1
|
Şensoy E. Comparison of the effect of Sunset yellow on the stomach and small intestine of developmental period of mice. Heliyon 2024; 10:e31998. [PMID: 38882373 PMCID: PMC11176863 DOI: 10.1016/j.heliyon.2024.e31998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Sunset Yellow (SY), a synthetic food dye, is widely used in the food industry worldwide. The acceptable daily dosage for SY is 2.5 mg/kg/bw in humans. If SY is consumed in overdosage, it may cause histopathological effects in several organs. Studies in the literature about the effects of SY on growth and development in mammals are contradictory, and there are not enough of them. The investigation aims to determine SY's effects on the stomach and small intestine in different age groups of mice using histological methods. Control and treatment groups were created via mice aged 4, 8, and 10 weeks (n = 6). SY was administered by gavage at a level of 30 mg/kg/bw for 28 days to treatment groups. On the last day of the study, the mice were weighed and sacrificed by cervical dislocation. Stomach and small intestine tissues were removed from mice and transferred to 10 % formaldehyde. After passing through alcohol and xylene series and staining with Hematoxylin-Eosin, the tissues were evaluated under light and electron microscopy. The mean body weight (p = 0.01), mean stomach weight (p = 0.03), and mean small intestine weight were increased (p = 0.02) in treatment groups. In these groups, ruptures, fractures, and hemorrhage were detected in the small intestine tissue. In the stomach tissue, necrotic areas and hemorrhage were detected among the epithelial cells. The degenerations were more advanced in the weaning group. SY may be more harmful during weaning and puberty, but additional long-term studies are needed on the subject.
Collapse
Affiliation(s)
- Erhan Şensoy
- Karamanoglu Mehmetbey University Faculty of Health Science, Karaman, Turkey
| |
Collapse
|
2
|
Han F, Zhu S, Kong X, Wang W, Wu Y. Integrated genetic and epigenetic analyses uncovered GLP1R association with metabolically healthy obesity. Int J Obes (Lond) 2024; 48:324-329. [PMID: 37978261 DOI: 10.1038/s41366-023-01414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Both genetic and epigenetic variations of GLP1R influence the development and progression of obesity. However, the underlying mechanism remains elusive. This study aims to explore the mediation roles of obesity-related methylation sites in GLP1R gene variants-obesity association. METHODS A total of 300 Chinese adult participants were included in this study and classified into two groups: 180 metabolically healthy obesity (MHO) cases and 120 metabolically healthy normal-weight (MHNW) controls. Questionnaire investigation, physical measurement and laboratory examination were assessed in all participants. 18 single nucleotide polymorphisms (SNPs) and 31 CpG sites were selected for genotype and methylation assays. Causal inference test (CIT) was performed to evaluate the associations between GLP1R genetic variation, DNA methylation and MHO. RESULTS The study found that rs4714211 polymorphism of GLP1R gene was significantly associated with MHO. Additionally, methylation sites in the intronic region of GLP1R (GLP1R-68-CpG 7.8.9; GLP1R-68-CpG 12.13; GLP1R-68-CpG 17; GLP1R-68-CpG 21) were associated with MHO, and two of these methylation sites (GLP1R-68-CpG 7.8.9; GLP1R-68-CpG 17) partially mediated the association between genotypes and MHO. CONCLUSIONS Not only the gene polymorphism, but also the DNA methylation of GLP1R was associated with MHO. Epigenetic changes in the methylome may in part explain the relationship between genetic variants and MHO.
Collapse
Affiliation(s)
- Fulei Han
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Shuai Zhu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Xiangjie Kong
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Liu C, Bao X, Tian Y, Xue P, Wang Y, Li Y. Polymorphisms in the glucagon-like peptide-1 receptor gene and their interactions on the risk of osteoporosis in postmenopausal Chinese women. PLoS One 2023; 18:e0295451. [PMID: 38096145 PMCID: PMC10721101 DOI: 10.1371/journal.pone.0295451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a prevalent form of primary osteoporosis, affecting over 40% of postmenopausal women. Previous studies have suggested a potential association between single nucleotide polymorphisms (SNPs) in glucagon-like peptide-1 receptor (GLP-1R) and PMOP in postmenopausal Chinese women. However, available evidence remains inconclusive. Therefore, this study aimed to investigate the possible association between GLP-1R SNPs and PMOP in Han Chinese women. Thus, we conducted a case-control study with 152 postmenopausal Han Chinese women aged 45-80 years, including 76 women with osteoporosis and 76 without osteoporosis. Seven SNPs of the GLP-1R were obtained from the National Center of Biotechnology Information and Genome Variation Server. We employed three genetic models to assess the association between GLP-1R genetic variants and osteoporosis in postmenopausal women, while also investigating SNP-SNP and SNP-environment interactions with the risk of PMOP. In this study, we selected seven GLP-1R SNPs (rs1042044, rs2268641, rs10305492, rs6923761, rs1126476, rs2268657, and rs2295006). Of these, the minor allele A of rs1042044 was significantly associated with an increased risk of PMOP. Genetic model analysis revealed that individuals carrying the A allele of rs1042044 had a higher risk of developing osteoporosis in the dominant model (P = 0.029, OR = 2.76, 95%CI: 1.09-6.99). Furthermore, a multiplicative interaction was found between rs1042044 and rs2268641 that was associated with osteoporosis in postmenopausal women (Pinteraction = 0.034). Importantly, this association remained independent of age, menopausal duration, family history of osteoporosis, and body mass index. However, no significant relationship was observed between GLP-1R haplotypes and PMOP. In conclusion, this study suggests a close association between the A allele on the GLP-1R rs1042044 and an increased risk of PMOP. Furthermore, this risk was significantly augmented by an SNP-SNP interaction with rs2268641. These results provide new scientific insights into the development of personalized prevention strategies and treatment approaches for PMOP.
Collapse
Affiliation(s)
- Chang Liu
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Xiaoxue Bao
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yawei Tian
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Peng Xue
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yan Wang
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yukun Li
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| |
Collapse
|
4
|
Zhu N, LeDuc CA, Fennoy I, Laferrère B, Doege CA, Shen Y, Chung WK, Leibel RL. Rare predicted loss of function alleles in Bassoon (BSN) are associated with obesity. NPJ Genom Med 2023; 8:33. [PMID: 37865656 PMCID: PMC10590409 DOI: 10.1038/s41525-023-00376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023] Open
Abstract
Bassoon (BSN) is a component of a hetero-dimeric presynaptic cytomatrix protein that orchestrates neurotransmitter release with Piccolo (PCLO) from glutamatergic neurons throughout the brain. Heterozygous missense variants in BSN have previously been associated with neurodegenerative disorders in humans. We performed an exome-wide association analysis of ultra-rare variants in about 140,000 unrelated individuals from the UK Biobank to search for new genes associated with obesity. We found that rare heterozygous predicted loss of function (pLoF) variants in BSN are associated with higher BMI with p-value of 3.6e-12 in the UK biobank cohort. Additionally, we identified two individuals (one of whom has a de novo variant) with a heterozygous pLoF variant in a cohort of early onset or extreme obesity and report the clinical histories of these individuals with non-syndromic obesity with no history of neurobehavioral or cognitive disability. The BMI association was replicated in the All of Us whole genome sequencing data. Heterozygous pLoF BSN variants constitute a new etiology for obesity.
Collapse
Affiliation(s)
- Na Zhu
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles A LeDuc
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- NY Obesity Research Center, Columbia University Irving Medical Center, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ilene Fennoy
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Blandine Laferrère
- NY Obesity Research Center, Columbia University Irving Medical Center, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Claudia A Doege
- NY Obesity Research Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
- JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- NY Obesity Research Center, Columbia University Irving Medical Center, New York, NY, USA.
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| | - Rudolph L Leibel
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- NY Obesity Research Center, Columbia University Irving Medical Center, New York, NY, USA.
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Rosa LF, Haasis E, Knauss A, Guseva D, Bischoff SC. Serotonin reuptake transporter deficiency promotes liver steatosis and impairs intestinal barrier function in obese mice fed a Western-style diet. Neurogastroenterol Motil 2023; 35:e14611. [PMID: 37246491 DOI: 10.1111/nmo.14611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/23/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Intestinal barrier dysfunctions have been associated with liver steatosis and metabolic diseases. Besides nutritional factors, like a Western-style diet (WSD), serotonin has been linked with leaky gut. Therefore, we aimed to evaluate the role of serotonin in the pathogenesis of intestinal barrier dysfunctions and liver steatosis in mice fed high-fat and high-sugar diets. METHODS 6-8 weeks old male serotonin reuptake transporter knockout mice (SERT-/- ) and wild-type controls (SERT+/+ ) were fed either a WSD or a control diet (CD) ad libitum with or without fructose 30% (F) added to the drinking water for 12 weeks. Markers of liver steatosis and intestinal barrier function were assessed. KEY RESULTS SERT-/- mice showed increased weight gain compared with SERT+/+ mice when fed a WSD ± F for 12 weeks (p < 0.05), whereby SERT-/- mice exhibited reduced energy (-21%) intake. Furthermore, SERT knockout resulted in a more pronounced liver steatosis (p < 0.05), enhanced levels of endotoxin in portal vein plasma (p < 0.05), and increased liver expression of Tnf and Myd88 (p < 0.05), when mice were fed a WSD ± F. Finally, SERT-/- mice, when compared with SERT+/+ mice, had a decreased mRNA expression of Muc2 (p < 0.01), Ocln (p < 0.05), Cldn5 (p = 0.054) and 7 (p < 0.01), Defa5 (p < 0.05) and other antimicrobial peptides in the ileum. On the protein level, ZO-1 (p < 0.01) and DEFA5 protein (p < 0.0001) were decreased. CONCLUSION AND INFERENCES Our data demonstrate that SERT knockout causes weight gain, liver steatosis, and leaky gut, especially in mice fed a WSD. Therefore, SERT induction could be a novel therapeutic approach to improve metabolic diseases associated with intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Louisa Filipe Rosa
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Eva Haasis
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Annkathrin Knauss
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Daria Guseva
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
6
|
Functionally Significant Variants in Genes Associated with Abdominal Obesity: A Review. J Pers Med 2023; 13:jpm13030460. [PMID: 36983642 PMCID: PMC10056771 DOI: 10.3390/jpm13030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
The high prevalence of obesity and of its associated diseases is a major problem worldwide. Genetic predisposition and the influence of environmental factors contribute to the development of obesity. Changes in the structure and functional activity of genes encoding adipocytokines are involved in the predisposition to weight gain and obesity. In this review, variants in genes associated with adipocyte function are examined, as are variants in genes associated with metabolic aberrations and the accompanying disorders in visceral obesity.
Collapse
|
7
|
Obesity is associated with IL-6 gene polymorphisms rs1800795 and rs1800796 but not SOCS3 rs4969170. Mol Biol Rep 2023; 50:2041-2048. [PMID: 36538174 DOI: 10.1007/s11033-022-08129-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/15/2022] [Indexed: 03/14/2023]
Abstract
BACKGROUND An imbalance of inflammatory factors can stimulate obesity by inducing chronic inflammation in adipose tissue. Interleukin-6 (IL-6) is a cytokine with both inflammatory and anti-inflammatory functions. Suppressor of cytokine signaling 3 (SOCS3) acts as an inhibitor for a number of cytokine signals. The IL-6 and SOCS3 genes are known to be involved in lipid and energy metabolism, although it is unclear how these genes relate to obesity. The aim of this study is to determine whether the obesity risk is associated with the IL-6 (rs1800795, rs1800796) and SOCS3 (rs4969170) gene polymorphisms. METHODS AND RESULTS Based on their body mass index (BMI) scores, 185 people were determined, of whom 90 were from the control group and 95 were obese. Anthropometric measurements and biochemical parameters of the study subjects were documented during the examination. Genomic DNA isolation was performed from the blood samples of all participants. IL-6 (rs1800795, rs1800796) and SOCS3 (rs4969170) polymorphisms were detected by real-time quantitative polymerase chain reaction (qRT-PCR) from genomic DNA samples. The IL-6 rs1800795 and rs1800796 variants showed a significant difference between the control and obese groups (p = 0.027; p = 0.013). The SOCS3 rs4969170 variation did not substantially differ between the control and obese groups (p = 0.825). CONCLUSION In our study, IL-6 rs1800795(G/C) and rs1800796(G/C) polymorphisms appeared to be a risk factor for obesity. The C allele was associated with the obesity phenotypes. However, the SOCS3 rs4969170 (A/G) polymorphism was not linked to an increased risk of obesity. IL-6 polymorphisms may be new targets for obesity treatment.
Collapse
|
8
|
Association of ghrelin gene polymorphisms with slaughter traits in pig. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
It has been hypothesized that mutations in the ghrelin gene in pigs may play a similar role as in humans and may be associated with obesity. The aim of study was to analyse the polymorphisms of ghrelin gene and to evaluate its effect on pigs’ carcass traits. The effect of c.-93A>G, 4428T>C and g.4486C>T polymorphisms at the ghrelin gene on slaughter performance were analysed in 346 gilts represented by three breeds (Polish Landrace, Duroc, Pietrain). Animals were fattened from 30 to 100 (±2.5) kg body weight. After slaughter, the carcasses were chilled for 24 hours (4ºC), weighted and the right half-carcasses were dissected and evaluated. A number of data were obtained including: meat weight in primary cuts, weight of ham, backfat thickness and carcass yield. From breeding and production point of view, the favourable results were obtained for pigs with the GG genotype at the c.-93A>G locus, characterized by better carcass results than those with the AA genotype, e.g. higher ham weight and lower average backfat thickness. In pigs with the TT genotype at the g.4428T>C locus, we found lower mean backfat thickness than pigs with the CC genotype.
Collapse
|
9
|
Russo C, Valle MS, Russo A, Malaguarnera L. The Interplay between Ghrelin and Microglia in Neuroinflammation: Implications for Obesity and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232113432. [PMID: 36362220 PMCID: PMC9654207 DOI: 10.3390/ijms232113432] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have shown that microglia are capable of producing a wide range of chemokines to promote inflammatory processes within the central nervous system (CNS). These cells share many phenotypical and functional characteristics with macrophages, suggesting that microglia participate in innate immune responses in the brain. Neuroinflammation induces neurometabolic alterations and increases in energy consumption. Microglia may constitute an important therapeutic target in neuroinflammation. Recent research has attempted to clarify the role of Ghre signaling in microglia on the regulation of energy balance, obesity, neuroinflammation and the occurrence of neurodegenerative diseases. These studies strongly suggest that Ghre modulates microglia activity and thus affects the pathophysiology of neurodegenerative diseases. This review aims to summarize what is known from the current literature on the way in which Ghre modulates microglial activity during neuroinflammation and their impact on neurometabolic alterations in neurodegenerative diseases. Understanding the role of Ghre in microglial activation/inhibition regulation could provide promising strategies for downregulating neuroinflammation and consequently for diminishing negative neurological outcomes.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Antonella Russo
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| |
Collapse
|
10
|
Long J, Liu Y, Duan Y, Li Y, Yang G, Ren Z, Tao W, Liu D. Effect of GLP-1R rs2254336 and rs3765467 polymorphisms on gastrointestinal adverse reactions in type 2 diabetes patients treated with liraglutide. Eur J Clin Pharmacol 2022; 78:589-596. [PMID: 35034150 DOI: 10.1007/s00228-021-03225-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Gastrointestinal adverse reactions (GIARs) to liraglutide exhibit significant individual differences in type 2 diabetes. This study investigated the association between glucagon-like peptide-1 receptor (GLP-1R) single-nucleotide polymorphisms (SNPs) and GIARs. METHODS Adverse events of liraglutide were observed in 376 T2DM patients. Seven tag SNPs at GLP-1R were sequenced in 152 participants. The influencing factors of GIARs and the genetic model of tag SNPs were examined by logistic regression analysis. The relationship between the tag SNPs and GIARs was determined by the chi-square test and cochran-armitage trend test. Multifactor dimensionality reduction (MDR) analysis was used to explore interactive analysis in GIARs risk. RESULTS Twenty-nine percent of subjects had side effects, mainly GIARs. Nausea was the most common GIARs. Compared with males, females were more likely to develop GIARs (P = 0.043, OR = 1.895, 95% CI: 1.021-3.517). The T allele at GLP-1R rs2254336 (P = 0.028) and the A allele at GLP-1R rs3765467 (P = 0.007) were associated with GIARs of liraglutide. As the number of rs2254336 T alleles (P = 0.014) or rs3765467 A alleles (P = 0.008) increased, the subjects tended to develop GIARs. MDR analysis identified that there were no significant interactions among rs2254336, rs3765467 and sex. CONCLUSION Our results suggest that female sex, the T allele at GLP-1R rs2254336 and the A allele at GLP-1R rs3765467 could be predictors of GIARs with liraglutide in T2DM patients.
Collapse
Affiliation(s)
- Jiangchuan Long
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjian Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaqian Duan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziyu Ren
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Clinical Research Center for Geriatrics and Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Mavanji V, Pomonis B, Kotz CM. Orexin, serotonin, and energy balance. WIREs Mech Dis 2022; 14:e1536. [PMID: 35023323 PMCID: PMC9286346 DOI: 10.1002/wsbm.1536] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022]
Abstract
The lateral hypothalamus is critical for the control of ingestive behavior and spontaneous physical activity (SPA), as lesion or stimulation of this region alters these behaviors. Evidence points to lateral hypothalamic orexin neurons as modulators of feeding and SPA. These neurons affect a broad range of systems, and project to multiple brain regions such as the dorsal raphe nucleus, which contains serotoninergic neurons (DRN) important to energy homeostasis. Physical activity is comprised of intentional exercise and SPA. These are opposite ends of a continuum of physical activity intensity and structure. Non‐goal‐oriented behaviors, such as fidgeting, standing, and ambulating, constitute SPA in humans, and reflect a propensity for activity separate from intentional activity, such as high‐intensity voluntary exercise. In animals, SPA is activity not influenced by rewards such as food or a running wheel. Spontaneous physical activity in humans and animals burns calories and could theoretically be manipulated pharmacologically to expend calories and protect against obesity. The DRN neurons receive orexin inputs, and project heavily onto cortical and subcortical areas involved in movement, feeding and energy expenditure (EE). This review discusses the function of hypothalamic orexin in energy‐homeostasis, the interaction with DRN serotonin neurons, and the role of this orexin‐serotonin axis in regulating food intake, SPA, and EE. In addition, we discuss possible brain areas involved in orexin–serotonin cross‐talk; the role of serotonin receptors, transporters and uptake‐inhibitors in the pathogenesis and treatment of obesity; animal models of obesity with impaired serotonin‐function; single‐nucleotide polymorphisms in the serotonin system and obesity; and future directions in the orexin–serotonin field. This article is categorized under:Metabolic Diseases > Molecular and Cellular Physiology
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Brianna Pomonis
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Catherine M Kotz
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA.,Geriatric Research Education and Clinical Center, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Zhang X, Cheng B, Ma Y, Liu Y, Wang N, Zhang H, Li Y, Wang Y, Luan P, Cao Z, Li H. Genome-wide survey and functional analysis reveal TCF21 promotes chicken preadipocyte differentiation by directly upregulating HTR2A. Biochem Biophys Res Commun 2022; 587:131-138. [PMID: 34872001 DOI: 10.1016/j.bbrc.2021.11.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND/AIM Previously, we showed that transcription factor 21 (TCF21) promotes chicken preadipocyte differentiation. However, the genome-wide TCF21 binding sites and its downstream target genes in chicken adipogenesis were unknown. METHODS ChIP-Seq and RNA-Seq were used to screen candidate targets of TCF21. qPCR and luciferase reporter assay were applied to verify the sequencing results. Western blotting, oil red-O staining and pharmacological treatments were performed to investigate the function of 5-hydroxytryptamine receptor 2A (HTR2A), one of the bonafide direct downstream binding targets of TCF21. RESULTS A total of 94 candidate target genes of TCF21 were identified. ChIP-qPCR, RT-qPCR, and luciferase reporter assay demonstrated that HTR2A is one of the bonafide direct downstream binding targets of TCF21. HTR2A expression in adipose tissue was upregulated in fat line broilers. Also, the abundance of HTR2A gradually increased during the adipogenesis process. Interestingly, pharmacological enhancement or inhibition of HTR2A promoted or attenuated the differentiation of preadipocytes, respectively. Furthermore, HTR2A inhibition impaired the TCF21 promoted adipogenesis. CONCLUSIONS We profiled the genome-wide TCF21 binding sites in chicken differentiated preadipocytes revealing HTR2A as the direct downstream target of TCF21 in adipogenesis.
Collapse
Affiliation(s)
- Xinyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yanyan Ma
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yumeng Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
13
|
Michałowska J, Miller-Kasprzak E, Seraszek-Jaros A, Mostowska A, Bogdański P. Association of GLP1R variants rs2268641 and rs6923761 with obesity and other metabolic parameters in a Polish cohort. Front Endocrinol (Lausanne) 2022; 13:1000185. [PMID: 36339410 PMCID: PMC9626533 DOI: 10.3389/fendo.2022.1000185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Obesity is a complex disease associated with excessive fat accumulation and numerous metabolic complications. So far, many factors leading to the development of this disorder have been identified, including genetic susceptibility. Various studies linked GLP1R variants with anthropometric and metabolic parameters, suggesting the role of the variation in this gene in metabolic health. OBJECTIVE The aim of this study is to investigate the association of two single nucleotide variants of GLP1R gene, rs2268641 and rs6923761, with excessive weight, metabolic syndrome, anthropometric measurements and selected metabolic parameters. METHODS Normal-weight subjects (n= 340, control group) and subjects with excessive body mass (n = 600, study group) participated in this study. For all participants, anthropometric measurements and metabolic parameters were collected, and genotyping of the two single nucleotide variants of GLP1R gene, rs2268641 and rs6923761, was performed using the high-resolution melting curve analysis. RESULTS Significant differences in the genotype distribution of rs2268641 were found, where homozygous TT genotype was significantly less frequent in the study group with excessive body mass (OR=0.66; p=0.0298). For rs6923761, A allele and homozygous AA genotype were significantly more frequent in the study group with excessive weight than in the control group (OR=1.27; p=0.0239 and OR=1.69; p=0.0205, respectively). The association of studied variants with metabolic parameters was found for rs6923761. For this variant, AA carriers had higher body mass in comparison to GG carriers (p=0.0246), and AA carriers had higher glucose concentration in comparison to AG carriers (p=0.0498). We did not find an association of rs2268641 and rs6923761 with metabolic syndrome. CONCLUSION In our study, AA carriers of rs6923761 had higher risk of excessive body mass, whereas TT carriers of rs2268641 had lower risk of being overweight. Moreover, homozygous carriers of the minor allele of rs6923761 had higher glucose concentration in comparison to heterozygous subjects. None of the studied variants were associated with metabolic syndrome in the studied population.
Collapse
Affiliation(s)
- Joanna Michałowska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
- *Correspondence: Joanna Michałowska,
| | - Ewa Miller-Kasprzak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Seraszek-Jaros
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
14
|
SOCS3 Gene Polymorphism and Hypertension Susceptibility in Chinese Population: A Two-Center Case-Control Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8445461. [PMID: 34840983 PMCID: PMC8612791 DOI: 10.1155/2021/8445461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Endothelial inflammation and vascular damage are essential risk factors contributing to hypertension. Suppressor of cytokine signaling 3 (SOCS3) is involved in the regulation of multiple inflammatory pathways. A large number of studies have shown that the anti-inflammatory effect of SOCS3 in hypertension, obesity, and allergic reactions has brought more insights into the inhibition of inflammation. Therefore, we selected a tagSNP of SOCS3 (rs8064821) to investigate whether they are contributing to the risk of hypertension in the Chinese population. In total, 532 patients with hypertension and 569 healthy controls were enrolled for two central of China. SOCS3 rs8064821 C>A polymorphism was genotyped using TaqMan assay. SOCS3 rs8064821 CA genotype was associated with an increased risk of hypertension (OR = 1.821, 95%CI = 1.276-2.600, P = 0.001). Rs8064821 A allele was associated with higher SOCS3 mRNA level in PBMCs from healthy donors. SOCS3 rs8064821 C>A polymorphism may contribute to the risk of hypertension in the Chinese population by regulating the expression of SOCS3.
Collapse
|
15
|
Innate-Immunity Genes in Obesity. J Pers Med 2021; 11:jpm11111201. [PMID: 34834553 PMCID: PMC8623883 DOI: 10.3390/jpm11111201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023] Open
Abstract
The main functions of adipose tissue are thought to be storage and mobilization of the body’s energy reserves, active and passive thermoregulation, participation in the spatial organization of internal organs, protection of the body from lipotoxicity, and ectopic lipid deposition. After the discovery of adipokines, the endocrine function was added to the above list, and after the identification of crosstalk between adipocytes and immune cells, an immune function was suggested. Nonetheless, it turned out that the mechanisms underlying mutual regulatory relations of adipocytes, preadipocytes, immune cells, and their microenvironment are complex and redundant at many levels. One possible way to elucidate the picture of adipose-tissue regulation is to determine genetic variants correlating with obesity. In this review, we examine various aspects of adipose-tissue involvement in innate immune responses as well as variants of immune-response genes associated with obesity.
Collapse
|
16
|
Abstract
Obesity is as a global health problem due to its interaction with complex chronic disorders such as cardiovascular disorders, type 2 diabetes mellitus (T2DM) and cancer. Despite the fact that pathogenesis of obesity is not yet clearly understood, it is associated with a combination of psychological, environmental and various genetic factors. Here, employing a case-control design, we aimed to examine the effects of the GHRL c.152C>T (p.Arg51Gln) (rs34911341) and c.214G>T (p.Leu72Met) (rs696217) markers on susceptibility to obesity in a Turkish-Cypriot population, as well as to evaluate whether these markers affect biochemical parameters and show their putative functional consequences. This study involved 211 Turkish-Cypriot subjects (106 obese and 95 non obese). Genotyping for the GHRL gene polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Our results indicate that the GHRL Leu72Met polymorphism was found to be significantly higher in obese patients, with respect to genotypic (p = 0.0012) and allelic (p = 0.0005) frequencies. Strikingly, the rs696217 GT genotype (heterozygous) had significantly lower serum high-density lipoprotein cholesterol (HDL-C) (p = 0.015) than GG (wild type) genotypes. Overall, Leu72Met susceptibility variant may be considered as risk and crucial marker for both obesity and cholesterol metabolism in the community of Turkish-Cypriots. Thus, the dual effect of the GHRL gene Leu72Met variant may be used for clinical diagnosis.
Collapse
|
17
|
Meng Y, Groth SW, Hodgkinson CA, Mariani TJ. Serotonin system genes contribute to the susceptibility to obesity in Black adolescents. Obes Sci Pract 2021; 7:441-449. [PMID: 34401202 PMCID: PMC8346375 DOI: 10.1002/osp4.511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The importance of the central and peripheral serotonin systems in regulating energy balance and obesity development has been highlighted in animal models. Yet, the role of both serotonin systems has not been systematically assessed in humans. The purpose of this study was to investigate the association of genes within both serotonin systems with obesity outcomes in black adolescents. METHODS African-American adolescents (n = 1052) whose mothers participated the Memphis New Mother's Study were assessed. In total, 110 polymorphisms mapped to 10 serotonin genes were examined for their associations with standardized body mass index (BMI-z) scores and waist circumferences using generalized estimating equation models. RESULTS Over 39% of adolescents were overweight or had obesity. Three single nucleotide polymorphisms (SNPs) within TPH2, HTR3B, and SLC6A4, were significantly associated with BMI-z scores (p < 1.7 × 10-3). Two SNPs in TPH2 were nominally associated with waist circumferences. One SNP in HTR2C was associated with BMI-z scores (p = 0.001) and waist circumferences (p = 0.005) only in girls. Tissue-specific expression indicates that three identified genes are predominantly expressed in the brain. CONCLUSION The central serotonin system may play a key role in obesity development in black adolescents. Future studies are warranted to explore additional serotonin system genes and their potential obesogenic mechanisms in humans.
Collapse
Affiliation(s)
- Ying Meng
- School of NursingUniversity of RochesterRochesterNew YorkUSA
| | - Susan W. Groth
- School of NursingUniversity of RochesterRochesterNew YorkUSA
| | - Colin A. Hodgkinson
- Lab of NeurogeneticsDivision of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and AlcoholismRockvilleMarylandUSA
| | - Thomas J. Mariani
- Department of PediatricsUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
18
|
Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021; 32:264-294. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Human obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université Paris Diderot, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
19
|
Paderina DZ, Boiko AS, Pozhidaev IV, Bocharova AV, Mednova IA, Fedorenko OY, Kornetova EG, Loonen AJ, Semke AV, Bokhan NA, Ivanova SA. Genetic Polymorphisms of 5-HT Receptors and Antipsychotic-Induced Metabolic Dysfunction in Patients with Schizophrenia. J Pers Med 2021; 11:jpm11030181. [PMID: 33807811 PMCID: PMC7999828 DOI: 10.3390/jpm11030181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Antipsychotic-induced metabolic syndrome (MetS) is a multifactorial disease with a genetic predisposition. Serotonin and its receptors are involved in antipsychotic-drug-induced metabolic disorders. The present study investigated the association of nine polymorphisms in the four 5-hydroxytryptamine receptor (HTR) genes HTR1A, HTR2A, HTR3A, and HTR2C and the gene encoding for the serotonin transporter SLC6A4 with MetS in patients with schizophrenia. METHODS A set of nine single-nucleotide polymorphisms of genes of the serotonergic system was investigated in a population of 475 patients from several Siberian regions (Russia) with a clinical diagnosis of schizophrenia. Genotyping was performed and the results were analyzed using chi-square tests. RESULTS Polymorphic variant rs521018 (HTR2C) was associated with higher body mass index in patients receiving long-term antipsychotic therapy, but not with drug-induced metabolic syndrome. Rs1150226 (HTR3A) was also associated but did not meet Hardy-Weinberg equilibrium. CONCLUSIONS Our results indicate that allelic variants of HTR2C genes may have consequences on metabolic parameters. MetS may have too complex a mechanistic background to be studied without dissecting the syndrome into its individual (causal) components.
Collapse
Affiliation(s)
- Diana Z. Paderina
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Anastasiia S. Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Ivan V. Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Anna V. Bocharova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia;
| | - Irina A. Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Olga Yu. Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Elena G. Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
- Siberian State Medical University, 634050 Tomsk, Russia
| | - Anton J.M. Loonen
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, The Netherlands
- Correspondence:
| | - Arkadiy V. Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
- Siberian State Medical University, 634050 Tomsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
- Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
20
|
Durmaz A, Aykut A, Atik T, Özen S, Ayyıldız Emecen D, Ata A, Işık E, Gökşen D, Çoğulu Ö, Özkınay F. A New Cause of Obesity Syndrome Associated with a Mutation in the Carboxypeptidase Gene Detected in Three Siblings with Obesity, Intellectual Disability and Hypogonadotropic Hypogonadism. J Clin Res Pediatr Endocrinol 2021; 13:52-60. [PMID: 32936766 PMCID: PMC7947731 DOI: 10.4274/jcrpe.galenos.2020.2020.0101] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Carboxypeptidase E (CPE) plays a critical role in the biosynthesis of peptide hormones and neuropeptides in the endocrine system and central nervous system. CPE knockout mice models exhibit disorders such as diabetes, hyperproinsulinaemia, low bone mineral density and neurodevelopmental disorders. Only one patient is described with morbid obesity, intellectual disability, abnormal glucose homeostasis and hypogonadotropic hypogonadism, which was associated with a homozygous frameshift deletion in CPE. METHODS Herein are described three siblings with obesity, intellectual disability and hypogonadotropic hypogonadism. Whole exome sequencing (WES) was performed in the index case. Candidate variants were prioritised and segregation of the variant, consistent with the phenotype of the index case, was assessed by Sanger sequencing in affected siblings and parents. RESULTS WES analysis revealed a homozygous nonsense c.405C>A (p.Y135*) mutation in CPE. Validation and segregation analysis confirmed the homozygous mutation in the index case and his affected siblings. The parents were phenotypically normal heterozygous mutation carriers. CONCLUSION This study provides additional evidence of the association between a homozygous nonsense mutation in CPE and a clinical phenotype consisting of obesity, intellectual disability and hypogonadotropic hypogonadism, which may be considered as a new monogenic obesity syndrome.
Collapse
Affiliation(s)
- Asude Durmaz
- Ege University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey,* Address for Correspondence: Ege University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey E-mail:
| | - Ayça Aykut
- Ege University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey
| | - Tahir Atik
- Ege University Faculty of Medicine, Department of Pediatrics, Subdivision of Pediatric Genetics, İzmir, Turkey
| | - Samim Özen
- Ege University Faculty of Medicine, Department of Pediatrics, Subdivision of Pediatric Endocrinology, İzmir, Turkey
| | - Durdugül Ayyıldız Emecen
- Ege University Faculty of Medicine, Department of Pediatrics, Subdivision of Pediatric Genetics, İzmir, Turkey
| | - Aysun Ata
- Ege University Faculty of Medicine, Department of Pediatrics, Subdivision of Pediatric Endocrinology, İzmir, Turkey
| | - Esra Işık
- Ege University Faculty of Medicine, Department of Pediatrics, Subdivision of Pediatric Genetics, İzmir, Turkey
| | - Damla Gökşen
- Ege University Faculty of Medicine, Department of Pediatrics, Subdivision of Pediatric Endocrinology, İzmir, Turkey
| | - Özgür Çoğulu
- Ege University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey,Ege University Faculty of Medicine, Department of Pediatrics, Subdivision of Pediatric Genetics, İzmir, Turkey
| | - Ferda Özkınay
- Ege University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey,Ege University Faculty of Medicine, Department of Pediatrics, Subdivision of Pediatric Genetics, İzmir, Turkey
| |
Collapse
|
21
|
Incretin Hormones in Obesity and Related Cardiometabolic Disorders: The Clinical Perspective. Nutrients 2021; 13:nu13020351. [PMID: 33503878 PMCID: PMC7910956 DOI: 10.3390/nu13020351] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of obesity continues to grow rapidly worldwide, posing many public health challenges of the 21st century. Obese subjects are at major risk for serious diet-related noncommunicable diseases, including type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease. Understanding the mechanisms underlying obesity pathogenesis is needed for the development of effective treatment strategies. Dysregulation of incretin secretion and actions has been observed in obesity and related metabolic disorders; therefore, incretin-based therapies have been developed to provide new therapeutic options. Incretin mimetics present glucose-lowering properties, together with a reduction of appetite and food intake, resulting in weight loss. In this review, we describe the physiology of two known incretins—glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and their role in obesity and related cardiometabolic disorders. We also focus on the available and incoming incretin-based medications that can be used in the treatment of the above-mentioned conditions.
Collapse
|
22
|
Xu T, Liu M, Liu Q, Wang B, Wang M, Qu M, Chen X, Wu J. Associations of TCF7L2 rs11196218 (A/G) and GLP-1R rs761386 (C/T) Gene Polymorphisms with Obesity in Chinese Population. Diabetes Metab Syndr Obes 2021; 14:2465-2472. [PMID: 34103955 PMCID: PMC8179745 DOI: 10.2147/dmso.s310069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/16/2021] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION This study aimed to investigate the genetic polymorphism associations with obesity of the transcription factor 7-like 2 (TCF7L2) gene rs11196218 (A/G) and glucagon-like peptide 1 receptor (GLP1-R) gene rs761386 (C/T) in the Chinese population. PATIENTS AND METHODS This was a case-control pilot study involving 60 patients with obesity and 69 non-obesity Chinese adults, and the two groups were sex and age matched. Anthropometric indices of obesity, fasting blood glucose, blood pressure, and blood lipids were assessed. Both polymorphisms were genotyped using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). RESULTS There were significant differences in the allelic frequencies of the TCF7L2 rs11196218 and GLP1-R rs761386 between obesity and non-obesity groups (P = 0.003, OR = 2.32, 95% CI [1.31~4.09]; P = 0.034, OR = 1.94, 95% CI [1.05~3.60], respectively). In allele model, the genotypic frequencies of TCF7L2 rs11196218 and GLP1-R rs761386 also differed between obesity and non-obesity groups (P = 0.014 and 0.033, respectively). In dominant model, the TCF7L2 rs11196218 A-carrier (AA/AG) had a higher risk of obesity than GG genotype (P = 0.014, OR = 2.54, 95% CI [1.21~5.35]). Comparison of clinical and biochemical parameters between genotypes showed no significant difference. CONCLUSION These findings suggest that the rs11196218 (A/G) polymorphism of the TCF7L2 gene and the rs761386 (C/T) polymorphism of the GLP1-R gene were associated with obesity in the Chinese population.
Collapse
Affiliation(s)
- Tiantian Xu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Mengmeng Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Qingjing Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Bian Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Minli Qu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Xin Chen
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Correspondence: Jing Wu Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, People’s Republic of ChinaTel +86 13574120508 Email
| |
Collapse
|
23
|
Maierean AD, Bordea IR, Salagean T, Hanna R, Alexescu TG, Chis A, Todea DA. Polymorphism of the Serotonin Transporter Gene and the Peripheral 5-Hydroxytryptamine in Obstructive Sleep Apnea: What Do We Know and What are We Looking for? A Systematic Review of the Literature. Nat Sci Sleep 2021; 13:125-139. [PMID: 33603523 PMCID: PMC7881775 DOI: 10.2147/nss.s278170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a highly prevalent disease with substantial public health burden. In most of the cases, there is a genetic predisposition to OSA. Serotonin/T-HydroxyTriptamine (5-HT) plays a key role in ventilatory stimulation, while the polymorphism of the serotonin transporter gene (STG) leads to alterations in serotonin level, making it important in OSA. OBJECTIVE To examine whether the 5-HydroxyTriptamine and the genetic predisposition influence the incidence and evolution of OSA, we reviewed randomized, controlled trials and observational studies on the selected topic. The secondary objective was to determine the metabolic effects of the circulating serotonin in other tissues (liver, pancreas, gut, brown adipose tissue, and white adipose tissue) and its role in the development of obesity. DATA SOURCES A systematic review of English articles was performed based on PubMed and the Cochrane Library databases. Search filters included randomized controlled trial, controlled clinical trial, random allocation, double-blind method, and case-control studies and used the following keywords: Brain Serotonin OR Serotonin Transporter Gene Polymorphism OR Peripheral 5-HydroxyTryptamine AND Obstructive Sleep Apnea OR Sleep Disorder Breathing OR brain serotonin AND OSA OR serotonin transporter gene OR Peripheral 5-Hydroxytryptamine AND Sleep. STUDY ELIGIBILITY CRITERIA The inclusion criteria for the current review were previous diagnosis of OSA, age above 18 years, and articles including quantitative data about serotonin transporter gene or peripheral serotonin. Language and time criteria were added - English articles published in the last 15 years. Studies that were not included were reviews and case reports. STUDY APPRAISAL AND SYNTHESIS METHODS In order to study the serotonin function, a literature research was conducted in the databases Pubmed and Cochrane Library. The following search terms were used: serotonin, 5-hydroxytryptamine, serotonin transporter gene. A critical appraisal of the included studies was performed with the Newcastle-Ottawa scale (NOS) and Delphi list. RESULTS The search yielded 1210 articles, from which 43 were included. The included studies suggest that the two polymorphisms of serotonin transporter gene (5HTT) - variable number of tandem repeats (VNTR) and linked polymorphic region (LPR) - are strong candidates in the pathogenesis of OSA. The allele 10 of 5HTTVNTR and the long/long (L/L) allele genotype were associated with a higher prevalence of OSA and the L allele with a higher apnea-hypopnea index and a longer time during sleep with oxygen desaturation. LIMITATIONS The main limitation of the present study consists of heterogeneity of the information. Being a less studied subject, randomized trials are not widely available and most data were obtained from case-control trials. Moreover, the included material indirectly approached the subject by demonstrating the effects of serotoninergic system over the metabolism, the connection between serotonin and obesity, factors which are implied in the pathogenesis of OSA. CONCLUSION AND IMPLICATIONS OF KEY FINDINGS The two polymorphisms of serotonin gene can be considered important factors in the diagnosis and management of OSA.
Collapse
Affiliation(s)
- Anca Diana Maierean
- Department of Pneumology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tudor Salagean
- Department of Land Measurements and Exact Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, 16132, Italy.,Department of Oral Surgery, Dental Institute, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Teodora Gabriela Alexescu
- Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ana Chis
- Department of Pneumology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Doina Adina Todea
- Department of Pneumology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Kong X, Wang X, Qin Y, Han J. Effects of sunset yellow on proliferation and differentiation of intestinal epithelial cells in murine intestinal organoids. J Appl Toxicol 2020; 41:953-963. [DOI: 10.1002/jat.4080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Xiunan Kong
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Xiu Wang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Yumei Qin
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Jianzhong Han
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| |
Collapse
|
25
|
Yang Y, Xu Y. The central melanocortin system and human obesity. J Mol Cell Biol 2020; 12:785-797. [PMID: 32976556 PMCID: PMC7816681 DOI: 10.1093/jmcb/mjaa048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of obesity and the associated comorbidities highlight the importance of understanding the regulation of energy homeostasis. The central melanocortin system plays a critical role in controlling body weight balance. Melanocortin neurons sense and integrate the neuronal and hormonal signals, and then send regulatory projections, releasing anorexigenic or orexigenic melanocortin neuropeptides, to downstream neurons to regulate the food intake and energy expenditure. This review summarizes the latest progress in our understanding of the role of the melanocortin pathway in energy homeostasis. We also review the advances in the identification of human genetic variants that cause obesity via mechanisms that affect the central melanocortin system, which have provided rational targets for treatment of genetically susceptible patients.
Collapse
Affiliation(s)
- Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Chuluun-Erdene A, Sengeragchaa O, Altangerel TA, Sanjmyatav P, Dagdan B, Battulga S, Enkhbat L, Byambasuren N, Malchinkhuu M, Janlav M. Association of Candidate Gene Polymorphism with Metabolic Syndrome among Mongolian Subjects: A Case-Control Study. Med Sci (Basel) 2020; 8:medsci8030038. [PMID: 32887252 PMCID: PMC7563398 DOI: 10.3390/medsci8030038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome (MetS) is complex and determined by the interaction between genetic and environmental factors and their influence on obesity, insulin resistance, and related traits associated with diabetes and cardiovascular disease risk. Some dynamic markers, including adiponectin (ADIPOQ), brain-derived neurotrophic factor (BDNF), and lipoprotein lipase (LPL), are implicated in MetS; however, the influence of their genetic variants on MetS susceptibility varies in racial and ethnic groups. We investigated the association of single nucleotide polymorphism (SNP)-SNP interactions among nine SNPs in six genes with MetS's genetic predisposition in Mongolian subjects. A total of 160 patients with MetS for the case group and 144 healthy individuals for the control group were selected to participate in this study. Regression analysis of individual SNPs showed that the ADIPOQ + 45GG (odds ratio (OR) = 2.09, p = 0.011) and P+P+ of LPL PvuII (OR = 2.10, p = 0.038) carriers had an increased risk of MetS. Conversely, G allele of LPL S447X (OR = 0.45, p = 0.036) and PGC-1α 482Ser (OR = 0.26, p = 0.001) allele were estimated as protective factors, respectively. Moreover, a haplotype containing the G-P+-G combination was related to MetS. Significant loci were also related to body mass index (BMI), systolic blood pressure (SBP), serum high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), and fasting blood glucose (FBG), adipokines, and insulin as well as insulin resistance (p < 0.05). Our results confirm that ADIPOQ + 45T > G, LPL PvII, and PGC-1α Gly482Ser loci are associated with MetS in Mongolian subjects.
Collapse
Affiliation(s)
- Ariunbold Chuluun-Erdene
- Department of Biochemistry, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (A.C.-E.); (O.S.); (T.-A.A.); (P.S.); (B.D.); (S.B.); (L.E.); (N.B.)
| | - Orgil Sengeragchaa
- Department of Biochemistry, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (A.C.-E.); (O.S.); (T.-A.A.); (P.S.); (B.D.); (S.B.); (L.E.); (N.B.)
| | - Tsend-Ayush Altangerel
- Department of Biochemistry, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (A.C.-E.); (O.S.); (T.-A.A.); (P.S.); (B.D.); (S.B.); (L.E.); (N.B.)
| | - Purevjal Sanjmyatav
- Department of Biochemistry, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (A.C.-E.); (O.S.); (T.-A.A.); (P.S.); (B.D.); (S.B.); (L.E.); (N.B.)
| | - Batnaran Dagdan
- Department of Biochemistry, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (A.C.-E.); (O.S.); (T.-A.A.); (P.S.); (B.D.); (S.B.); (L.E.); (N.B.)
- Coronary Care Unit, Cardiovascular Center, The Shastin Central Hospital, Ulaanbaatar 16081, Mongolia
| | - Solongo Battulga
- Department of Biochemistry, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (A.C.-E.); (O.S.); (T.-A.A.); (P.S.); (B.D.); (S.B.); (L.E.); (N.B.)
| | - Lundiamaa Enkhbat
- Department of Biochemistry, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (A.C.-E.); (O.S.); (T.-A.A.); (P.S.); (B.D.); (S.B.); (L.E.); (N.B.)
| | - Nyamjav Byambasuren
- Department of Biochemistry, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (A.C.-E.); (O.S.); (T.-A.A.); (P.S.); (B.D.); (S.B.); (L.E.); (N.B.)
| | - Munkhzol Malchinkhuu
- Department of Pathophysiology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia;
| | - Munkhtstetseg Janlav
- Department of Biochemistry, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (A.C.-E.); (O.S.); (T.-A.A.); (P.S.); (B.D.); (S.B.); (L.E.); (N.B.)
- Correspondence: ; Tel.: +976-9909-2287
| |
Collapse
|
27
|
Shong KE, Oh CM, Namkung J, Park S, Kim H. Serotonin Regulates De Novo Lipogenesis in Adipose Tissues through Serotonin Receptor 2A. Endocrinol Metab (Seoul) 2020; 35:470-479. [PMID: 32615731 PMCID: PMC7386107 DOI: 10.3803/enm.2020.35.2.470] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Obesity is defined as excessive fat mass and is a major cause of many chronic diseases such as diabetes, cardiovascular disease, and cancer. Increasing energy expenditure and regulating adipose tissue metabolism are important targets for the treatment of obesity. Serotonin (5-hydroxytryptophan [5-HT]) is a monoamine metabolite of the essential amino acid tryptophan. Here, we demonstrated that 5-HT in mature adipocytes regulated energy expenditure and lipid metabolism. METHODS Tryptophan hydroxylase 1 (TPH1) is the rate-limiting enzyme during 5-HT synthesis in non-neural peripheral tissues. We generated adipose tissue-specific Tph1 knockout (Tph1 FKO) mice and adipose tissue-specific serotonin receptor 2A KO (Htr2a FKO) mice and analyzed their phenotypes during high-fat diet (HFD) induced obesity. RESULTS Tph1 FKO mice fed HFD exhibited reduced lipid accumulation, increased thermogenesis, and resistance to obesity. In addition, Htr2a FKO mice fed HFD showed reduced lipid accumulation in white adipose tissue and resistance to obesity. CONCLUSION These data suggest that the inhibition of serotonin signaling might be an effective strategy in obesity.
Collapse
Affiliation(s)
- Ko Eun Shong
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon,
Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju,
Korea
| | - Jun Namkung
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Sangkyu Park
- Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Hail Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon,
Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon,
Korea
| |
Collapse
|
28
|
Fruit and vegetable intake modifies the associations between suppressor of cytokine signaling 3 genetic variants and type 2 diabetes. Eur J Nutr 2020; 59:3441-3449. [PMID: 31927672 DOI: 10.1007/s00394-020-02178-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Type 2 diabetes is a complex disease determined by variable genes and environmental factors. The study was designed to investigate the effect of interactions of four polymorphisms of suppressor of cytokine signaling 3 (SOCS3) with fruit and vegetable (F&V) intake on type 2 diabetes in a rural population of China. METHODS A total of 4411 participants from the rural areas of Henan, China were included in the study. Multivariate logistic regression and restricted cubic splines were used to estimate the associations between polymorphisms and risk allele score of SOCS3 and type 2 diabetes in different groups. Haplotype analysis was conducted to examine the effects of linkage inheritance at these four loci on type 2 diabetes. RESULTS Three of the four polymorphisms showed significant associations with type 2 diabetes in the less F&V intake group after adjusting the covariates, the odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) were 1.24 (1.08-1.41) for rs4969168, 1.16 (1.02-1.32) for rs9892622, and 1.21 (1.06-1.39) for rs9914220. No significant association was detected in the more F&V intake group. The obvious dose-response relationship between the risk allele score and type 2 diabetes was also noted only in the less F&V intake group. CONCLUSIONS Variants of SOCS3 gene were associated with type 2 diabetes and the associations could be modified by the F&V intake.
Collapse
|
29
|
Koerperich ZM, Ericson MD, Freeman KT, Speth RC, Pogozheva ID, Mosberg HI, Haskell-Luevano C. Incorporation of Agouti-Related Protein (AgRP) Human Single Nucleotide Polymorphisms (SNPs) in the AgRP-Derived Macrocyclic Scaffold c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-dPro] Decreases Melanocortin-4 Receptor Antagonist Potency and Results in the Discovery of Melanocortin-5 Receptor Antagonists. J Med Chem 2020; 63:2194-2208. [PMID: 31845801 DOI: 10.1021/acs.jmedchem.9b00860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While the melanocortin receptors (MCRs) are known to be involved in numerous biological pathways, the potential roles of the MC5R have not been clearly elucidated in humans. Agouti-related protein (AgRP), an MC3R/MC4R antagonist and MC4R inverse agonist, contains an exposed β-hairpin loop composed of six residues (Arg-Phe-Phe-Asn-Ala-Phe) that is imperative for binding and function. Within this active loop of AgRP, four human missense polymorphisms were deposited into the NIH Variation Viewer database. These polymorphisms, Arg111Cys, Arg111His, Phe112Tyr, and Ala115Val (AgRP full-length numbering), were incorporated into the peptide macrocycles c[Pro1-Arg2-Phe3-Phe4-Xaa5-Ala6-Phe7-dPro8], where Xaa was Dap5 or Asn5, to explore the functional effects of these naturally occurring substitutions in a simplified AgRP scaffold. All peptides lowered potency at least 10-fold in a cAMP accumulation assay compared to the parent sequences at the MC4Rs. Compounds MDE 6-82-3c, ZMK 2-82, MDE 6-82-1c, ZMK 2-85, and ZMK 2-112 are also the first AgRP-based chemotypes that antagonize the MC5R.
Collapse
Affiliation(s)
- Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328-2018, United States.,College of Medicine, Georgetown University, Washington, D.C. 20057, United States
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I Mosberg
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr Rev 2019; 40:1092-1107. [PMID: 30901029 PMCID: PMC6624793 DOI: 10.1210/er.2018-00283] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Serotonin is a phylogenetically ancient biogenic amine that has played an integral role in maintaining energy homeostasis for billions of years. In mammals, serotonin produced within the central nervous system regulates behavior, suppresses appetite, and promotes energy expenditure by increasing sympathetic drive to brown adipose tissue. In addition to these central circuits, emerging evidence also suggests an important role for peripheral serotonin as a factor that enhances nutrient absorption and storage. Specifically, glucose and fatty acids stimulate the release of serotonin from the duodenum, promoting gut peristalsis and nutrient absorption. Serotonin also enters the bloodstream and interacts with multiple organs, priming the body for energy storage by promoting insulin secretion and de novo lipogenesis in the liver and white adipose tissue, while reducing lipolysis and the metabolic activity of brown and beige adipose tissue. Collectively, peripheral serotonin acts as an endocrine factor to promote the efficient storage of energy by upregulating lipid anabolism. Pharmacological inhibition of serotonin synthesis or signaling in key metabolic tissues are potential drug targets for obesity, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Julian M Yabut
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Justin D Crane
- Department of Biology, Northeastern University, Boston, Massachusetts
| | - Alexander E Green
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Damien J Keating
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Waliul I Khan
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
31
|
Lin WY, Chan CC, Liu YL, Yang AC, Tsai SJ, Kuo PH. Performing different kinds of physical exercise differentially attenuates the genetic effects on obesity measures: Evidence from 18,424 Taiwan Biobank participants. PLoS Genet 2019; 15:e1008277. [PMID: 31369549 PMCID: PMC6675047 DOI: 10.1371/journal.pgen.1008277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity is a worldwide health problem that is closely linked to many metabolic disorders. Regular physical exercise has been found to attenuate the genetic predisposition to obesity. However, it remains unknown what kinds of exercise can modify the genetic risk of obesity. This study included 18,424 unrelated Han Chinese adults aged 30–70 years who participated in the Taiwan Biobank (TWB). A total of 5 obesity measures were investigated here, including body mass index (BMI), body fat percentage (BFP), waist circumference (WC), hip circumference (HC), and waist-to-hip ratio (WHR). Because there have been no large genome-wide association studies on obesity for Han Chinese, we used the TWB internal weights to construct genetic risk scores (GRSs) for each obesity measure, and then test the significance of GRS-by-exercise interactions. The significance level throughout this work was set at 0.05/550 = 9.1x10-5 because a total of 550 tests were performed. Performing regular exercise was found to attenuate the genetic effects on 4 obesity measures, including BMI, BFP, WC, and HC. Among the 18 kinds of self-reported regular exercise, 6 mitigated the genetic effects on at least one obesity measure. Regular jogging blunted the genetic effects on BMI, BFP, and HC. Mountain climbing, walking, exercise walking, international standard dancing, and a longer practice of yoga also attenuated the genetic effects on BMI. Exercises such as cycling, stretching exercise, swimming, dance dance revolution, and qigong were not found to modify the genetic effects on any obesity measure. Across all 5 obesity measures, regular jogging consistently presented the most significant interactions with GRSs. Our findings show that the genetic effects on obesity measures can be decreased to various extents by performing different kinds of exercise. The benefits of regular physical exercise are more impactful in subjects who are more predisposed to obesity. The complex interplay of genetics and lifestyle makes obesity a challenging issue. Previous studies have found performing regular physical exercise could blunt the genetic effects on body mass index (BMI). However, BMI does not take into account lean body mass or identify central obesity. Moreover, it remains unclear what kinds of exercise could more effectively attenuate the genetic effects on obesity measures. With a sample of 18,424 unrelated Han Chinese adults, we comprehensively investigated gene-exercise interactions on 5 obesity measures: BMI, body fat percentage, waist circumference, hip circumference, and waist-to-hip ratio. Moreover, we tested whether the genetic effects on obesity measures could be modified by any of 18 kinds of self-reported regular exercise. Because no large genome-wide association studies on obesity have been done for Han Chinese, we constructed genetic risk scores with internal weights for analyses. Among these exercises, regular jogging consistently presented the strongest evidence to mitigate the genetic effects on all 5 obesity measures. Moreover, mountain climbing, walking, exercise walking, international standard dancing, and a longer practice of yoga attenuated the genetic effects on BMI. The benefits of regularly performing these 6 kinds of exercise are more impactful in subjects who are more predisposed to obesity.
Collapse
Affiliation(s)
- Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- * E-mail: (WYL); (PHK)
| | - Chang-Chuan Chan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Albert C. Yang
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States of America
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Beitou District, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- * E-mail: (WYL); (PHK)
| |
Collapse
|
32
|
da Fonseca ACP, Abreu GM, Zembrzuski VM, Campos Junior M, Carneiro JRI, Nogueira Neto JF, Cabello GMK, Cabello PH. The association of the fat mass and obesity-associated gene (FTO) rs9939609 polymorphism and the severe obesity in a Brazilian population. Diabetes Metab Syndr Obes 2019; 12:667-684. [PMID: 31213864 PMCID: PMC6537458 DOI: 10.2147/dmso.s199542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Obesity occurs due to the interaction between the genetic background and environmental factors, including an increased food intake and a sedentary lifestyle. Nowadays, it is clear that there is a specific circuit, called leptin-melanocortin pathway, which stimulates and suppresses food intake and energy expenditure. Therefore, the aim of this study was to evaluate the influence of genetic variants related to appetite regulation and energy expenditure on severe obesity susceptibility and metabolic phenotypes in a Brazilian cohort. Material and methods: A total of 490 participants were selected (298 severely obese subjects and 192 normal-weight individuals). Genomic DNA was extracted and polymorphisms in protein related to agouti (AGRP; rs5030980), ghrelin (GHRL; rs696217), neuropeptide Y (NPY; rs535870237), melanocortin 4 receptor (MC4R; rs17782313), brain-derived neurotrophic factor (BDNF; rs4074134) and fat mass and obesity-associated (FTO; rs9939609) genes were genotyped using TaqMan® probes. Demographic, anthropometric, biochemical and blood pressure parameters were obtained from the participants. Results: Our results showed that FTO rs9939609 was associated with severe obesity susceptibility. This polymorphism was also related to body weight, body mass index (BMI), waist to weight ratio (WWR) and inverted BMI. Individuals carrying the mutant allele (A) showed higher levels of BMI as well as lower values of WWR and inverted BMI. Conclusion: This study showed that FTO rs9939609 polymorphism plays a significant role in predisposing severe obesity in a Brazilian population.
Collapse
Affiliation(s)
| | | | | | - Mario Campos Junior
- Human Genetics Laboratory, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro, Brazil
| | - João Regis Ivar Carneiro
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Pedro Hernán Cabello
- Human Genetics Laboratory, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Grande Rio University, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Xiang S, Qi L, Zhao F, Wang W, Zhang X, Hu Y, Hua F, Zhang Z. Glucagon-like peptide-1 receptor gene polymorphism is associated with fat mass in Chinese nuclear families with male offspring. Acta Biochim Biophys Sin (Shanghai) 2019; 51:545-547. [PMID: 31131863 DOI: 10.1093/abbs/gmz025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/24/2019] [Indexed: 01/30/2023] Open
Affiliation(s)
- Shoukui Xiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Luyue Qi
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Fei Zhao
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wenjie Wang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Xiaoya Zhang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yunqiu Hu
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhenlin Zhang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
34
|
Associations of ADIPOQ and LEP Gene Variants with Energy Intake: A Systematic Review. Nutrients 2019; 11:nu11040750. [PMID: 30935050 PMCID: PMC6520881 DOI: 10.3390/nu11040750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
This systematic review aims to evaluate the association of adiponectin (ADIPOQ) and leptin (LEP) gene variants with energy intake. Cross-sectional, cohort, and case–control studies that reported an association of leptin and/or adiponectin gene variants with energy intake were included in this review. Human studies without any age restrictions were considered eligible. Detailed individual search strategies were developed for each of the following bibliographic databases: Cochrane, Latin American and Caribbean Center on Health Sciences Information (LILACS), PubMed/MEDLINE, Scopus, and Web of Science. Risk of bias assessment was adapted from the Downs and Black scale and was used to evaluate the methodology of the included studies. Seven studies with a pooled population of 2343 subjects were included. The LEP and ADIPOQ gene variants studied were LEP-rs2167270 (k = 1), LEP-rs7799039 (k = 5), ADIPOQ-rs2241766 (k = 2), ADIPOQ-rs17300539 (k = 1), and ADIPOQ marker D3S1262 (k = 1). Two of the seven studies reviewed demonstrated a positive association between the LEP-rs7799039 polymorphism and energy intake. Two other studies—one involving a marker of the ADIPOQ gene and one examining the ADIPOQ-rs17300539 polymorphism—also reported associations with energy intake. More research is needed to further elucidate the contributions of genetic variants to energy metabolism.
Collapse
|
35
|
Guest PC. Biogenesis of the Insulin Secretory Granule in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:17-32. [PMID: 30919330 DOI: 10.1007/978-3-030-12668-1_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The secretory granules of pancreatic beta cells are specialized organelles responsible for the packaging, storage and secretion of the vital hormone insulin. The insulin secretory granules also contain more than 100 other proteins including the proteases involved in proinsulin-to insulin conversion, other precursor proteins, minor co-secreted peptides, membrane proteins involved in cell trafficking and ion translocation proteins essential for regulation of the intragranular environment. The synthesis, transport and packaging of these proteins into nascent granules must be carried out in a co-ordinated manner to ensure correct functioning of the granule. The process is regulated by many circulating nutrients such as glucose and can change under different physiological states. This chapter discusses the various processes involved in insulin granule biogenesis with a focus on the granule composition in health and disease.
Collapse
Affiliation(s)
- Paul C Guest
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
36
|
Gene variants in AKT1, GCKR and SOCS3 are differentially associated with metabolic traits in Mexican Amerindians and Mestizos. Gene 2018; 679:160-171. [DOI: 10.1016/j.gene.2018.08.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 01/13/2023]
|
37
|
Ericson MD, Haskell-Luevano C. A Review of Single-Nucleotide Polymorphisms in Orexigenic Neuropeptides Targeting G Protein-Coupled Receptors. ACS Chem Neurosci 2018; 9:1235-1246. [PMID: 29714060 DOI: 10.1021/acschemneuro.8b00151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many physiological pathways are involved in appetite, food intake, and the maintenance of energy homeostasis. In particular, neuropeptides within the central nervous system have been demonstrated to be critical signaling molecules for modulating appetite. Both anorexigenic (appetite-decreasing) and orexigenic (appetite-stimulating) neuropeptides have been described. The biological effects of these neuropeptides can be observed following central administration in animal models. This review focuses on single nucleotide polymorphisms (SNPs) in six orexigenic neuropeptides: agouti-related protein (AGRP), galanin, melanin concentrating hormone (MCH), neuropeptide Y (NPY), orexin A, and orexin B. Following a brief summary of the neuropeptides and their orexigenic activities, reports associating SNPs within the orexigenic neuropeptides to energy homeostasis, food intake, obesity, and BMI in humans are reviewed. Additionally, the NIH tool Variation Viewer was utilized to identify missense SNPs within the mature, biologically active neuropeptide sequences. For SNPs found through Variation Viewer, a concise discussion on relevant pharmacological structure-activity relationship studies for select SNPs is included. This review is meant to update reported orexigenic neuropeptide SNPs and demonstrate the potential utility of genomic sequence databases for finding SNPs that may result in altered receptor signaling for neuropeptide pathways associated with appetite.
Collapse
Affiliation(s)
- Mark D. Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
38
|
Chen M, Wang J, Wang Y, Wu Y, Fu J, Liu JF. Genome-wide detection of selection signatures in Chinese indigenous Laiwu pigs revealed candidate genes regulating fat deposition in muscle. BMC Genet 2018; 19:31. [PMID: 29776331 PMCID: PMC5960162 DOI: 10.1186/s12863-018-0622-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Background Currently, genome-wide scans for positive selection signatures in commercial breed have been investigated. However, few studies have focused on selection footprints of indigenous breeds. Laiwu pig is an invaluable Chinese indigenous pig breed with extremely high proportion of intramuscular fat (IMF), and an excellent model to detect footprint as the result of natural and artificial selection for fat deposition in muscle. Result In this study, based on GeneSeek Genomic profiler Porcine HD data, three complementary methods, FST, iHS (integrated haplotype homozygosity score) and CLR (composite likelihood ratio), were implemented to detect selection signatures in the whole genome of Laiwu pigs. Totally, 175 candidate selected regions were obtained by at least two of the three methods, which covered 43.75 Mb genomic regions and corresponded to 1.79% of the genome sequence. Gene annotation of the selected regions revealed a list of functionally important genes for feed intake and fat deposition, reproduction, and immune response. Especially, in accordance to the phenotypic features of Laiwu pigs, among the candidate genes, we identified several genes, NPY1R, NPY5R, PIK3R1 and JAKMIP1, involved in the actions of two sets of neurons, which are central regulators in maintaining the balance between food intake and energy expenditure. Conclusions Our results identified a number of regions showing signatures of selection, as well as a list of functionally candidate genes with potential effect on phenotypic traits, especially fat deposition in muscle. Our findings provide insights into the mechanisms of artificial selection of fat deposition and further facilitate follow-up functional studies. Electronic supplementary material The online version of this article (10.1186/s12863-018-0622-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minhui Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiying Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yanping Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ying Wu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jinluan Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Jian-Feng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
39
|
Wu Y, Duan H, Tian X, Xu C, Wang W, Jiang W, Pang Z, Zhang D, Tan Q. Genetics of Obesity Traits: A Bivariate Genome-Wide Association Analysis. Front Genet 2018; 9:179. [PMID: 29868124 PMCID: PMC5964872 DOI: 10.3389/fgene.2018.00179] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Previous genome-wide association studies on anthropometric measurements have identified more than 100 related loci, but only a small portion of heritability in obesity was explained. Here we present a bivariate twin study to look for the genetic variants associated with body mass index and waist-hip ratio, and to explore the obesity-related pathways in Northern Han Chinese. Cholesky decomposition model for 242 monozygotic and 140 dizygotic twin pairs indicated a moderate genetic correlation (r = 0.53, 95%CI: 0.42-0.64) between body mass index and waist-hip ratio. Bivariate genome-wide association analysis in 139 dizygotic twin pairs identified 26 associated SNPs with p < 10-5. Further gene-based analysis found 291 nominally associated genes (P < 0.05), including F12, HCRTR1, PHOSPHO1, DOCK2, DOCK6, DGKB, GLP1R, TRHR, MMP1, GPR55, CCK, and OR2AK2, as well as 6 enriched gene-sets with FDR < 0.05. Expression quantitative trait loci analysis identified rs2242044 as a significant cis-eQTL in both the normal adipose-subcutaneous (P = 1.7 × 10-9) and adipose-visceral (P = 4.4 × 10-15) tissue. These findings may provide an important entry point to unravel genetic pleiotropy in obesity traits.
Collapse
Affiliation(s)
- Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Haiping Duan
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China.,Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Chunsheng Xu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China.,Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Wenjie Jiang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Zengchang Pang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
40
|
Hu W, Lv J, Han M, Yang Z, Li T, Jiang S, Yang Y. STAT3: The art of multi-tasking of metabolic and immune functions in obesity. Prog Lipid Res 2018; 70:17-28. [DOI: 10.1016/j.plipres.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
|
41
|
Wu S, Wang Y, Ning Y, Guo H, Wang X, Zhang L, Khan R, Cheng G, Wang H, Zan L. Genetic Variants in STAT3 Promoter Regions and Their Application in Molecular Breeding for Body Size Traits in Qinchuan Cattle. Int J Mol Sci 2018; 19:ijms19041035. [PMID: 29596388 PMCID: PMC5979584 DOI: 10.3390/ijms19041035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 11/16/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays a critical role in leptin-mediated regulation of energy metabolism. This study investigated genetic variation in STAT3 promoter regions and verified their contribution to bovine body size traits. We first estimated the degree of conservation in STAT3, followed by measurements of its mRNA expression during fetal and adult stages of Qinchuan cattle. We then sequenced the STAT3 promoter region to determine genetic variants and evaluate their association with body size traits. From fetus to adult, STAT3 expression increased significantly in muscle, fat, heart, liver, and spleen tissues (p < 0.01), but decreased in the intestine, lung, and rumen (p < 0.01). We identified and named five single nucleotide polymorphisms (SNPs): SNP1-304A>C, SNP2-285G>A, SNP3-209A>C, SNP4-203A>G, and SNP5-188T>C. These five mutations fell significantly outside the Hardy-Weinberg equilibrium (HWE) (Chi-squared test, p < 0.05) and significantly associated with body size traits (p < 0.05). Individuals with haplotype H3H3 (CC-GG-CC-GG-CC) were larger in body size than other haplotypes. Therefore, variations in the STAT3 gene promoter regions, most notably haplotype H3H3, may benefit marker-assisted breeding of Qinchuan cattle.
Collapse
Affiliation(s)
- Sen Wu
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Yaning Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Yue Ning
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Hongfang Guo
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Le Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
- National Beef Cattle Improvement Center of Northwest A & F University, Yangling 712100, China.
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
- National Beef Cattle Improvement Center of Northwest A & F University, Yangling 712100, China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
- National Beef Cattle Improvement Center of Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
42
|
Xu K, Zhang X, Wang Z, Hu Y, Sinha R. Epigenome-wide association analysis revealed that SOCS3 methylation influences the effect of cumulative stress on obesity. Biol Psychol 2018; 131:63-71. [PMID: 27826092 PMCID: PMC5419875 DOI: 10.1016/j.biopsycho.2016.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 10/03/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
Abstract
Chronic stress has a significant impact on obesity. However, how stress influences obesity remains unclear. We conducted an epigenome-wide DNA methylation association analysis of obesity (N=510) and examined whether cumulative stress influenced the DNA methylation on body weight. We identified 20 CpG sites associated with body mass index at the false discovery rate q<0.05, including a novel site, cg18181703, in suppressor of cytokine signaling 3 (SOCS3) gene (coefficient β=-0.0022, FDR q=4.94×10-5). The interaction between cg18181703 and cumulative adverse life stress contributed to variations in body weight (p=0.002). Individuals with at least five major life events and lower methylation of cg1818703 showed a 1.38-fold higher risk of being obese (95%CI: 1.17-1.76). Our findings suggest that aberrant in DNA methylation is associated with body weight and that methylation of SOCS3 moderates the effect of cumulative stress on obesity.
Collapse
Affiliation(s)
- Ke Xu
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT 06511, United States; Connecticut Veteran Health System, 950 Campbell Ave, Building 35, Room #43, West Haven, 06516, United States.
| | - Xinyu Zhang
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT 06511, United States; Connecticut Veteran Health System, 950 Campbell Ave, Building 35, Room #43, West Haven, 06516, United States
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06511, United States
| | - Ying Hu
- Yale Stress Center, Yale University, 2 Church St S #209, New Haven, CT 06519, United States
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT 06511, United States; Center for Biomedical Informatics and Information Technology, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, United States
| |
Collapse
|
43
|
Ma X, Lu R, Gu N, Wei X, Bai G, Zhang J, Deng R, Feng N, Li J, Guo X. Polymorphisms in the Glucagon-Like Peptide 1 Receptor ( GLP-1R) Gene Are Associated with the Risk of Coronary Artery Disease in Chinese Han Patients with Type 2 Diabetes Mellitus: A Case-Control Study. J Diabetes Res 2018; 2018:1054192. [PMID: 30271789 PMCID: PMC6151225 DOI: 10.1155/2018/1054192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/15/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Glucagon-like peptide 1 (GLP-1) bestows protective effects upon the cardiovascular system through direct cardiovascular interactions or by improvements to metabolic function. Both these effects are thought to be at least partly mediated by the GLP-1 receptor (GLP-1R). This case-controlled study investigated whether polymorphisms in the GLP-1R gene affect the risk of cardiovascular disease in type 2 diabetic patients in the Chinese Han population. METHODS Eleven haplotype-tagging single nucleotide polymorphisms (SNPs), distributed across 22 kb of the 39 kb GLP-1R gene, were selected and genotyped in diabetic patients from a Chinese Han population. Patients were classified based on the severity of coronary artery stenosis. Coronary artery stenosis was ≥50% in 394 patients (coronary artery disease- (CAD-) positive group), and coronary artery stenosis was <50% in 217 patients (control group). Allele and genotype frequencies were compared between the two groups at all 11 SNPs. RESULTS When considered in recessive inheritance mode, patients with the GG genotype at rs4714210 had a lower CAD risk than patients with other genotypes (OR = 0.442, 95% CI = 0.258-0.757, p = 0.002), even when other known CAD risk factors were taken into account (ORa = 0.440, 95% CIa = 0.225-0.863, p a = 0.017). In additive inheritance mode, GG genotype carriers at rs4714210 exhibited a lower risk of CAD than AA carriers (ORa = 0.475, CIa = 0.232-0.970, p a = 0.041). CONCLUSION In type 2 diabetic patients from a Han Chinese population, some variations in the GLP-1R gene were associated with a lower risk of developing CAD.
Collapse
Affiliation(s)
- Xiaowei Ma
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ran Lu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Nan Gu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xiaowei Wei
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ge Bai
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jianwei Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ruifen Deng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Nan Feng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jianping Li
- Department of Cardiovascular, Peking University First Hospital, Beijing, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
44
|
Zhao H, Wilkinson A, Shen J, Wu X, Chow WH. Genetic polymorphisms in genes related to risk-taking behaviours predicting body mass index trajectory among Mexican American adolescents. Pediatr Obes 2017; 12:356-362. [PMID: 27228958 PMCID: PMC5319917 DOI: 10.1111/ijpo.12151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/08/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Obesity is associated with multiple health problems and often originates in childhood. The purpose is to investigate the associations of genetic polymorphisms in genes related to risk-taking behaviours with body mass index (BMI) trajectory over adolescence among Mexican Americans. METHODS This study included 1229 Mexican American adolescents who participated in a large population-based cohort study in Houston, Texas. BMI data were obtained at baseline and two follow-ups. The median follow-up time was 59 months. Participants were genotyped for 672 functional and tagging variants in genes involved in the dopamine, serotonin and cannabinoid pathways. RESULTS After adjusting for multiple comparisons, three genetic variants, namely, rs933271 and rs4646310 in COMT gene, and rs9567733 in HTR2A gene were significantly associated with BMI growth over adolescence. Using those three variants, we created an allelic score, and the allelic score was associated with BMI growth over adolescence (P < 0.001). With the increase number of variant allele, the rate of BMI growth over adolescence was slower. Finally, we identified another two genetic variants, namely, rs17069005 in HTR2A gene and rs3776511 in SLC6A3A gene were associated with obesity at last follow-up. CONCLUSIONS The results suggest that genetic variants in selected genes involved in dopamine and serotonin pathways have noticeable effects on BMI over adolescence.
Collapse
Affiliation(s)
- Hua Zhao
- Departments of Epidemiology, the University of Texas MD Anderson Cancer Center, Houston, Texas,Request for reprints: Hua Zhao, Department of Epidemiology, the University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030 Phone: 713-745-7597; Fax: 713-794-1964;
| | - Anna Wilkinson
- Michael and Susan Dell Center for Healthy Living, University of Texas School of Public Health, Austin Regional Campus, Austin, Texas
| | - Jie Shen
- Departments of Epidemiology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xifeng Wu
- Departments of Epidemiology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wong-Ho Chow
- Departments of Epidemiology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
45
|
Lee HJ, Kim SH, Choi SH, Lee JS. The Association between Socioeconomic Status and Obesity in Korean Children: An Analysis of the Fifth Korea National Health and Nutrition Examination Survey (2010-2012). Pediatr Gastroenterol Hepatol Nutr 2017; 20:186-193. [PMID: 29026735 PMCID: PMC5636935 DOI: 10.5223/pghn.2017.20.3.186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/22/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Obesity is one of the most common health problems among children and its prevalence has increased in recent decades. Socioeconomic status (SES) is a well-known risk factor for childhood obesity although the associations were different across countries. Previous studies in other countries have reported a positive association between childhood obesity and SES in developing countries, and inverse correlation has been reported in developed countries. For this reason, we wanted to investigate the relationship between SES and obesity in Korean children. METHODS Data were acquired 3,095 boys and girls who participated in the fifth Korea National Health and Nutrition Examination Survey, which was conducted from 2010 to 2012. Body mass index was calculated from measured anthropometric data using the 2007 Korean National Growth Charts. RESULTS Upon univariate analysis, we did not find any statistically significant differences in the parental employment status, monthly family income between children with and without obesity. Multiple logistic regression analysis showed childhood obesity was positively associated with maternal overweight (OR, 1.889; 95% CI, 1.079-3.309), maternal obesity (OR, 3.409; 95% CI, 2.228-5.215) and paternal obesity (OR, 2.135; 95% CI, 1.257-3.627). CONCLUSION The present study showed that socioeconomic status might not an important risk factor for obesity in Korean children. These results warrant further studies to clarify the association between SES and obesity in Korean children.
Collapse
Affiliation(s)
- Hae Jeong Lee
- Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Sung Hoon Kim
- Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Seo Heui Choi
- Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Ju Suk Lee
- Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
46
|
Winters A, Ramos-Molina B, Jarvela TS, Yerges-Armstrong L, Pollin TI, Lindberg I. Functional analysis of PCSK2 coding variants: A founder effect in the Old Order Amish population. Diabetes Res Clin Pract 2017; 131:82-90. [PMID: 28719828 PMCID: PMC5572827 DOI: 10.1016/j.diabres.2017.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
AIMS In humans, noncoding variants of PCSK2, the gene encoding prohormone convertase 2 (PC2), have been previously associated with risk for and age of onset of type 2 diabetes (T2D). The aims of this study were to identify coding variants in PCSK2; to determine their possible association with glucose handling; and to determine functional outcomes for coding variants in biochemical studies. METHODS Exome-wide genotyping was performed on 1725 Old Order Amish (OOA) subjects. PCSK2 coding variants were tested for association with diabetes-related phenotypes. In vitro analyses using transfected human PC2-encoding constructs were performed to determine the impact of each mutation on PC2 activity. RESULTS We identified 10 rare missense coding variants in PCSK2 in various genomic databases. R430W (rs200711626) is greatly enriched in the OOA population (MAF 4.3%). This variant is almost twice as common (MAF 7.4%) in OOA individuals with T2D as in OOA individuals with normal or with normal/impaired glucose tolerance (MAF 3.9% and 2.9%, respectively; p=0.25 and p=0.10). In vitro experiments revealed a broadening of the pH optimum for the R430W variant, which may result in increased activity against PCSK2 substrates. CONCLUSIONS Although the association of the R430W variation with T2D in the OOA population did not reach significance, based upon the broadened pH profile of R430W PC2, we speculate that the presence of this substitution may result in altered processing of PCSK2 substrates, ultimately leading to increased conversion to diabetes.
Collapse
Affiliation(s)
- Alexandra Winters
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Bruno Ramos-Molina
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Timothy S Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Laura Yerges-Armstrong
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Toni I Pollin
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
47
|
Sušilová L, Češková E, Hampel D, Sušil A, Šimůnek J. Changes in BMI in hospitalized patients during treatment with antipsychotics, depending on gender and other factors. Int J Psychiatry Clin Pract 2017; 21:112-117. [PMID: 28498089 DOI: 10.1080/13651501.2017.1291818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate the differences in body mass index (BMI) changes between men and women during hospitalization. METHODS The retrospective study monitored demographic and clinical data of 462 schizophrenic patients hospitalized 737 times between 2006 and 2011. BMI analysis was performed on patients on antipsychotic medication hospitalized longer than four days. RESULTS Patients with an initial BMI < 25 gained more weight than patients with a BMI > 25 (3.94% vs. 0.23%, men 4.02% vs. 0.69%, women 3.79% vs. -0.52%, always p < 0.001). Greater BMI gains were reported during the first hospitalization than during subsequent ones (3.94% vs. 1.66%, men 3.97% vs. 1.98%, women 3.88% vs. 1.18%, always p < 0.001). The comparison between men and women showed a higher increase in BMI in men 2.36% vs. 1.54%, p = 0.022. Men also gained significantly more weight than women on polytherapy (+2.55% vs. +1.37%) and during subsequent hospitalizations (1.98% vs. 1.18%). For treatment with various atypical antipsychotics (AP), no significant differences were found in weight changes between men and women; during treatment using a combination of multi-receptor AP and metabolically neutral aripiprazole, a significant increase of BMI occurred in men, but not in women (p = 0.018). CONCLUSIONS Men appear to be more prone to weight gain than women.
Collapse
Affiliation(s)
- Lenka Sušilová
- a Department of Public Health, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| | - Eva Češková
- b Central European Institute of Technology , Masaryk University (CEITEC MU) , Brno , Czech Republic.,c Department of Psychiatry , Faculty Hospital Brno , Brno , Czech Republic.,d Department of Clinical Studies, Medical Faculty , Ostrava University , Ostrava , Czech Republic.,e Department of Psychiatry , Faculty Hospital Ostrava , Ostrava , Czech Republic
| | - David Hampel
- f Department of Statistics and Operation Analysis , Mendel University in Brno , Brno , Czech Republic
| | - Aleš Sušil
- g Department of Informatics , Central Institute for Supervising and Testing in Agriculture , Brno , Czech Republic
| | - Jan Šimůnek
- a Department of Public Health, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| |
Collapse
|
48
|
Wilson LE, Harlid S, Xu Z, Sandler DP, Taylor JA. An epigenome-wide study of body mass index and DNA methylation in blood using participants from the Sister Study cohort. Int J Obes (Lond) 2017; 41:194-199. [PMID: 27773939 PMCID: PMC5209267 DOI: 10.1038/ijo.2016.184] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES The relationship between obesity and chronic disease risk is well-established; the underlying biological mechanisms driving this risk increase may include obesity-related epigenetic modifications. To explore this hypothesis, we conducted a genome-wide analysis of DNA methylation and body mass index (BMI) using data from a subset of women in the Sister Study. SUBJECTS/METHODS The Sister Study is a cohort of 50 884 US women who had a sister with breast cancer but were free of breast cancer themselves at enrollment. Study participants completed examinations which included measurements of height and weight, and provided blood samples. Blood DNA methylation data generated with the Illumina Infinium HumanMethylation27 BeadChip array covering 27,589 CpG sites was available for 871 women from a prior study of breast cancer and DNA methylation. To identify differentially methylated CpG sites associated with BMI, we analyzed this methylation data using robust linear regression with adjustment for age and case status. For those CpGs passing the false discovery rate significance level, we examined the association in a replication set comprised of a non-overlapping group of 187 women from the Sister Study who had DNA methylation data generated using the Infinium HumanMethylation450 BeadChip array. Analysis of this expanded 450 K array identified additional BMI-associated sites which were investigated with targeted pyrosequencing. RESULTS Four CpG sites reached genome-wide significance (false discovery rate (FDR) q<0.05) in the discovery set and associations for all four were significant at strict Bonferroni correction in the replication set. An additional 23 sites passed FDR in the replication set and five were replicated by pyrosequencing in the discovery set. Several of the genes identified including ANGPT4, RORC, SOCS3, FSD2, XYLT1, ABCG1, STK39, ASB2 and CRHR2 have been linked to obesity and obesity-related chronic diseases. CONCLUSIONS Our findings support the hypothesis that obesity-related epigenetic differences are detectable in blood and may be related to risk of chronic disease.
Collapse
Affiliation(s)
- Lauren E. Wilson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Sophia Harlid
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
49
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
50
|
Klemettilä JP, Kampman O, Solismaa A, Lyytikäinen LP, Seppälä N, Viikki M, Hämäläinen M, Moilanen E, Mononen N, Lehtimäki T, Leinonen E. Association Study of Arcuate Nucleus Neuropeptide Y Neuron Receptor Gene Variation And Serum Npy Levels in Clozapine Treated Patients With Schizophrenia. Eur Psychiatry 2016; 40:13-19. [DOI: 10.1016/j.eurpsy.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 11/29/2022] Open
Abstract
AbstractBackgroundAntipsychotic-induced weight gain (AIWG) leads to metabolic consequences and comorbidity, social stigmatization and nonadherence in patients with schizophrenia. Neuropeptide Y (NPY) has an important role in appetite and body weight regulation. Associations between AIWG and serum NPY levels, and genetic polymorphisms (SNPs) associated with its serum levels have been little studied in these patients.Subjects and methodsAssociations between serum NPY concentration and other metabolic and inflammatory markers, and 215 SNPs in 21 genes (NPY gene, NPY receptor genes and genes encoding arcuate nucleus NPY neuron receptors) were studied in 180 patients with schizophrenia on clozapine treatment.ResultsThe serum levels of NPY correlated with levels of resistin (r = 0.31, P < 0.001) and age (r = 0.22, P = 0.003). In the general linear univariate model the best-fitting model with explanatory factors age, serum resistin level, serum insulin level, BMI and gender explained 18.0% (P < 0.001) of the variance of serum NPY. Genetic risk score (GRSNPY) analysis found twelve significant (P < 0.05) serum NPY concentration related SNPs among α7 nicotinic acetylcholine receptor gene CHRNA7, insulin receptor gene INSR, leptin receptor gene LEPR, glucocorticoid receptor (GR) gene NR3C1, and NPY gene. However, after permutation test of gene score the predictive value of GRSNPY remained non-significant (P = 0.078).ConclusionsSerum NPY level does not seem to be a feasible biomarker of AIWG. Serum NPY level alterations are not significantly associated with the candidate gene polymorphisms studied.
Collapse
|