [PMID: 33181265 DOI: 10.1016/j.peptides.2020.170441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Cushing's disease is mainly caused by autonomous production of adrenocorticotropic hormone (ACTH) from pituitary adenomas. In our previous study, a histone deacetylase (HDAC) inhibitor, trichostatin A, inhibited cell proliferation and ACTH production via decreased pituitary tumor-transforming gene 1 (PTTG1) in AtT-20 mouse corticotroph tumor cells. In the present study, we examined the effects of romidepsin, a potent and selective HDAC1/2 inhibitor, on cell proliferation and ACTH synthesis. To elucidate further potential mechanisms of romidepsin, we examined the effects of HDAC1/2 on proopiomelanocortin (Pomc) and Pttg1 mRNA levels and cell proliferation. Small interfering RNA-mediated knockdown was used to decrease HDAC1 or 2. Romidepsin treatment decreased Pomc and Pttg1 mRNA levels, and cell proliferation. The drug also increased Hdac1 and decreased Hdac2 mRNA levels. Hdac1 knockdown decreased basal Pttg1 mRNA levels and cell proliferation, but not Pomc mRNA levels. Romidepsin treatment decreases ACTH synthesis in corticotroph tumor cells. Romidepsin suppresses cell proliferation via PTTG1. HDAC1 is also involved in the proliferation of corticotroph cells via PTTG1.
Collapse
Affiliation(s)
- Rie Hagiwara
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | - Kanako Niioka
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Shinobu Takayasu
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Mizuki Tasso
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
10
|
Yang H, Chen L, Sun Q, Yao F, Muhammad S, Sun C. The role of HDAC11 in obesity-related metabolic disorders: A critical review. J Cell Physiol 2021; 236:5582-5591. [PMID: 33481312 DOI: 10.1002/jcp.30286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
At present, metabolic diseases, such as obesity and diabetes, have become the world's top health threats. These diseases are closely related to the abnormal development and function of adipocytes and metabolic inflammation associated with obesity. Histone deacetylase 11 (HDAC11), with a relatively unique structure and function in the HDAC family, plays a vital role in regulating cell growth, migration, and cell death. Currently, research on new key regulatory functions of HDAC11 in metabolic homeostasis is receiving more and more attention, and HDAC11 has also become a potential therapeutic target in the treatment of obesity and obesity-related diseases. Here, we summarized the latest literature on the role of HDAC11 in regulating the progress of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Hong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingling Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangyao Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Saeed Muhammad
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Department of Poultry Science, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Zhou W, Yang J, Saren G, Zhao H, Cao K, Fu S, Pan X, Zhang H, Wang A, Chen X. HDAC6-specific inhibitor suppresses Th17 cell function via the HIF-1α pathway in acute lung allograft rejection in mice. Am J Cancer Res 2020; 10:6790-6805. [PMID: 32550904 PMCID: PMC7295069 DOI: 10.7150/thno.44961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Previous animal experiments and clinical studies indicated the critical role of Th17 cells in lung transplant rejection. Therefore, the downregulation of Th17 cell function in lung transplant recipients is of great interest. Methods: We established an orthotopic mouse lung transplantation model to investigate the role of histone deacetylase 6-specific inhibitor (HDAC6i), Tubastatin A, in the suppression of Th17 cells and attenuation of pathologic lesions in lung allografts. Moreover, mechanism studies were conducted in vitro. Results: Tubastatin A downregulated Th17 cell function in acute lung allograft rejection, prolonged the survival of lung allografts, and attenuated acute rejection by suppressing Th17 cell accumulation. Consistently, exogenous IL-17A supplementation eliminated the protective effect of Tubastatin A. Also, hypoxia-inducible factor-1α (HIF-1α) was overexpressed in a lung transplantation mouse model. HIF-1α deficiency suppressed Th17 cell function and attenuated lung allograft rejection by downregulating retinoic acid-related orphan receptor γt (ROR γt) expression. We showed that HDAC6i downregulated HIF-1α transcriptional activity under Th17-skewing conditions in vitro and promoted HIF-1α protein degradation in lung allografts. HDAC6i did not affect the suppression of HIF-1α-/- naïve CD4+ T cell differentiation into Th17 cell and attenuation of acute lung allograft rejection in HIF-1α-deficient recipient mice. Conclusion: These findings suggest that Tubastatin A downregulates Th17 cell function and suppresses acute lung allograft rejection, at least partially, via the HIF-1α/ RORγt pathway.
Collapse
|
12
|
Castro K, Casaccia P. Epigenetic modifications in brain and immune cells of multiple sclerosis patients. Mult Scler 2019; 24:69-74. [PMID: 29307300 DOI: 10.1177/1352458517737389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Multiple sclerosis (MS) is a debilitating neurological disease whose onset and progression are influenced by the interplay of genetic and environmental factors. Epigenetic modifications, which include post-translational modification of the histones and DNA, are considered mediators of gene-environment interactions and a growing body of evidence suggests that they play an important role in MS pathology and could be potential therapeutic targets. Since epigenetic events regulate transcription of different genes in a cell type-specific fashion, we caution on the distinct functional consequences that targeting the same epigenetic modifications might have in distinct cell types. In this review, we primarily focus on the role of histone acetylation and DNA methylation on oligodendrocyte and T-cell function and its potential implications for MS. We find that decreased histone acetylation and increased DNA methylation in oligodendrocyte lineage (OL) cells enhance myelin repair, which is beneficial for MS, while the same epigenetic processes in T cells augment their pro-inflammatory phenotype, which can exacerbate disease severity. In conclusion, epigenetic-based therapies for MS may have great value but only when cellular specificity is taken into consideration.
Collapse
Affiliation(s)
- Kamilah Castro
- Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrizia Casaccia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA/Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY, USA
| |
Collapse
|
13
|
Coentro JQ, Pugliese E, Hanley G, Raghunath M, Zeugolis DI. Current and upcoming therapies to modulate skin scarring and fibrosis. Adv Drug Deliv Rev 2019; 146:37-59. [PMID: 30172924 DOI: 10.1016/j.addr.2018.08.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/08/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
Skin is the largest organ of the human body. Being the interface between the body and the outer environment, makes it susceptible to physical injury. To maintain life, nature has endowed skin with a fast healing response that invariably ends in the formation of scar at the wounded dermal area. In many cases, skin remodelling may be impaired, leading to local hypertrophic scars or keloids. One should also consider that the scarring process is part of the wound healing response, which always starts with inflammation. Thus, scarring can also be induced in the dermis, in the absence of an actual wound, during chronic inflammatory processes. Considering the significant portion of the population that is subject to abnormal scarring, this review critically discusses the state-of-the-art and upcoming therapies in skin scarring and fibrosis.
Collapse
Affiliation(s)
- João Q Coentro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Geoffrey Hanley
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland.
| |
Collapse
|
14
|
Mohammadi A, Sharifi A, Pourpaknia R, Mohammadian S, Sahebkar A. Manipulating macrophage polarization and function using classical HDAC inhibitors: Implications for autoimmunity and inflammation. Crit Rev Oncol Hematol 2018; 128:1-18. [DOI: 10.1016/j.critrevonc.2018.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
|
15
|
Li L, Liu W, Wang H, Yang Q, Zhang L, Jin F, Jin Y. Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions. Cell Death Dis 2018; 9:480. [PMID: 29691366 PMCID: PMC5915523 DOI: 10.1038/s41419-018-0480-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/17/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Histone deacetylases (HDAC) plays important roles in the post-translational modifications of histone cores as well as non-histone targets. Many of them are involved in key inflammatory processes. Despite their importance, whether and how HDAC9 is regulated under inflammatory conditions remains unclear. The aim of this study was to evaluate the effects of HDAC9 under chronic inflammation condition in human periodontal ligament stromal cell (PDLSCs) and to explore the underlying regulatory mechanism. PDLSCs from healthy or periodontitis human tissue was compared. The therapeutic effects of HDAC inhibitors was determined in PDLSC pellet transplanted nude mice and LPS-induced rat periodontitis. We report that HDAC9 was the most affected HDAC family member under inflammatory conditions in PDLSCs. HDAC9 impaired osteogenic differentiation capacity of PDLSCs under inflammatory conditions. Downregulation of HDAC9 by HDAC inhibitors or si-HDAC9 rescued the osteogenic differentiation capacity of inflammatory PDLSC to a similar level with the healthy PDLSC. In this context, HDAC9 and miR-17 formed an inhibitory loop. The inhibition of miR-17 aggravated loss of calcified nodules in inflamed PDLSCs and interrupted the effect of HDAC inhibitor in rescuing osteogenesis. In vivo experiments using nude mice and LPS-induced periodontitis model confirmed that HDAC inhibitors could improve new bone formation. We conclude that HDAC inhibitors improved osteogenesis of PDLSCs in vitro and periodontitis in vivo.
Collapse
Affiliation(s)
- Liya Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032, Xi'an, Shaanxi, China
| | - Wenjia Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032, Xi'an, Shaanxi, China
| | - Hong Wang
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Qianjuan Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Liqiang Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032, Xi'an, Shaanxi, China
| | - Fang Jin
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China. .,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
Gonçalves P, Araújo JR, Di Santo JP. A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease. Inflamm Bowel Dis 2018; 24:558-572. [PMID: 29462379 DOI: 10.1093/ibd/izx029] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 12/22/2022]
Abstract
Gut microbiota has a fundamental role in the energy homeostasis of the host and is essential for proper "education" of the immune system. Intestinal microbial communities are able to ferment dietary fiber releasing short-chain fatty acids (SCFAs). The SCFAs, particularly butyrate (BT), regulate innate and adaptive immune cell generation, trafficing, and function. For example, BT has an anti-inflammatory effect by inhibiting the recruitment and proinflammatory activity of neutrophils, macrophages, dendritic cells, and effector T cells and by increasing the number and activity of regulatory T cells. Gut microbial dysbiosis, ie, a microbial community imbalance, has been suggested to play a role in the development of inflammatory bowel disease (IBD). The relationship between dysbiosis and IBD has been difficult to prove, especially in humans, and is probably complex and dynamic, rather than one of a simple cause and effect relationship. However, IBD patients have dysbiosis with reduced numbers of SCFAs-producing bacteria and reduced BT concentration that is linked to a marked increase in the number of proinflammatory immune cells in the gut mucosa of these patients. Thus, microbial dysbiosis and reduced BT concentration may be a factor in the emergence and severity of IBD. Understanding the relationship between microbial dysbiosis and reduced BT concentration to IBD may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | - João Ricardo Araújo
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1202, Paris, France
| | - James P Di Santo
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| |
Collapse
|
17
|
Alessandrini A, Turka LA. FOXP3-Positive Regulatory T Cells and Kidney Allograft Tolerance. Am J Kidney Dis 2017; 69:667-674. [PMID: 28049555 PMCID: PMC5403573 DOI: 10.1053/j.ajkd.2016.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/22/2016] [Indexed: 11/11/2022]
Abstract
Normal immune homeostasis is achieved by several mechanisms, and prominent among them is immunoregulation. Although several types of regulatory lymphocyte populations have been described, CD4 T cells expressing the FOXP3 transcription factor (FOXP3-positive regulatory T cells [FOXP3+ Tregs]) are the best understood. This population of cells is critical for maintaining self-tolerance throughout the life of the organism. FOXP3+ Tregs can develop within the thymus, but also under select circumstances, naive peripheral T cells can be induced to express FOXP3 and become stable Tregs as well. Abundant evidence from animal systems, as well as limited evidence in humans, implicates Tregs in transplant tolerance, although whether these Tregs recognize allo- or self-antigens is not clear. New translational approaches to promote immunosuppression minimization and/or actual tolerance are being designed to exploit these observations. These include strategies to boost the generation, maintenance, and stability of endogenous Tregs, as well as adoptive cellular therapy with exogenous Tregs.
Collapse
Affiliation(s)
- Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA.
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
18
|
Fasching P, Stradner M, Graninger W, Dejaco C, Fessler J. Therapeutic Potential of Targeting the Th17/Treg Axis in Autoimmune Disorders. Molecules 2017; 22:E134. [PMID: 28098832 PMCID: PMC6155880 DOI: 10.3390/molecules22010134] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 02/08/2023] Open
Abstract
A disruption of the crucial balance between regulatory T-cells (Tregs) and Th17-cells was recently implicated in various autoimmune disorders. Tregs are responsible for the maintenance of self-tolerance, thus inhibiting autoimmunity, whereas pro-inflammatory Th17-cells contribute to the induction and propagation of inflammation. Distortion of the Th17/Treg balance favoring the pro-inflammatory Th17 side is hence suspected to contribute to exacerbation of autoimmune disorders. This review aims to summarize recent data and advances in targeted therapeutic modification of the Th17/Treg-balance, as well as information on the efficacy of candidate therapeutics with respect to the treatment of autoimmune diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Forkhead Transcription Factors/antagonists & inhibitors
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression Regulation
- Humans
- Immunologic Factors/therapeutic use
- Inflammation
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/genetics
- Interleukin-17/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Piperidines/therapeutic use
- Pyrimidines/therapeutic use
- Pyrroles/therapeutic use
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/pathology
- Ustekinumab/therapeutic use
Collapse
Affiliation(s)
- Patrizia Fasching
- Department of Rheumatology and Immunology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Martin Stradner
- Department of Rheumatology and Immunology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Winfried Graninger
- Department of Rheumatology and Immunology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Christian Dejaco
- Department of Rheumatology and Immunology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Johannes Fessler
- Department of Rheumatology and Immunology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| |
Collapse
|
19
|
Yu L, Li N, Zhang J, Jiang Y. IL-13 regulates human nasal epithelial cell differentiation via H3K4me3 modification. J Inflamm Res 2017; 10:181-188. [PMID: 29386911 PMCID: PMC5767096 DOI: 10.2147/jir.s149156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction Epigenetic regulation has been shown to play an important role in the development of inflammatory diseases, including chronic rhinosinusitis and nasal polyps. The latter are characterized by epithelial mis-differentiation and infiltration of inflammatory cytokines. H3K4me3 has been shown to be involved in regulating lineage commitment. However, the underlying mechanisms, especially in human nasal epithelial cells (HNEpC), remain underexplored. The objective of this study was to investigate the role of H3K4me3 in HNEpC differentiation treated with the Th2 cytokine IL-13. Patients and methods The expression levels of mRNA and proteins were investigated using reverse transcription-polymerase chain reaction (RT-PCR) assays and Western blot in nasal polyp tissues and human nasal epithelial cells respectively. We measured these levels of H3K4me3, MLL1 and targeted genes compared with control subjects. Results We demonstrate that expression of H3K4me3 and its methyltransferase MLL1 was significantly upregulated in IL-13-treated HNEpC. This elevation was also observed in nasal polyps. Expression of cilia-related transcription factors FOXJ1 and DNAI2 decreased, while goblet cell-derived genes CLCA1 and MUC5a increased upon IL-13 treatment. Mechanistically, knockdown of MLL1 restored expression of these four genes induced by IL-13. Conclusion These findings suggest that H3K4me3 is a critical regulator in control of nasal epithelial cell differentiation. MLL1 may be a potential therapeutic target for nasal inflammatory diseases.
Collapse
Affiliation(s)
- Lei Yu
- Department of Otorhinolaryngology
| | - Na Li
- Department of Otorhinolaryngology
| | - Jisheng Zhang
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | | |
Collapse
|
20
|
Dwivedi M, Kumar P, Laddha NC, Kemp EH. Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity. Autoimmun Rev 2016; 15:379-92. [PMID: 26774011 DOI: 10.1016/j.autrev.2016.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/03/2016] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) are comprised of a heterogeneous population of cells that play a vital role in suppressing inflammation and maintaining immune tolerance. Given the crucial role of Tregs in maintaining immune homeostasis, it is probably not surprising that many microbial species and their metabolites have the potential to induce Tregs. There is now great interest in the therapeutic potential of probiotics and prebiotics based strategies for a range of autoimmune disorders. This review will summarise recent findings concerning the role of probiotics and prebiotics in induction of Tregs to ameliorate the autoimmune conditions. In addition, the article is focused to explain the different mechanisms of Treg induction and function by these probiotics and prebiotics, based on the available studies till date. The article further proposes that induction of Tregs by probiotics and prebiotics could lead to the development of new therapeutic approach towards curbing the autoimmune response and as an alternative to detrimental immunosuppressive drugs.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, Gujarat -394350, India
| | - Prasant Kumar
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, Gujarat -394350, India
| | - Naresh C Laddha
- Department of Molecular Biology, Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat, India
| | - E Helen Kemp
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
21
|
Fang S, Meng X, Zhang Z, Wang Y, Liu Y, You C, Yan H. Vorinostat Modulates the Imbalance of T Cell Subsets, Suppresses Macrophage Activity, and Ameliorates Experimental Autoimmune Uveoretinitis. Neuromolecular Med 2016; 18:134-45. [PMID: 26798022 DOI: 10.1007/s12017-016-8383-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
The purpose of the study was to investigate the anti-inflammatory efficiency of vorinostat, a histone deacetylase inhibitor, in experimental autoimmune uveitis (EAU). EAU was induced in female C57BL/6J mice immunized with interphotoreceptor retinoid-binding protein peptide. Vorinostat or the control treatment, phosphate-buffered saline, was administrated orally from 3 days before immunization until euthanasia at day 21 after immunization. The clinical and histopathological scores of mice were graded, and the integrity of the blood-retinal barrier was examined by Evans blue staining. T helper cell subsets were measured by flow cytometry, and the macrophage functions were evaluated with immunohistochemistry staining and immunofluorescence assays. The mRNA levels of tight junction proteins were measured by qRT-PCR. The expression levels of intraocular cytokines and transcription factors were examined by western blotting. Vorinostat relieved both clinical and histopathological manifestations of EAU in our mouse model, and the BRB integrity was maintained in vorinostat-treated mice, which had less vasculature leakage and higher mRNA and protein expressions of tight junction proteins than controls. Moreover, vorinostat repressed Th1 and Th17 cells and increased Th0 and Treg cells. Additionally, the INF-γ and IL-17A expression levels were significantly decreased, while the IL-10 level was increased by vorinostat treatment. Furthermore, due to the reduced TNF-α level, the macrophage activity was considerably inhibited in EAU mice. Finally, transcription factors, including STAT1, STAT3, and p65, were greatly suppressed by vorinostat treatment. Our data suggest that vorinostat might be a potential anti-inflammatory agent in the management of uveitis and other autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Sijie Fang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Xiangda Meng
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Zhuhong Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Yang Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Yuanyuan Liu
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Caiyun You
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
22
|
Picascia A, Grimaldi V, Iannone C, Soricelli A, Napoli C. Innate and adaptive immune response in stroke: Focus on epigenetic regulation. J Neuroimmunol 2015; 289:111-20. [PMID: 26616880 DOI: 10.1016/j.jneuroim.2015.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Inflammation and immune response play a pivotal role in the pathophysiology of ischemic stroke giving their contribution to tissue damage and repair. Emerging evidence supports the involvement of epigenetic mechanisms such as methylation, histone modification and miRNAs in the pathogenesis of stroke. Interestingly, epigenetics can influence the molecular events involved in ischemic injury by controlling the switch from pro- to anti-inflammatory response, however, this is still a field to be fully explored. The knowledge of epigenetic processes could to allow for the discovery of more sensitive and specific biomarkers for risk, onset, and progression of disease as well as further novel tools to be used in both primary prevention and therapy of stroke. Indeed, studies performed in vitro and in small animal models seem to suggest a neuroprotective role of HDAC inhibitors (e.g. valproic acid) and antagomir (e.g. anti-miR-181a) in ischemic condition by modulation of both immune and inflammatory pathways. Thus, the clinical implications of altered epigenetic mechanisms for the prevention of stroke are very promising but clinical prospective studies and translational approaches are still warranted.
Collapse
Affiliation(s)
- Antonietta Picascia
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy
| | - Vincenzo Grimaldi
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy.
| | - Carmela Iannone
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy
| | - Andrea Soricelli
- IRCCS Research Institute SDN, Naples, Italy; Department of Studies of Institutions and Territorial Systems, University of Naples Parthenope, Naples, Italy
| | - Claudio Napoli
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy; IRCCS Research Institute SDN, Naples, Italy
| |
Collapse
|
23
|
Abstract
The multiple lineages and differentiation states that constitute the T-cell compartment all derive from a common thymic precursor. These distinct transcriptional states are maintained both in time and after multiple rounds of cell division by the concerted actions of a small set of lineage-defining transcription factors that act in conjunction with a suite of chromatin-modifying enzymes to activate, repress, and fine-tune gene expression. These chromatin modifications collectively provide an epigenetic code that allows the stable and heritable maintenance of the T-cell phenotype. Recently, it has become apparent that the epigenetic code represents a therapeutic target for a variety of immune cell disorders, including lymphoma and acute and chronic inflammatory diseases. Here, we review the recent advances in epigenetic regulation of gene expression, particularly as it relates to the T-cell differentiation and function.
Collapse
Affiliation(s)
- Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia; Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | | |
Collapse
|
24
|
Manipulation of B-cell responses with histone deacetylase inhibitors. Nat Commun 2015; 6:6838. [PMID: 25913720 DOI: 10.1038/ncomms7838] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 03/04/2015] [Indexed: 12/24/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are approved for treating certain haematological malignancies, however, recent evidence also illustrates they are modulators of the immune system. In experimental models, HDACi are particularly potent against malignancies originating from the B-lymphocyte lineage. Here we examine the ability of this class of compounds to modify both protective and autoimmune antibody responses. In vitro, HDACi affect B-cell proliferation, survival and differentiation in an HDAC-class-dependent manner. Strikingly, treatment of lupus-prone Mrl/lpr mice with the HDACi panobinostat significantly reduces autoreactive plasma-cell numbers, autoantibodies and nephritis, while other immune parameters remain largely unaffected. Immunized control mice treated with panobinostat or the clinically approved HDACi vorinostat have significantly impaired primary antibody responses, but these treatments surprisingly spare circulating memory B cells. These studies indicate that panobinostat is a potential therapy for B-cell-driven autoimmune conditions and HDACi do not induce major long-term detrimental effects on B-cell memory.
Collapse
|
25
|
Gatti L, Sevko A, De Cesare M, Arrighetti N, Manenti G, Ciusani E, Verderio P, Ciniselli CM, Cominetti D, Carenini N, Corna E, Zaffaroni N, Rodolfo M, Rivoltini L, Umansky V, Perego P. Histone deacetylase inhibitor-temozolomide co-treatment inhibits melanoma growth through suppression of Chemokine (C-C motif) ligand 2-driven signals. Oncotarget 2015; 5:4516-28. [PMID: 24980831 PMCID: PMC4147342 DOI: 10.18632/oncotarget.2065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Target-specific agents used in melanoma are not curative, and chemokines are being implicated in drug-resistance to target-specific agents. Thus, the use of conventional agents in rationale combinations may result in optimization of therapy. Because histone deacetylases participate in tumor development and progression, the combination of the pan-inhibitor SAHA and temozolomide might provide a therapeutic advantage. Here, we show synergism between the two drugs in mutant BRAF cell lines, in association with decreased phosphorylation of cell survival proteins (e.g., C-Jun-N-terminal-kinase, JNK). In the spontaneous ret transgenic mouse melanoma model, combination therapy produced a significant disease onset delay and down-regulation of Chemokine (C-C motif) ligand 2 (CCL2), JNK, and of Myeloid-derived suppressor cell recruitment. Co-incubation with a CCL2-blocking-antibody enhanced in vitro cell sensitivity to temozolomide. Conversely, recombinant CCL2 activated JNK in human tumor melanoma cells. In keeping with these results, the combination of a JNK-inhibitor with temozolomide was synergistic. By showing that down-regulation of CCL2-driven signals by SAHA and temozolomide via JNK contributes to reduce melanoma growth, we provide a rationale for the therapeutic advantage of the drug combination. This combination strategy may be effective because of interference both with tumor cell and tumor microenvironment.
Collapse
Affiliation(s)
- Laura Gatti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. These authors contributed equally to this work
| | - Alexandra Sevko
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Heidelberg, Germany. These authors contributed equally to this work
| | - Michelandrea De Cesare
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giacomo Manenti
- Genetic Epidemiology and Pharmacogenomics Unit,Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Paolo Verderio
- Medical Statistics, Biometry and Bioinformatics Unit,Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara M Ciniselli
- Medical Statistics, Biometry and Bioinformatics Unit,Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Denis Cominetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nives Carenini
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Corna
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Rodolfo
- Immunotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Immunotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Heidelberg, Germany. These authors contributed equally to this work
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. These authors contributed equally to this work
| |
Collapse
|
26
|
Levine MH, Wang Z, Bhatti TR, Wang Y, Aufhauser DD, McNeal S, Liu Y, Cheraghlou S, Han R, Wang L, Hancock WW. Class-specific histone/protein deacetylase inhibition protects against renal ischemia reperfusion injury and fibrosis formation. Am J Transplant 2015; 15:965-73. [PMID: 25708614 PMCID: PMC5493154 DOI: 10.1111/ajt.13106] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/25/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is a common cause of renal dysfunction and renal failure. Histone/protein deacetylases (HDACs) regulate gene accessibility and higher order protein structures and may alter cellular responses to a variety of stresses. We investigated whether use of pan- and class-specific HDAC inhibitors (HDACi) could improve IRI tolerance in the kidney. Using a model of unilateral renal IRI, we investigated early renal function after IRI, and calculated fibrosis after IRI using an automated scoring system. We found that pan-HDAC inhibition using trichostatin (TSA) yielded significant renal functional benefit at 24-96 hours (p < 0.001). Treated mice developed significantly less fibrosis at 30 days (p < 0.0004). Class I HDAC inhibition with MS-275 yielded similar effects. Protection from fibrosis formation was also noted in a cold ischemia transplant model (p < 0.008) with a trend toward improved cold ischemic survival in TSA-treated mice. These effects were not accompanied by induction of typical ischemic tolerance pathways or by priming of heat shock protein expression. In fact, heat shock protein 70 deletion or overexpression did not alter renal ischemia tolerance. Micro-RNA 21, known to be enhanced in vitro in renal tubular cells that survive stress, was enhanced by treatment with HDACi, pointing to possible mechanism.
Collapse
Affiliation(s)
- M. H. Levine
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA,Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Z. Wang
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - T. R. Bhatti
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Y. Wang
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - D. D. Aufhauser
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - S. McNeal
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - Y. Liu
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - S. Cheraghlou
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - R. Han
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - L. Wang
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - W. W. Hancock
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
27
|
Campbell GR, Bruckman RS, Chu YL, Spector SA. Autophagy induction by histone deacetylase inhibitors inhibits HIV type 1. J Biol Chem 2014; 290:5028-5040. [PMID: 25540204 DOI: 10.1074/jbc.m114.605428] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Histone deacetylase inhibitors (HDACi) are being evaluated in a "shock-and-kill" therapeutic approach to reverse human immunodeficiency virus type-1 (HIV) latency from CD4(+) T cells. Using this approach, HDACi have induced HIV RNA synthesis in latently infected cells from some patients. The hope is that the increase in viral production will lead to killing of the infected cell either by the virus itself or by the patient's immune system, a "sterilizing cure." Although administered within the context of combination antiretroviral therapy, the infection of bystander cells remains a concern. In this study, we investigated the effect of HDACi (belinostat, givinostat, panobinostat, romidepsin, and vorinostat) on the productive infection of macrophages. We demonstrate that the HDACi tested do not alter the initial susceptibility of macrophages to HIV infection. However, we demonstrate that HDACi decrease HIV release from macrophages in a dose-dependent manner (belinostat < givinostat < vorinostat < panobinostat < romidepsin) via degradation of intracellular HIV through the canonical autophagy pathway. This mechanism involves unc-51-like autophagy-activating kinase 1 (ULK1) and the inhibition of the mammalian target of rapamycin and requires the formation of autophagosomes and their maturation into autolysosomes in the absence of increased cell death. These data provide further evidence in support of a role for autophagy in the control of HIV infection and suggest that careful consideration of off-target effects will be essential if HDACi are to be a component of a multipronged approach to eliminate latently infected cells.
Collapse
Affiliation(s)
- Grant R Campbell
- From the Department of Pediatrics, Division of Infectious Diseases, University of California at San Diego, La Jolla, California 92093-0672.
| | - Rachel S Bruckman
- From the Department of Pediatrics, Division of Infectious Diseases, University of California at San Diego, La Jolla, California 92093-0672
| | - Yen-Lin Chu
- From the Department of Pediatrics, Division of Infectious Diseases, University of California at San Diego, La Jolla, California 92093-0672
| | - Stephen A Spector
- From the Department of Pediatrics, Division of Infectious Diseases, University of California at San Diego, La Jolla, California 92093-0672.
| |
Collapse
|
28
|
Pretransplantation Recipient Regulatory T cell Suppressive Function Predicts Delayed and Slow Graft Function after Kidney Transplantation. Transplantation 2014; 98:745-53. [DOI: 10.1097/tp.0000000000000219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Xiong Y, Svingen PA, Sarmento OO, Smyrk TC, Dave M, Khanna S, Lomberk GA, Urrutia RA, Faubion WA. Differential coupling of KLF10 to Sin3-HDAC and PCAF regulates the inducibility of the FOXP3 gene. Am J Physiol Regul Integr Comp Physiol 2014; 307:R608-20. [PMID: 24944246 DOI: 10.1152/ajpregu.00085.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inducible gene expression, which requires chromatin remodeling on gene promoters, underlies the epigenetically inherited differentiation program of most immune cells. However, chromatin-mediated mechanisms that underlie these events in T regulatory cells remain to be fully characterized. Here, we report that inducibility of FOXP3, a key transcription factor for the development of T regulatory cells, depends upon Kruppel-like factor 10 (KLF10) interacting with two antagonistic histone-modifying systems. We utilized chromatin immunoprecipitation, genome-integrated reporter assays, and functional domain KLF10 mutant proteins, to characterize reciprocal interactions between this transcription factor and either the Sin3-histone deacetylase complex or the histone acetyltransferase, p300/CBP-associated factor (PCAF). We characterize a Sin3-interacting repressor domain on the NH2 terminus of KLF10, which works to limit the activating function of this transcription factor. Indeed, inactivation of this Sin3-interacting domain renders KLF10 able to physically associate with PCAF as to induce FOXP3 gene transcription. We show that this biochemical data derived from studying our genome-integrated reporter cell system are recapitulated in primary murine lymphocytes. Collectively, these results advance our understanding of how a single transcription factor, namely KLF10, functions as a toggle to integrate antagonistic signals regulating FOXP3 and, thus, immune activation.
Collapse
Affiliation(s)
- Yuning Xiong
- Epigenetics and Chromatin Dynamics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Phyllis A Svingen
- Epigenetics and Chromatin Dynamics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Olga O Sarmento
- Epigenetics and Chromatin Dynamics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Thomas C Smyrk
- Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | - Maneesh Dave
- Epigenetics and Chromatin Dynamics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sahil Khanna
- Epigenetics and Chromatin Dynamics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Gwen A Lomberk
- Epigenetics and Chromatin Dynamics Laboratory, Mayo Clinic, Rochester, Minnesota; Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Raul A Urrutia
- Epigenetics and Chromatin Dynamics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - William A Faubion
- Epigenetics and Chromatin Dynamics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
30
|
Fessler J, Felber A, Duftner C, Dejaco C. Therapeutic potential of regulatory T cells in autoimmune disorders. BioDrugs 2014; 27:281-91. [PMID: 23580095 DOI: 10.1007/s40259-013-0026-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulatory T cells (Tregs) play a dominant role in the regulation of immune responses. Quantitative and/or qualitative abnormalities of Tregs were observed in patients with autoimmune diseases and therapeutic interventions focusing Tregs are an attractive new target with the potential to cure these disorders. Biological agents approved for treatment of inflammatory rheumatic diseases transiently influence Treg prevalences and function and experimental therapies including novel biological agents, gene therapy, activation and ex vivo expansion of purified Tregs as well as substances influencing tolerogenic dendritic cells will be developed for selective Treg therapy. Although many of these interventions are effective in vitro, in animal models as well as in early clinical trials, significant concerns exist regarding the stability of Treg modifications as well as the long-term safety of Treg-based therapies.
Collapse
Affiliation(s)
- Johannes Fessler
- Department of Rheumatology and Immunology, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | | | | | | |
Collapse
|
31
|
Sugimoto K, Itoh T, Takita M, Shimoda M, Chujo D, SoRelle JA, Naziruddin B, Levy MF, Shimada M, Matsumoto S. Improving allogeneic islet transplantation by suppressing Th17 and enhancing Treg with histone deacetylase inhibitors. Transpl Int 2014; 27:408-15. [PMID: 24410777 DOI: 10.1111/tri.12265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/01/2013] [Accepted: 01/07/2014] [Indexed: 12/23/2022]
Abstract
Islet transplantation is a new treatment for achieving insulin independence for patients with severe diabetes. However, major drawbacks of this treatment are the long graft survival, the necessity for immunosuppressive drugs, and the efficacy of transplantation. Donor-specific transfusion (DST) has been shown to reduce rejection after organ transplantation, potentially through enhanced regulatory T-cell (Treg) activity. However, recent findings have shown that activated Treg can be converted into Th17 cells. We focused on histone deacetylase inhibitors (HDACi) because it was reported that inhibition of HDAC activity prevented Treg differentiation into IL17-producing cells. We therefore sought to enhance Treg while suppressing Th17 cells using DST with HDACi to prolong graft survival. To stimulate Treg by DST, we used donor splenocytes. In DST with HDACi group, Foxp3 mRNA expression and Treg population increased in the thymus and spleen, whereas Th17 population decreased. qPCR analysis of lymphocyte mRNA indicated that Foxp3, IL-10, and TGF-b expression increased. However, interleukin 17a, Stat3 (Th17), and IFN-g expression decreased in DST + HDACi group, relative to DST alone. Moreover, DST treated with HDACi prolonged graft survival relative to controls in mice islet transplantation. DST with HDACi may therefore have utility in islet transplantation.
Collapse
Affiliation(s)
- Koji Sugimoto
- Baylor Research Institute Fort Worth Campus, Fort Worth, TX, USA; The Departments of Surgery, Tokushima University, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pan DS, Yang QJ, Fu X, Shan S, Zhu JZ, Zhang K, Li ZB, Ning ZQ, Lu XP. Discovery of an orally active subtype-selective HDAC inhibitor, chidamide, as an epigenetic modulator for cancer treatment. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00350k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumorigenesis is maintained through a complex interplay of multiple cellular biological processes and is regulated to some extent by epigenetic control of gene expression.
Collapse
Affiliation(s)
- De-Si Pan
- Shenzhen Chipscreen Biosciences Ltd
- BIO-Incubator
- Shenzhen
- P. R. China
| | - Qian-Jiao Yang
- Shenzhen Chipscreen Biosciences Ltd
- BIO-Incubator
- Shenzhen
- P. R. China
| | - Xin Fu
- Shenzhen Chipscreen Biosciences Ltd
- BIO-Incubator
- Shenzhen
- P. R. China
| | - Song Shan
- Shenzhen Chipscreen Biosciences Ltd
- BIO-Incubator
- Shenzhen
- P. R. China
| | - Jing-Zhong Zhu
- Shenzhen Chipscreen Biosciences Ltd
- BIO-Incubator
- Shenzhen
- P. R. China
| | - Kun Zhang
- Shenzhen Chipscreen Biosciences Ltd
- BIO-Incubator
- Shenzhen
- P. R. China
| | - Zhi-Bin Li
- Shenzhen Chipscreen Biosciences Ltd
- BIO-Incubator
- Shenzhen
- P. R. China
| | - Zhi-Qiang Ning
- Shenzhen Chipscreen Biosciences Ltd
- BIO-Incubator
- Shenzhen
- P. R. China
| | - Xian-Ping Lu
- Shenzhen Chipscreen Biosciences Ltd
- BIO-Incubator
- Shenzhen
- P. R. China
| |
Collapse
|
33
|
Lozano T, Casares N, Lasarte JJ. Searching for the Achilles Heel of FOXP3. Front Oncol 2013; 3:294. [PMID: 24350059 PMCID: PMC3847665 DOI: 10.3389/fonc.2013.00294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/18/2013] [Indexed: 01/01/2023] Open
Abstract
FOXP3 is a multifaceted transcription factor with a major role in the control of immune homeostasis mediated by T regulatory cells (Treg). The immunoregulatory function of FOXP3 may hinder the induction of immune responses against cancer and infectious agents, and thus, development of inhibitors of its functions might give new therapeutic opportunities for these diseases. But also, FOXP3 is an important tumor suppressor factor in some types of cancers, and therefore, understanding the structure and function of FOXP3 is crucial to gaining insights into the development of FOXP3-targeted therapeutic strategies. FOXP3 homodimerize and likely form supramolecular complexes which might include hundreds of proteins which constitute the FOXP3 interactome. Many of the functions of FOXP3 are clearly regulated by the interactions with these cofactors contributing importantly on the establishment of Treg-cell signature. We summarize here the structural/functional information on this FOXP3 complex, to identify potential opportunities for the development of new strategies to modulate FOXP3 activity.
Collapse
Affiliation(s)
- Teresa Lozano
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Noelia Casares
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Juan José Lasarte
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| |
Collapse
|
34
|
Sung AD, Chao NJ. Acute graft-versus-host disease: are we close to bringing the bench to the bedside? Best Pract Res Clin Haematol 2013; 26:285-92. [PMID: 24309532 DOI: 10.1016/j.beha.2013.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplant (AHSCT) associated with significant morbidity and mortality. This review focuses on the pathophysiology, prevention, and treatment of acute GVHD. Specifically, we explain how new discoveries in immunology have expanded our understanding of GVHD, in which tissue damage from chemotherapy or radiation results in cytokine release, activating T cells, resulting in proliferation and differentiation, trafficking to target organs, and tissue destruction and inflammation. Insights into the mechanisms of this disease relate directly to the development of preventive strategies and therapies, such as immunosuppression, calcineurin inhibitors, T-cell depletion, CCR5 antagonists, gut decontamination, extracorporeal photopheresis, and more. Understanding the immunobiology of GVHD and developing effective preventions and treatments are critical to the continuing success of AHSCT.
Collapse
Affiliation(s)
- Anthony D Sung
- Duke University Medical Center, Division of Hematologic Malignancies and Cellular Therapy, 2400 Pratt St, Suite 9100, Box 3961, Durham, NC 27710, USA.
| | | |
Collapse
|
35
|
Vent-Schmidt J, Han JM, MacDonald KG, Levings MK. The Role of FOXP3 in Regulating Immune Responses. Int Rev Immunol 2013; 33:110-28. [DOI: 10.3109/08830185.2013.811657] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Qian L, Wu Z, Shen J. Advances in the treatment of acute graft-versus-host disease. J Cell Mol Med 2013; 17:966-75. [PMID: 23802653 PMCID: PMC3780546 DOI: 10.1111/jcmm.12093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/15/2013] [Indexed: 12/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) has been widely used for the treatment of hematologic malignant and non-malignant hematologic diseases and other diseases. However, acute graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic transplantation. Acute GVHD may occur in 30% of transplant recipients, which is a syndrome of erythematous skin eruption, cholestatic liver disease and intestinal dysfunction, resulting from the activation of donor T lymphocytes by host antigen-presenting cells, resulting in an immune-mediated inflammatory response. Recent scientific advances in the understanding of the pathogenesis involved in the development of acute GVHD and clinical investigation have provided more effective therapeutic strategies for acute GVHD. This review focuses on major scientific and clinical advances in the treatment of acute GVHD.
Collapse
Affiliation(s)
- Liren Qian
- Department of Haematology, Navy General Hospital, Beijing, China.
| | | | | |
Collapse
|
37
|
Lal A, Chan L, DeVries S, Chin K, Scott GK, Benz CC, Chen YY, Waldman FM, Hwang ES. FOXP3-positive regulatory T lymphocytes and epithelial FOXP3 expression in synchronous normal, ductal carcinoma in situ, and invasive cancer of the breast. Breast Cancer Res Treat 2013; 139:381-90. [DOI: 10.1007/s10549-013-2556-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 01/20/2023]
|
38
|
Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood 2013; 121:3631-9. [PMID: 23444399 DOI: 10.1182/blood-2012-08-451765] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protocols to use Foxp3+ T-regulatory (Treg) cells for cellular therapy, especially postallogeneic stem cell transplantation, are currently being developed and tested by various groups. Inhibitors of DNA methyltransferase (Dnmt) enzymes have been advocated as a means to promote and stabilize Foxp3 expression in Tregs undergoing expansion in vitro before their injection in vivo. We investigated the effects of conditionally deleting two Dnmt enzymes that co-immunoprecipitated with Foxp3 in Treg isolates. Deletion of Dnmt1, but not Dnmt3a, decreased the numbers and function of peripheral Tregs and impaired conversion of conventional T cells into Foxp3+ Tregs under polarizing conditions. Importantly, mice with conditional deletion of Dnmt1 in their Tregs died of autoimmunity by 3 to 4 weeks of age unless they were rescued by perinatal transfer of wild-type Tregs. Conditional Dnmt1 deletion did not affect methylation of CpG sites within Foxp3 but decreased global DNA methylation and altered Treg expression of several hundred pro-inflammatory and other genes. Hence, Dnmt1 is necessary for maintenance of the core gene program underlying Treg development and function, and its deletion within the Treg lineage leads to lethal autoimmunity. These data suggest that caution may be warranted when considering the use of DNMT inhibitors in development of Treg-based cellular therapies.
Collapse
|
39
|
Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, Liu X, Xiao L, Chen X, Wan B, Chin YE, Zhang JZ. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med 2013; 19:322-8. [DOI: 10.1038/nm.3085] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/10/2013] [Indexed: 12/22/2022]
|
40
|
Sung AD, Chao NJ. Concise review: acute graft-versus-host disease: immunobiology, prevention, and treatment. Stem Cells Transl Med 2012; 2:25-32. [PMID: 23283494 DOI: 10.5966/sctm.2012-0115] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplant (AHSCT) associated with significant morbidity and mortality. This review focuses on the pathophysiology, clinical features, prevention, and treatment of acute GVHD. Specifically, we explain how new discoveries in immunology have expanded our understanding of GVHD, in which tissue damage from chemotherapy or radiation results in cytokine release, which activates T cells, resulting in proliferation and differentiation, trafficking to target organs, and tissue destruction and inflammation. Insights into the mechanisms of this disease relate directly to the development of preventive strategies and therapies, such as immunosuppression, T-cell depletion, calcineurin inhibitors, CCR5 antagonists, gut decontamination, extracorporeal photopheresis, and more. We also discuss how GVHD affects the gut, liver, and skin, as well as diagnosis, grading, and scoring. We end by examining future directions of treatment, including new immunomodulators and biomarkers. Understanding the immunobiology of GVHD and developing effective preventions and treatments are critical to the continuing success of AHSCT.
Collapse
|
41
|
Xiong Y, Khanna S, Grzenda AL, Sarmento OF, Svingen PA, Lomberk GA, Urrutia RA, Faubion WA. Polycomb antagonizes p300/CREB-binding protein-associated factor to silence FOXP3 in a Kruppel-like factor-dependent manner. J Biol Chem 2012; 287:34372-85. [PMID: 22896699 PMCID: PMC3464543 DOI: 10.1074/jbc.m111.325332] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/14/2012] [Indexed: 01/10/2023] Open
Abstract
Inducible gene expression underlies the epigenetically inherited differentiation program of most immune cells. We report that the promoter of the FOXP3 gene possesses two distinct functional states: an "off state" mediated by the polycomb histone methyltransferase complex and a histone acetyltransferase-dependent "on state." Regulating these states is the presence of a Kruppel-like factor (KLF)-containing Polycomb response element. In the KLF10(-/-) mouse, the FOXP3 promoter is epigenetically silenced by EZH2 (Enhancer of Zeste 2)-mediated trimethylation of Histone 3 K27; thus, impaired FOXP3 induction and inappropriate adaptive T regulatory cell differentiation results in vitro and in vivo. The epigenetic transmittance of adaptive T regulatory cell deficiency is demonstrated throughout more than 40 generations of mice. These results provide insight into chromatin remodeling events key to phenotypic features of distinct T cell populations.
Collapse
Affiliation(s)
- Yuning Xiong
- From the Chromatin Dynamics and Epigenetics Laboratory
- the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Sahil Khanna
- From the Chromatin Dynamics and Epigenetics Laboratory
- the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Adrienne L. Grzenda
- From the Chromatin Dynamics and Epigenetics Laboratory
- the Departments of Molecular Biology and
- the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Olga F. Sarmento
- From the Chromatin Dynamics and Epigenetics Laboratory
- the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Phyllis A. Svingen
- From the Chromatin Dynamics and Epigenetics Laboratory
- the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Gwen A. Lomberk
- From the Chromatin Dynamics and Epigenetics Laboratory
- the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Raul A. Urrutia
- From the Chromatin Dynamics and Epigenetics Laboratory
- the Departments of Molecular Biology and
- the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - William A. Faubion
- From the Chromatin Dynamics and Epigenetics Laboratory
- Immunology, and
- the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
42
|
Hong X, Wang X. Early life precursors, epigenetics, and the development of food allergy. Semin Immunopathol 2012; 34:655-69. [PMID: 22777545 DOI: 10.1007/s00281-012-0323-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/19/2012] [Indexed: 12/21/2022]
Abstract
Food allergy (FA), a major clinical and public health concern worldwide, is caused by a complex interplay of environmental exposures, genetic variants, gene-environment interactions, and epigenetic alterations. This review summarizes recent advances surrounding these key factors, with a particular focus on the potential role of epigenetics in the development of FA. Epidemiologic studies have reported a number of nongenetic factors that may influence the risk of FA, such as timing of food introduction and feeding pattern, diet/nutrition, exposure to environmental tobacco smoking, prematurity and low birth weight, microbial exposure, and race/ethnicity. Current studies on the genetics of FA are mainly conducted using candidate gene approaches, which have linked more than 10 genes to the genetic susceptibility of FA. Studies on gene-environment interactions of FA are very limited. Epigenetic alteration has been proposed as one of the mechanisms to mediate the influence of early life environmental exposures and gene-environment interactions on the development of diseases later in life. The role of epigenetics in the regulation of the immune system and the epigenetic effects of some FA-associated environmental exposures are discussed in this review. There is a particular lack of large-scale prospective birth cohort studies that simultaneously assess the interrelationships of early life exposures, genetic susceptibility, epigenomic alterations, and the development of FA. The identification of these key factors and their independent and joint contributions to FA will allow us to gain important insight into the biological mechanisms by which environmental exposures and genetic susceptibility affect the risk of FA and will provide essential information to develop more effective new paradigms in the diagnosis, prevention, and management of FA.
Collapse
Affiliation(s)
- Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205-2179, USA.
| | | |
Collapse
|
43
|
Frikeche J, Peric Z, Brissot E, Grégoire M, Gaugler B, Mohty M. Impact of HDAC inhibitors on dendritic cell functions. Exp Hematol 2012; 40:783-91. [PMID: 22728031 DOI: 10.1016/j.exphem.2012.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/10/2012] [Accepted: 06/14/2012] [Indexed: 12/18/2022]
Abstract
Histone deacetylase inhibitors are presently used in the routine clinic treatment against cancers. Recent data have established that some of these treatments have potent anti-inflammatory or immunomodulatory effects at noncytotoxic doses that might be of benefit in immuno-inflammatory disorders or post-transplantation. At least some of these effects result from the ability of histone deacetylase inhibitors to modulate the immune system. Dendritic cells are professional antigen presenting cells that play a major role in this immune system. Data summarized in this review brings some novel information on the impact of histone deacetylase inhibitors on dendritic cell functions, which may have broader implications for immunotherapeutic strategies.
Collapse
|
44
|
Royce SG, Dang W, Yuan G, Tran J, El-Osta A, Karagiannis TC, Tang MLK. Effects of the histone deacetylase inhibitor, trichostatin A, in a chronic allergic airways disease model in mice. Arch Immunol Ther Exp (Warsz) 2012; 60:295-306. [PMID: 22684086 DOI: 10.1007/s00005-012-0180-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 02/20/2012] [Indexed: 01/26/2023]
Abstract
There is a need for new asthma therapies that can concurrently address airway remodeling, airway hyperresponsiveness and progressive irreversible loss of lung function, in addition to inhibiting inflammation. Histone deacetylase inhibitors (HDACi) alter gene expression by interfering with the removal of acetyl groups from histones. The HDACi trichostatin A (TSA) has pleiotropic effects targeting key pathological processes in asthma including inflammation, proliferation, angiogenesis and fibrosis. The aim was to evaluate the effects of TSA treatment in a mouse model of chronic allergic airways disease (AAD). Wild-type BALB/c mice with AAD were treated intraperitoneally with 5 mg/kg TSA or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid (BALF) cell counts and histological examination of lung tissue sections. Remodeling was assessed by morphometric analysis and airway hyperresponsiveness was assessed by invasive plethysmography. TSA-treated mice had a reduced number of total inflammatory cells and eosinophils within the BALF as compared to vehicle-treated mice (both p < 0.05). Furthermore, airway remodeling changes were significantly reduced with TSA compared to vehicle-treated mice, with fewer goblet cells (p < 0.05), less subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness at the highest methacholine dose. These findings demonstrate that treatment with an HDACi can concurrently reduce structural airway remodeling changes and airway hyperresponsiveness, in addition to attenuating airway inflammation in a chronic AAD model. This has important implications for the development of novel treatments for severe asthma.
Collapse
Affiliation(s)
- Simon G Royce
- Allergy and Immune Disorders, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| | | | | | | | | | | | | |
Collapse
|
45
|
Fairlie DP, Sweet MJ. HDACs and their inhibitors in immunology: teaching anticancer drugs new tricks. Immunol Cell Biol 2012; 90:3-5. [PMID: 22217545 DOI: 10.1038/icb.2011.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Bettini ML, Pan F, Bettini M, Finkelstein D, Rehg JE, Floess S, Bell BD, Ziegler SF, Huehn J, Pardoll DM, Vignali DA. Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 2012; 36:717-30. [PMID: 22579476 PMCID: PMC3361541 DOI: 10.1016/j.immuni.2012.03.020] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 01/19/2012] [Accepted: 03/24/2012] [Indexed: 01/22/2023]
Abstract
Regulatory T (Treg) cells, driven by the Foxp3 transcription factor, are responsible for limiting autoimmunity and chronic inflammation. We showed that a well-characterized Foxp3(gfp) reporter mouse, which expresses an N-terminal GFP-Foxp3 fusion protein, is a hypomorph that causes profoundly accelerated autoimmune diabetes on a NOD background. Although natural Treg cell development and in vitro function are not markedly altered in Foxp3(gfp) NOD and C57BL/6 mice, Treg cell function in inflammatory environments was perturbed and TGF-β-induced Treg cell development was reduced. Foxp3(gfp) was unable to interact with the histone acetyltransferase Tip60, the histone deacetylase HDAC7, and the Ikaros family zinc finger 4, Eos, which led to reduced Foxp3 acetylation and enhanced K48-linked polyubiquitylation. Collectively this results in an altered transcriptional landscape and reduced Foxp3-mediated gene repression, notably at the hallmark IL-2 promoter. Loss of controlled Foxp3-driven epigenetic modification leads to Treg cell insufficiency that enables autoimmunity in susceptible environments.
Collapse
Affiliation(s)
- Matthew L. Bettini
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Fan Pan
- Immunology and Hematopoiesis Division, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Maria Bettini
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - David Finkelstein
- Bioinformatics St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jerold E. Rehg
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | | | | | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Drew M. Pardoll
- Immunology and Hematopoiesis Division, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Dario A.A. Vignali
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| |
Collapse
|
47
|
Kelly-Sell MJ, Kim YH, Straus S, Benoit B, Harrison C, Sutherland K, Armstrong R, Weng WK, Showe LC, Wysocka M, Rook AH. The histone deacetylase inhibitor, romidepsin, suppresses cellular immune functions of cutaneous T-cell lymphoma patients. Am J Hematol 2012; 87:354-60. [PMID: 22367792 DOI: 10.1002/ajh.23112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/27/2011] [Indexed: 11/06/2022]
Abstract
Romidepsin is the second histone deacetylase inhibitor (HDACi) approved for the treatment of advanced stages of cutaneous T-cell lymphoma (CTCL). Recent in vitro data suggest that HDACis suppress immune function although these findings have not been confirmed in patients. Thus, we serially examined the cellular immune function of eight CTCL patients undergoing treatment with three cycles of romidepsin. We measured the patients' natural killer (NK) and dendritic cell (DC) function and performed an in vitro terminal deoxynucleotidyl transferase dUTP nick end labeling assay to measure cellular apoptosis. Patients' NK cell cytolytic activity decreased from baseline to the third cycle of treatment (P = 0.018) but stimulation with a toll-like receptor (TLR) agonist increased this activity (P = 0.018). At baseline, a TLR agonist could both activate patients' DC (P = 0.043) and stimulate interleukin-12 protein production (P = 0.043) but both were suppressed after the first cycle of romidepsin. Finally, we observed increased specificity for romidepsin-induced CD4+ tumor cell apoptosis and dose-dependent increases in cellular apoptosis of healthy cells in multiple lineages (P < 0.05). These findings raise concern that HDACis suppress immune function in CTCL patients and they support the concurrent use of multiple immune stimulatory agents to preserve the host immune response.
Collapse
MESH Headings
- Adjuvants, Immunologic/therapeutic use
- Apoptosis/drug effects
- Cells, Cultured/drug effects
- Cells, Cultured/immunology
- Cytotoxicity, Immunologic/drug effects
- Depression, Chemical
- Depsipeptides/adverse effects
- Depsipeptides/pharmacology
- Depsipeptides/therapeutic use
- Drug Screening Assays, Antitumor
- Histone Deacetylase Inhibitors/adverse effects
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylase Inhibitors/therapeutic use
- Humans
- Imidazoles/pharmacology
- Immunity, Cellular/drug effects
- In Vitro Techniques
- Interferon-alpha/pharmacology
- Interleukin-12/pharmacology
- Killer Cells, Natural/drug effects
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Lymphocyte Count
- Lysosomal-Associated Membrane Protein 1/analysis
- Neoplasm Proteins/antagonists & inhibitors
- Quinolines/pharmacology
- Sezary Syndrome/drug therapy
- Sezary Syndrome/immunology
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- T-Lymphocytes, Regulatory/drug effects
- Toll-Like Receptor 7/agonists
- Toll-Like Receptor 8/agonists
Collapse
Affiliation(s)
- Michael J Kelly-Sell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 , USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Licciardi PV, Karagiannis TC. Regulation of immune responses by histone deacetylase inhibitors. ISRN HEMATOLOGY 2012; 2012:690901. [PMID: 22461998 PMCID: PMC3313568 DOI: 10.5402/2012/690901] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/10/2012] [Indexed: 01/01/2023]
Abstract
Both genetic and epigenetic factors are important regulators of the immune system. There is an increasing body of evidence attesting to epigenetic modifications that influence the development of distinct innate and adaptive immune response cells. Chromatin remodelling via acetylation, methylation, phosphorylation, and ubiquitination of histone proteins as well as DNA, methylation is epigenetic mechanisms by which immune gene expression can be controlled. In this paper, we will discuss the role of epigenetics in the regulation of host immunity, with particular emphasis on histone deacetylase inhibitors. In particular, the role of HDAC inhibitors as a new class of immunomodulatory therapeutics will also be reviewed.
Collapse
Affiliation(s)
- Paul V Licciardi
- Allergy and Immune Disorders Group, Murdoch Childrens Research Institute, Melbourne, VIC 3052, Australia
| | | |
Collapse
|
49
|
Abstract
Clinical and experimental studies show that inhibition of histone/protein deacetylases (HDAC) can have important anti-neoplastic effects through cytotoxic and proapoptotic mechanisms. There are also increasing data from nononcologic settings that HDAC inhibitors (HDACi) can exhibit useful anti-inflammatory effects in vitro and in vivo, unrelated to cytotoxicity or apoptosis. These effects can be cell-, tissue-, or context-dependent and can involve modulation of specific inflammatory signaling pathways as well as epigenetic mechanisms. We review recent advances in the understanding of how HDACi alter immune and inflammatory processes, with a particular focus on the effects of HDACi on T-cell biology, including the activation and functions of conventional T cells and the unique T-cell subset, composed of Foxp3(+) T-regulatory cells. Although studies are still needed to tease out details of the various biologic roles of individual HDAC isoforms and their corresponding selective inhibitors, the anti-inflammatory effects of HDACi are already promising and may lead to new therapeutic avenues in transplantation and autoimmune diseases.
Collapse
|
50
|
Beier UH, Akimova T, Liu Y, Wang L, Hancock WW. Histone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells. Curr Opin Immunol 2011; 23:670-8. [PMID: 21798734 PMCID: PMC3190028 DOI: 10.1016/j.coi.2011.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/02/2011] [Indexed: 01/03/2023]
Abstract
Lysine ɛ-acetylation is a post-translational modification that alters the biochemical properties of many proteins. The reaction is catalyzed by histone/protein acetyltransferases (HATs), and is reversed by histone/protein deacetylases (HDACs). As a result, HATs and HDACs constitute an important, though little recognized, set of proteins that control the functions of T-regulatory (Treg) cells. Targeting certain HDACs, especially HDAC6, HDAC9, and Sirtuin-1 (Sirt1), can augment Treg suppressive potency by several distinct and potentially additive mechanisms. These involve promoting Forkhead box p3 (Foxp3) gene expression and preserving Foxp3 lysine ɛ-acetylation, which infers resistance to ubiquitination and proteasomal degradation, and increases DNA binding. Moreover, depleting certain HDAC can enhance the heat shock response, which increases the tenacity of Treg to survive under stress, and helps preserve a suppressive phenotype. As a result, HDAC inhibitor therapy can be used to enhance Treg functions in vivo and have beneficial effects on allograft survival and autoimmune diseases.
Collapse
Affiliation(s)
- Ulf H. Beier
- Division of Nephrology, Department of Pediatrics, The Children’s Hospital of Philadelphia, and University of Pennsylvania School of Medicine
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, and University of Pennsylvania School of Medicine
| | - Yujie Liu
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, and University of Pennsylvania School of Medicine
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, and University of Pennsylvania School of Medicine
| | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, and University of Pennsylvania School of Medicine
| |
Collapse
|