1
|
Guo B, Li QY, Liu XJ, Luo GH, Wu YJ, Nie J. Diabetes mellitus and Alzheimer's disease: Vacuolar adenosine triphosphatase as a potential link. Eur J Neurosci 2024; 59:2577-2595. [PMID: 38419188 DOI: 10.1111/ejn.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Globally, the incidence of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing year by year, causing a huge economic and social burden, and their pathogenesis and aetiology have been proven to have a certain correlation. In recent years, more and more studies have shown that vacuolar adenosine triphosphatases (v-ATPases) in eukaryotes, which are biomolecules regulating lysosomal acidification and glycolipid metabolism, play a key role in DM and AD. This article describes the role of v-ATPase in DM and AD, including its role in glycolysis, insulin secretion and insulin resistance (IR), as well as its relationship with lysosomal acidification, autophagy and β-amyloid (Aβ). In DM, v-ATPase is involved in the regulation of glucose metabolism and IR. v-ATPase is closely related to glycolysis. On the one hand, v-ATPase affects the rate of glycolysis by affecting the secretion of insulin and changing the activities of key glycolytic enzymes hexokinase (HK) and phosphofructokinase 1 (PFK-1). On the other hand, glucose is the main regulator of this enzyme, and the assembly and activity of v-ATPase depend on glucose, and glucose depletion will lead to its decomposition and inactivation. In addition, v-ATPase can also regulate free fatty acids, thereby improving IR. In AD, v-ATPase can not only improve the abnormal brain energy metabolism by affecting lysosomal acidification and autophagy but also change the deposition of Aβ by affecting the production and degradation of Aβ. Therefore, v-ATPase may be the bridge between DM and AD.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ye Li
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue-Jia Liu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guo-Hui Luo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ya-Juan Wu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Wu O, Lu X, Leng J, Zhang X, Liu W, Yang F, Zhang H, Li J, Khederzadeh S, Liu X, Yuan C. Reevaluating Adiponectin's impact on obesity hypertension: a Chinese case-control study. BMC Cardiovasc Disord 2024; 24:208. [PMID: 38615012 PMCID: PMC11015577 DOI: 10.1186/s12872-024-03865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/28/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Obesity and hypertension are major risk factors for cardiovascular diseases that affect millions of people worldwide. Both conditions are associated with chronic low-grade inflammation, which is mediated by adipokines such as adiponectin. Adiponectin is the most abundant adipokine that has a beneficial impact on metabolic and vascular biology, while high serum concentrations are associated with some syndromes. This "adiponectin paradox" still needs to be clarified in obesity-associated hypertension. The aim of this study was to investigate how adiponectin affects blood pressure, inflammation, and metabolic function in obesity hypertension using a Chinese adult case-control study. METHODS A case-control study that had finished recruiting 153 subjects divided as four characteristic groups. Adiponectin serum levels were tested by ELISA in these subjects among these four characteristic Chinese adult physical examination groups. Waist circumference (WC), body mass index (BMI), systolic blood pressure (SB), diastolic blood pressure (DB), and other clinical laboratory data were collected. Analyzation of correlations between the research index and differences between groups was done by SPSS. RESULTS Serum adiponectin levels in the| normal healthy group (NH group) were significantly higher than those in the newly diagnosed untreated just-obesity group (JO group), and negatively correlated with the visceral adiposity index. With multiple linear egression analysis, it was found that, for serum adiponectin, gender, serum albumin (ALB), alanine aminotransferase (ALT) and high-density lipoprotein cholesterol (HDLC) were the significant independent correlates, and for SB, age and HDLC were the significant independent correlates, and for DB, alkaline phosphatase (ALP) was the significant independent correlate. The other variables did not reach significance in the model. CONCLUSIONS Our study reveals that adiponectin's role in obesity-hypertension is multifaceted and is influenced by the systemic metabolic homeostasis signaling axis. In obesity-related hypertension, compensatory effects, adiponectin resistance, and reduced adiponectin clearance from impaired kidneys and liver all contribute to the "adiponectin paradox".
Collapse
Affiliation(s)
- Ou Wu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xi Lu
- Hangzhou Vocational and Technical College, Hangzhou, Zhejiang, People's Republic of China
| | - Jianhang Leng
- Department of Central Laboratory/Medical Examination Center of Hangzhou, The Frist People's Hospital of Hangzhou, Hangzhou, Zhejiang, People's Republic of China
| | - Xingyu Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wei Liu
- JFIntelligent Healthcare Technology Co., Ltd Building No.5-7, No.699 Tianxiang Avenue, Hi-Tech Zone, Nanchang, Jiangxi Province, People's Republic of China
| | - Fenfang Yang
- Department of Central Laboratory/Medical Examination Center of Hangzhou, The Frist People's Hospital of Hangzhou, Hangzhou, Zhejiang, People's Republic of China
| | - Hu Zhang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital Affiliated with Medical College of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiajia Li
- Department of Central Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Saber Khederzadeh
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, People's Republic of China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Liu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - Chengda Yuan
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Ren Q, Sun Q, Fu J. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease. Autophagy 2024; 20:221-241. [PMID: 37700498 PMCID: PMC10813589 DOI: 10.1080/15548627.2023.2254191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
ABBREVIATIONS ACOX1: acyl-CoA oxidase 1; ADH5: alcohol dehydrogenase 5 (class III), chi polypeptide; ADIPOQ: adiponectin, C1Q and collagen domain containing; ATG: autophagy related; BECN1: beclin 1; CRTC2: CREB regulated transcription coactivator 2; ER: endoplasmic reticulum; F2RL1: F2R like trypsin receptor 1; FA: fatty acid; FOXO1: forkhead box O1; GLP1R: glucagon like peptide 1 receptor; GRK2: G protein-coupled receptor kinase 2; GTPase: guanosine triphosphatase; HFD: high-fat diet; HSCs: hepatic stellate cells; HTRA2: HtrA serine peptidase 2; IRGM: immunity related GTPase M; KD: knockdown; KDM6B: lysine demethylase 6B; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAP: LC3-associated phagocytosis; LDs: lipid droplets; Li KO: liver-specific knockout; LSECs: liver sinusoidal endothelial cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MED1: mediator complex subunit 1; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; NFE2L2: NFE2 like bZIP transcription factor 2; NOS3: nitric oxide synthase 3; NR1H3: nuclear receptor subfamily 1 group H member 3; OA: oleic acid; OE: overexpression; OSBPL8: oxysterol binding protein like 8; PA: palmitic acid; RUBCNL: rubicon like autophagy enhancer; PLIN2: perilipin 2; PLIN3: perilipin 3; PPARA: peroxisome proliferator activated receptor alpha; PRKAA2/AMPK: protein kinase AMP-activated catalytic subunit alpha 2; RAB: member RAS oncogene family; RPTOR: regulatory associated protein of MTOR complex 1; SCD: stearoyl-CoA desaturase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1;SREBF2: sterol regulatory element binding transcription factor 2; STING1: stimulator of interferon response cGAMP interactor 1; STX17: syntaxin 17; TAGs: triacylglycerols; TFEB: transcription factor EB; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VMP1: vacuole membrane protein 1.
Collapse
Affiliation(s)
- Qiannan Ren
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
4
|
Jha D, Prajapati SK, Deb PK, Jaiswal M, Mazumder PM. Madhuca longifolia-hydro-ethanolic-fraction reverses mitochondrial dysfunction and modulates selective GLUT expression in diabetic mice fed with high fat diet. Mol Biol Rep 2024; 51:209. [PMID: 38270737 DOI: 10.1007/s11033-023-08962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Metabolic disorder is characterized as chronic low-grade inflammation which elevates the systemic inflammatory markers. The proposed hypothesis behind this includes occurrence of hypoxia due to intake of high fat diet leading to oxidative stress and mitochondrial dysfunction. AIM In the present work our aim was to elucidate the possible mechanism of action of hydroethanolic fraction of M. longifolia leaves against the metabolic disorder. METHOD AND RESULTS In the present investigation, effect of Madhuca longifolia hydroethanolic fraction (MLHEF) on HFD induced obesity and diabetes through mitochondrial action and selective GLUT expression has been studied. In present work, it was observed that HFD (50% of diet) on chronic administration aggravates the metabolic problems by causing reduced imbalanced oxidative stress, ATP production, and altered selective GLUT protein expression. Long term HFD administration reduced (p < 0.001) the SOD, CAT level significantly along with elevated liver function marker AST and ALT. MLHEF administration diminishes this oxidative stress. HFD administration also causes decreased ATP/ADP ratio owing to suppressed mitochondrial function and elevating LDH level. This oxidative imbalance further leads to dysregulated GLUT expression in hepatocytes, skeletal muscles and white adipose tissue. HFD leads to significant (p < 0.001) upregulation in GLUT 1 and 3 expression while significant (p < 0.001) downregulation in GLUT 2 and 4 expressions in WAT, liver and skeletal muscles. Administration of MLHEF significantly (p < 0.001) reduced the LDH level and also reduces the mitochondrial dysfunction. CONCLUSION Imbalances in GLUT levels were significantly reversed in order to maintain GLUT expression in tissues on the administration of MLHEF.
Collapse
Affiliation(s)
- Dhruv Jha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| | - Santosh Kumar Prajapati
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33613, USA
| | - Prashanta Kumar Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Mohit Jaiswal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| |
Collapse
|
5
|
Schwertheim S, Alhardan M, Manka PP, Sowa JP, Canbay A, Schmidt HHJ, Baba HA, Kälsch J. Higher pNRF2, SOCS3, IRF3, and RIG1 Tissue Protein Expression in NASH Patients versus NAFL Patients: pNRF2 Expression Is Concomitantly Associated with Elevated Fasting Glucose Levels. J Pers Med 2023; 13:1152. [PMID: 37511764 PMCID: PMC10381647 DOI: 10.3390/jpm13071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) embraces simple steatosis in non-alcoholic fatty liver (NAFL) to advanced non-alcoholic steatohepatitis (NASH) associated with inflammation, fibrosis, and cirrhosis. NAFLD patients often have metabolic syndrome and high risks of cardiovascular and liver-related mortality. Our aim was to clarify which proteins play a role in the progression of NAFL to NASH. The study investigates paraffin-embedded samples of 22 NAFL and 33 NASH patients. To detect potential candidates, samples were analyzed by immunohistochemistry for the proteins involved in innate immune regulation, autophagy, apoptosis, and antioxidant defense: IRF3, RIG-1, SOCS3, pSTAT3, STX17, SGLT2, Ki67, M30, Caspase 3, and pNRF2. The expression of pNRF2 immunopositive nuclei and SOCS3 cytoplasmic staining were higher in NASH than in NAFL (p = 0.001); pNRF2 was associated with elevated fasting glucose levels. SOCS3 immunopositivity correlated positively with RIG1 (r = 0.765; p = 0.001). Further, in NASH bile ducts showed stronger IRF3 immunostaining than in NAFL (p = 0.002); immunopositive RIG1 tissue was higher in NASH than in NAFL (p = 0.01). Our results indicate that pNRF2, SOCS3, IRF3, and RIG1 are involved in hepatic lipid metabolism. We suggest that they may be suitable for further studies to assess their potential as therapeutics.
Collapse
Affiliation(s)
- Suzan Schwertheim
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Malek Alhardan
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Paul P Manka
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Jan-Peter Sowa
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Ali Canbay
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Hartmut H-J Schmidt
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Julia Kälsch
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
6
|
Wang L, O'Kane AM, Zhang Y, Ren J. Maternal obesity and offspring health: Adapting metabolic changes through autophagy and mitophagy. Obes Rev 2023:e13567. [PMID: 37055041 DOI: 10.1111/obr.13567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/08/2022] [Accepted: 03/25/2023] [Indexed: 04/15/2023]
Abstract
Maternal obesity leads to obstetric complications and a high prevalence of metabolic anomalies in the offspring. Among various contributing factors for maternal obesity-evoked health sequelae, developmental programming is considered as one of the leading culprit factors for maternal obesity-associated chronic comorbidities. Although a unified theory is still lacking to systematically address multiple unfavorable postnatal health sequelae, a cadre of etiological machineries have been put forward, including lipotoxicity, inflammation, oxidative stress, autophagy/mitophagy defect, and cell death. Hereinto, autophagy and mitophagy play an essential housekeeping role in the clearance of long-lived, damaged, and unnecessary cell components to maintain and restore cellular homeostasis. Defective autophagy/mitophagy has been reported in maternal obesity and negatively impacts fetal development and postnatal health. This review will provide an update on metabolic disorders in fetal development and postnatal health issues evoked by maternal obesity and/or intrauterine overnutrition and discuss the possible contribution of autophagy/mitophagy in metabolic diseases. Moreover, relevant mechanisms and potential therapeutic strategies will be discussed in an effort to target autophagy/mitophagy and metabolic disturbances in maternal obesity.
Collapse
Affiliation(s)
- Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Aislinn M O'Kane
- Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
7
|
Wang S, Tao J, Chen H, Kandadi MR, Sun M, Xu H, Lopaschuk GD, Lu Y, Zheng J, Peng H, Ren J. Ablation of Akt2 and AMPK α2 rescues high fat diet-induced obesity and hepatic steatosis through Parkin-mediated mitophagy. Acta Pharm Sin B 2021; 11:3508-3526. [PMID: 34900533 PMCID: PMC8642450 DOI: 10.1016/j.apsb.2021.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Given the opposing effects of Akt and AMP-activated protein kinase (AMPK) on metabolic homeostasis, this study examined the effects of deletion of Akt2 and AMPKα2 on fat diet-induced hepatic steatosis. Akt2-Ampkα2 double knockout (DKO) mice were placed on high fat diet for 5 months. Glucose metabolism, energy homeostasis, cardiac function, lipid accumulation, and hepatic steatosis were examined. DKO mice were lean without anthropometric defects. High fat intake led to adiposity and decreased respiratory exchange ratio (RER) in wild-type (WT) mice, which were ablated in DKO but not Akt2 -/- and Ampkα2 -/- mice. High fat intake increased blood and hepatic triglycerides and cholesterol, promoted hepatic steatosis and injury in WT mice. These effects were eliminated in DKO but not Akt2 -/- and Ampkα2 -/- mice. Fat diet promoted fat accumulation, and enlarged adipocyte size, the effect was negated in DKO mice. Fat intake elevated fatty acid synthase (FAS), carbohydrate-responsive element-binding protein (CHREBP), sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), peroxisome proliferator-activated receptor-α (PPARα), PPARγ, stearoyl-CoA desaturase 1 (SCD-1), phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6Pase), and diglyceride O-acyltransferase 1 (DGAT1), the effect was absent in DKO but not Akt2 -/- and Ampkα2 -/- mice. Fat diet dampened mitophagy, promoted inflammation and phosphorylation of forkhead box protein O1 (FoxO1) and AMPKα1 (Ser485), the effects were eradicated by DKO. Deletion of Parkin effectively nullified DKO-induced metabolic benefits against high fat intake. Liver samples from obese humans displayed lowered microtubule-associated proteins 1A/1B light chain 3B (LC3B), Pink1, Parkin, as well as enhanced phosphorylation of Akt, AMPK (Ser485), and FoxO1, which were consolidated by RNA sequencing (RNAseq) and mass spectrometry analyses from rodent and human livers. These data suggest that concurrent deletion of Akt2 and AMPKα2 offers resilience to fat diet-induced obesity and hepatic steatosis, possibly through preservation of Parkin-mediated mitophagy and lipid metabolism.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
- Shanghai University School of Medicine, Shanghai 200044, China
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Huaguo Chen
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Machender R. Kandadi
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
- Medprime Health Services LLC, Paris, TX 75460, USA
| | - Mingming Sun
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Haixia Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Gary D. Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Yan Lu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Chang ML, Hu JH, Pao LH, Lin MS, Kuo CJ, Chen SC, Fan CM, Chang MY, Chien RN. Critical role of triglycerides for adiponectin levels in hepatitis C: a joint study of human and HCV core transgenic mice. BMC Immunol 2021; 22:54. [PMID: 34380427 PMCID: PMC8359585 DOI: 10.1186/s12865-021-00445-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
Background Both hepatitis C virus (HCV) infection and adiponectin are critically involved in metabolism. The reversal and associations of altering adiponectin levels after sustained virological responses (SVRs) following direct-acting antivirals (DAA) in HCV-infected patients remained elusive. Methods A joint study was conducted in a prospective cohort of 427 HCV-infected patients and a line of HCV core transgenic mice. Results Of 427, 358 had completed a course of DAA therapy and 353 had SVRs. At baseline, male sex (95% CI β: − 1.44 to − 0.417), estimated glomerular filtration rate (eGFR) (− 0.025 to − 0.008), triglycerides (− 0.015 to − 0.005), and fibrosis-4 levels (0.08–0.297) were associated with adiponectin levels; BMI (0.029–0.327) and triglycerides levels (0.01–0.03) were associated with homeostatic model assessment for insulin resistance (HOMA-IR) in HCV-infected patients. At 24-week post-therapy, in SVR patients, male sex (− 1.89 to − 0.5) and eGFR (− 0.02 to − 0.001) levels were associated with adiponectin levels, levels of BMI (0.094–0.335) and alanine transaminase (0.018–0.078) were associated with HOMA-IR; compared with baseline levels, adiponectin levels decreased (6.53 ± 2.77 vs. 5.45 ± 2.56 μg/mL, p < 0.001). In 12-month-old HCV core transgenic mice with hepatic steatosis, triglyceride levels (0.021–0.111) were associated with adiponectin levels, and hepatic adipopnectin expression was comparable with that of control mice. Conclusions Triglycerides and hepatic fibrosis are associated with HCV-specific alteration of adiponectin levels, and adiponectin may affect insulin sensitivity through triglycerides during HCV infection. In DAA-treated patients, after SVR, adiponectin levels decreased and the linking function of triglycerides between adiponectin and insulin sensitivity vanished. Moreover, HCV core with hepatic steatosis might affect extrahepatic adiponectin expression through triglycerides. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00445-5.
Collapse
Affiliation(s)
- Ming-Ling Chang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, No 5, Fu Hsing Street, Kuei Shan, Taoyuan, Taiwan. .,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Jing-Hong Hu
- Department of Internal Medicine, Chang Gung Memorial Hospital, Yunlin, Taiwan
| | - Li-Heng Pao
- Graduate Institute of Health-Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ming-Shyan Lin
- Department of Cardiology, Heart Failure Center, Chang Gung Memorial Hospital, Yunlin, Taiwan
| | - Chia-Jung Kuo
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, No 5, Fu Hsing Street, Kuei Shan, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shiang-Chi Chen
- Department of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Chun-Ming Fan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yu Chang
- Division of Pediatric Neurologic Medicine, Chang Gung Children's Hospital, Taoyuan, Taiwan.,Division of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Rong-Nan Chien
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, No 5, Fu Hsing Street, Kuei Shan, Taoyuan, Taiwan. .,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Liver Research Unit, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, No 5, Fu Hsing Street, Kuei Shan, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Sun-Wang JL, Yarritu-Gallego A, Ivanova S, Zorzano A. The ubiquitin-proteasome system and autophagy: self-digestion for metabolic health. Trends Endocrinol Metab 2021; 32:594-608. [PMID: 34034951 DOI: 10.1016/j.tem.2021.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health challenge. Therefore, understanding the molecular mechanisms underlying the pathophysiology of T2DM is key to improving current therapies. Loss of protein homeostasis leads to the accumulation of damaged proteins in cells, which results in tissue dysfunction. The elimination of damaged proteins occurs through the ubiquitin-proteasome system (UPS) and autophagy. In this review, we describe the mutual regulation between the UPS and autophagy and the involvement of these two proteolytic systems in metabolic dysregulation, insulin resistance, and T2DM. We propose that alterations in the UPS or autophagy contribute to triggering insulin resistance and the development of T2DM. In addition, these two pathways emerge as promising therapeutic targets for improving insulin resistance.
Collapse
Affiliation(s)
- Jia Liang Sun-Wang
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
| | - Alex Yarritu-Gallego
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a Cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Saška Ivanova
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
| |
Collapse
|
10
|
Han S, Zhu F, Huang X, Yan P, Xu K, Shen F, Sun J, Yang Z, Jin G, Teng Y. Maternal obesity accelerated non-alcoholic fatty liver disease in offspring mice by reducing autophagy. Exp Ther Med 2021; 22:716. [PMID: 34007325 PMCID: PMC8120514 DOI: 10.3892/etm.2021.10148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by an excessive accumulation of triacylglycerol in the liver. Autophagy is a lysosome-dependent degradation product recovery process, which widely occurs in eukaryotic cells, responsible for the vital maintenance of cellular energy balance. Previously published studies have demonstrated that autophagy is closely related to NAFLD occurrence and maternal obesity increases the susceptibility of offspring to non-alcoholic fatty liver disease, however, the underlying mechanism of this remains unclear. In the present study, NAFLD mouse models (offspring of an obese mother mouse via high-fat feeding) were generated, and the physiological indices of the liver were observed using total cholesterol, triglyceride, high-density lipoprotein and low-density lipoprotein serum assay kits. The morphological changes of the liver were also observed via HE, Masson and oil red O staining. Reverse transcription-quantitative-PCR and western blotting were performed to detect changes of autophagy-related genes in liver or fibrosis marker proteins (α-smooth muscle actin or TGF-β1). Changes in serum inflammatory cytokine IL-6 levels were determined via ELISA. The results of the present study demonstrated that the offspring of an obese mother were more likely to develop NALFD than the offspring of a chow-fed mother, due to their increased association with liver fibrosis. When feeding continued to 17 weeks, the worst cases of NAFLD were observed and the level of autophagy decreased significantly compared with the offspring of a normal weight mouse. In addition, after 17 weeks of feeding, compared with the offspring of a chow-fed mother, the offspring of an obese mouse mother had reduced adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation levels and increased mammalian target of rapamycin (mTOR) phosphorylation levels. These results suggested that a reduced level of AMPK/mTOR mediated autophagy may be of vital importance for the increased susceptibility of offspring to NAFLD caused by maternal obesity. In conclusion, the current study provided a new direction for the treatment of NAFLD in offspring caused by maternal obesity.
Collapse
Affiliation(s)
- Shuguang Han
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Feng Zhu
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaoxia Huang
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang 314000, P.R. China.,The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Panpan Yan
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Ke Xu
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Fangfang Shen
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Jiawen Sun
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Zeyu Yang
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Guoxi Jin
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yiqun Teng
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
11
|
Bunbupha S, Pakdeechote P, Maneesai P, Prasarttong P. Nobiletin alleviates high-fat diet-induced nonalcoholic fatty liver disease by modulating AdipoR1 and gp91 phox expression in rats. J Nutr Biochem 2021; 87:108526. [PMID: 33096235 DOI: 10.1016/j.jnutbio.2020.108526] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/13/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Nobiletin, one of the polymethoxylated flavonoids isolated from citrus peels, is reported to possess various biological activities. The current study investigates the effect and possible mechanisms of nobiletin on nonalcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-fed rats. Male Sprague-Dawley rats were administrated with HFD and fructose (15%) in drinking water for 16 weeks to induce NAFLD. HFD-fed rats were treated with nobiletin (20 or 40 mg/kg/day) or vehicle for the last 4 weeks. Treatment of HFD-fed rats with nobiletin significantly reduced systolic blood pressure, adiposity, hyperlipidemia, insulin resistance, hepatic lipids content, NAFLD activity score and liver fibrosis. Nobiletin significantly increased plasma adiponectin levels, together with up-regulation of liver adiponectin receptor 1 (AdipoR1) expression. Additionally, decreased malondialdehyde levels and increased superoxide dismutase activity in plasma and hepatic tissue, consistent with down-regulation of liver NADPH oxidase subunit gp91phox expression, were also observed after nobiletin treatment. Furthermore, high dose of nobiletin exhibited higher therapeutic effect as a compared to low dose. These findings suggest that nobiletin alleviates HFD-induced NAFLD and metabolic dysfunction in rats. There might be an association between the observed inhibitory effect of nobiletin on NAFLD and modulation of AdipoR1 and gp91phox.
Collapse
Affiliation(s)
- Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Patoomporn Prasarttong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
12
|
Diao Y, Nie J, Tan P, Zhao Y, Zhao T, Tu J, Ji H, Cao Y, Wu Z, Liang H, Huang H, Li Y, Gao X, Zhou L. Long-term low-dose ethanol intake improves healthspan and resists high-fat diet-induced obesity in mice. Aging (Albany NY) 2020; 12:13128-13146. [PMID: 32639947 PMCID: PMC7377878 DOI: 10.18632/aging.103401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022]
Abstract
Numerous epidemiological studies have reported that moderate alcohol drinking has beneficial effects. However, few studies have focused on the beneficial effects of ethanol, the common component in alcoholic beverages. Here we fed the C57BL/6 mice with 3.5% v/v ethanol as drinking water substitute to investigate the effects of long-term low-dose ethanol intake in vivo. We evaluated the metabolic rate and mitochondrial function of the long-term low-dose ethanol-intake (LLE) mice, assessed the exercise ability of LLE mice, and fed the LLE mice with a high-fat diet to investigate the potential impact of ethanol on it. The LLE mice showed improved thermogenic activity, physical performance, and mitochondrial function, as well as resistance against the high-fat diet-induced obesity with elevated insulin sensitivity and subdued inflammation. Our results suggest that long-term low-dose ethanol intake can improve healthspan and resist high-fat diet-induced obesity in mice. It may provide new insight into understanding the protective effects of moderate alcohol drinking.
Collapse
Affiliation(s)
- Yan Diao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Department of Clinical Laboratory, Heilongjiang Province Hospital, Harbin, China
| | - Junhui Nie
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Peizhu Tan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, China
| | - Yuchen Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Tingting Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Jiajie Tu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Heng Ji
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Yuwei Cao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Zhaojing Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Huan Liang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, China
| | - Lingyun Zhou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, China
| |
Collapse
|
13
|
Tutusaus A, de Gregorio E, Cucarull B, Cristóbal H, Aresté C, Graupera I, Coll M, Colell A, Gausdal G, Lorens JB, García de Frutos P, Morales A, Marí M. A Functional Role of GAS6/TAM in Nonalcoholic Steatohepatitis Progression Implicates AXL as Therapeutic Target. Cell Mol Gastroenterol Hepatol 2019; 9:349-368. [PMID: 31689560 PMCID: PMC7013198 DOI: 10.1016/j.jcmgh.2019.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS GAS6 signaling, through the TAM receptor tyrosine kinases AXL and MERTK, participates in chronic liver pathologies. Here, we addressed GAS6/TAM involvement in Non-Alcoholic SteatoHepatitis (NASH) development. METHODS GAS6/TAM signaling was analyzed in cultured primary hepatocytes, hepatic stellate cells (HSC) and Kupffer cells (KCs). Axl-/-, Mertk-/- and wild-type C57BL/6 mice were fed with Chow, High Fat Choline-Deficient Methionine-Restricted (HFD) or methionine-choline-deficient (MCD) diet. HSC activation, liver inflammation and cytokine/chemokine production were measured by qPCR, mRNA Array analysis, western blotting and ELISA. GAS6, soluble AXL (sAXL) and MERTK (sMERTK) levels were analyzed in control individuals, steatotic and NASH patients. RESULTS In primary mouse cultures, GAS6 or MERTK activation protected primary hepatocytes against lipid toxicity via AKT/STAT-3 signaling, while bemcentinib (small molecule AXL inhibitor BGB324) blocked AXL-induced fibrogenesis in primary HSCs and cytokine production in LPS-treated KCs. Accordingly; bemcentinib diminished liver inflammation and fibrosis in MCD- and HFD-fed mice. Upregulation of AXL and ADAM10/ADAM17 metalloproteinases increased sAXL in HFD-fed mice. Transcriptome profiling revealed major reduction in fibrotic- and inflammatory-related genes in HFD-fed mice after bemcentinib administration. HFD-fed Mertk-/- mice exhibited enhanced NASH, while Axl-/- mice were partially protected. In human serum, sAXL levels augmented even at initial stages, whereas GAS6 and sMERTK increased only in cirrhotic NASH patients. In agreement, sAXL increased in HFD-fed mice before fibrosis establishment, while bemcentinib prevented liver fibrosis/inflammation in early NASH. CONCLUSION AXL signaling, increased in NASH patients, promotes fibrosis in HSCs and inflammation in KCs, while GAS6 protects cultured hepatocytes against lipotoxicity via MERTK. Bemcentinib, by blocking AXL signaling and increasing GAS6 levels, reduces experimental NASH, revealing AXL as an effective therapeutic target for clinical practice.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Blanca Cucarull
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Helena Cristóbal
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Cristina Aresté
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Isabel Graupera
- Liver Unit, Hospital Clínic, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Barcelona, Spain
| | - Mar Coll
- Liver Unit, Hospital Clínic, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | | | - James B. Lorens
- BerGenBio AS, Bergen, Norway,Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Correspondence Address correspondence to: Montserrat Marí, PhD, Albert Morales, PhD, or Pablo García de Frutos, PhD, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), C/ Rosselló 161, 6th Floor, 08036 Barcelona, Spain. fax: +34-93-3638301.
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Barcelona, Spain,Correspondence Address correspondence to: Montserrat Marí, PhD, Albert Morales, PhD, or Pablo García de Frutos, PhD, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), C/ Rosselló 161, 6th Floor, 08036 Barcelona, Spain. fax: +34-93-3638301.
| | - Montserrat Marí
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Correspondence Address correspondence to: Montserrat Marí, PhD, Albert Morales, PhD, or Pablo García de Frutos, PhD, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), C/ Rosselló 161, 6th Floor, 08036 Barcelona, Spain. fax: +34-93-3638301.
| |
Collapse
|
14
|
EL-Ashmawy HM, Ahmed AM. Association of serum Sestrin-2 level with insulin resistance, metabolic syndrome, and diabetic nephropathy in patients with type 2 diabetes. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2019. [DOI: 10.4103/ejim.ejim_85_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
15
|
Zhang Y, Whaley-Connell AT, Sowers JR, Ren J. Autophagy as an emerging target in cardiorenal metabolic disease: From pathophysiology to management. Pharmacol Ther 2018; 191:1-22. [PMID: 29909238 PMCID: PMC6195437 DOI: 10.1016/j.pharmthera.2018.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/05/2018] [Indexed: 12/16/2022]
Abstract
Although advances in medical technology and health care have improved the early diagnosis and management for cardiorenal metabolic disorders, the prevalence of obesity, insulin resistance, diabetes, hypertension, dyslipidemia, and kidney disease remains high. Findings from numerous population-based studies, clinical trials, and experimental evidence have consolidated a number of theories for the pathogenesis of cardiorenal metabolic anomalies including resistance to the metabolic action of insulin, abnormal glucose and lipid metabolism, oxidative and nitrosative stress, endoplasmic reticulum (ER) stress, apoptosis, mitochondrial damage, and inflammation. Accumulating evidence has recently suggested a pivotal role for proteotoxicity, the unfavorable effects of poor protein quality control, in the pathophysiology of metabolic dysregulation and related cardiovascular complications. The ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathways, two major although distinct cellular clearance machineries, govern protein quality control by degradation and clearance of long-lived or damaged proteins and organelles. Ample evidence has depicted an important role for protein quality control, particularly autophagy, in the maintenance of metabolic homeostasis. To this end, autophagy offers promising targets for novel strategies to prevent and treat cardiorenal metabolic diseases. Targeting autophagy using pharmacological or natural agents exhibits exciting new strategies for the growing problem of cardiorenal metabolic disorders.
Collapse
Affiliation(s)
- Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Adam T Whaley-Connell
- Research Service, Harry S Truman Memorial Veterans' Hospital, University of Missouri-Columbia School of Medicine, Columbia, MO, USA; Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - James R Sowers
- Research Service, Harry S Truman Memorial Veterans' Hospital, University of Missouri-Columbia School of Medicine, Columbia, MO, USA; Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
16
|
Gao M, Zhao W, Li C, Xie X, Li M, Bi Y, Fang F, Du Y, Liu X. Spermidine ameliorates non-alcoholic fatty liver disease through regulating lipid metabolism via AMPK. Biochem Biophys Res Commun 2018; 505:93-98. [DOI: 10.1016/j.bbrc.2018.09.078] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
|
17
|
Ceylan AF, Wang S, Kandadi MR, Chen J, Hua Y, Pei Z, Nair S, Ren J. Cardiomyocyte-specific knockout of endothelin receptor a attenuates obesity cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3339-3352. [DOI: 10.1016/j.bbadis.2018.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
|
18
|
Zhou W, Ye S. Rapamycin improves insulin resistance and hepatic steatosis in type 2 diabetes rats through activation of autophagy. Cell Biol Int 2018; 42:1282-1291. [PMID: 29908010 DOI: 10.1002/cbin.11015] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/27/2018] [Indexed: 12/11/2022]
Abstract
Insulin resistance (IR) is a hallmark of type 2 diabetes mellitus (T2DM). This study aimed to explore the effects of rapamycin, a specific inhibitor of kinase mammalian target of rapamycin (mTOR), on IR in T2DM rats, and to validate whether the underlying mechanism was associated with autophagy. In this study, the model of T2DM rats was established by feeding the animals with a high-fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ). Diabetic rats were randomly divided into model of T2DM control group (DM-C, n = 15), metformin group (DM-M, n = 15), rapamycin group (DM-Rapa, n = 15), 3-methyladenine (3-MA) group (DM-3-MA, n = 15), and rapamycin + 3-MA group (DM-Rapa-3-MA, n = 15). Rats in different treatment groups were given by corresponding therapy from gastric tube. Meanwhile, normal control group was established (n = 10). As expected, HFD- and STZ- induced T2DM rats exhibited significantly impaired glucose tolerance, reduced insulin sensitivity, dysglycemia and dyslipidemia, aggravated hepatic steatosis, enhanced hepatic inflammation, elevated p-mTOR, and suppressed hepatic autophagy. Importantly, rapamycin and metformin significantly ameliorated IR, relieved disorders of glucose and lipid metabolism, reduced inflammatory level, inhibited mTOR, and promoted autophagy. Importantly, the autophagy inhibitor 3-MA significantly reversed the effects exerted by rapamycin. Collectively, our study suggests that rapamycin improved IR and hepatic steatosis in T2DM rats via activation of autophagy.
Collapse
Affiliation(s)
- Wan Zhou
- Department of Endocrinology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Hefei, Anhui 230001, China
| | - Shandong Ye
- Department of Endocrinology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Hefei, Anhui 230001, China
| |
Collapse
|
19
|
Abstract
Obesity poses a severe threat to human health, including the increased prevalence of hypertension, insulin resistance, diabetes mellitus, cancer, inflammation, sleep apnoea and other chronic diseases. Current therapies focus mainly on suppressing caloric intake, but the efficacy of this approach remains poor. A better understanding of the pathophysiology of obesity will be essential for the management of obesity and its complications. Knowledge gained over the past three decades regarding the aetiological mechanisms underpinning obesity has provided a framework that emphasizes energy imbalance and neurohormonal dysregulation, which are tightly regulated by autophagy. Accordingly, there is an emerging interest in the role of autophagy, a conserved homeostatic process for cellular quality control through the disposal and recycling of cellular components, in the maintenance of cellular homeostasis and organ function by selectively ridding cells of potentially toxic proteins, lipids and organelles. Indeed, defects in autophagy homeostasis are implicated in metabolic disorders, including obesity, insulin resistance, diabetes mellitus and atherosclerosis. In this Review, the alterations in autophagy that occur in response to nutrient stress, and how these changes alter the course of obesogenesis and obesity-related complications, are discussed. The potential of pharmacological modulation of autophagy for the management of obesity is also addressed.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai, China.
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA.
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - Jun Ren
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai, China.
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA.
| |
Collapse
|
20
|
Lee HJ, Cui R, Choi SE, Jeon JY, Kim HJ, Kim TH, Kang Y, Lee KW. Bitter melon extract ameliorates palmitate-induced apoptosis via inhibition of endoplasmic reticulum stress in HepG2 cells and high-fat/high-fructose-diet-induced fatty liver. Food Nutr Res 2018; 62:1319. [PMID: 30026676 PMCID: PMC5883859 DOI: 10.29219/fnr.v62.1319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 01/07/2023] Open
Abstract
Background Bitter melon (BM) improves glucose level, lipid homeostasis, and insulin resistance in vivo. However, the preventive mechanism of BM in nonalcoholic fatty liver disease (NAFLD) has not been elucidated yet. Aim & Design To determine the protective mechanism of bitter melon extract (BME), we performed experiments in vitro and in vivo. BME were treated palmitate (PA)-administrated HepG2 cells. C57BL/6J mice were divided into two groups: high-fat/high-fructose (HF/HFr) without or with BME supplementation (100 mg/kg body weight). Endoplasmic reticulum (ER) stress, apoptosis, and biochemical markers were then examined by western blot and real-time PCR analyses. Results BME significantly decreased expression levels of ER-stress markers (including phospho-eIF2α, CHOP, and phospho-JNK [Jun N-terminal kinases]) in PA-treated HepG2 cells. BME also significantly decreased the activity of cleaved caspase-3 (a well known apoptotic-induced molecule) and DNA fragmentation. The effect of BME on ER stress-mediated apoptosis in vitro was similarly observed in HF/HFr-fed mice in vivo. BME significantly reduced HF/HFr-induced hepatic triglyceride (TG) and serum alanine aminotransferase (ALT) as markers of hepatic damage in mice. In addition, BME ameliorated HF/HFr-induced serum TG and serum-free fatty acids. Conclusion These data indicate that BME has protective effects against ER stress mediated apoptosis in HepG2 cells as well as in HF/HFr-induced fatty liver of mouse. Therefore, BME might be useful for preventing and treating NAFLD.
Collapse
Affiliation(s)
- Hwa Joung Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Rihua Cui
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Ho Kim
- Division of Endocrine and Metabolism, Department of Internal Medicine, Seoul Medical Center, Seoul, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan-Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
21
|
Wu WKK, Zhang L, Chan MTV. Autophagy, NAFLD and NAFLD-Related HCC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1061:127-138. [PMID: 29956211 DOI: 10.1007/978-981-10-8684-7_10] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) will become a dominant cause of hepatocellular carcinoma (HCC) in the coming decade. Whereas the exact molecular mechanisms underlying the progression from simple steatosis, through steatohepatitis, to HCC remains largely unclear, emerging evidence has supported a central role of defective autophagy in the pathogenesis of NAFLD and its complications. Autophagy not only regulates lipid metabolism and insulin resistance, but also protects hepatocytes from injury and cell death. Nevertheless, in inflammation and tumorigenesis, the role of autophagy is more paradoxical. In NAFLD, defective hepatic autophagy occurs at multiple levels through numerous mechanisms and is causally linked to NAFLD-related HCC. In this chapter, we summarize the regulation and function of autophagy in NAFLD and highlight recent identification of potential pharmacological agents for restoring autophagic flux in NAFLD.
Collapse
Affiliation(s)
- William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong. .,State Key Laboratory of Digestive Diseases, Department of Medicine & Therapeutics and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Digestive Diseases, Department of Medicine & Therapeutics and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
22
|
Joyce T, Chirino YI, Natalia MT, Jose PC. Renal damage in the metabolic syndrome (MetSx): Disorders implicated. Eur J Pharmacol 2018; 818:554-568. [DOI: 10.1016/j.ejphar.2017.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 02/08/2023]
|