1
|
Balamayooran G, Tooze JA, Gardin JF, Long MC, Caudell DL, Cline JM, Kock ND, Paitsel M, Moore S, Jorgensen MJ. Age and sex associated organ weight differences in vervets/African green monkeys (Chlorocebus aethiops sabaeus). J Med Primatol 2024; 53:e12721. [PMID: 39048121 PMCID: PMC11378953 DOI: 10.1111/jmp.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
AbstractBackgroundAfrican green monkeys (AGMs, also known as vervets, Cholorocebus aethiops sabaeus) have been used in a variety of biomedical research studies. The aim of this study was to generate a reference for normal organ weights and percentage organ weights in AGMs of different age categories and sex.MethodsThe organ weights were compiled from 479 AGMs (285 females and 194 males) from 2004 to 2021. Age and sex differences of absolute and relative organ weights were analyzed using analysis of variance.ResultsThe findings demonstrate that males had higher body and organ weights than age‐matched females, but relative organ weights did not differ between males and females. At maturity, adrenal gland, brain, kidney, liver, thymus, and thyroid gland weights as a percentage of body weight declined, but relative weights of prostate gland, testes, and uterus were higher.ConclusionThese data should be beneficial to biomedical researchers and pathologists working with AGMs.
Collapse
Affiliation(s)
- Gayathriy Balamayooran
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Janet A Tooze
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jean F Gardin
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Margaret C Long
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - David L Caudell
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nancy D Kock
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Monica Paitsel
- Animal Resources Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Stacy Moore
- Animal Resources Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
2
|
Torfs JRR, Eens M, Laméris DW, Stevens JMG, Verspeek J, Guery JP, Staes N. Visually assessed body condition shows high heritability in a pedigreed great ape population. Am J Primatol 2023; 85:e23540. [PMID: 37507232 DOI: 10.1002/ajp.23540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Body condition, a measure for relative fat mass, is associated with primate health, fitness, and overall welfare. Body condition is often influenced by dietary factors, age, and/or sex, but several body condition measures (body weight, weight-to-height ratios, and so on) also show high heritability across primate species, indicating a role of genetic effects. Although different measures for body condition exist, many require direct handling of animals, which is invasive, time-consuming, and expensive, making them impractical in wild and captive settings. Therefore, noninvasive visual body condition score (BCS) systems were developed for various animal species, including macaques and chimpanzees, to visually assess relative fat mass. Here we evaluate the utility of a visual BCS system in bonobos by assessing (1) inter-rater reliability, (2) links with body mass, a traditional hands-on measure of condition, and (3) the factors driving individual variation in BCS. We adapted the chimpanzee BCS system to rate 76 bonobos in 11 European zoos (92% of the adult population). Inter-rater reliability was high (s* = 0.948), BCSs were positively associated with body mass (β = 0.075) and not predicted by diet, sex, or age, nor were they associated with a higher abundance of obesity-related diseases. Instead, BCSs showed high levels of heritability (h2 = 0.637), indicating that a majority of body condition variation in bonobos is attributable to genetic similarity of the individuals. This is in line with reported h2 -values for traditional body condition measures in primates and provides support for the reliability of visual BCS systems in great apes. The results of this study emphasize an often unanticipated role of genetics in determining primate body fat and health that has implications for the management of captive primates. Application of this tool in wild populations would aid to unravel environmental from genetic drivers of body condition variation in primates.
Collapse
Affiliation(s)
- Jonas R R Torfs
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Zoo Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Daan W Laméris
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Zoo Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Jeroen M G Stevens
- SALTO Agro- and Biotechnology, Odisee University College, Sint-Niklaas, Belgium
| | - Jonas Verspeek
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Zoo Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | | | - Nicky Staes
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Zoo Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
L'Allier S, Schwegel MA, Filazzola A, Mastromonaco G, Chapman CA, Schoof VAM. How individual, social, and ecological conditions influence dispersal decisions in male vervet monkeys. Am J Primatol 2022; 84:e23426. [PMID: 35942562 DOI: 10.1002/ajp.23426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/09/2023]
Abstract
Dispersal between social groups reduces the risk of inbreeding and can improve individuals' reproductive opportunities. However, this movement has costs, such as increased risk of predation and starvation, loss of allies and kin support, and increased aggression associated with entering the new group. Dispersal strategies, such as the timing of movement and decisions on whether to transfer alone or in parallel with a peer, involve different costs and benefits. We used demographic, behavioral, hormonal, and ecological data to examine the causes and consequences of 36 dispersal events from 29 male vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda. Adult males' secondary dispersal coincided with the conception season in females, and males improved their potential access to females by moving to groups with higher female-to-male sex ratios and/or by increasing their dominance rank. Males that dispersed with a peer had lower fecal glucocorticoid and androgen metabolite levels than lone dispersers. Subadult males were not more likely to engage in parallel dispersals compared to adult males. Dispersal was also used as a mechanism to avoid inbreeding, but changes in hormone levels did not seem to be a trigger of dispersal in our population. Our findings illustrate the complex individual strategies used during dispersal, how many factors can influence movement decisions, as well as the value of dominance and hormone analyses for understanding these strategies.
Collapse
Affiliation(s)
- Simon L'Allier
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Megan A Schwegel
- Department of Biology, York University, Toronto, Ontario, Canada.,Department of Multidisciplinary Studies, Glendon campus, Bilingual Biology Program, York University, Toronto, Ontario, Canada
| | - Alessandro Filazzola
- Department of Biology, York University, Toronto, Ontario, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Colin A Chapman
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada.,Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, USA.,School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa.,Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | - Valérie A M Schoof
- Department of Biology, York University, Toronto, Ontario, Canada.,Department of Multidisciplinary Studies, Glendon campus, Bilingual Biology Program, York University, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Wood EK, Sullivan EL. The Influence of Diet on Metabolism and Health Across the Lifespan in Nonhuman Primates. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 24. [PMID: 35425871 DOI: 10.1016/j.coemr.2022.100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The macro and micronutrient composition and the overall quantity of the diet are important predictors of physical and psychological health and, as a consequence, behavior. Translational preclinical models are critical to identifying the mechanisms underlying these relationships. Nonhuman primate models are particularly instrumental to this line of research as they exhibit considerable genetic, social, and physiological similarities, as well as similarities in their developmental trajectories to humans. This review aims to discuss recent contributions to the field of diet and metabolism and health using nonhuman primate models. The influence of diet composition on health and physiology across the lifespan will be the primary focus, including recent work examining the impact of maternal diet programming of offspring physiologic and behavioral developmental outcomes.
Collapse
Affiliation(s)
- Elizabeth K Wood
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Elinor L Sullivan
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
- Oregon National Primate Research Center, 505 NW 185 Avenue, Beaverton, OR 97006
| |
Collapse
|
5
|
Cox LA, Chan J, Rao P, Hamid Z, Glenn JP, Jadhav A, Das V, Karere GM, Quillen E, Kavanagh K, Olivier M. Integrated omics analysis reveals sirtuin signaling is central to hepatic response to a high fructose diet. BMC Genomics 2021; 22:870. [PMID: 34861817 PMCID: PMC8641221 DOI: 10.1186/s12864-021-08166-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dietary high fructose (HFr) is a known metabolic disruptor contributing to development of obesity and diabetes in Western societies. Initial molecular changes from exposure to HFr on liver metabolism may be essential to understand the perturbations leading to insulin resistance and abnormalities in lipid and carbohydrate metabolism. We studied vervet monkeys (Clorocebus aethiops sabaeus) fed a HFr (n=5) or chow diet (n=5) for 6 weeks, and obtained clinical measures of liver function, blood insulin, cholesterol and triglycerides. In addition, we performed untargeted global transcriptomics, proteomics, and metabolomics analyses on liver biopsies to determine the molecular impact of a HFr diet on coordinated pathways and networks that differed by diet. RESULTS We show that integration of omics data sets improved statistical significance for some pathways and networks, and decreased significance for others, suggesting that multiple omics datasets enhance confidence in relevant pathway and network identification. Specifically, we found that sirtuin signaling and a peroxisome proliferator activated receptor alpha (PPARA) regulatory network were significantly altered in hepatic response to HFr. Integration of metabolomics and miRNAs data further strengthened our findings. CONCLUSIONS Our integrated analysis of three types of omics data with pathway and regulatory network analysis demonstrates the usefulness of this approach for discovery of molecular networks central to a biological response. In addition, metabolites aspartic acid and docosahexaenoic acid (DHA), protein ATG3, and genes ATG7, and HMGCS2 link sirtuin signaling and the PPARA network suggesting molecular mechanisms for altered hepatic gluconeogenesis from consumption of a HFr diet.
Collapse
Affiliation(s)
- Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA.
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA.
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA.
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, 27157, Winston-Salem, NC, USA.
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Prahlad Rao
- University of Tennessee Health Science Center, TN, Memphis, USA
| | - Zeeshan Hamid
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
| | - Jeremy P Glenn
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Avinash Jadhav
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Vivek Das
- Novo Nordisk Research Center, Seattle, WA, USA
| | - Genesio M Karere
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Ellen Quillen
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Kylie Kavanagh
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, 27157, Winston-Salem, NC, USA
| | - Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| |
Collapse
|
6
|
Shively CA, Lacreuse A, Frye BM, Rothwell ES, Moro M. Nonhuman primates at the intersection of aging biology, chronic disease, and health: An introduction to the American Journal of Primatology Special Issue on aging, cognitive decline, and neuropathology in nonhuman primates. Am J Primatol 2021; 83:e23309. [PMID: 34403529 PMCID: PMC8935964 DOI: 10.1002/ajp.23309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 11/06/2022]
Abstract
Aging across the Primate Order is poorly understood because ages of individuals are often unknown, there is a dearth of aged animals available for study, and because aging is best characterized by longitudinal studies which are difficult to carry out in long-lived species. The human population is aging rapidly, and advanced age is a primary risk factor for several chronic diseases and conditions that impact healthspan. As lifespan has increased, diseases and disorders of the central nervous system (CNS) have become more prevalent, and Alzheimer's disease and related dementias have become epidemic. Nonhuman primate (NHP) models are key to understanding the aging primate CNS. This Special Issue presents a review of current knowledge about NHP CNS aging across the Primate Order. Similarities and differences to human aging, and their implications for the validity of NHP models of aging are considered. Topics include aging-related brain structure and function, neuropathologies, cognitive performance, social behavior and social network characteristics, and physical, sensory, and motor function. Challenges to primate CNS aging research are discussed. Together, this collection of articles demonstrates the value of studying aging in a breadth of NHP models to advance our understanding of human and nonhuman primate aging and healthspan.
Collapse
Affiliation(s)
- Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
- Alzheimer’s Disease Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Brett M. Frye
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Emily S. Rothwell
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Manuel Moro
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Maryland, USA
| |
Collapse
|
7
|
Epigenetic clock and methylation studies in vervet monkeys. GeroScience 2021; 44:699-717. [PMID: 34591235 PMCID: PMC9135907 DOI: 10.1007/s11357-021-00466-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
DNA methylation-based biomarkers of aging have been developed for many mammals but not yet for the vervet monkey (Chlorocebus sabaeus), which is a valuable non-human primate model for biomedical studies. We generated novel DNA methylation data from vervet cerebral cortex, blood, and liver using highly conserved mammalian CpGs represented on a custom array (HorvathMammalMethylChip40). We present six DNA methylation-based estimators of age: vervet multi-tissue epigenetic clock and tissue-specific clocks for brain cortex, blood, and liver. In addition, we developed two dual species clocks (human-vervet clocks) for measuring chronological age and relative age, respectively. Relative age was defined as ratio of chronological age to maximum lifespan to address the species differences in maximum lifespan. The high accuracy of the human-vervet clocks demonstrates that epigenetic aging processes are evolutionary conserved in primates. When applying these vervet clocks to tissue samples from another primate species, rhesus macaque, we observed high age correlations but strong offsets. We characterized CpGs that correlate significantly with age in the vervet. CpG probes that gain methylation with age across tissues were located near the targets of Polycomb proteins SUZ12 and EED and genes possessing the trimethylated H3K27 mark in their promoters. The epigenetic clocks are expected to be useful for anti-aging studies in vervets.
Collapse
|
8
|
Plant M, Armstrong C, Ruggiero A, Sherrill C, Uberseder B, Jeffries R, Nevarez J, Jorgensen MJ, Kavanagh K, Quinn MA. Advanced maternal age impacts physiologic adaptations to pregnancy in vervet monkeys. GeroScience 2020; 42:1649-1661. [PMID: 32588342 PMCID: PMC7732933 DOI: 10.1007/s11357-020-00219-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
The trend to delay pregnancy in the USA has resulted in the number of advanced maternal age (AMA) pregnancies to also increase. In humans, AMA is associated with a variety of pregnancy-related pathologies such as preeclampsia (PE). While AMA is known to be a factor which contributes to the development of pregnancy-induced diseases, the molecular and cellular mechanisms giving rise to this phenomenon are still very limited. This is due in part to lack of a preclinical model which has physiologic relevance to human pregnancy while also allowing control of environmental and genetic variability inherent in human studies. To determine potential physiologic relevance of the vervet/African green monkey (Chlorocebus aethiops sabaeus) as a preclinical model to study the effects of AMA on adaptations to pregnancy, thirteen age-diverse pregnant vervet monkeys (3-16 years old) were utilized to measure third trimester blood pressure (BP), complete blood count, iron measurements, and hormone levels. Significant associations were observed between third trimester diastolic BP and maternal age. Furthermore, the presence of leukocytosis with enhanced circulating neutrophils was observed in AMA mothers compared to younger mothers. Moreover, we observed a negative relationship between maternal age and estradiol, progesterone, and cortisol levels. Finally, offspring born to AMA mothers displayed a postnatal growth retardation phenotype. These studies demonstrate physiologic impairment in the adaptation to pregnancy in AMA vervet/African green monkeys. Our data indicate that the vervet/African green monkey may serve as a useful preclinical model and tool for deciphering pathological mediators of maternal disease in AMA pregnancy.
Collapse
Affiliation(s)
- Maren Plant
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Cecilia Armstrong
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Alistaire Ruggiero
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Chrissy Sherrill
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Beth Uberseder
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Rachel Jeffries
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Justin Nevarez
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Matthew A Quinn
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
9
|
Mellor EL, Cuthill IC, Schwitzer C, Mason GJ, Mendl M. Large Lemurs: Ecological, Demographic and Environmental Risk Factors for Weight Gain in Captivity. Animals (Basel) 2020; 10:ani10081443. [PMID: 32824807 PMCID: PMC7460476 DOI: 10.3390/ani10081443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Excessive body mass, i.e., being overweight or obese, is a health concern. Some lemur species are prone to extreme weight gain in captivity, yet for others a healthy body condition is typical. The first aim of our study was to examine possible ecological explanations for these species’ differences in susceptibility to captive weight gain across 13 lemur species. Our second aim was to explore demographic and environmental risk factors across individuals from the four best-sampled species. We found a potential ecological explanation for susceptibility to captive weight gain: being adapted to unpredictable wild food resources. Additionally, we also revealed one environmental and four demographic risk factors, e.g., increasing age and, for males, being housed with only fixed climbing structures. Our results indicate targeted practical ways to help address weight issues in affected animals, e.g., by highlighting at-risk species for whom extra care should be taken when designing diets; and by providing a mixture of flexible and fixed climbing structures within enclosures. Abstract Excessive body mass, i.e., being overweight or obese, is a health concern associated with issues such as reduced fertility and lifespan. Some lemur species are prone to extreme weight gain in captivity, yet others are not. To better understand species- and individual-level effects on susceptibility to captive weight gain, we use two complementary methods: phylogenetic comparative methods to examine ecological explanations for susceptibility to weight gain across species, and epidemiological approaches to examine demographic and environment effects within species. Data on body masses and living conditions were collected using a survey, yielding useable data on 675 lemurs representing 13 species from 96 collections worldwide. Data on species-typical wild ecology for comparative analyses came from published literature and climate databases. We uncovered one potential ecological risk factor: species adapted to greater wild food resource unpredictability tended to be more prone to weight gain. Our epidemiological analyses on the four best-sampled species revealed four demographic and one environmental risk factors, e.g., for males, being housed with only fixed climbing structures. We make practical recommendations to help address weight concerns, and describe future research including ways to validate the proxy we used to infer body condition.
Collapse
Affiliation(s)
- Emma L. Mellor
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK;
- Correspondence:
| | - Innes C. Cuthill
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK;
| | | | - Georgia J. Mason
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| | - Michael Mendl
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK;
| |
Collapse
|
10
|
Jasinska AJ. Resources for functional genomic studies of health and development in nonhuman primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171 Suppl 70:174-194. [PMID: 32221967 DOI: 10.1002/ajpa.24051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Primates display a wide range of phenotypic variation underlaid by complex genetically regulated mechanisms. The links among DNA sequence, gene function, and phenotype have been of interest from an evolutionary perspective, to understand functional genome evolution and its phenotypic consequences, and from a biomedical perspective to understand the shared and human-specific roots of health and disease. Progress in methods for characterizing genetic, transcriptomic, and DNA methylation (DNAm) variation is driving the rapid development of extensive omics resources, which are now increasingly available from humans as well as a growing number of nonhuman primates (NHPs). The fast growth of large-scale genomic data is driving the emergence of integrated tools and databases, thus facilitating studies of gene functionality across primates. This review describes NHP genomic resources that can aid in exploration of how genes shape primate phenotypes. It focuses on the gene expression trajectories across development in different tissues, the identification of functional genetic variation (including variants deleterious for protein function and regulatory variants modulating gene expression), and DNAm profiles as an emerging tool to understand the process of aging. These resources enable comparative functional genomics approaches to identify species-specific and primate-shared gene functionalities associated with health and development.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Eye on Primates, Los Angeles, California, USA
| |
Collapse
|
11
|
Jarrett JD, Bonnell T, Jorgensen MJ, Schmitt CA, Young C, Dostie M, Barrett L, Henzi SP. Modeling variation in the growth of wild and captive juvenile vervet monkeys in relation to diet and resource availability. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171:89-99. [PMID: 31675103 PMCID: PMC7449506 DOI: 10.1002/ajpa.23960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To compare longitudinal weight gain in captive and wild juvenile vervet monkeys and conduct an empirical assessment of different mechanistic growth models. METHODS Weights were collected from two groups of captive monkeys and two consecutive cohorts of wild monkeys until the end of the juvenile period (~800 days). The captive groups were each fed different diets, while the wild groups experienced different ecological conditions. Three different growth curve models were compared. RESULTS By 800 days, the wild juveniles were lighter, with a slower maximum growth rate, and reached asymptote earlier than their captive counterparts. There were overall differences in weight and growth rate across the two wild cohorts. This corresponded to differences in resource availability. There was considerable overlap in growth rate and predicted adult weight of male and females in the first, but not the second, wild cohort. Maternal parity was not influential. While the von Bertalanffy curve provided the best fit to the data sets modeled together, the Logistic curve best described growth in the wild cohorts when considered separately. CONCLUSIONS The growth curves of the two captive cohorts are likely to lie near the maximum attainable by juvenile vervets. It may be helpful to include deviations from these rates when assessing the performance of wild vervet monkeys. The comparison of wild and captive juveniles confirmed the value of comparing different growth curve models, and an appreciation that the best models may well differ for different populations. Choice of mechanistic growth model can, therefore, be empirically justified, rather than theoretically predetermined.
Collapse
Affiliation(s)
- Jonathan D. Jarrett
- Department of Psychology, University of Lethbridge, Lethbridge, Alberta, Canada
- Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, Florida, Gauteng, South Africa
| | - Tyler Bonnell
- Department of Psychology, University of Lethbridge, Lethbridge, Alberta, Canada
- Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, Florida, Gauteng, South Africa
| | - Matthew J. Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Christopher Young
- Department of Psychology, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of STET, Mammal Research Institute, University of Pretoria, Gauteng, South Africa
| | - Marcus Dostie
- Department of Psychology, University of Lethbridge, Lethbridge, Alberta, Canada
- Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, Florida, Gauteng, South Africa
| | - Louise Barrett
- Department of Psychology, University of Lethbridge, Lethbridge, Alberta, Canada
- Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, Florida, Gauteng, South Africa
| | - Stephanus Peter Henzi
- Department of Psychology, University of Lethbridge, Lethbridge, Alberta, Canada
- Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, Florida, Gauteng, South Africa
| |
Collapse
|
12
|
Yu W, Hao X, Yang F, Ma J, Zhao Y, Li Y, Wang J, Xu H, Chen L, Liu Q, Duan S, Yang Y, Huang F, He Z. Hematological and biochemical parameters for Chinese rhesus macaque. PLoS One 2019; 14:e0222338. [PMID: 31527891 PMCID: PMC6748566 DOI: 10.1371/journal.pone.0222338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022] Open
Abstract
Rhesus macaque is an important animal model in biomedical research, especially human disease, developmental, translational, and pre-clinical research. Blood physiological and biochemical parameters are important markers for physiology, pathology, and toxicology research. However, these parameters have not been systematically reported for Chinese rhesus macaques. To characterize the reference for these parameters, this study collected 1805 Chinese rhesus macaques living in Southwestern China. A total of 24 blood physiological indexes and 27 biochemical parameters were determined. Sex and age were found to affect these parameters. In conclusion, a comprehensive and systematic reference of hematological and biochemical parameters for Chinese rhesus macaque was established in this work on the basis of a large cohort. Such reference will benefit biomedical research employing rhesus macaques as animal models.
Collapse
Affiliation(s)
- Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Xianhui Hao
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Jin Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Junbin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Hongjie Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Lixiong Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Quan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Yaping Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
- * E-mail: (FH); (ZH)
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
- * E-mail: (FH); (ZH)
| |
Collapse
|
13
|
Meredith SL, Schmitt CA. The Outliers Are In: Queer Perspectives on Investigating Variation in Biological Anthropology. AMERICAN ANTHROPOLOGIST 2019. [DOI: 10.1111/aman.13223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Turner TR, Schmitt CA, Cramer JD, Lorenz J, Grobler JP, Jolly CJ, Freimer NB. Morphological variation in the genus Chlorocebus: Ecogeographic and anthropogenically mediated variation in body mass, postcranial morphology, and growth. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:682-707. [PMID: 29577231 PMCID: PMC6039265 DOI: 10.1002/ajpa.23459] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Direct comparative work in morphology and growth on widely dispersed wild primate taxa is rarely accomplished, yet critical to understanding ecogeographic variation, plastic local variation in response to human impacts, and variation in patterns of growth and sexual dimorphism. We investigated population variation in morphology and growth in response to geographic variables (i.e., latitude, altitude), climatic variables (i.e., temperature and rainfall), and human impacts in the vervet monkey (Chlorocebus spp.). METHODS We trapped over 1,600 wild vervets from across Sub-Saharan Africa and the Caribbean, and compared measurements of body mass, body length, and relative thigh, leg, and foot length in four well-represented geographic samples: Ethiopia, Kenya, South Africa, and St. Kitts & Nevis. RESULTS We found significant variation in body mass and length consistent with Bergmann's Rule in adult females, and in adult males when excluding the St. Kitts & Nevis population, which was more sexually dimorphic. Contrary to Rensch's Rule, although the South African population had the largest average body size, it was the least dimorphic. There was significant, although very small, variation in all limb segments in support for Allen's Rule. Females in high human impact areas were heavier than those with moderate exposures, while those in low human impact areas were lighter; human impacts had no effect on males. CONCLUSIONS Vervet monkeys appear to have adapted to local climate as predicted by Bergmann's and, less consistently, Allen's Rule, while also responding in predicted ways to human impacts. To better understand deviations from predicted patterns will require further comparative work in vervets.
Collapse
Affiliation(s)
- Trudy R. Turner
- Department of Anthropology, University of Wisconsin –
Milwaukee, Milwaukee, WI 53201, USA
- Department of Genetics, University of the Free State, Bloemfontein,
FS, South Africa
| | - Christopher A. Schmitt
- Department of Anthropology, Boston University, Boston, MA 02215,
USA
- Center for Neurobehavioral Genetics, University of California
– Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Danzy Cramer
- Department of Sociology, Anthropology and Women's Studies,
American Military University and American Public University, Charles Town, WV 25414,
USA
| | - Joseph Lorenz
- Department of Anthropology and Museum Studies, Central Washington
University, Ellensburg, WA 98926, USA
| | - J. Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein,
FS, South Africa
| | - Clifford J. Jolly
- CSHO, Department of Anthropology, New York University, and NYCEP,
New York, NY 10003, USA
| | - Nelson B. Freimer
- Center for Neurobehavioral Genetics, University of California
– Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Hlusko LJ. Recent insights into the evolution of quantitative traits in non-human primates. Curr Opin Genet Dev 2018; 53:15-20. [PMID: 29913352 DOI: 10.1016/j.gde.2018.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
The past few years of genetic research on primate quantitative trait variation have been notable in the diversity of phenotypes explored, ranging from classic skeletal measurements to behavior, through to levels of gene expression, and with observations from both captive and wild populations. These studies demonstrate the importance of captive pedigreed breeding colonies, populations that can be matched to their wild counterparts to enable comparison of genetic architectures. Non-human primate genotype:phenotype maps are essential for placing human variation within an evolutionary framework as well as for gaining insight to human biology. While the demographic history of most primates has been fairly stable since the Late Pleistocene, humans experienced a dramatic population expansion that increased the number of rare, mildly deleterious mutations. These rare genetic variants complicate the genotype:phenotype association because they account for a disproportionate amount of the genetic variance and are harder to detect. The similar physiologies of our closest living relatives may prove to be key for overcoming the hurdles posed by humans' peculiar demographic explosion.
Collapse
Affiliation(s)
- Leslea J Hlusko
- Human Evolution Research Center, Department of Integrative Biology, University of California Berkeley, 3040 Valley Life Science Bldg, MC-3140, Berkeley, CA 94720, USA.
| |
Collapse
|