1
|
Sato N, Kusano T, Nagata K, Okamoto K. A non-purine inhibitor of xanthine oxidoreductase mitigates adenosine triphosphate degradation under hypoxic conditions in mouse brain. Brain Res 2025; 1849:149444. [PMID: 39755194 DOI: 10.1016/j.brainres.2025.149444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
The brain is an organ that consumes a substantial amount of oxygen, and a reduction in oxygen concentration can rapidly lead to significant and irreversible brain injury. The progression of brain injury during hypoxia involves the depletion of intracellular adenosine triphosphate (ATP) due to decreased oxidative phosphorylation in the inner mitochondrial membrane. Allopurinol is a purine analog inhibitor of xanthine oxidoreductase that protects against hypoxic/ischemic brain injury; however, its underlying mechanism of action remains unclear. In addition, febuxostat is a non-purine xanthine oxidoreductase inhibitor with a different inhibitory mechanism from allopurinol. The impact of febuxostat on brain injury has not been well investigated. Therefore, this study aimed to examine brain ATP and its catabolite levels in the presence or absence of allopurinol and febuxostat under hypoxic conditions by inactivating brain metabolism using focal microwave irradiation. The hypoxic treatment caused a decrease in the adenylate energy charge and ATP levels and an increase in its catabolic products in mouse brains. The febuxostat group showed higher energy charge and ATP levels and lower ATP catabolites than the control group. Notably, despite the comparable suppression of uric acid production in both inhibitor groups, allopurinol treatment was less effective than febuxostat. These results suggest that febuxostat effectively prevents hypoxia-induced ATP degradation in the brain and that its effect is more potent than allopurinol. This study will contribute to developing therapies for improving hypoxia-induced brain dysfunction.
Collapse
Affiliation(s)
- Nana Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Teruo Kusano
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Furr MO. Neurologic Disorders of the Foal. Vet Clin North Am Equine Pract 2022; 38:283-297. [PMID: 35811202 DOI: 10.1016/j.cveq.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neurologic disease of foals is a diagnostic and therapeutic challenge for veterinarians. Disease conditions such as neonatal encephalopathy are seen as well as developmental and congenital defects, bacterial infections, and trauma. Neonatal encephalopathy can be considered a "syndrome" with a variety of causes resulting in a similar clinical presentation. These causes can be categorized as maladaptation, hypoxic/ischemic encephalopathy, and metabolic abnormalities, all leading to signs of cerebral and brainstem disease. Spinal cord signs may occasionally be seen, but these signs are usually overshadowed by cerebral disease. Treatment in most cases involves supportive care and outcome is favorable in most cases.
Collapse
Affiliation(s)
- Martin O Furr
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Room 264 McElroy Hall, Stillwater, Ok, USA.
| |
Collapse
|
3
|
Pinchefsky EF, Schneider J, Basu S, Tam EWY, Gale C. Nutrition and management of glycemia in neonates with neonatal encephalopathy treated with hypothermia. Semin Fetal Neonatal Med 2021; 26:101268. [PMID: 34301501 DOI: 10.1016/j.siny.2021.101268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adequate nutrition and glycemic homeostasis are increasingly recognized as potentially neuroprotective for the developing brain. In the context of hypoxia-ischemia, evidence is scarce regarding optimal nutritional support and administration route, as well as the short- and long-term consequences of such interventions. In this review, we summarize current knowledge on disturbances of brain metabolism of glucose and substrates by hypoxia-ischemia, and compound effects of these mechanisms on brain injury characterized by specific patterns on EEG and MRI. Risks and benefits of nutrition delivery via parenteral or enteral routes are examined. Nutrition could mitigate adverse neurodevelopmental outcomes, and the impact of nutritional strategies and specific nutritional interventions are reviewed. Limited literature highlights the need for further studies to understand the changes in energy metabolism during and after hypoxic-ischemic injury, to optimize nutritional regimens and glucose management, and to inform the neuroprotective role of nutrition.
Collapse
Affiliation(s)
- E F Pinchefsky
- Division of Neurology, Department of Paediatrics, CHU Sainte-Justine, University of Montréal, CHU Sainte-Justine Research Center, Department of Neurosciences, Montreal, QC, Canada.
| | - J Schneider
- Department of Woman-Mother-Child, Clinic of Neonatology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.
| | - S Basu
- Department of Paediatrics, The George Washington University. Division of Neonatology, Children's National Hospital, Washington, DC, USA.
| | - E W Y Tam
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Program in Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada.
| | - C Gale
- Neonatal Medicine, School of Public Health, Faculty of Medicine, Imperial College London, London, UK.
| | | |
Collapse
|
4
|
Mitochondrial Dysfunction and Permeability Transition in Neonatal Brain and Lung Injuries. Cells 2021; 10:cells10030569. [PMID: 33807810 PMCID: PMC7999701 DOI: 10.3390/cells10030569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023] Open
Abstract
This review discusses the potential mechanistic role of abnormally elevated mitochondrial proton leak and mitochondrial bioenergetic dysfunction in the pathogenesis of neonatal brain and lung injuries associated with premature birth. Providing supporting evidence, we hypothesized that mitochondrial dysfunction contributes to postnatal alveolar developmental arrest in bronchopulmonary dysplasia (BPD) and cerebral myelination failure in diffuse white matter injury (WMI). This review also analyzes data on mitochondrial dysfunction triggered by activation of mitochondrial permeability transition pore(s) (mPTP) during the evolution of perinatal hypoxic-ischemic encephalopathy. While the still cryptic molecular identity of mPTP continues to be a subject for extensive basic science research efforts, the translational significance of mitochondrial proton leak received less scientific attention, especially in diseases of the developing organs. This review is focused on the potential mechanistic relevance of mPTP and mitochondrial dysfunction to neonatal diseases driven by developmental failure of organ maturation or by acute ischemia-reperfusion insult during development.
Collapse
|
5
|
Mikrogeorgiou A, Xu D, Ferriero DM, Vannucci SJ. Assessing Cerebral Metabolism in the Immature Rodent: From Extracts to Real-Time Assessments. Dev Neurosci 2019; 40:463-474. [PMID: 30991389 DOI: 10.1159/000496921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/09/2019] [Indexed: 12/27/2022] Open
Abstract
Brain development is an energy-expensive process. Although glucose is irreplaceable, the developing brain utilizes a variety of substrates such as lactate and the ketone bodies, β-hydroxybutyrate and acetoacetate, to produce energy and synthesize the structural components necessary for cerebral maturation. When oxygen and nutrient supplies to the brain are restricted, as in neonatal hypoxia-ischemia (HI), cerebral energy metabolism undergoes alterations in substrate use to preserve the production of adenosine triphosphate. These changes have been studied by in situ biochemical methods that yielded valuable quantitative information about high-energy and glycolytic metabolites and established a temporal profile of the cerebral metabolic response to hypoxia and HI. However, these analyses relied on terminal experiments and averaging values from several animals at each time point as well as challenging requirements for accurate tissue processing.More recent methodologies have focused on in vivo longitudinal analyses in individual animals. The emerging field of metabolomics provides a new investigative tool for studying cerebral metabolism. Magnetic resonance spectroscopy (MRS) has enabled the acquisition of a snapshot of the metabolic status of the brain as quantifiable spectra of various intracellular metabolites. Proton (1H) MRS has been used extensively as an experimental and diagnostic tool of HI in the pursuit of markers of long-term neurodevelopmental outcomes. Still, the interpretation of the metabolite spectra acquired with 1H MRS has proven challenging, due to discrepancies among studies, regarding calculations and timing of measurements. As a result, the predictive utility of such studies is not clear. 13C MRS is methodologically more challenging, but it provides a unique window on living tissue metabolism via measurements of the incorporation of 13C label from substrates into brain metabolites and the localized determination of various metabolic fluxes. The newly developed hyperpolarized 13C MRS is an exciting method for assessing cerebral metabolism in vivo, that bears the advantages of conventional 13C MRS but with a huge gain in signal intensity and much shorter acquisition times. The first part of this review article provides a brief description of the findings of biochemical and imaging methods over the years as well as a discussion of their associated strengths and pitfalls. The second part summarizes the current knowledge on cerebral metabolism during development and HI brain injury.
Collapse
Affiliation(s)
- Alkisti Mikrogeorgiou
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Donna M Ferriero
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Neurology, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Susan J Vannucci
- Department of Pediatrics and Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA,
| |
Collapse
|
6
|
Vulnerability to a Metabolic Challenge Following Perinatal Asphyxia Evaluated by Organotypic Cultures: Neonatal Nicotinamide Treatment. Neurotox Res 2017. [PMID: 28631256 DOI: 10.1007/s12640-017-9755-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypothesis of enhanced vulnerability following perinatal asphyxia was investigated with a protocol combining in vivo and in vitro experiments. Asphyxia-exposed (AS) (by 21 min water immersion of foetuses containing uterine horns) and caesarean-delivered control (CS) rat neonates were used at P2-3 for preparing triple organotypic cultures (substantia nigra, neostriatum and neocortex). At DIV 18, cultures were exposed to different concentrations of H2O2 (0.25-45 mM), added to the culture medium for 18 h. After a 48-h recovery period, the cultures were either assessed for cell viability or for neurochemical phenotype by confocal microscopy. Energy metabolism (ADP/ATP ratio), oxidative stress (GSH/GSSG) and a modified ferric reducing/antioxidant power assay were applied to homogenates of parallel culture series. In CS cultures, the number of dying cells was similar in substantia nigra, neostriatum and neocortex, but it was several times increased in AS cultures evaluated under the same conditions. A H2O2 challenge led to a concentration-dependent increase in cell death (>fourfold after 0.25 mM of H2O2) in CS cultures. In AS cultures, a significant increase in cell death was only observed after 0.5 mM of H2O2. At higher than 1 mM of H2O2 (up to 45 mM), cell death increased several times in all cultures, but the effect was still more prominent in CS than in AS cultures. The cell phenotype of dying/alive cells was investigated in formalin-fixed cultures exposed to 0 or 1 mM of H2O2, co-labelling for TUNEL (apoptosis), MAP-2 (neuronal phenotype), GFAP (astroglial phenotype) and TH (tyrosine hydroxylase; for dopamine phenotype), counterstaining for DAPI (nuclear staining), also evaluating the effect of a single dose of nicotinamide (0.8 nmol/kg, i.p. injected in 100 μL, 60 min after delivery). Perinatal asphyxia produced a significant increase in the number of DAPI/TUNEL cells/mm3, in substantia nigra and neostriatum. One millimolar of H202 increased the number of DAPI/TUNEL cells/mm3 by ≈twofold in all regions of CS and AS cultures, an effect that was prevented by neonatal nicotinamide treatment. In substantia nigra, the number of MAP-2/TH-positive cells/mm3 was decreased in AS compared to CS cultures, also by 1 mM of H202, both in CS and AS cultures, prevented by nicotinamide. In agreement, the number of MAP-2/TUNEL-positive cells/mm3 was increased by 1 mM H2O2, both in CS (twofold) and AS (threefold) cultures, prevented by nicotinamide. The number of MAP-2/TH/TUNEL-positive cells/mm3 was only increased in CS (>threefold), but not in AS (1.3-fold) cultures. No TH labelling was observed in neostriatum, but 1 mM of H2O2 produced a strong increase in the number of MAP-2/TUNEL-positive cells/mm3, both in CS (>2.9-fold) and AS (>fourfold), decreased by nicotinamide. In neocortex, H2O2 increased the number of MAP-2/TUNEL-positive cells/mm3, both in CS and AS cultures (≈threefold), decreased by nicotinamide. The ADP/ATP ratio was increased in AS culture homogenates (>sixfold), compared to CS homogenates, increased by 1 mM of H202, both in CS and AS homogenates. The GSH/GSSG ratio was significantly decreased in AS, compared to CS cultures. One millimolar of H2O2 decreased that ratio in CS and AS homogenates. The present results demonstrate that perinatal asphyxia induces long-term changes in metabolic pathways related to energy and oxidative stress, priming cell vulnerability with both neuronal and glial phenotype. The observed effects were region dependent, being the substantia nigra particularly prone to cell death. Nicotinamide administration in vivo prevented the deleterious effects observed after perinatal asphyxia in vitro, a suitable pharmacological strategy against the deleterious consequences of perinatal asphyxia.
Collapse
|
7
|
Glucose and Intermediary Metabolism and Astrocyte–Neuron Interactions Following Neonatal Hypoxia–Ischemia in Rat. Neurochem Res 2016; 42:115-132. [DOI: 10.1007/s11064-016-2149-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 11/27/2022]
|
8
|
Abstract
Neonatal encephalopathy resulting from HI (hypoxia-ischaemia) continues to be a significant cause of mortality and morbidity in infants and children, affecting 1-2/1000 live term births and up to 60% of pre-term births. In order to understand the pathophysiology of this insult, as well as design therapeutic interventions, it is important to establish a relevant animal model for pre-clinical studies. One of the most frequently used models of HI-induced brain damage in immature animals is the unilateral carotid ligation/hypoxia model, initially developed in our laboratory more than 30 years ago. The original model employed the postnatal day 7 rat, whose brain is representative of that of a late gestation, pre-term [32-36 weeks GA (gestational age)] human infant. We, and others, have employed this model to characterize the pathophysiological, biochemical/energetic and neuropathological events following HI, as well as the determination of the unique characteristics of the immature brain that define its vulnerability to, and outcome from, HI. In defining the cascade of events following HI, it has become possible to identify potential targets for intervention and neuroprotection. Currently, the only available therapeutic intervention for neonatal encephalopathy in the term asphyxiated infant is therapeutic hypothermia, although this must be initiated within 6 h of birth and is at best partially effective in moderately injured infants. Ongoing pre-clinical studies are necessary to determine the basis for the partial protection afforded by hypothermia as well as the design of adjunct therapies to improve the outcome. The present review highlights the importance of using a well-characterized and relevant animal model to continue to pursue translational research in neuroprotection for the infant brain.
Collapse
|
9
|
Ek CJ, D'Angelo B, Baburamani AA, Lehner C, Leverin AL, Smith PLP, Nilsson H, Svedin P, Hagberg H, Mallard C. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J Cereb Blood Flow Metab 2015; 35:818-27. [PMID: 25627141 PMCID: PMC4420855 DOI: 10.1038/jcbfm.2014.255] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/09/2022]
Abstract
Insults to the developing brain often result in irreparable damage resulting in long-term deficits in motor and cognitive functions. The only treatment today for hypoxic-ischemic encephalopathy (HIE) in newborns is hypothermia, which has limited clinical benefit. We have studied changes to the blood-brain barriers (BBB) as well as regional cerebral blood flow (rCBF) in a neonatal model of HIE to further understand the underlying pathologic mechanisms. Nine-day old mice pups, brain roughly equivalent to the near-term human fetus, were subjected to hypoxia-ischemia. Hypoxia-ischemia increased BBB permeability to small and large molecules within hours after the insult, which normalized in the following days. The opening of the BBB was associated with changes to BBB protein expression whereas gene transcript levels were increased showing direct molecular damage to the BBB but also suggesting compensatory mechanisms. Brain pathology was closely related to reductions in rCBF during the hypoxia as well as the areas with compromised BBB showing that these are intimately linked. The transient opening of the BBB after the insult is likely to contribute to the pathology but at the same time provides an opportunity for therapeutics to better reach the infarcted areas in the brain.
Collapse
Affiliation(s)
- C Joakim Ek
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Barbara D'Angelo
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ana A Baburamani
- 1] Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden [2] Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Christine Lehner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Department of Traumatology and Sport Injuries, Institute of Tendon and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration
| | - Anna-Lena Leverin
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter L P Smith
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Holger Nilsson
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- 1] Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK [2] Departments of Obstetrics and Gynecology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Takenouchi T, Sugiura Y, Morikawa T, Nakanishi T, Nagahata Y, Sugioka T, Honda K, Kubo A, Hishiki T, Matsuura T, Hoshino T, Takahashi T, Suematsu M, Kajimura M. Therapeutic hypothermia achieves neuroprotection via a decrease in acetylcholine with a concurrent increase in carnitine in the neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2015; 35:794-805. [PMID: 25586144 PMCID: PMC4420853 DOI: 10.1038/jcbfm.2014.253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 01/27/2023]
Abstract
Although therapeutic hypothermia is known to improve neurologic outcomes after perinatal cerebral hypoxia-ischemia, etiology remains unknown. To decipher the mechanisms whereby hypothermia regulates metabolic dynamics in different brain regions, we used a two-step approach: a metabolomics to target metabolic pathways responding to cooling, and a quantitative imaging mass spectrometry to reveal spatial alterations in targeted metabolites in the brain. Seven-day postnatal rats underwent the permanent ligation of the left common carotid artery followed by exposure to 8% O2 for 2.5 hours. The pups were returned to normoxic conditions at either 38 °C or 30 °C for 3 hours. The brain metabolic states were rapidly fixed using in situ freezing. The profiling of 107 metabolites showed that hypothermia diminishes the carbon biomass related to acetyl moieties, such as pyruvate and acetyl-CoA; conversely, it increases deacetylated metabolites, such as carnitine and choline. Quantitative imaging mass spectrometry demarcated that hypothermia diminishes the acetylcholine contents specifically in hippocampus and amygdala. Such decreases were associated with an inverse increase in carnitine in the same anatomic regions. These findings imply that hypothermia achieves its neuroprotective effects by mediating the cellular acetylation status through a coordinated suppression of acetyl-CoA, which resides in metabolic junctions of glycolysis, amino-acid catabolism, and ketolysis.
Collapse
Affiliation(s)
- Toshiki Takenouchi
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Sugiura
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Precursory Research for Embryonic Science and Technology (PRESTO) Project, Tokyo, Japan
| | - Takayuki Morikawa
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| | - Tsuyoshi Nakanishi
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] MS Business Unit, Shimadzu Corporation, Tokyo, Japan
| | - Yoshiko Nagahata
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| | - Tadao Sugioka
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Kurara Honda
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Precursory Research for Embryonic Science and Technology (PRESTO) Project, Tokyo, Japan
| | - Akiko Kubo
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| | - Takako Hishiki
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| | - Tomomi Matsuura
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| | - Takao Hoshino
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| | - Mayumi Kajimura
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| |
Collapse
|
11
|
Abstract
Hypoxia-ischemia is a leading cause of morbidity and mortality in the perinatal period with an incidence of 1/4000 live births. Biochemical events such as energy failure, membrane depolarization, brain edema, an increase of neurotransmitter release and inhibition of uptake, an increase of intracellular Ca(2+), production of oxygen-free radicals, lipid peroxidation, and a decrease of blood flow are triggered by hypoxia-ischemia and may lead to brain dysfunction and neuronal death. These abnormalities can result in mental impairments, seizures, and permanent motor deficits, such as cerebral palsy. The physical and emotional strain that is placed on the children affected and their families is enormous. The care that these individuals need is not only confined to childhood, but rather extends throughout their entire life span, so it is very important to understand the pathophysiology that follows a hypoxic-ischemic insult. This review will highlight many of the mechanisms that lead to neuronal death and include the emerging area of white matter injury as well as the role of inflammation and will provide a summary of therapeutic strategies. Hypothermia and oxygen will also be discussed as treatments that currently lack a specific target in the hypoxic/ischemic cascade.
Collapse
Affiliation(s)
- John W Calvert
- Departments of Neurosurgery and Molecular and Cellular Physiology, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, CA 92354, USA
| | | |
Collapse
|
12
|
Prins ML, Alexander D, Giza CC, Hovda DA. Repeated mild traumatic brain injury: mechanisms of cerebral vulnerability. J Neurotrauma 2013; 30:30-8. [PMID: 23025820 DOI: 10.1089/neu.2012.2399] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Among the 3.5 million annual new head injury cases is a subpopulation of children and young adults who experience repeated traumatic brain injury (TBI). The duration of vulnerability after a single TBI remains unknown, and biomarkers have yet to be determined. Decreases in glucose metabolism (cerebral metabolic rate of glucose [CMRglc]) are consistently observed after experimental and human TBI. In the current study, it is hypothesized that the duration of vulnerability is related to the duration of decreased CMRglc and that a single mild TBI (mTBI) increases the brain's vulnerability to a second insult for a period, during which a subsequent mTBI will worsen the outcome. Postnatal day 35 rats were given sham, single mTBI, or two mTBI at 24-h or 120-h intervals. (14)C-2-deoxy-D-glucose autoradiography was conducted at 1 or 3 days post-injury to calculate CMRglc. At 24 h after a single mTBI, CMRglc is decreased by 19% in both the parietal cortex and hippocampus, but approached sham levels by 3 days post-injury. When a second mTBI is introduced during the CMRglc depression of the first injury, the consequent CMRglc is depressed (36.5%) at 24 h and remains depressed (25%) at 3 days. In contrast, when the second mTBI is introduced after the metabolic recovery of the first injury, the consequent CMRglc depression is similar to that seen with a single injury. Results suggest that the duration of metabolic depression reflects the time-course of vulnerability to second injury in the juvenile brain and could serve as a valuable biomarker in establishing window of vulnerability guidelines.
Collapse
Affiliation(s)
- Mayumi L Prins
- Department of Neurosurgery, University of California, School of Medicine, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
13
|
Kendall GS, Hristova M, Zbarsky V, Clements A, Peebles DM, Robertson NJ, Raivich G. Distribution of pH changes in mouse neonatal hypoxic-ischaemic insult. Dev Neurosci 2012; 33:505-18. [PMID: 22343485 DOI: 10.1159/000333850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 09/26/2011] [Indexed: 11/19/2022] Open
Abstract
We assessed the distribution in brain pH after neonatal hypoxic-ischaemic insult and its correlation with local injury. Postnatal day 7 mice were injected with neutral red and underwent left carotid occlusion and exposure to 8% oxygen. Images captured from the cut surface of snap-frozen brain were used to calculate the pH from the blue-green absorbance ratios. Carotid occlusion alone had no effect, but combined with hypoxia caused rapid, biphasic pH decline, with the first plateau at 15-30 min, and the second at 60-90 min. The ipsilateral dorsal cortex, hippocampus, striatum and thalamus were most affected. Contralateral pH initially showed only 30% of the ipsilateral decline, becoming more acidotic with increasing duration. Systemic blood analysis revealed, compared with hypoxia alone, that combined insult caused a 63% decrease in blood glucose (1.3 ± 0.2 mM), a 2-fold increase in circulating lactate (17.7 ± 2.9 mM), a reduction in CO(2) to 1.9 ± 0.1 kPa and a drop in pH (7.26 ± 0.06). Re-oxygenation resulted in the normalisation of systemic changes, as well as a global alkaline rebound in brain pH at 4-6 h. A topographic comparison of brain injury showed only a partial correlation with pH changes, with the severest injury occurring in the ipsilateral hippocampus and sparing acidic parts of the contralateral cortex.
Collapse
Affiliation(s)
- Giles S Kendall
- Centre for Perinatal Brain Protection and Repair, Department of Obstetrics and Gynaecology, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Nicotinamide mononucleotide adenylyl transferase 1 protects against acute neurodegeneration in developing CNS by inhibiting excitotoxic-necrotic cell death. Proc Natl Acad Sci U S A 2011; 108:19054-9. [PMID: 22058226 DOI: 10.1073/pnas.1107325108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hypoxic-ischemic (H-I) injury to the developing brain is a significant cause of morbidity and mortality in humans. Other than hypothermia, there is no effective treatment to prevent or lessen the consequences of neonatal H-I. Increased expression of the NAD synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1) has been shown to be neuroprotective against axonal injury in the peripheral nervous system. To investigate the neuroprotective role of Nmnat1 against acute neurodegeneration in the developing CNS, we exposed wild-type mice and mice overexpressing Nmnat1 in the cytoplasm (cytNmnat1-Tg mice) to a well-characterized model of neonatal H-I brain injury. As early as 6 h after H-I, cytNmnat1-Tg mice had strikingly less injury detected by MRI. CytNmnat1-Tg mice had markedly less injury in hippocampus, cortex, and striatum than wild-type mice as assessed by loss of tissue volume 7 d days after H-I. The dramatic protection mediated by cytNmnat1 is not mediated through modulating caspase3-dependent cell death in cytNmnat1-Tg brains. CytNmnat1 protected neuronal cell bodies and processes against NMDA-induced excitotoxicity, whereas caspase inhibition or B-cell lymphoma-extra large (Bcl-XL) protein overexpression had no protective effects in cultured cortical neurons. These results suggest that cytNmnat1 protects against neonatal HI-induced CNS injury by inhibiting excitotoxicity-induced, caspase-independent injury to neuronal processes and cell bodies. As such, the Nmnat1 protective pathway could be a useful therapeutic target for acute and chronic neurodegenerative insults mediated by excitotoxicity.
Collapse
|
15
|
Aversa S, Pellegrino S, Barberi I, Reiter RJ, Gitto E. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J Matern Fetal Neonatal Med 2011; 25:207-21. [PMID: 21557691 DOI: 10.3109/14767058.2011.573827] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) play a critical role in the pathogenesis of various diseases during pregnancy and the perinatal period. Newborns are more prone to oxidative stress than individuals later in life. During pregnancy, increased oxygen demand augments the rate of production of ROS and women, even during normal pregnancies, experience elevated oxidative stress compared with non-pregnant women. ROS generation is also increased in the placenta during preeclampsia. Melatonin is a highly effective direct free-radical scavenger, indirect antioxidant, and cytoprotective agent in human pregnancy and it appears to be essential for successful pregnancy. This suggests a role for melatonin in human reproduction and in neonatal pathologies (asphyxia, respiratory distress syndrome, sepsis, etc.). This review summarizes current knowledge concerning the role for melatonin in human pregnancy and in the newborn. Numerous studies agree that short-term melatonin therapy is highly effective in reducing complications during pregnancy and in the neonatal period. No significant toxicity or treatment-related side effects with long-term melatonin therapy in children and adults have been reported. Treatment with melatonin might result in a wide range of health benefits, including improved quality of life and reduced healthcare costs.
Collapse
Affiliation(s)
- Salvatore Aversa
- Neonatal Intensive Care Unit, Department of Pediatrics, University of Messina, Italy
| | | | | | | | | |
Collapse
|
16
|
Pimentel VC, Bellé LP, Pinheiro FV, De Bona KS, Da Luz SCA, Moretto MB. Adenosine deaminase activity, lipid peroxidation and astrocyte responses in the cerebral cortex of rats after neonatal hypoxia ischemia. Int J Dev Neurosci 2009; 27:857-62. [PMID: 19559780 DOI: 10.1016/j.ijdevneu.2009.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/03/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022] Open
Abstract
Hypoxia ischemia (HI) is a common cause of damage in the fetal and neonatal brain. Lifelong disabilities such as cerebral palsy, epilepsy, behavioral and learning disorders are some of the consequences of brain injury acquired in the perinatal periods. Inflammation and formation of free radicals appear to play key roles in neonatal HI. The aim of this study was to describe the chronological sequence of adenosine deaminase (ADA) activity, the oxidative damage changes and astrocyte response using the classic model of neonatal HI. We observed an increase in the activity of ADA and lipid peroxidation in the cerebral cortex 8 days after neonatal HI. This was accompanied by a GFAP-positive, and the degree of brain damage was determined histochemically by hematoxylin-eosin (HE). Taking into account the important anti-inflammatory role of adenosine, ADA may provide an efficient means for scavenging cell-surrounding adenosine and play an important part in subsequent events of neonatal HI in association with GFAP reactive gliosis. The present investigation showed that neonatal HI causes the increase of free radicals and significant damage in the cerebral cortex. The increase in ADA activity may reflect the activation of the immune system caused by HI because the morphological analysis exhibited a lymphocytic infiltration.
Collapse
Affiliation(s)
- V C Pimentel
- Postgraduate Program in Pharmaceutical Sciences, Health Science Centre, Santa Maria, RS, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Gitto E, Pellegrino S, Gitto P, Barberi I, Reiter RJ. Oxidative stress of the newborn in the pre- and postnatal period and the clinical utility of melatonin. J Pineal Res 2009; 46:128-39. [PMID: 19054296 DOI: 10.1111/j.1600-079x.2008.00649.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Newborns, and especially those delivered preterm, are probably more prone to oxidative stress than individuals later in life. Also during pregnancy, increased oxygen demand augments the rate of production of reactive oxygen species (ROS) and women, even with normal pregnancies, experience elevated oxidative stress and lipid peroxidation compared with nonpregnant women. Also, there appears to be an increase in ROS generation in the placenta of pre-eclamptic women. In comparison with healthy adults, newborn infants have lower levels of plasma antioxidants such as vitamin E, beta-carotene, and sulphydryl groups, lower levels of plasma metal binding proteins including ceruloplasmin and transferrin, and reduced activity of erythrocyte superoxide dismutase. This review summarizes conditions of newborns where there is elevated oxidative stress. Included in this group of conditions is asphyxia, respiratory distress syndrome and sepsis and the review also summarizes the literature related to clinical trials of antioxidant therapies and of melatonin, a highly effective antioxidant and free radical scavenger. The authors document there is general agreement that short-term melatonin therapy may be highly effective and that it has a remarkably benign safety profile, even when neonates are treated with pharmacological doses. Significant complications with long-term melatonin therapy in children and adults also have not been reported. None of the animal studies of maternal melatonin treatment or in postnatal life have shown any treatment-related side effects. The authors conclude that treatment with melatonin might result in a wide range of health benefits, improved quality of life and reduced healthcare costs and may help reduce complications in the neonatal period.
Collapse
Affiliation(s)
- Eloisa Gitto
- Neonatal Intensive Care Unit, Institute of Medical Pediatrics, University of Messina, Messina, Italy
| | | | | | | | | |
Collapse
|
18
|
Winter JD, Tichauer KM, Gelman N, Thompson RT, Lee TY, St Lawrence K. Changes in cerebral oxygen consumption and high-energy phosphates during early recovery in hypoxic-ischemic piglets: a combined near-infrared and magnetic resonance spectroscopy study. Pediatr Res 2009; 65:181-7. [PMID: 18852691 DOI: 10.1203/pdr.0b013e31818f06fb] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Near-infrared spectroscopy (NIRS) offers the ability to assess brain function at the bedside of critically ill neonates. Our group previously demonstrated a persistent reduction in the cerebral metabolic rate of oxygen (CMRO(2)) after hypoxia-ischemia (HI) in newborn piglets. The purpose of this current study was to determine the causes of this reduction by combining NIRS with magnetic resonance spectroscopy (MRS) to measure high-energy metabolites and diffusion-weighted imaging to measure cellular edema. Nine piglets were exposed to 30 min of HI and nine piglets served as controls. Proton and phosphorous MRS spectra, apparent diffusion coefficient (ADC) maps, and CMRO(2) measurements were collected periodically before and for 5.5 h after HI. A significant decrease in CMRO(2) (26 +/- 7%) was observed after HI. Incomplete recovery of nucleotide triphosphate concentration (8 +/- 3% <controls) and reduced ADC (16 +/- 5%) suggested mitochondrial dysfunction. However, CMRO(2) did not correlate with any metabolite concentration during the last 3 h of the recovery period, and no significant changes were found in phosphocreatine and lactate levels. Therefore, the CMRO(2) decrease is likely a combination of impaired mitochondrial function and reduced energy demands during the acute phase, which has been previously observed in the mature brain.
Collapse
Affiliation(s)
- Jeff D Winter
- Imaging Division, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
OBJECTIVE The purpose of this study was to determine whether oxygen treatment could attenuate the alterations in cerebral energy metabolism found in the brain following hypoxia-ischemia. DESIGN Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by 2 hrs of hypoxia (8% oxygen at 37 degrees C). The concentrations of high-energy phosphate compounds and glycolytic intermediates and the activity of Na+/K+-adenosine triphosphatase were measured at 4-72 hrs of recovery. Brain weight was used to determine the severity of the brain injury at 2 wks after insult. SETTING Experimental setting. SUBJECTS Rat pups. INTERVENTIONS Pups were treated with 100% oxygen 1 hr after the insult at 2.5 atmospheres absolute (hyperbaric oxygen) or at normobaric pressure for a duration of 2 hrs. MEASUREMENTS AND MAIN RESULTS During the initial period of recovery from hypoxia-ischemia, values of adenosine triphosphate and phosphocreatine remained at levels below normal, whereas the levels of glucose and other glycolytic intermediates were elevated. Hyperbaric oxygen and normobaric oxygen both attenuated brain injury, restored the levels of adenosine triphosphate and phosphocreatine, decreased the levels of the glycolytic intermediates, and increased the utilization of energy. CONCLUSIONS These results suggest that oxygen treatment during the initial period of recovery from a hypoxia-ischemic insult is able to attenuate energy deficits in the brain, which ultimately leads to a reduction in brain injury.
Collapse
Affiliation(s)
- John W Calvert
- Department of Physiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | | |
Collapse
|
20
|
Abstract
Perinatal hypoxic-ischaemic injury (HII) is a significant cause of neurodevelopmental impairment and disability. Studies employing 31P magnetic resonance spectroscopy to measure phosphorus metabolites in situ in the brains of newborn infants and animals have demonstrated that transient hypoxia-ischaemia leads to a delayed disruption in cerebral energy metabolism, the magnitude of which correlates with the subsequent neurodevelopmental impairment. Prominent among the biochemical features of HII is the loss of cellular ATP, resulting in increased intracellular Na+ and Ca2+, and decreased intracellular K+. These ionic imbalances, together with a breakdown in cellular defence systems following HII, can contribute to oxidative stress with a net increase in reactive oxygen species. Subsequent damage to lipids, proteins, and DNA and inactivation of key cellular enzymes leads ultimately to cell death. Although the precise mechanisms of neuronal loss are unclear, it is now clear both apoptosis and necrosis are the significant components of cell death following HII. A number of different factors influence whether a cell will undergo apoptosis or necrosis, including the stage of development, cell type, severity of mitochondrial injury and the availability of ATP for apoptotic execution. This review will focus on some pathological mechanisms of cell death in which there is a disruption to oxidative metabolism. The first sections will discuss the process of damage to oxidative metabolism, covering the data collected both from human infants and from animal models. Following sections will deal with the molecular mechanisms that may underlie cerebral energy failure and cell death in this form of brain injury, with a particular emphasis on the role of apoptosis and mitochondria.
Collapse
Affiliation(s)
- Deanna L. Taylor
- Weston Laboratory, Division of Paediatrics, Obstetrics and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, U.K
| | - A. David Edwards
- Weston Laboratory, Division of Paediatrics, Obstetrics and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, U.K
| | - Huseyin Mehmet
- Weston Laboratory, Division of Paediatrics, Obstetrics and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, U.K
| |
Collapse
|
21
|
Tekgul H, Gauvreau K, Soul J, Murphy L, Robertson R, Stewart J, Volpe J, Bourgeois B, du Plessis AJ. The current etiologic profile and neurodevelopmental outcome of seizures in term newborn infants. Pediatrics 2006; 117:1270-80. [PMID: 16585324 DOI: 10.1542/peds.2005-1178] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The objectives of this study were to delineate the etiologic profile and neurodevelopmental outcome of neonatal seizures in the current era of neonatal intensive care and to identify predictors of neurodevelopmental outcome in survivors. METHODS Eighty-nine term infants with clinical neonatal seizures underwent neurologic examination, electroencephalography (EEG), neuroimaging, and extensive diagnostic tests in the newborn period. After discharge, all infants underwent regular neurologic evaluations and, at 12 to 18 months, formal neurodevelopmental testing. We tested the prognostic value of seizure etiology, neurologic examination, EEG, and neuroimaging. RESULTS Etiology was found in 77 infants. Global cerebral hypoxia-ischemia, focal cerebral hypoxia-ischemia, and intracranial hemorrhage were most common. Neonatal mortality was 7%; 28% of the survivors had poor long-term outcome. Association between seizure etiology and outcome was strong, with cerebral dysgenesis and global hypoxia-ischemia associated with poor outcome. Normal neonatal period/early infancy neurologic examination was associated with uniformly favorable outcome at 12 to 18 months; abnormal examination lacked specificity. Normal/mildly abnormal neonatal EEG had favorable outcome, particularly if neonatal neuroimaging was normal. Moderate/severely abnormal EEG, and multifocal/diffuse cortical or primarily deep gray matter lesions, had a worse outcome. CONCLUSIONS Mortality associated with neonatal seizures has declined although long-term neurodevelopmental morbidity remains unchanged. Seizure etiology and background EEG patterns remain powerful prognostic factors. Diagnostic advances have changed the etiologic distribution for neonatal seizures and improved accuracy of outcome prediction. Global cerebral hypoxia-ischemia, the most common etiology, is responsible for the large majority of infants with poor long-term outcome.
Collapse
Affiliation(s)
- Hasan Tekgul
- Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Martin SS, Perez-Polo JR, Noppens KM, Grafe MR. Biphasic changes in the levels of poly(ADP-ribose) polymerase-1 and caspase 3 in the immature brain following hypoxia-ischemia. Int J Dev Neurosci 2005; 23:673-86. [PMID: 16209916 DOI: 10.1016/j.ijdevneu.2005.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 08/24/2005] [Accepted: 08/25/2005] [Indexed: 11/23/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA repair-associated enzyme that has multiple roles in cell death. This study examined the involvement of PARP-1 in ischemic brain injury in the 7-day old rat, 0.5-48 h after unilateral carotid artery ligation and 2 h of 7.8% oxygen. This experimental paradigm produced a mild to moderate injury; 40-67% of animals in the ligated groups had histological evidence of neuronal death. Ipsilateral cortical injury was seen at all survival times, while mild contralateral cortical injury was seen only at the 1h survival time. Hippocampal injury was delayed relative to the cortex and did not show a biphasic pattern. Immunohistochemical staining for PARP showed bilateral increased staining as early as 1 h post-hypoxia. PARP staining at early time periods was most intense in layer V of cortex, but did not demonstrate a pattern of cell clusters or columns. Ipsilateral PARP-1 levels quantified by western blotting showed a biphasic pattern of elevation with peaks at 0.5 and 12 h post-hypoxia. Contralateral PARP-1 levels were also elevated at 0.5 and 24 h. PARP activity as determined by immunoreactivity for poly(ADP-ribose) (PAR) was increased ipsilaterally at 0.5, 2 and 12 h survival times. Cortical caspase 3-activity was increased ipsilaterally at 6, 12, and 24 h and contralaterally at 0.5, 1, 2 and 6 h post-hypoxia. There are three main findings in this study. First, changes in the distribution and amount of cell death correlate well with measured PARP-1 levels after hypoxia-ischemia, and both display biphasic characteristics. Second, there are significant early, transient morphological and biochemical changes in the contralateral cortex after neonatal hypoxia-ischemia due to unilateral permanent occlusion of a carotid artery followed by 2 h of systemic hypoxia. Third, variability in the responses of individual pups to hypoxia-ischemia suggests the presence of unidentified confounding factors.
Collapse
|
23
|
Vannucci RC, Brucklacher RM, Vannucci SJ. Glycolysis and perinatal hypoxic-ischemic brain damage. Dev Neurosci 2005; 27:185-90. [PMID: 16046853 DOI: 10.1159/000085991] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 12/21/2004] [Indexed: 11/19/2022] Open
Abstract
To ascertain the regulation of glycolysis during perinatal hypoxia-ischemia, 7-day postnatal rats were subjected to unilateral common carotid artery ligation followed by hypoxia with 8% oxygen for up to 90 min. Brain concentrations of glucose, lactate, and key glycolytic intermediates were determined at specific intervals of hypoxia. During hypoxia-ischemia, anaerobic glycolysis increased to approximately 62% of its maximal capacity, which equates to a 135% stimulation of the glycolytic flux. The key regulatory enzymes, hexokinase, phosphofructokinase and pyruvate kinase, were all stimulated during hypoxia-ischemia, and there were no enzymatic rate limitations. The major rate-limiting step for glycolysis was the transport of glucose across the blood-brain barrier into the brain.
Collapse
Affiliation(s)
- Robert C Vannucci
- Department of Pediatrics, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | |
Collapse
|
24
|
Hilario E, Rey-Santano MC, Goñi-de-Cerio F, Alvarez FJ, Gastiasoro E, Mielgo VE, Caballero A, Valls-i-Soler A, Gómez-Urquijo S, Alvarez A. Cerebral blood flow and morphological changes after hypoxic-ischaemic injury in preterm lambs. Acta Paediatr 2005; 94:903-11. [PMID: 16188813 DOI: 10.1111/j.1651-2227.2005.tb02009.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To evaluate the effect of cerebral hypoxia-ischaemia induced by partial occlusion of the umbilical cord on the relationship of the regional cerebral blood flow and the cerebral cell death in near-term fetal lambs. METHODS Fifteen near-term lambs were assigned to two hypoxic-ischaemic groups with or without life support (3 h), and a healthy one. Hypoxia-ischaemia was induced by partial occlusion of the umbilical cord (60 min). Routine light and electron microscopy, and the TUNEL method for apoptosis were performed. Regional cerebral blood flow was measured by coloured microspheres. Cardiovascular, gas exchange and pH parameters were also evaluated. RESULTS Both hypoxic-ischaemic groups produced a transient acidosis and a decrease of base excess in comparison to the healthy group. Cortical and cerebellar zones, where the regional cerebral blood flow values were similar to baseline, showed an increased number of oligodendrocyte-like apoptotic cells. In contrast, in the inner zones, where regional cerebral blood flow was increased, the number of apoptotic cells did not increase. Necrotic neurons were observed in the basal nuclei, mesencephalon, pons and deep cerebellar nuclei. CONCLUSION Our results suggest that regional cerebral blood flow and the presence of apoptotic cells, 3 h after hypoxic-ischemic injury, are correlated.
Collapse
Affiliation(s)
- Enrique Hilario
- Department of Cell Biology and Histology, University of the Basque Country, 48940 Leioa, Vizcaya, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vannucci RC, Towfighi J, Vannucci SJ. Secondary energy failure after cerebral hypoxia-ischemia in the immature rat. J Cereb Blood Flow Metab 2004; 24:1090-7. [PMID: 15529009 DOI: 10.1097/01.wcb.0000133250.03953.63] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A delayed or secondary energy failure occurs during recovery from perinatal cerebral hypoxia-ischemia. The question remains as to whether the energy failure causes or accentuates the ultimate brain damage or is a consequence of cell death. To resolve the issue, 7-day postnatal rats underwent unilateral common carotid artery occlusion followed thereafter by systemic hypoxia with 8% oxygen for 2.5 hours. During recovery, the brains were quick frozen and individually processed for histology and the measurements of 1) high-energy phosphate reserves and 2) neuronal (MAP-2, SNAP-25) and glial (GFAP) proteins. Phosphocreatine (PCr) and ATP, initially depleted during hypoxia-ischemia, were partially restored during the first 18 hours of recovery, with secondary depletions at 24 and 48 hours. During the initial recovery phase (6 to 18 hours), there was a significant correlation between PCr and the histology score (0 to 3), but not for ATP. During the late recovery phase, there was a highly significant correlation between all measured metabolites and the damage score. Significant correlation also exhibited between the neuronal protein markers, MAP-2 and SNAP-25, and PCr as well as the sum of PCr and Cr at both phases of recovery. No correlation existed between the high-energy reserves and the glial protein marker, GFAP. The close correspondence of PCr to histologic brain damage and the loss of MAP-2 and SNAP-25 during both the early and late recovery intervals suggest evolving cellular destruction as the primary event, which precedes and leads to the secondary energy failure.
Collapse
Affiliation(s)
- Robert C Vannucci
- Department of Pediatrics, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, USA.
| | | | | |
Collapse
|
26
|
Palmer C, Roberts RL, Young PI. Timing of neutrophil depletion influences long-term neuroprotection in neonatal rat hypoxic-ischemic brain injury. Pediatr Res 2004; 55:549-56. [PMID: 14739365 DOI: 10.1203/01.pdr.0000113546.03897.fc] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In neonatal rats, neutrophils do not accumulate in ischemic brain parenchyma to the extent that they do in adult rodents. They are also confined to the intravascular compartment during the first few hours of recovery. However, neonatal rats rendered neutropenic have less brain swelling after a hypoxic-ischemic (HI) insult. In this study, we used the Rice-Vannucci model of HI brain injury in 7-d-old rats, and we depleted neutrophils before injury in one group and 4-8 h after injury in another group to determine 1) whether neutrophils contribute to cerebral atrophy, 2) whether neutropenia induced within 8 h after recovery from HI is neuroprotective, and 3) whether neutropenia preserved energy metabolites during the HI insult. Brain energy metabolites were measured at 0 h and 6 h of recovery. Brain atrophy was measured morphometrically on brain slices at 2 wk of recovery. In 67 rats, we found that neutropenia induced before the HI insult, but not after HI, reduced brain swelling at 42 h of recovery by about 75% (p < 0.001). In another 60 rats, we found that cerebral atrophy was reduced by 61% provided that neutropenia was induced before HI (p < 0.05). Total adenine nucleotides were better preserved in the neutropenic rats at the end of the HI insult (0 h recovery); p < 0.05. We conclude that neutrophils do contribute to vascular dysfunction either during the HI insult or early hours (<4-8 h) of recovery. Antineutrophil strategies initiated after this time are unlikely to be protective in the neonatal rat.
Collapse
Affiliation(s)
- Charles Palmer
- Department of Pediatrics, P.O. Box 850, MC H085, The Milton S. Hershey Medical Center, Penn State University College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
27
|
Abstract
Controversy continues over which animal model to use as a reflection of human disease states. With respect to perinatal brain disorders, scientists must contend with a disease in evolution. In that regard, the perinatal brain is at risk during a time of extremely rapid development and maturation, involving processes that are required for normal growth. Interfering with these processes, as part of therapeutic intervention must be efficacious and safe. To date, numerous models have provided tremendous information regarding the pathophysiology of brain damage to term and preterm infants. Our challenges will continue to be in identifying those infants at greatest risk for permanent injury, and adapting therapies that provide more benefit than harm. Using animal models to conduct these studies will bring us closer to that goal.
Collapse
Affiliation(s)
- Jerome Y Yager
- Division of Pediatric Neurology, Department of Pediatrics and Child Health, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Abstract
This study was undertaken to clarify whether seizures in the newborn cause damage to the healthy brain and, more specifically, to determine the extent to which seizures may contribute to the brain-damaging effects of hypoxia-ischemia (HI). Seizures were induced in 10-d-old rat pups with kainic acid (KA). Seizure duration was determined electrographically. HI was induced by common carotid artery ligation followed by exposure to 8% oxygen for either 15 or 30 min. Six groups of animals were assessed: 1) controls [neither KA nor HI (group I)]; 2) group II, KA alone; 3) group III, 15 min HI alone; 4) group IV,15 min HI plus KA; 5) group V, 30 min HI alone; and 6) group VI, 30 min HI plus KA. Animals were assessed neuropathologically at 3 (early) and 20 (late) d of recovery. KA injection without hypoxia resulted in continuous clinical and electrographic seizures lasting a mean of 282 min. No neuropathologic injury was seen in groups I (no HI or KA), II (KA alone), III (15 min HI alone), or IV (15 min HI and KA). Animals in group V (30 min HI alone) displayed brain damage with a mean score of 2.3 and 0.60 at 3 and 20 d of recovery, respectively. Animals in group VI (30 min HI and KA) had a mean score of 12.1 and 3.65 at 3 and 20 d of recovery, respectively. Compared with group V, the increased damage as a result of the seizure activity in group VI occurred exclusively in the hippocampus. Status epilepticus in the otherwise "healthy" neonatal brain does not cause neuropathologic injury. However, seizures superimposed on HI significantly exacerbate brain injury in a topographically specific manner.
Collapse
Affiliation(s)
- E C Wirrell
- Division of Neurosciences, Department of Pediatrics, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan S7N 0W8, Canada
| | | | | | | |
Collapse
|
29
|
Vexler ZS, Ferriero DM. Molecular and biochemical mechanisms of perinatal brain injury. SEMINARS IN NEONATOLOGY : SN 2001; 6:99-108. [PMID: 11483016 DOI: 10.1053/siny.2001.0041] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypoxic-ischemic injury to the prenatal and perinatal brain is a major contributor to morbidity and mortality to infants, often leading to mental retardation, seizures, and cerebral palsy. The susceptibility of the immature CNS to hypoxia-ischemia is largely dependent on the temporal and regional status of critical developmental processes, as well as on the regulation of cerebral blood flow and metabolism. The molecular and biochemical mechanisms of acute injury to the neonatal brain in experimental rodent and murine models of hypoxic-ischemic and ischemic injury, including disturbances of intracellular homeostasis, role of glutamate receptors, free radicals and transitional ions, as well as the modifying role of gene expression to cell death/survival will be reviewed in this chapter.
Collapse
Affiliation(s)
- Z S Vexler
- Department of Neurology, University California San Francisco, 521 Parnassus Ave, San Francisco, CA 94143-0114, USA
| | | |
Collapse
|
30
|
Alkan T, Kahveci N, Buyukuysal L, Korfali E, Ozluk K. Neuroprotective effects of MK 801 and hypothermia used alone and in combination in hypoxic-ischemic brain injury in neonatal rats. Arch Physiol Biochem 2001; 109:135-44. [PMID: 11780774 DOI: 10.1076/apab.109.2.135.4271] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although accumulating evidence suggests that increased extracellular glutamate concentrations may play an important role in hypoxic-ischemic brain injury, dopamine and other catecholamines also seem to be involved. The N-methyl-D-aspartate receptor antagonist MK 801 and moderate hypothermia (32-34 degrees C) are each known to be neuroprotective, but their combined effect on the release and metabolism of neurotransmitters is unknown. Seven-day-old pups (n: 150) underwent right common carotid artery ligation to induce hemispheric ischemia, and were later subjected to 120 minutes of hypoxia with 8% O2 and 92% N2O. Half the rats (Group I, n: 74) were subjected to normothermic conditions throughout the hypoxic period. Moderate hypothermia (30-32 degrees C) was induced in the other pups (Group II, n: 76) immediately after artery occlusion, and was maintained throughout the hypoxic period. Prior to inducing hypoxia, half of the rats in each group (Groups IA and IIA) received vehicle solution (0.9% NaCI) and the other rats (Groups IB and IIB) received MK 801 (0.5 mg/kg) subcutaneously at 45 and 120 minutes after occlusion. Intracerebral temperature was recorded every 15 minutes after occlusion. Infarct area (n: 40) was calculated after staining with 2% 2,3,5 triphenyltetrazolium chloride. Neuronal damage (n: 42) was assessed by quantifying CA1-CA3 neuronal loss at five hippocampal levels. The amount of damage to the monoamine system of the corpus striatum was determined based on the dopamine and 3,4 dihydroxyphenylacetic acid levels in the corpus striatum in both hemispheres (n: 46), as measured by high-pressure liquid chromatography and compared with normal control pups' values (n: 10). The normothermia/saline-treated pups had significantly larger infarct areas than the MK 801 only, hypothermia only, or MK 801/hypothermia combination groups. Neuropathological examination and striatal tissue monoamine data also confirmed marked neuronal damage in this group. Although MK 801 treatment alone resulted in significantly smaller infarct area and less tissue damage than was observed in the normothermia/saline-treated group, the moderate hypothermia and the MK 801/hypothermia combination treatment groups both exhibited better neuronal protection, especially in the corpus striatum. The rats that received combined treatment also had a significantly lower mortality rate.
Collapse
Affiliation(s)
- T Alkan
- Department of Physiology, Uludağ University School of Medicine, Bursa, Turkey
| | | | | | | | | |
Collapse
|
31
|
Puka-Sundvall M, Wallin C, Gilland E, Hallin U, Wang X, Sandberg M, Karlsson J, Blomgren K, Hagberg H. Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats: relationship to activation of caspase-3 and neuronal injury. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 125:43-50. [PMID: 11154759 DOI: 10.1016/s0165-3806(00)00111-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mitochondrial damage may play a key role in the development of necrotic and apoptotic hypoxic-ischemic (HI) brain damage. It has previously been shown that mitochondrial respiration is depressed in the cerebral cortex after HI in neonatal animals. The aim of the present study was to further characterize the time course of the mitochondrial impairment during reperfusion and the correlation between the respiratory control ratio and brain injury and activation of caspase-3. Rat pups were subjected to unilateral carotid artery ligation and exposed to hypoxia (7.7% oxygen). Mitochondrial respiration was measured 0-72 h after HI in a mitochondrial fraction isolated from cerebral cortex. Microtubule associated protein-2 (MAP2) and caspase-3 were analyzed with immunoblotting in cerebral cortex homogenates. In addition, the time course of caspase-3 activation was measured as DEVD cleavage. The mitochondrial respiratory control ratio in cerebral cortex decreased immediately after HI followed by a partial recovery at 3-8 h. Thereafter, a secondary drop occurred with a minimum reached at 24 h of reperfusion. The secondary loss of respiratory function was accompanied by depletion of MAP2, cleavage of caspase-3 and an increased caspase-3 -like activity at 3-24 h after the insult. In conclusion, the primary phase of mitochondrial dysfunction was paralleled by a moderate decrease of MAP2 and a limited activation of caspase-3. The secondary mitochondrial impairment was associated with neuronal injury and pronounced activation of caspase-3.
Collapse
Affiliation(s)
- M Puka-Sundvall
- Department of Anatomy and Cell Biology, Perinatal Center, Göteborg University, S-405 30, Göteborg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wallin C, Puka-Sundvall M, Hagberg H, Weber SG, Sandberg M. Alterations in glutathione and amino acid concentrations after hypoxia-ischemia in the immature rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 125:51-60. [PMID: 11154760 DOI: 10.1016/s0165-3806(00)00112-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hypoxic-ischemic brain injury involves an increased formation of reactive oxygen species. Key factors in the cellular protection against such agents are the GSH-associated reactions. In the present study we examined alterations in total glutathione and GSSG concentrations in mitochondria-enriched fractions and tissue homogenates from the cerebral cortex of 7-day-old rats at 0, 1, 3, 8, 14, 24 and 72 h after hypoxia-ischemia. The concentration of total glutathione was transiently decreased immediately after hypoxia-ischemia in the mitochondrial fraction, but not in the tissue, recovered, and then decreased both in mitochondrial fraction and homogenate after 14 h, reaching a minimum at 24 h after hypoxia-ischemia. The level of GSSG was approximately 4% of total glutathione and increased selectively in the mitochondrial fraction immediately after hypoxia-ischemia. The decrease in glutathione may be important in the development of cell death via impaired free radical inactivation and/or redox related changes. The effects of hypoxia-ischemia on the concentrations of selected amino acids varied. The levels of phosphoethanolamine, an amine previously reported to be released in ischemia, mirrored the changes in glutathione. GABA concentrations initially increased (0-3 h) followed by a decrease at 72 h. Glutamine levels increased, whereas glutamate and aspartate were unchanged up to 24 h after the insult. The results on total glutathione and GSSG are discussed in relation to changes in mitochondrial respiration and microtubule associated protein-2 (MAP2) which are reported on in accompanying paper [64].
Collapse
Affiliation(s)
- C Wallin
- Department of Anatomy and Cell Biology, Göteborg University, P.O. Box 420, SE 405 30, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
33
|
Dardzinski BJ, Smith SL, Towfighi J, Williams GD, Vannucci RC, Smith MB. Increased plasma beta-hydroxybutyrate, preserved cerebral energy metabolism, and amelioration of brain damage during neonatal hypoxia ischemia with dexamethasone pretreatment. Pediatr Res 2000; 48:248-55. [PMID: 10926303 DOI: 10.1203/00006450-200008000-00021] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dexamethasone (DEX) pretreatment has been shown to be neuroprotective in a neonatal rat model of hypoxia ischemia (HI). The exact mechanism of this neuroprotection is still unknown. This study used 31P nuclear magnetic resonance spectroscopy to monitor energy metabolism during a 3-h episode of HI in 7-d-old rat pups in one of two groups. The first group was pretreated with 0.1 mL saline (i.p.) and the second group was treated with 0.1 mL of 0.1mg/kg DEX (i.p.) 22 h before HI. Animals pretreated with DEX had elevated nucleoside triphosphate and phosphocreatine levels during HI when compared with controls. Saline-treated animals had significant decreases in nucleoside triphosphate and phosphocreatine and increases in inorganic phosphate over this same period. 31P nuclear magnetic resonance data unequivocally demonstrate preservation of energy metabolism during HI in neonatal rats pretreated with DEX. Animals pretreated with DEX had little or no brain damage following 3 h of HI when compared with matched controls, which experienced severe neuronal loss and cortical infarction. These same pretreated animals had an increase in blood beta-hydroxybutyrate levels before ischemia, suggesting an increase in ketone bodies, which is the neonate's primary energy source. Elevation of ketone bodies appears to be one of the mechanisms by which DEX pretreatment provides neuroprotection during HI in the neonatal rat.
Collapse
Affiliation(s)
- B J Dardzinski
- Department of Radiology and Pediatrics, University of Cincinnati College of Medicine, Imaging Research Center, Children's Hospital Medical Center, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
As in adults, glucose is the predominant cerebral energy fuel for the fetus and newborn. Studies in experimental animals and humans indicate that cerebral glucose utilization initially is low and increases with maturation with increasing regional heterogeneity. The increases in cerebral glucose utilization with advancing age occurs as a consequence of increasing functional activity and cerebral energy demands. The levels of expression of the 2 primary facilitative glucose transporter proteins in brain, GLUT1 (blood-brain barrier and glia) and GLUT3 (neuronal), display a similar maturational pattern. Alternate cerebral energy fuels, specifically the ketone bodies and lactate, can substitute for glucose, especially during hypoglycemia, thereby protecting the immature brain from potential untoward effects of hypoglycemia. Unlike adults, glucose supplementation during hypoxia-ischemia is protective in the immature brain, whereas hypoglycemia is deleterious. Accordingly, glucose plays a critical role in the developing brain, not only as the primary substrate for energy production but also to allow for normal biosynthetic processes to proceed.
Collapse
Affiliation(s)
- R C Vannucci
- Department of Pediatrics, Pennsylvania State University College of Medicine, PennState Geisinger Health System, Hershey 17033-0850, USA
| | | |
Collapse
|
35
|
D'Arceuil HE, Crespigny AJ, Röther J, Moseley M, Rhine W. Serial magnetic resonance diffusion and hemodynamic imaging in a neonatal rabbit model of hypoxic-ischemic encephalopathy. NMR IN BIOMEDICINE 1999; 12:505-514. [PMID: 10668043 DOI: 10.1002/(sici)1099-1492(199912)12:8<505::aid-nbm596>3.0.co;2-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Dynamic changes in relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC) were investigated, using high speed magnetic resonance imaging (MRI) in an acute neonatal rabbit model of hypoxic-ischemic encephalopathy (HIE). Serial rCBV imaging used a magnetic susceptibility blood pool contrast agent. Interleaved ADC and rCBV images were acquired with 9 s temporal resolution. Rabbits received unilateral common carotid artery (CCA) ligation followed by hypoxia. rCBV increased bilaterally within 1-2 min after the onset of hypoxia. A biphasic ADC decline was observed: a slowly declining phase (84 +/- 18% of baseline) followed by a rapid, focal drop to 55 +/- 8% of baseline in the ipsilateral cortex, which was paralleled by a rapid focal rCBV drop to 70 +/- 17% of baseline. ADC decline generally began in a small region of ipsilateral cortex and spread over the ipsilateral cortex, ipsilateral subcortical tissue and contralateral cortex. The initial ADC drop usually preceded the initial rCBV drop by approximately 60 s, however at later timepoints rCBV decline sometimes preceded ADC decline. Upon normoxia, rCBV recovered to about baseline values while ADC recovered to baseline or above. This method provides a sensitive means of non-invasively visualizing acute hemodynamic- and metabolic-related changes in HIE with good temporal and spatial resolution.
Collapse
Affiliation(s)
- H E D'Arceuil
- Department of Radiology, Stanford University, California 94305-5488, USA.
| | | | | | | | | |
Collapse
|
36
|
Raad RA, Tan WK, Bennet L, Gunn AJ, Davis SL, Gluckman PD, Johnston BM, Williams CE. Role of the cerebrovascular and metabolic responses in the delayed phases of injury after transient cerebral ischemia in fetal sheep. Stroke 1999; 30:2735-41; discussion 2741-2. [PMID: 10583005 DOI: 10.1161/01.str.30.12.2735] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Perinatal hypoxic-ischemic injuries can trigger a cascade of events leading to delayed deterioration and cell death several hours later. The objective of this study was to characterize the cerebral blood flow responses and the changes in extracellular glucose and lactate during the delayed phases of injury and to determine their relationships with the pathophysiological events after hypoxic-ischemic injury. METHODS Two groups of near-term chronically instrumented fetal sheep were subjected to 30 minutes of cerebral hypoperfusion. In the first group, regional cerebral blood flow was measured over the next 24 hours with radiolabeled microspheres. In the second, cortical extracellular glucose and lactate were measured by microdialysis. Parietal electrocorticographic activity and cortical impedance were recorded continuously in both groups, and the extent of neuronal loss was determined histologically at 72 hours after injury. RESULTS Cerebral blood flow was transiently impaired in the cortex during reperfusion, whereas during the delayed phase, there was a marked increase in cerebral blood flow. The severity of cortical neuronal loss was related to the degree of hypoperfusion in the immediate reperfusion period and inversely related to the magnitude of the delayed hyperperfusion. Cortical extracellular lactate was elevated after injury, and both glucose and lactate secondarily increased during the delayed phase of injury. CONCLUSIONS The delayed phase is accompanied by a period of hyperperfusion that may protect marginally viable tissue.
Collapse
Affiliation(s)
- R A Raad
- Research Centre for Developmental Medicine and Biology, School of Medicine, University of Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
37
|
van Cappellen AM, Heerschap A, Nijhuis JG, Oeseburg B, Jongsma HW. Hypoxia, the subsequent systemic metabolic acidosis, and their relationship with cerebral metabolite concentrations: An in vivo study in fetal lambs with proton magnetic resonance spectroscopy. Am J Obstet Gynecol 1999; 181:1537-45. [PMID: 10601940 DOI: 10.1016/s0002-9378(99)70401-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The relationship among decreased fetal arterial oxygen saturation, the subsequent systemic metabolic acidosis, and changes in cerebral metabolite concentrations in the fetal lamb brain was investigated by means of quantitative proton magnetic resonance spectroscopy. STUDY DESIGN Fetal hypoxia was induced in 6 fetal lambs by gradual reduction of the oxygen supply to the anesthetized pregnant ewe. In vivo proton magnetic resonance spectroscopy was performed on the fetal lamb brain simultaneously with repeated measurements of fetal arterial oxygen saturation and acid-base balance. RESULTS Proton magnetic resonance spectra showed metabolites such as inositol, choline compounds, creatine, and N-acetylaspartate. A signal for cerebral lactate was below the detection level under normoxic conditions and increased during hypoxia to indicate concentrations varying from 2.8 to 11.1 mmol/kg wet weight brain tissue. N -Acetylaspartate signals decreased during hypoxia, whereas signals of inositol, choline compounds, and creatine remained constant. CONCLUSION These results support the view that fetal cerebral anaerobic metabolism in fetal lambs does not start under hypoxic conditions if the arterial blood pH is >7.28 or the base excess is >-8 mmol/L.
Collapse
Affiliation(s)
- A M van Cappellen
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Brand A, Gil S, Leibfritz D, Yavin E. Direct administration and utilization of [1-13C]glucose by fetal brain and liver tissues under normal and ischemic conditions: 1H, 31P, and 13C NMR studies. J Neurosci Res 1998; 54:97-108. [PMID: 9778153 DOI: 10.1002/(sici)1097-4547(19981001)54:1<97::aid-jnr10>3.0.co;2-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Three distinct, maternal-independent routes (e.g. intraamniotic, intraperitoneal and intracerebral), for [1-13C]glucose utilization by fetal brain and liver tissues, were examined by multinuclear magnetic resonance (NMR) spectroscopy before and after vascular occlusion of the maternal-fetal blood flow. Labeled lactate was the major glycolytic product by all routes, but in addition labeled TCA cycle products were also generated. Fractional 13C enrichment in both glucose and lactate were always higher in the ischemic state compared to controls using either one of the three routes studied. After intraperitoneal injection total glucose in the fetal brain was decreased by 85% after 20 min reperfusion following 20 min ischemia, but was elevated up to 170% after 60 min. [1-13C]glucose increased continuously by up to 370% after 60 min. Total glucose in the fetal liver remained unchanged while [1-13C]glucose increased up to 380%. Total lactate level in brain was 50-80% above the control apart from a transient increase (140%) notable after 40 min reperfusion. The kinetics of [3-13C]lactate followed a similar time course. At the same time when lactate was transiently increased in fetal brain, total lactate as well as 13C-labeled lactate showed a transient decrease in liver after 40 min. While the ways of mobilization of energy substrates for maintaining adequate metabolic activity in the fetal brain remain still unclear, the present 13C NMR studies suggest that both liver glucose and lactate can contribute to brain metabolism particularly under ischemic stress.
Collapse
Affiliation(s)
- A Brand
- Institut für Organische Chemie, Universität Bremen, Germany
| | | | | | | |
Collapse
|
39
|
Vannucci SJ, Reinhart R, Maher F, Bondy CA, Lee WH, Vannucci RC, Simpson IA. Alterations in GLUT1 and GLUT3 glucose transporter gene expression following unilateral hypoxia-ischemia in the immature rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 107:255-64. [PMID: 9593925 DOI: 10.1016/s0165-3806(98)00021-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The brain damage produced by unilateral cerebral hypoxia-ischemia in the immature rat results from major alterations in cerebral energy metabolism and glucose utilization which begin during the course of the insult and proceed into the recovery period. Consistent with a lack of pathology, the alterations in the hemisphere contralateral to the carotid artery ligation are transient and return to normal within 24 h of recovery, whereas the hemisphere ipsilateral to the ligation exhibits both early and late responses, and infarction. The facilitative glucose transporter proteins mediate glucose transport across the blood-brain barrier (55 kDa GLUT1), and into neurons and glia (GLUT3 and 45 kDa GLUT1), and demonstrate both early and late responses to perinatal hypoxia-ischemia. This study employed in situ hybridization histochemistry to investigate the temporal and regional patterns of GLUT1 and GLUT3 gene expression following a severe (2.5 h) hypoxic-ischemic insult in the 7-day old rat brain. Enhanced GLUT1 mRNA expression was apparent in cerebral microvessels of both hemispheres and remained elevated in the ipsilateral hemisphere through 24 h of recovery, consistent with our previous observation of increased microvascular 55 kDa GLUT1 protein. The expression of the neuronal isoform, GLUT3, was enhanced in penumbral regions, such as piriform cortex and amygdala, but was rapidly reduced in the affected areas of cortex, hippocampus and thalamus, reflecting necrosis. The late response, observed at 72 h of recovery, was characterized by extensive necrosis in the ipsilateral hemisphere, loss of GLUT3 expression, and a gliotic reaction including increased GLUT1 in GFAP-positive astrocytes. This study demonstrates that cerebral hypoxia-ischemia in the immature rat produces both immediate-early and long-term effects on the glucose transporter proteins at the level of gene expression.
Collapse
Affiliation(s)
- S J Vannucci
- Department of Pediatrics, Hershey Medical Center-Penn State University, P.O. Box 850, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Vannucci SJ, Mummery R, Hawkes RB, Rider CC, Beesley PW. Hypoxia-ischemia induces a rapid elevation of ubiquitin conjugate levels and ubiquitin immunoreactivity in the immature rat brain. J Cereb Blood Flow Metab 1998; 18:376-85. [PMID: 9538902 DOI: 10.1097/00004647-199804000-00005] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Postnatal rats at 7 and 21 days of age were subjected to unilateral hypoxia-ischemia (H/I) by right carotid artery ligation followed by 1.5 to 2 hours of hypoxia (8% oxygen). Brains were frozen at specific intervals of recovery from 0 to 24 hours. Western blots of samples of right and left forebrain were immunodeveloped with a monoclonal antibody specific for ubiquitin, RHUb1. An elevation of ubiquitin conjugate levels in the right compared with the left forebrain of 7-day-old animals was detectable immediately following H/I and increased by close to 60% of control level within 1 hour of recovery. The conjugate immunoreactivity remained at this level for 6 hours but had declined to control levels by 24 hours of recovery. No such increase was observed in response to hypoxia alone. Similar changes were observed in samples from the 21-day-old rat brain. However, the elevation of ubiquitin conjugate levels was of slower onset and persisted longer than observed for the 7-day-old animals. Immunocytochemical studies of brain fixed by immersion in formaldehyde/acetone/methanol showed that ubiquitin-like immunoreactivity was increased in the right, but not left, cerebral cortex and hippocampus of animals subjected to H/I. The data suggest that elevated ubiquitination may represent a neuroprotective response to H/I.
Collapse
Affiliation(s)
- S J Vannucci
- Department of Pediatrics, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, USA
| | | | | | | | | |
Collapse
|
41
|
Gilland E, Puka-Sundvall M, Hillered L, Hagberg H. Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors. J Cereb Blood Flow Metab 1998; 18:297-304. [PMID: 9498846 DOI: 10.1097/00004647-199803000-00008] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Treatment after hypoxia-ischemia (HI) in immature rats with the N-methyl-D-aspartate receptor (NMDAR) antagonist dizocilpine maleate (MK-801) reduces areas with high glucose utilization and reduces brain damage. The object was to study the metabolic effects of MK-801 treatment after HI. Seven-day-old rats were randomized to the following groups: non-HI, HI, or HI plus MK-801 (0.5 mg/kg immediately after HI). In the parietal cortex, the mitochondrial respiration was measured in homogenates 1 to 4 hours, and the energy metabolites at 3 and 8 hours after HI. The energy use was calculated from changes in energy metabolites after decapitation at 3 hours after HI. State 3 respiration was reduced by 46%, 32%, and 25% after HI compared with non-HI with pyruvate plus malate, glutamate plus malate, or glutamate plus succinate as substrates, respectively. Uncoupler-stimulated but not state 4 respiration was similarly reduced. The MK-801 augmented pyruvate plus malate-supported state 3 respiration after HI by 42%. The energy utilization was not affected by HI but was reduced by MK-801 treatment in the ipsilateral cortex from 4.6 +/- 2.3 to 2.6 +/- 1.8 micromol high-energy phosphate bond/min/g. The levels of ATP and phosphocreatine did not differ between the HI and HI plus MK-801 groups at 3 hours, but were lower in the HI than in the HI plus MK-801 group at 8 hours after HI. In conclusion, treatment with MK-801 reduced energy utilization and improved mitochondrial function and energy status after HI, suggesting a linkage between NMDAR activation and impaired energy metabolism during reperfusion.
Collapse
Affiliation(s)
- E Gilland
- Department of Obstetrics and Gynecology, Göteberg University, Sweden
| | | | | | | |
Collapse
|
42
|
Gilland E, Bona E, Hagberg H. Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. J Cereb Blood Flow Metab 1998; 18:222-8. [PMID: 9469166 DOI: 10.1097/00004647-199802000-00014] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In a situation with normal CBF and without increased energy utilization, increased glucose utilization (CMRglc) can be a sign of impaired mitochondrial metabolism, which may be an early step in the injury cascade during reperfusion after hypoxia-ischemia (HI). Seven-day-old rats underwent unilateral carotid artery ligation and 70 minutes of HI. At 3, 6, 12, 24, and 48 or 72 hours after the insult, the CMRglc was measured by the 2-deoxyglucose method, and CBF by the iodoantipyrine method. These were compared with hematoxylin-eosin staining and microtubule-associated protein 2 (MAP 2) immunostaining in adjacent sections. In the ipsilateral hemisphere, there appeared regions with increased CMRglc compared with the contralateral hemisphere 3 to 12 hours after HI that also showed partial loss of MAP 2 immunostaining and early ischemic changes. These areas receded, leaving central glucose hypoutilizing areas with complete loss of MAP 2 immunostaining and histologic infarction, surrounded by only a rim of tissue with increased CMRglc. At 24 and 72 hours after the insult, no regions with increased CMRglc remained. Despite loss of MAP 2 immunostaining and histologic signs of infarction at 24 hours, cortical CBF was not reduced until 48 hours after HI, whereas the CBF in the caudate-putamen already was decreased compared with the contralateral side at 3 hours after HI. In conclusion, early reperfusion is characterized by glucose hyperutilizing areas in the cerebral cortex, followed by a secondary phase with low CMRglc and infarction.
Collapse
Affiliation(s)
- E Gilland
- Department of Obstetrics, University of Göteborg, Sweden
| | | | | |
Collapse
|
43
|
Williams GD, Dardzinski BJ, Buckalew AR, Smith MB. Modest hypothermia preserves cerebral energy metabolism during hypoxia-ischemia and correlates with brain damage: a 31P nuclear magnetic resonance study in unanesthetized neonatal rats. Pediatr Res 1997; 42:700-8. [PMID: 9357946 DOI: 10.1203/00006450-199711000-00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent studies have shown that mild to moderate (modest) hypothermia decreases the damage resulting from hypoxic-ischemic insult (HI) in the immature rat. To determine whether suppression of oxidative metabolism during HI is central to the mechanism of neuroprotection, 31P nuclear magnetic resonance (NMR) spectroscopy was used to measure high energy metabolites in 7-d postnatal rats under conditions of modest hypothermia during the HI. The rats underwent unilateral common carotid artery ligation followed by exposure to hypoxia in 8% oxygen for 3 h. Environmental temperature was decreased by 3 or 6 degrees C from the control temperature, 37 degrees C, which reliably produces hemispheric damage in over 90% of pups. The metabolite parameters and tissue swelling (edema) at 42 h recovery varied very significantly with the three temperatures. Tissue swelling was 26.9, 5.3, and 0.3% at 37, 34, and 31 degrees C, respectively. Core temperature and swelling were also measured, with similar results, in parallel experiments in glass jars. Multislice magnetic resonance imaging, histology, and triphenyltetrazolium chloride staining confirmed the fairly uniform damage, confined to the hemisphere ipsilateral to the ligation. The NMR metabolite levels were integrated over the last 2.0 h out of 3.0 h of HI, and were normalized to their baseline for all surviving animals (n = 25). ATP was 47.9, 69.0, and 83.0% of normal, whereas the estimator of phosphorylation potential (phosphocreatinine/inorganic phosphorus) was 16.9, 27.8, and 42.6% of normal at 37, 34, and 31 degrees C, respectively. There was a significant correlation of both phosphocreatinine/inorganic phosphorus (p < 0.0001) and ATP levels (p < 0.0001) with brain swelling. Abnormal brain swelling and thus damage can be reliably predicted from a threshold of these metabolite levels (p < 0.0001). Thus for all three temperatures, a large change in integrated high energy metabolism during HI is a prerequisite for brain damage. With a moderate hypothermia change of 6 degrees C, where there is an insufficient change in metabolites, there is no subsequent HI brain damage. In general, treatment for HI in our 7-d-old rat model should be aimed at preserving energy metabolism.
Collapse
Affiliation(s)
- G D Williams
- Department of Radiology, The Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
44
|
Kubonoya K, Power GG. Plasma adenosine responses during repeated episodes of umbilical cord occlusion. Am J Obstet Gynecol 1997; 177:395-401. [PMID: 9290457 DOI: 10.1016/s0002-9378(97)70204-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The purpose of this study was to measure changes in adenosine concentration in fetal arterial blood with use of an animal model of intermittent cord occlusion. Adenosine has been shown to be a potent vasodilator and inhibitor of metabolic processes in the adult, actions that help maintain a balance between oxygen supply and oxygen use. STUDY DESIGN After a 30-minute control period, five chronically instrumented fetal sheep (125 +/- 2.2 days' gestation) were subjected to a 1-minute cord occlusion, followed by a 2-minute recovery. The occlusion-release cycle was repeated 20 times. Then, after a 1-hour interim, the same 20 cycles of occlusion were repeated. Fetal blood was collected during cord occlusion and 30 seconds after release. RESULTS The plasma adenosine concentration averaged 0.82 +/- 0.19 mumol/L during the initial control period. The plasma adenosine concentration increased significantly to 1.06 +/- 0.23 mumol/L and 1.19 +/- 0.20 mumol/L during and after the fifth occlusion (p < 0.05 and 0.01, respectively). The plasma adenosine concentration reached a maximal level of 1.31 +/- 0.28 mumol/L after the twentieth cord occlusion. The concentration during the second group of occlusions was also higher than that during the control period (p < 0.05) but not higher than that during the first recovery period. By the conclusion of the study the plasma adenosine concentration had returned to 0.70 +/- 0.16 mumol/L. CONCLUSIONS Plasma adenosine increases cyclically with intermittent cord occlusion in the near-term fetal sheep, but the response is attenuated or lost after 2 hours. These results together with those of earlier studies are consistent with a hypoxic protective action of adenosine that is largely restricted to early time periods of continuing intermittent hypoxia.
Collapse
Affiliation(s)
- K Kubonoya
- Center for Perinatal Biology, Loma Linda University School of Medicine, CA 92350, USA
| | | |
Collapse
|
45
|
Roohey T, Raju TN, Moustogiannis AN. Animal models for the study of perinatal hypoxic-ischemic encephalopathy: a critical analysis. Early Hum Dev 1997; 47:115-46. [PMID: 9039963 DOI: 10.1016/s0378-3782(96)01773-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We critically evaluated various design features from 292 animal studies related to perinatal hypoxic-ischemic encephalopathy (HIE). Rodents were the most frequently used animals in HIE research (26%), followed by piglets (23%) and sheep (22%). Asphyxia with or without ischemia was the most predominant method of producing experimental brain damage, but there were significant variations in specific details, particularly regarding the method and duration of brain insult. In 71% (207/292) of studies the CNS outcomes were tested within 24 h of experimental insult and in 29% (85/292) they were tested 24 h or more after the insult. Acute CNS metabolic end-points were assessed in 82-100% of all studies. In 90% of studies the chronological age of the animal was equivalent to that of human term newborn infant. However, in only 23% (67/292) were clinical neurological, developmental or behavioral outcomes evaluated, and in only 26% (76/292) was neuropathology assessed. While no single animal model was found to be ideal for all HIE research, some models were distinctly superior to others, depending upon the specific research question. The fetal sheep, newborn lamb and piglet models are well suited for the study of acute and subacute metabolic and physiologic endpoints, whereas the rodent and primate models could be used for long-term neurological and behavioral outcome experiments as well. We also feel that standardizing the study design features, including an HI insult method that produces consistent and predictable brain damage is urgently needed. Studies in neuro-ethology should explore how well brains of various animals compare with that of the newborn human infant. There is also a need for developing animal models that mimic clinical entities in which long-term neuro-developmental and behavioral outcomes can be assessed.
Collapse
Affiliation(s)
- T Roohey
- Department of Pediatrics, University of Illinois, Chicago 60612, USA
| | | | | |
Collapse
|
46
|
Cady EB, Penrice J, Amess PN, Lorek A, Wylezinska M, Aldridge RF, Franconi F, Wyatt JS, Reynolds EO. Lactate, N-acetylaspartate, choline and creatine concentrations, and spin-spin relaxation in thalamic and occipito-parietal regions of developing human brain. Magn Reson Med 1996; 36:878-86. [PMID: 8946353 DOI: 10.1002/mrm.1910360610] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous studies of the brains of normal infants demonstrated lower lactate (Lac)/choline (Cho), Lac/creatine (Cr), and Lac/ N-acetylaspartate (Naa) peak-area ratios in the thalamic region (predominantly gray matter) compared with occipitoparietal (mainly unmyelinated white matter) values. In the present study, thalamic Cho, Cr, and Naa concentrations between 32-42 weeks' gestational plus postnatal age were greater than occipito-parietal: 4.6 +/- 0.8 (mean +/- SE), 10.5 +/- 2.0, and 9.0 +/- 0.7 versus 1.8 +/- 0.6, 5.8 +/- 1.5, and 3.4 +/- 1.1 mmol/kg wet weight, respectively: Lac concentrations were similar, 2.7 +/- 0.6 and 3.3 +/- 1.3 mmol/kg wet weight, respectively. In the thalamic region, Cho and Naa T2s increased, and Cho and Lac concentrations decreased, during development. Lower thalamic Lac peak-area ratios are principally due to higher thalamic concentrations of Cho, Cr, and Naa rather than less Lac. The high thalamic Cho concentration may relate to active myelination; the high thalamic Naa concentration may be due to advanced gray-matter development including active myelination. Lac concentration is higher in neonatal than in adult brain.
Collapse
Affiliation(s)
- E B Cady
- Department of Medical Physics and Bioengineering, University College London Hospitals, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vannucci RC, Brucklacher RM, Vannucci SJ. The effect of hyperglycemia on cerebral metabolism during hypoxia-ischemia in the immature rat. J Cereb Blood Flow Metab 1996; 16:1026-33. [PMID: 8784248 DOI: 10.1097/00004647-199609000-00028] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Unlike adults, hyperglycemia with circulating glucose concentrations of 25-35 mM/L protects the immature brain from hypoxic-ischemic damage. To ascertain the effect of hyperglycemia on cerebral oxidative metabolism during the course of hypoxia-ischemia, 7-day postnatal rats underwent unilateral common carotid artery ligation followed by exposure to 8% O2 for 2 h at 37 degrees C. Experimental animals received 0.2 cc s.c. 50% glucose at the onset of hypoxia-ischemia, and 0.15 cc 25% glucose 1 h later to maintain blood glucose concentrations at 20-25 mM/L for 2 h. Control rat pups received equivalent concentrations or volumes of either mannitol or 1 N saline at the same intervals. The cerebral metabolic rate for glucose (CMRglc) increased from 7.1 (control) to 20.2 mumol 100 g-1 min-1 in hyperglycemic rats during the first hour of hypoxia-ischemia, 79 and 35% greater than the rates for saline-and mannitol-injected animals at the same interval, respectively (p < 0.01). Brain intracellular glucose concentrations were 5.2 and 3.0 mM/kg in the hyperglycemic rat pups at 1 and 2 h of hypoxia-ischemia, respectively; glucose levels were near negligible in mannitol- and saline-treated animals at the same intervals. Brain intracellular lactate concentrations averaged 13.4 and 23.3 mM/kg in hyperglycemic animals at 1 and 2 h of hypoxia-ischemia, respectively, more than twice the concentrations estimated for the saline- and mannitol-treated littermates. Phosphocreatine (PCr) and ATP decreased in all three experimental groups, but were preserved to the greatest extent in hyperglycemic animals. Results indicate that anaerobic glycolytic flux is increased to a greater extent in hyperglycemic immature rats than in normoglycemic littermates subjected to cerebral hypoxia-ischemia, and that the enhanced glycolysis leads to greater intracellular lactate accumulation. Despite cerebral lactosis, energy reserves were better preserved in hyperglycemic animals than in saline-treated controls, thus accounting for the greater resistance of hyperglycemic animals to hypoxic-ischemic brain damage.
Collapse
Affiliation(s)
- R C Vannucci
- Department of Pediatrics (Pediatric Neurology), Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center 17033-0850, USA
| | | | | |
Collapse
|
48
|
Yager JY, Asselin J. Effect of mild hypothermia on cerebral energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat. Stroke 1996; 27:919-25; discussion 926. [PMID: 8623114 DOI: 10.1161/01.str.27.5.919] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND PURPOSE Intraischemic hypothermia (34 degrees C and 31 degrees C) has a profound neuroprotective effect on the brain of the immature rat. Hypothermia immediately after hypoxia-ischemia is not beneficial. To determine the mechanisms by which mild to moderate hypothermia affects cerebral energy metabolism of the brain of the newborn rat pup, we examined alterations in cerebral glycolytic intermediates and high-energy phosphate compounds during intraischemic and postischemic hypothermia and correlated these findings with known neuropathologic injury. METHODS Seven-day-old rat pups underwent unilateral common carotid artery ligation and exposure to hypoxia in 8% oxygen at either 37 degrees C, 34 degrees C, or 31 degrees C for 3.0 hours. Separate groups were exposed to hypoxia-ischemia at 37 degrees C for 3 hours but recovered at either 37 degrees C, 34 degrees C, or 31 degrees C. At 60, 120, and 180 minutes of intraischemic hypothermia and at 10, 30, 60, and 240 minutes of postischemic hypothermia, individual rat pups were quick-frozen in liquid nitrogen for later determination of cerebral concentrations of glucose, lactate, ATP, and phosphocreatine. RESULTS Cerebral glucose was significantly higher and lactate significantly lower in the 31 degrees C animals during hypoxia-ischemia than either the 34 degrees C or 37 degrees C groups. Brain ATP concentrations were completely preserved during hypoxia-ischemia at 31 degrees C, whereas 34 degrees C of hypothermia had no effect on preserving high-energy phosphate compounds compared with those animals in the 37 degrees C group. Postischemic hypothermia of either 34 degrees C or 31 degrees C had no effect on the rate or extent of recovery of glycolytic intermediates or high-energy phosphate compounds compared with the normothermic 37 degrees C rat pups. CONCLUSIONS Moderate hypothermia of 31 degrees C completely inhibits the depletion of ATP during hypoxia-ischemia, a mechanism that likely accounts for its neuroprotective effect. No preservation of ATP was seen, however, during intraischemic mild hypothermia of 34 degrees C despite the relatively profound neuroprotective effect of this degree of temperature reduction. Thus, the mechanisms by which mild hypothermia is neuroprotective are temperature dependent and may act at more than one point along the cascade of events eventually leading to hypoxic-ischemic brain damage in the immature rat.
Collapse
Affiliation(s)
- J Y Yager
- Department of Pediatrics, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
49
|
Dijkhuizen RM, van Lookeren Campagne M, Niendorf T, Dreher W, van der Toorn A, Hoehn-Berlage M, Verheul HB, Tulleken CA, Leibfritz D, Hossmann KA, Nicolay K. Status of the neonatal rat brain after NMDA-induced excitotoxic injury as measured by MRI, MRS and metabolic imaging. NMR IN BIOMEDICINE 1996; 9:84-92. [PMID: 8887373 DOI: 10.1002/(sici)1099-1492(199604)9:2<84::aid-nbm401>3.0.co;2-b] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Intrastriatal injection of the excitotoxin N-methyl-D-aspartate (NMDA) in neonatal rat brain resulted in an acute ipsilateral decrease of the apparent diffusion coefficient (ADC) of brain tissue water, as measured with diffusion-weighted MRI. The early diffusion changes were accompanied by only mild changes in the overall metabolic status as measured by in vivo 1H MRS and 31P MRS and metabolic imaging of brain sections. Minimal decreases in the high-energy phosphate levels and a small hemispheric acidosis were observed in the first 6 h after NMDA administration. In addition, there was very modest lactate accumulation. Twenty-four hours after the induction of the excitotoxic injury the tissue energy status was still only moderately affected, whereas an overall decrease of 1H MRS-detected brain metabolites was found. Treatment with the non-competitive NMDA-antagonist MK-801 given within 90 min after NMDA injection rapidly reversed the NMDA-induced changes in the entire ipsilateral hemisphere. The effect of the competitive NMDA-antagonist D-CPPene was restricted to the cortical areas and was accomplished on a slower time scale. Our results indicate that; (i) early excitotoxicity in the neonatal rat brain does not lead to profound changes in the metabolic status; and (ii) brain tissue water ADC changes are not necessarily associated with a metabolic energy failure.
Collapse
Affiliation(s)
- R M Dijkhuizen
- Department of in vivo NMR, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vannucci SJ, Seaman LB, Vannucci RC. Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain. J Cereb Blood Flow Metab 1996; 16:77-81. [PMID: 8530559 DOI: 10.1097/00004647-199601000-00009] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cerebral hypoxia-ischemia produces major alterations in energy metabolism and glucose utilization in brain. The facilitative glucose transporter proteins mediate the transport of glucose across the blood-brain barrier (BBB) (55 kDa GLUT1) and into the neurons and glia (GLUT3 and 45 kDa GLUT1). Glucose uptake and utilization are low in the immature rat brain, as are the levels of the glucose transporter proteins. This study investigated the effect of cerebral hypoxia-ischemia in a model of unilateral brain damage on the expression of GLUT1 and GLUT3 in the ipsilateral (damaged, hypoxic-ischemic) and contralateral (undamaged, hypoxic) hemispheres of perinatal rat brain. Early in the recovery period, both hemispheres exhibited increased expression of BBB GLUT1 and GLUT3, consistent with increased glucose transport and utilization. Further into recovery, BBB GLUT1 increased and neuronal GLUT3 decreased in the damaged hemisphere only, commensurate with neuronal loss.
Collapse
Affiliation(s)
- S J Vannucci
- Department of Pediatrics, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033, USA
| | | | | |
Collapse
|