1
|
Howe CA, Verges S, Nowak-Flück D, Talbot JS, Champigneulle B, Stauffer E, Brugniaux JV, Doutreleau S, Hancco I, Niroula S, Pichon A, McManus AM, Stembridge M, Ainslie PN. Cerebral blood flow in Andean children and adolescents living above 5,000 m. J Neurophysiol 2025; 133:1138-1145. [PMID: 40049741 DOI: 10.1152/jn.00513.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 02/27/2025] [Indexed: 04/01/2025] Open
Abstract
A number of indigenous populations have resided at high-altitude for generations, resulting in various phenotypical adaptations promoting successful high-altitude adaptation. Although many of these adaptations have been investigated in adults, little is known regarding how children residing at high-altitudes adapt, particularly with regards to the cerebrovasculature. Under hypoxic environments, compensatory changes in cerebral blood flow (CBF) are necessary to couple oxygen delivery to metabolic demand in the face of reduced oxygen availability. In this study, we aimed to evaluate regional and global cerebral blood flow (CBF) in Andean children and adolescents living in the highest city in the world at 5,100 m. Eighteen Andeans (ages 6-17 yr) living in La Rinconada, Peru (5,100 m) were compared with sex-, age-, size-, and maturity-matched high-altitude Sherpa (3,800 m) living in the Khumbu valley of Nepal (n = 18) and lowlanders (44 m) living at sea-level in Cardiff, Wales (n = 18). Volumetric measurements of CBF were assessed using duplex ultrasound of the internal carotid and vertebral arteries to assess regional and global CBF. End-tidal gases and oxygen saturation were measured in all groups, while hemoglobin concentration was assessed in Andeans. Despite Andeans living under a more severe hypoxic environment, global CBF was similar between Andeans (687.01 ± 138.49 mL/min), Sherpa (711.27 ± 110.27 mL/min), and lowlanders (704.88 ± 59.23 mL/min). In contrast, vertebral artery blood flow was 24% lower in Andeans (72.93 ± 31.60 mL/min) compared with lowlanders (96.09 ± 19.23 mL/min). The similar global CBF in Andean children might be achieved through elevated hemoglobin concentration. However, lower posterior perfusion in Andeans requires further investigation to determine whether it represents an adaptive or maladaptive response.NEW & NOTEWORTHY We have, for the first time, quantified volumetric regional and global cerebral blood flow in indigenous Andean children and adolescents living above 5,000 m in the highest city in the world. Compared with Sherpa living at moderate altitude (3,800 m), and lowlanders residing at sea level, Andeans present with similar global cerebral blood flow, but lower posterior flow despite being more hypoxemic. Similar to adults, differences in high hemoglobin concentration may drive this pattern of cerebral blood flow.
Collapse
Affiliation(s)
- Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| | - Samuel Verges
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Daniela Nowak-Flück
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jack S Talbot
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Benoit Champigneulle
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Julien V Brugniaux
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Stéphane Doutreleau
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Ivan Hancco
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | | | | | - Ali M McManus
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| | - Michael Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
2
|
Young EV, Djokic MA, Heinrich EC, Marin T, Anza-Ramirez C, Orr JE, Gilbertson D, DeYoung PN, Vizcardo-Galindo G, Figueroa-Mujica R, Villafuerte FC, Malhotra A, Simonson TS. The Effects of Nocturnal Hypoxemia on Cognitive Performance in Andean Highlanders. High Alt Med Biol 2024. [PMID: 39658027 DOI: 10.1089/ham.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Background: Many Andean highlanders exposed to chronic hypoxemia are susceptible to excessive erythrocytosis (EE) and chronic mountain sickness (CMS). Nocturnal hypoxemia is more marked than diurnal hypoxemia and includes sustained and intermittent components. The potential for cognitive impairments related to nocturnal hypoxemia in this population has not been extensively studied, but improved understanding may provide opportunities for the prevention of long-term effects of EE and CMS. Methods: To examine this relationship, 48 participants residing permanently at 4,340 m completed an overnight sleep study and a battery of cognitive function tests that examined a broad range of cognitive domains. Results: Greater nocturnal hypoxemia was associated with longer reaction times on Balloon Analogue Risk Task (BART) (p < 0.01) and Emotion Recognition Test (ERT) (p < 0.01). Longer completion times of Trail Making Task were also associated with increased nocturnal hypoxemia (p = 0.03). Increased hematocrit was similarly associated with longer reaction times on the ERT (p = 0.01) and the BART (p = 0.01). Conclusion: Overall, our results showed that increased nocturnal hypoxemia and higher hematocrit were associated with impairments in cognitive performance in individuals residing permanently at high altitude.
Collapse
Affiliation(s)
- Elizabeth V Young
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| | - Matea A Djokic
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Erica C Heinrich
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Traci Marin
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| | - Cecilia Anza-Ramirez
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígen, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jeremy E Orr
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| | - Dillon Gilbertson
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| | - Pamela N DeYoung
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígen, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rómulo Figueroa-Mujica
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígen, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígen, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| | - Tatum S Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
3
|
Yang T, Wang Z, Li J, Shan F, Huang QY. Cerebral Lactate Participates in Hypoxia-induced Anapyrexia Through its Receptor G Protein-coupled Receptor 81. Neuroscience 2024; 536:119-130. [PMID: 37979840 DOI: 10.1016/j.neuroscience.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Hypoxia-induced anapyrexia is thought to be a regulated decrease in body core temperature (Tcore), but the underlying mechanism remains unclear. Recent evidence suggests that lactate, a glycolysis product, could modulate neuronal excitability through the G protein-coupled receptor 81 (GPR81). The present study aims to elucidate the role of central lactate and GPR81 in a rat model of hypoxia-induced anapyrexia. The findings revealed that hypoxia (11.1% O2, 2 h) led to an increase in lactate in cerebrospinal fluid (CSF) and a decrease in Tcore. Injection of dichloroacetate (DCA, 5 mg/kg, 1 μL), a lactate production inhibitor, to the third ventricle (3 V), alleviated the increase in CSF lactate and the decrease in Tcore under hypoxia. Immunofluorescence staining showed GPR81 was expressed in the preoptic area of hypothalamus (PO/AH), the physiological thermoregulation integration center. Under normoxia, injection of GPR81 agonist 3-chloro-5-hydroxybenzoic acid (CHBA, 0.05 mg/kg, 1 μL) to the 3 V, reduced Tcore significantly. In addition, hypoxia led to a dramatic increase in tail skin temperature and a decrease in interscapular brown adipose tissue skin temperature. The number of c-Fos+ cells in the PO/AH increased after exposure to 11.1% O2 for 2 h, but administration of DCA to the 3 V blunted this response. Injection of CHBA to the 3 V also increased the number of c-Fos+ cells in the PO/AH under normoxia. In light of these, our research has uncovered the pivotal role of central lactate-GPR81 signaling in anapyrexia, thereby providing novel insights into the mechanism of hypoxia-induced anapyrexia.
Collapse
Affiliation(s)
- Tian Yang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Zejun Wang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Traumatic Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Qing-Yuan Huang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
| |
Collapse
|
4
|
Hou J, Wang C, Jia L, Ma H. Long-term exposure to high altitude reduces alpha and beta bands event-related desynchronization in a Go/NoGo task. Sci Rep 2023; 13:19719. [PMID: 37957177 PMCID: PMC10643632 DOI: 10.1038/s41598-023-45807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
More than 80 million people worldwide permanently live at high altitudes, and living in such a hypoxic environment can impair cognitive functions. However, it is largely unknown how long-term exposure to high altitude affects neural oscillations underlying these cognitive functions. The present study employed a Go/NoGo task to investigate the effects of long-term exposure to high altitude on neural oscillations during cognitive control. We compared event-related spectral perturbations between the low-altitude and high-altitude groups, and the results revealed increased theta event-related synchronization (ERS) and decreased alpha and beta event-related desynchronizations (ERDs) during the NoGo condition compared to the Go condition. Importantly, the high-altitude group showed reduced alpha and beta ERDs compared to the low-altitude group, while the theta ERS was not affected by altitude. We suggest that long-term exposure to high altitude has an impact on top-down inhibitory control and movement preparation and execution in the Go/NoGo task.
Collapse
Affiliation(s)
- Jianmin Hou
- School of Psychology, Zhejiang Normal University, Jinhua, 321004, China
- Intelligent Laboratory of Child and Adolescent Mental Health and Crisis Intervention of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Cheng Wang
- School of Psychology, Zhejiang Normal University, Jinhua, 321004, China
- Intelligent Laboratory of Child and Adolescent Mental Health and Crisis Intervention of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Lei Jia
- School of Psychology, Zhejiang Normal University, Jinhua, 321004, China
- Intelligent Laboratory of Child and Adolescent Mental Health and Crisis Intervention of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
5
|
Wei ZYD, Liang K, Shetty AK. Complications of COVID-19 on the Central Nervous System: Mechanisms and Potential Treatment for Easing Long COVID. Aging Dis 2023; 14:1492-1510. [PMID: 37163427 PMCID: PMC10529748 DOI: 10.14336/ad.2023.0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/12/2023] [Indexed: 05/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invades human cells by binding to the angiotensin-converting-enzyme-2 (ACE-2) using a spike protein and leads to Coronavirus disease-2019 (COVID-19). COVID-19 primarily causes a respiratory infection that can lead to severe systemic inflammation. It is also common for some patients to develop significant neurological and psychiatric symptoms. The spread of SARS-CoV-2 to the CNS likely occurs through several pathways. Once spread in the CNS, many acute symptoms emerge, and such infections could also transpire into severe neurological complications, including encephalitis or ischemic stroke. After recovery from the acute infection, a significant percentage of patients develop "long COVID," a condition in which several symptoms of COVID-19 persist for prolonged periods. This review aims to discuss acute and chronic neurological problems after SARS-CoV-2 infection. The potential mechanisms by which SARS-CoV-2 enters the CNS and causes neuroinflammation, neuropathological changes observed in post-mortem brains of COVID-19 patients, and cognitive and mood problems in COVID-19 survivors are discussed in the initial part. The later part of the review deliberates the causes of long COVID, approaches for noninvasive tracking of neuroinflammation in long COVID patients, and the potential therapeutic strategies that could ease enduring CNS symptoms observed in long COVID.
Collapse
Affiliation(s)
- Zhuang-Yao D Wei
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| | - Ketty Liang
- Sam Houston State University College of Osteopathic Medicine, Conroe, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| |
Collapse
|
6
|
Hao Y, Song G, Zhang YE, Zhai W, Jia C, Ji Y, Tang S, Lv H, Qu Y, Lei F. Divergent contributions of coding and noncoding sequences to initial high-altitude adaptation in passerine birds endemic to the Qinghai-Tibet Plateau. Mol Ecol 2023; 32:3524-3540. [PMID: 37000417 DOI: 10.1111/mec.16942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Early events in the evolution of an ancestral lineage can shape the adaptive patterns of descendant species, but the evolutionary mechanisms driving initial adaptation from an ancestor remain largely unexplored. High-altitude adaptations have been extensively explored from the viewpoint of protein-coding genes; however, the contribution of noncoding regions remains relatively neglected. Here, we integrate genomic and transcriptomic data to investigate adaptive evolution in the ancestor of three high-altitude snowfinch species endemic to the Qinghai-Tibet Plateau. Our genome-wide scan for adaptation in the snowfinch ancestor identifies strong adaptation signals in functions of development and metabolism for the coding genes, but in functions of the nervous system development for noncoding regions. This pattern is exclusive to the snowfinch ancestor compared to a control ancestral lineage subject to weak selection. Changes in noncoding regions in the snowfinch ancestor, especially those nearest to coding genes, may be disproportionately associated with the differential expression of genes in the brain tissue compared to other tissues. Extensive gene expression in the brain tissue can be further altered via genetic regulatory networks of transcription factors harbouring potential accelerated regulatory regions (e.g., the development-related transcription factor YEATS4). Altogether, our study provides new evidence concerning how coding and noncoding sequences work through decoupled pathways in initial adaptation to the selective pressure of high-altitude environments. The analysis highlights the idea that noncoding sequences may be promising elements in facilitating the rapid evolution and adaptation to high altitudes.
Collapse
Affiliation(s)
- Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanzhu Ji
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongrui Lv
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Aboouf MA, Thiersch M, Soliz J, Gassmann M, Schneider Gasser EM. The Brain at High Altitude: From Molecular Signaling to Cognitive Performance. Int J Mol Sci 2023; 24:10179. [PMID: 37373327 DOI: 10.3390/ijms241210179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The brain requires over one-fifth of the total body oxygen demand for normal functioning. At high altitude (HA), the lower atmospheric oxygen pressure inevitably challenges the brain, affecting voluntary spatial attention, cognitive processing, and attention speed after short-term, long-term, or lifespan exposure. Molecular responses to HA are controlled mainly by hypoxia-inducible factors. This review aims to summarize the cellular, metabolic, and functional alterations in the brain at HA with a focus on the role of hypoxia-inducible factors in controlling the hypoxic ventilatory response, neuronal survival, metabolism, neurogenesis, synaptogenesis, and plasticity.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Jorge Soliz
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
8
|
Feng J, Men W, Yu X, Liu W, Zhang S, Liu J, Ma L. High-altitude exposure duration dependent global and regional gray matter volume decrease in healthy immigrants: a cross-sectional study. Acta Radiol 2023; 64:751-759. [PMID: 35369766 DOI: 10.1177/02841851221091674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The correlation between brain injury and high-altitude (HA) exposure duration (Dur_HA) as well as peripheral oxygen saturation (SpO2) remains unclear. PURPOSE To evaluate the global and regional brain volume differences between HA immigrants and sea-level residents, and the relationship between brain volume with Dur_HA and SpO2. MATERIAL AND METHODS Structural magnetic resonance imaging (MRI) scans were acquired in 33 healthy male HA immigrants (HA group) and 33 matched sea-level male residents (SL group). Differences in global gray matter volume (GMV), white matter volume (WMV), brain parenchyma volume (BV), total intracranial volume (TIV), and the volume-fraction (the ratio of GMV/TIV, WMV/TIV, BV/TIV) were assessed. Regional gray matter differences were investigated using voxel-based morphology analysis. The volume of clusters with GM loss were calculated as the volume of volume of interest (V_VOI). Student's t-test and partial correlation were adopted for statistic calculation. RESULTS Compared to the SL group, the HA immigrants had larger WMV (P = 0.015), smaller ratio of GMV/WMV (P = 0.022), and regional gray matter loss in bilateral basal ganglion, limbic system, midbrain, and vermis (cluster size >100 voxels, family-wise error corrected at P = 0.01). The global GMV, BV, and V_VOI confined to vermis had negative correlations with the Dur_HA (r = -0.369, P = 0.049; r = -0.380, P = 0.042; and r = -0.471, P = 0.010. Neither global nor regional brain volume correlated with SpO2. CONCLUSION Global and regional brain are affected by long-term HA exposure, and global and regional gray matter have a time-dependent volume loss.
Collapse
Affiliation(s)
- Jie Feng
- 104607Medical School of Chinese People's Liberation Army, Beijing, PR China
- Department of Radiology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
- Department of Radiology, Corps Hospital of Shanxi Province of Chinese People's Armed Police Force, Taiyuan, PR China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, PR China
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, PR China
| | - Xiao Yu
- 104607Medical School of Chinese People's Liberation Army, Beijing, PR China
- Department of Radiology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Wenjia Liu
- Department of Radiology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Shiyu Zhang
- 104607Medical School of Chinese People's Liberation Army, Beijing, PR China
- Department of Radiology, Beijing Friendship Hospital, 535066Capital Medical University, Beijing, PR China
| | - Jie Liu
- Department of Radiology, General Hospital of Tibet Military Region, Lhasa, Tibet, PR China
| | - Lin Ma
- 104607Medical School of Chinese People's Liberation Army, Beijing, PR China
- Department of Radiology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| |
Collapse
|
9
|
Mostajo-Radji MA. A Latin American perspective on neurodiplomacy. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1005043. [PMID: 36712171 PMCID: PMC9880232 DOI: 10.3389/fmedt.2022.1005043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Affiliation(s)
- Mohammed A. Mostajo-Radji
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
10
|
Yu L, Feng J, Zhou C, Zhu X, Lou X, Yang J, Qi H, Li J. Cognitive Function Mainly Shaped by Socioeconomic Status Rather Than Chronic Hypoxia in Adolescents at High Altitude. High Alt Med Biol 2022; 23:223-231. [PMID: 35833789 DOI: 10.1089/ham.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Yu, Linyang, Jinqing Feng, Chen Zhou, Xiaohan Zhu, Xiaobin Lou, Jian Yang, Haiying Qi, and Jia Li. Cognitive function mainly shaped by socioeconomic status rather than chronic hypoxia in adolescents at high altitude. High Alt Med Biol. 23:000-000, 2022. Background: The study evaluated cognitive function in relation to the changes in brain tissue oxygenation in three groups of high school students from different socioeconomic regions including Tibetans in Jiuzhi and Lhasa (both at 3,600 m), and Han in Beijing (44 m). Methods: Jiuzhi, Lhasa, and Beijing Group included 21 Tibetans, 24 Tibetans, and 23 Han, respectively. Wechsler Intelligence Scale was used for cognitive evaluation. Functional near infrared spectroscopy was used to measure the changes of oxygenated hemoglobin (oxy-Hb) during the cognitive assessment. Gross domestic product (GDP) was used to indicate the socioeconomic status. Results: All the cognitive scores were significantly lower in the two high altitude groups compared with the Beijing Group (p < 0.001). The scores in Jiuzhi Group were significantly lower compared with the Lhasa Group (p < 0.001). The changes in oxy-Hb in channels 6 and 15 in both high-altitude groups were significantly greater compared with the Beijing Group (p < 0.05), without significant difference between the two high-altitude groups. GDP was significantly correlated with all the scores (p < 0.001), but not altitude. Conclusions: Cognitive impairment occurs in adolescents at high altitude, being severer in Jiuzhi Group compared with the Lhasa Group. The lower performance in both high-altitude groups require greater brain activity over-compensated by cerebral oxygen delivery as indicated by the changes in oxy-Hb. The cognitive scores were significantly correlated with GDP rather than altitude. Cognitive function in adolescents at high altitude is not limited by chronic hypoxia, but mainly shaped by socioeconomic determinants.
Collapse
Affiliation(s)
- Linyang Yu
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinqing Feng
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chen Zhou
- Beijing Jiaoyangzhixin Education Consulting Co., Ltd., Beijing, China
| | - Xiaohan Zhu
- Department of Neurology, Children's Hospital Affiliated to the Capital Institute of Pediatrics, Beijing, China
| | - Xiaobin Lou
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jian Yang
- Department of Neurology, Children's Hospital Affiliated to the Capital Institute of Pediatrics, Beijing, China
| | - Haiying Qi
- Division of Electrophysiology, Women and Children's Hospital of Qinghai Province, Xining, China
| | - Jia Li
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Genomic signatures of high-altitude adaptation and chromosomal polymorphism in geladas. Nat Ecol Evol 2022; 6:630-643. [PMID: 35332281 PMCID: PMC9090980 DOI: 10.1038/s41559-022-01703-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/15/2022] [Indexed: 01/31/2023]
Abstract
Primates have adapted to numerous environments and lifestyles, but very few species are native to high elevations. Here, we investigated high-altitude adaptations in the gelada (Theropithecus gelada), a monkey endemic to the Ethiopian Plateau. We examined genome-wide variation in conjunction with measurements of hematological and morphological traits. Our new gelada reference genome is highly intact and assembled at chromosome-length levels. Unexpectedly, we identified a chromosomal polymorphism in geladas that could potentially contribute to reproductive barriers between populations. Compared to baboons at low altitude, we found that high-altitude geladas exhibit significantly expanded chest circumferences, potentially allowing for greater lung surface area for increased oxygen diffusion. We identified gelada-specific amino acid substitutions in the alpha-chain subunit of adult hemoglobin but found that gelada hemoglobin does not exhibit markedly altered oxygenation properties compared to lowland primates. We also found that geladas at high altitude do not exhibit elevated blood hemoglobin concentrations, in contrast to the normal acclimatization response to hypoxia in lowland primates. The absence of altitude-related polycythemia suggests that geladas are able to sustain adequate tissue-oxygen delivery despite environmental hypoxia. Finally, we identified numerous genes and genomic regions exhibiting accelerated rates of evolution, as well as gene families exhibiting expansions in the gelada lineage, potentially reflecting altitude-related selection. Our findings lend insight into putative mechanisms of high-altitude adaptation while suggesting promising avenues for functional hypoxia research.
Collapse
|
12
|
Turner MP, Zhao Y, Abdelkarim D, Liu P, Spence JS, Hutchison JL, Sivakolundu DK, Thomas BP, Hubbard NA, Xu C, Taneja K, Lu H, Rypma B. Altered linear coupling between stimulus-evoked blood flow and oxygen metabolism in the aging human brain. Cereb Cortex 2022; 33:135-151. [PMID: 35388407 PMCID: PMC9758587 DOI: 10.1093/cercor/bhac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Neural-vascular coupling (NVC) is the process by which oxygen and nutrients are delivered to metabolically active neurons by blood vessels. Murine models of NVC disruption have revealed its critical role in healthy neural function. We hypothesized that, in humans, aging exerts detrimental effects upon the integrity of the neural-glial-vascular system that underlies NVC. To test this hypothesis, calibrated functional magnetic resonance imaging (cfMRI) was used to characterize age-related changes in cerebral blood flow (CBF) and oxygen metabolism during visual cortex stimulation. Thirty-three younger and 27 older participants underwent cfMRI scanning during both an attention-controlled visual stimulation task and a hypercapnia paradigm used to calibrate the blood-oxygen-level-dependent signal. Measurement of stimulus-evoked blood flow and oxygen metabolism permitted calculation of the NVC ratio to assess the integrity of neural-vascular communication. Consistent with our hypothesis, we observed monotonic NVC ratio increases with increasing visual stimulation frequency in younger adults but not in older adults. Age-related changes in stimulus-evoked cerebrovascular and neurometabolic signal could not fully explain this disruption; increases in stimulus-evoked neurometabolic activity elicited corresponding increases in stimulus-evoked CBF in younger but not in older adults. These results implicate age-related, demand-dependent failures of the neural-glial-vascular structures that comprise the NVC system.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Peiying Liu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Nicholas A Hubbard
- Department of Psychology, Center for Brain, Biology, and Behavior, University of Nebraska, Lincoln, NE 68588, USA
| | - Cuimei Xu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kamil Taneja
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bart Rypma
- Corresponding author: School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
13
|
Nanda SK. New-onset seizure at high altitude among healthy males. Seizure 2022; 97:82-87. [DOI: 10.1016/j.seizure.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
|
14
|
Vu C, Bush A, Choi S, Borzage M, Miao X, Nederveen AJ, Coates TD, Wood JC. Reduced global cerebral oxygen metabolic rate in sickle cell disease and chronic anemias. Am J Hematol 2021; 96:901-913. [PMID: 33891719 PMCID: PMC8273150 DOI: 10.1002/ajh.26203] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Anemia is the most common blood disorder in the world. In patients with chronic anemia, such as sickle cell disease or major thalassemia, cerebral blood flow increases to compensate for decreased oxygen content. However, the effects of chronic anemia on oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) are less well understood. In this study, we examined 47 sickle-cell anemia subjects (age 21.7 ± 7.1, female 45%), 27 non-sickle anemic subjects (age 25.0 ± 10.4, female 52%) and 44 healthy controls (age 26.4 ± 10.6, female 71%) using MRI metrics of brain oxygenation and flow. Phase contrast MRI was used to measure resting cerebral blood flow, while T2 -relaxation-under-spin-tagging (TRUST) MRI with disease appropriate calibrations were used to measure OEF and CMRO2 . We observed that patients with sickle cell disease and other chronic anemias have decreased OEF and CMRO2 (respectively 27.4 ± 4.1% and 3.39 ± 0.71 ml O2 /100 g/min in sickle cell disease, 30.8 ± 5.2% and 3.53 ± 0.64 ml O2 /100 g/min in other anemias) compared to controls (36.7 ± 6.0% and 4.00 ± 0.65 ml O2 /100 g/min). Impaired CMRO2 was proportional to the degree of anemia severity. We further demonstrate striking concordance of the present work with pooled historical data from patients having broad etiologies for their anemia. The reduced cerebral oxygen extraction and metabolism are consistent with emerging data demonstrating increased non-nutritive flow, or physiological shunting, in sickle cell disease patients.
Collapse
Affiliation(s)
- Chau Vu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Adam Bush
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
- Department of Radiology, Stanford University, Stanford, CA
| | - Soyoung Choi
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Matthew Borzage
- Division of Neonatology, Fetal and Neonatal Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Xin Miao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Aart J. Nederveen
- University of Amsterdam, Amsterdam UMC, Radiology and Nuclear Medicine, the Netherlands
| | - Thomas D. Coates
- Division of Hematology-Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - John C. Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
- Division of Cardiology, Departments of Pediatrics and Radiology, Children’s Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
15
|
Xiang ZQ, Huang YL, Luo GL, Ma HL, Zhang DL. Decreased Event-Related Desynchronization of Mental Rotation Tasks in Young Tibetan Immigrants. Front Hum Neurosci 2021; 15:664039. [PMID: 34276324 PMCID: PMC8278785 DOI: 10.3389/fnhum.2021.664039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to explore the cortical activity underlying mental rotation in high-altitude immigrants via the event-related desynchronization (ERD), the electroencephalogram time–frequency analysis, and source localization based on electroencephalographic data. When compared with the low-altitude individuals, the reaction time of mental rotation tasks was significantly slower in immigrants who had lived in high-altitude areas for 3 years. The time–frequency analysis showed that the alpha ERD and the beta ERD within the time window (400–700 ms) were decreased during the mental rotation tasks in these immigrants. The decreased ERD was observed at the parietal–occipital regions within the alpha band and at the central–parietal regions within the beta band. The decreased ERD might embody the sensorimotor-related cortical activity from hypoxia, which might be involved in cognitive control function in high-altitude immigrants, which provided insights into the neural mechanism of spatial cognition change on aspect of embodied cognition due to high-altitude exposure.
Collapse
Affiliation(s)
- Zu-Qiang Xiang
- Department of Psychology, School of Education, Guangzhou University, Guangzhou, China
| | - Yi-Lin Huang
- Department of Psychology, School of Education, Guangzhou University, Guangzhou, China
| | - Guang-Li Luo
- Department of Psychology, School of Education, Guangzhou University, Guangzhou, China.,The Fourth Primary School of Qiaotou Town, Dongguan, China
| | - Hai-Lin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, China.,Plateau Brain Science Research Center, South China Normal University, Guangzhou, China
| | - De-Long Zhang
- Plateau Brain Science Research Center, Tibet University, Lhasa, China.,Plateau Brain Science Research Center, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Multiple mechanisms drive genomic adaptation to extreme O 2 levels in Drosophila melanogaster. Nat Commun 2021; 12:997. [PMID: 33579965 PMCID: PMC7881140 DOI: 10.1038/s41467-021-21281-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
To detect the genomic mechanisms underlying evolutionary dynamics of adaptation in sexually reproducing organisms, we analyze multigenerational whole genome sequences of Drosophila melanogaster adapting to extreme O2 conditions over an experiment conducted for nearly two decades. We develop methods to analyze time-series genomics data and predict adaptive mechanisms. Here, we report a remarkable level of synchronicity in both hard and soft selective sweeps in replicate populations as well as the arrival of favorable de novo mutations that constitute a few asynchronized sweeps. We additionally make direct experimental observations of rare recombination events that combine multiple alleles on to a single, better-adapted haplotype. Based on the analyses of the genes in genomic intervals, we provide a deeper insight into the mechanisms of genome adaptation that allow complex organisms to survive harsh environments. The genomic details of adaptation to extreme environments remain challenging to characterize. Using new methods to analyze flies experimentally evolved to survive extreme O2 conditions, the authors find a surprising level of synchronicity in selective sweeps, de novo mutations and adaptive recombination events.
Collapse
|
17
|
Reyes RV, Herrera EA, Ebensperger G, Sanhueza EM, Giussani DA, Llanos AJ. Perinatal cardiopulmonary adaptation to the thin air of the Alto Andino by a native Altiplano dweller, the llama. J Appl Physiol (1985) 2020; 129:152-161. [PMID: 32584666 DOI: 10.1152/japplphysiol.00800.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most mammals have a poor tolerance to hypoxia, and prolonged O2 restriction can lead to organ injury, particularly during fetal and early postnatal life. Nevertheless, the llama (Lama Glama) has evolved efficient mechanisms to adapt to acute and chronic perinatal hypoxia. One striking adaptation is the marked peripheral vasoconstriction measured in the llama fetus in response to acute hypoxia, which allows efficient redistribution of cardiac output toward the fetal heart and adrenal glands. This strong peripheral vasoconstrictor tone is triggered by a carotid body reflex and critically depends on α-adrenergic signaling. A second adaptation is the ability of the llama fetus to protect its brain against hypoxic damage. During hypoxia, in the llama fetus there is no significant increase in brain blood flow. Instead, there is a fall in brain O2 consumption and temperature, together with a decrease of Na+-K+-ATPase activity and Na+ channels expression, protecting against seizures and neuronal death. Finally, the newborn llama does not develop pulmonary hypertension in response to chronic hypoxia. In addition to maintaining basal pulmonary arterial pressure at normal levels the pulmonary arterial pressor response to acute hypoxia is lower in highland than in lowland llamas. The protection against hypoxic pulmonary arterial hypertension and pulmonary contractile hyperreactivity is partly due to increased hemoxygenase-carbon monoxide signaling and decreased Ca2+ sensitization in the newborn llama pulmonary vasculature. These three striking physiological adaptations of the llama allow this species to live and thrive under the chronic influence of the hypobaric hypoxia of life at high altitude.
Collapse
Affiliation(s)
- R V Reyes
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - E A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - G Ebensperger
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - E M Sanhueza
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - D A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - A J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Zhao M, Feng Z, Yang G. Improvement of mental health among Chinese plateau military personnel, 1993-2017: a cross-temporal meta-analysis of the Symptom Checklist-90. Neuropsychiatr Dis Treat 2019; 15:2971-2980. [PMID: 31695388 PMCID: PMC6811367 DOI: 10.2147/ndt.s202088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/04/2019] [Indexed: 12/04/2022] Open
Abstract
Extreme occupational environments influence the military personnel's psychological functions. This study aims to investigate Chinese plateau soldiers' mental health, its changes over time and its correlation with social indicators. A cross-temporal meta-analysis of Symptom Checklist-90 (SCL-90) was employed to resolve these problems. Forty-six valid data with 23,481 samples at high altitude were screened from 34 journal articles between 1993 and 2017. The mental health of Chinese plateau soldiers showed significant improvement. The eight factor scores of SCL-90 showed a significantly negative correlation with years. The scores of Chinese plateau soldiers presented several peaks in the years 2000, 2008, and 2017, suggesting that the mental health may be influenced by momentous military events. The current-year ratio of defense budget to gross domestic product and divorce rate showed a significant correlation with mental health. The improvement of consumption level index could better explain the improvement of mental health in plateau soldiers. Also, the mental health level of soldiers might affect the 5-year-later consumption level index. The influence of social changes on mental health cannot be neglected. The characteristics of military mental health should be considered when designing the prevention, intervention, and treatment programs, and preparing policies to care military service members.
Collapse
Affiliation(s)
- Mengxue Zhao
- School of Psychology, Army Medical University, Chongqing, People’s Republic of China
| | - Zhengzhi Feng
- School of Psychology, Army Medical University, Chongqing, People’s Republic of China
| | - Guoyu Yang
- School of Psychology, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
19
|
Narvaez-Guerra O, Herrera-Enriquez K, Medina-Lezama J, Chirinos JA. Systemic Hypertension at High Altitude. Hypertension 2019; 72:567-578. [PMID: 30354760 DOI: 10.1161/hypertensionaha.118.11140] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Offdan Narvaez-Guerra
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Karela Herrera-Enriquez
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Josefina Medina-Lezama
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine and Hospital of the University of Pennsylvania, Philadelphia (J.A.C.)
| |
Collapse
|
20
|
Abstract
Therapeutic hypothermia is a strategy that reduces metabolic rate and brain damage during clinically-relevant hypoxic events. Mitochondrial respiration is compromised by hypoxia, with deleterious consequences for the mammalian brain; however, little is known about the effects of reduced temperature on mitochondrial metabolism. Therefore, we examined how mitochondrial function is impacted by temperature using high resolution respirometry to assess electron transport system (ETS) function in saponin-permeabilized mouse brain at 28 and 37°C. Respirometric analysis revealed that, at the colder temperature, ETS respiratory flux was ~ 40–75% lower relative to the physiological temperature in all respiratory states and for all fuel substrates tested. In whole brain tissue, the enzyme maximum respiratory rates for complexes I-V were similarly reduced by between 37–88%. Complexes II and V were particularly temperature-sensitive; a temperature-mediated decrease in complex II activity may support a switch to complex I mediated ATP-production, which is considerably more oxygen-efficient. Finally, the mitochondrial H+-gradient was more tightly coupled, indicating that mitochondrial respiration is more efficient at the colder temperature. Taken together, our results suggest that improvements in mitochondrial function with colder temperatures may contribute to energy conservation and enhance cellular viability in hypoxic brain.
Collapse
|
21
|
McClelland GB, Scott GR. Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives. Annu Rev Physiol 2018; 81:561-583. [PMID: 30256727 DOI: 10.1146/annurev-physiol-021317-121527] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VO2max) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude natives have evolved to resist the depressive effects of hypoxia on VO2max. This is associated with enhanced flux capacity through the O2 transport cascade and attenuation of the maladaptive responses to chronic hypoxia that can impair O2 transport. Some highlanders exhibit elevated rates of carbohydrate oxidation during exercise, taking advantage of its high ATP yield per mole of O2. Certain highland native animals have also evolved more oxidative muscles and can sustain high rates of lipid oxidation to support thermogenesis. The underlying mechanisms include regulatory adjustments of metabolic pathways and to gene expression networks. Therefore, the evolution of hypoxia resistance in high-altitude natives involves integrated functional changes in the pathways for O2 and substrate delivery and utilization by mitochondria.
Collapse
Affiliation(s)
- Grant B McClelland
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada;
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada;
| |
Collapse
|
22
|
Wang X, Wei W, Yuan F, Li S, Lin J, Zhang J. Regional cerebral blood flow in natives at high altitude: An arterial spin labeled MRI study. J Magn Reson Imaging 2018; 48:708-717. [PMID: 29493838 DOI: 10.1002/jmri.25996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 02/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is known that a neurologic sequence occurs at high altitudes (HA); hence, cerebral blood flow (CBF) might vary by altitude. PURPOSE To use arterial spin labeled (ASL) MRI to evaluate absolute CBF differences between subjects who live at HA and lowlands. STUDY TYPE Cohort prospective trial. POPULATION In all, 64 HA Tibetans, 19 lowland Tibetans, and 25 lowland Han subjects. FIELD STRENGTH/SEQUENCE CBF was measured with the pulsed ASL sequence at 3T. ASSESSMENT CBF was correlated with abode altitude in HA Tibetans; CBF differences among HA Tibetans, lowland Tibetans, and lowland Han subjects was assessed. STATISTICAL TESTS Pearson correlation assessed the correlation. Independent t-tests analyzed group differences. RESULTS In HA Tibetans, CBF decreased with altitude in the bilateral anterior and posterior cingulate gyri, fusiform gyrus, cerebellar tonsil and cortices, and thalamus as well as left middle and inferior temporal gyri and right insula (P < 0.05); HA Tibetans (vs. lowland Tibetans) had lower CBF in the left hemisphere (precuneus, anterior cingulate gyrus, fusiform gyrus, and lingual gyrus) and right hemisphere (superior parietal lobule, precuneus, posterior cingulate gyrus, and cerebellar tonsil), while they had higher CBF in the left inferior parietal lobule, lentiform nucleus, and inferior frontal gyrus (P < 0.05). The overlapping regions, in which CBF in HA Tibetans correlated with altitude and decreased (vs. lowland Tibetans), were selected for region of interest analysis, and the results showed lower CBF in HA Tibetans than lowland Han subjects (P < 0.05). DATA CONCLUSION HA adaptation in Tibetans is associated with a decrease of regional CBF. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenping Wei
- MRI Center, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Fengjuan Yuan
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, China
| | - Shanhua Li
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
23
|
Pamenter ME, Lau GY, Richards JG, Milsom WK. Naked mole rat brain mitochondria electron transport system flux and H + leak are reduced during acute hypoxia. ACTA ACUST UNITED AC 2018; 221:jeb.171397. [PMID: 29361591 DOI: 10.1242/jeb.171397] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Abstract
Mitochondrial respiration and ATP production are compromised by hypoxia. Naked mole rats (NMRs) are among the most hypoxia-tolerant mammals and reduce metabolic rate in hypoxic environments; however, little is known regarding mitochondrial function during in vivo hypoxia exposure in this species. To address this knowledge gap, we asked whether the function of NMR brain mitochondria exhibits metabolic plasticity during acute hypoxia. Respirometry was utilized to assess whole-animal oxygen consumption rates and high-resolution respirometry was utilized to assess electron transport system (ETS) function in saponin-permeabilized NMR brain. We found that NMR whole-animal oxygen consumption rate reversibly decreased by ∼85% in acute hypoxia (4 h at 3% O2). Similarly, relative to untreated controls, permeabilized brain respiratory flux through the ETS was decreased by ∼90% in acutely hypoxic animals. Relative to carbonyl cyanide p-trifluoro-methoxyphenylhydrazone-uncoupled total ETS flux, this functional decrease was observed equally across all components of the ETS except for complex IV (cytochrome c oxidase), at which flux was further reduced, supporting a regulatory role for this enzyme during acute hypoxia. The maximum enzymatic capacities of ETS complexes I-V were not altered by acute hypoxia; however, the mitochondrial H+ gradient decreased in step with the decrease in ETS respiration. Taken together, our results indicate that NMR brain ETS flux and H+ leak are reduced in a balanced and regulated fashion during acute hypoxia. Changes in NMR mitochondrial metabolic plasticity mirror whole-animal metabolic responses to hypoxia.
Collapse
Affiliation(s)
- Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 .,Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Gigi Y Lau
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Jeffrey G Richards
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
24
|
Abstract
In some organisms and cells, oxygen availability influences oxygen consumption. In this review, we examine this phenomenon of hypoxic hypometabolism (HH), discussing its features, mechanisms, and implications. Small mammals and other vertebrate species exhibit "oxyconformism," a downregulation of metabolic rate and body temperature during hypoxia which is sensed by the central nervous system. Smaller body mass and cooler ambient temperature contribute to a high metabolic rate in mammals. It is this hypermetabolic state that is suppressed by hypoxia leading to HH. Larger mammals including humans do not exhibit HH. Tissues and cells also exhibit reductions in respiration during hypoxia in vitro, even at oxygen levels ample for mitochondrial oxidative phosphorylation. The mechanisms of cellular HH involve intracellular oxygen sensors including hypoxia-inducible factors, AMP-activated protein kinase (AMPK), and mitochondrial reactive oxygen species (ROS) which downregulate mitochondrial activity and ATP utilization. HH has a profound impact on cardiovascular, respiratory, and metabolic physiology in rodents. Therefore, caution should be exercised when extrapolating the results of rodent hypoxia studies to human physiology.
Collapse
|
25
|
Flück D, Morris LE, Niroula S, Tallon CM, Sherpa KT, Stembridge M, Ainslie PN, McManus AM. UBC-Nepal expedition: markedly lower cerebral blood flow in high-altitude Sherpa children compared with children residing at sea level. J Appl Physiol (1985) 2017; 123:1003-1010. [PMID: 28572497 DOI: 10.1152/japplphysiol.00292.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 12/12/2022] Open
Abstract
Developmental cerebral hemodynamic adaptations to chronic high-altitude exposure, such as in the Sherpa population, are largely unknown. To examine hemodynamic adaptations in the developing human brain, we assessed common carotid (CCA), internal carotid (ICA), and vertebral artery (VA) flow and middle cerebral artery (MCA) velocity in 25 (9.6 ± 1.0 yr old, 129 ± 9 cm, 27 ± 8 kg, 14 girls) Sherpa children (3,800 m, Nepal) and 25 (9.9 ± 0.7 yr old, 143 ± 7 cm, 34 ± 6 kg, 14 girls) age-matched sea level children (344 m, Canada) during supine rest. Resting gas exchange, blood pressure, oxygen saturation and heart rate were assessed. Despite comparable age, height and weight were lower (both P < 0.01) in Sherpa compared with sea level children. Mean arterial pressure, heart rate, and ventilation were similar, whereas oxygen saturation (95 ± 2 vs. 99 ± 1%, P < 0.01) and end-tidal Pco2 (24 ± 3 vs. 36 ± 3 Torr, P < 0.01) were lower in Sherpa children. Global cerebral blood flow was ∼30% lower in Sherpa compared with sea level children. This was reflected in a lower ICA flow (283 ± 108 vs. 333 ± 56 ml/min, P = 0.05), VA flow (78 ± 26 vs. 118 ± 35 ml/min, P < 0.05), and MCA velocity (72 ± 14 vs. 88 ± 14 cm/s, P < 0.01). CCA flow was similar between Sherpa and sea level children (425 ± 92 vs. 441 ± 81 ml/min, P = 0.52). Scaling flow and oxygen uptake for differences in vessel diameter and body size, respectively, led to the same findings. A lower cerebral blood flow in Sherpa children may reflect specific cerebral hemodynamic adaptations to chronic hypoxia.NEW & NOTEWORTHY Cerebral blood flow is lower in Sherpa children compared with children residing at sea level; this may reflect a cerebral hemodynamic pattern, potentially due to adaptation to a hypoxic environment.
Collapse
Affiliation(s)
- Daniela Flück
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada;
| | - Laura E Morris
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Shailesh Niroula
- Institute of Medicine, Tribhuvan University, Kirtipur, Nepal.,Khunde Hospital, Khunde, Nepal; and
| | - Christine M Tallon
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | | | - Mike Stembridge
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Ali M McManus
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
26
|
Chen X, Zhang Q, Wang J, Liu J, Zhang W, Qi S, Xu H, Li C, Zhang J, Zhao H, Meng S, Li D, Lu H, Aschner M, Li B, Yin H, Chen J, Luo W. Cognitive and neuroimaging changes in healthy immigrants upon relocation to a high altitude: A panel study. Hum Brain Mapp 2017; 38:3865-3877. [PMID: 28480993 DOI: 10.1002/hbm.23635] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cognitive and neuroimaging changes under chronic high-altitude exposure have never been followed up and dynamically assessed. OBJECTIVES To investigate the cognitive and brain structural/functional alterations associated with chronic high-altitude exposure. METHODS Sixty-nine college freshmen that were immigrating to Tibet were enrolled and followed up for two years. Neuropsychological tests, including verbal/visual memory and simple/recognition reaction time, were utilized to determine whether the subjects' cognitive function had changed in response to chronic high-altitude exposure. Structural magnetic resonance imaging (MRI) and resting-state functional MRI (rs-fMRI) were used to quantify brain gray matter (GM) volumes, regional homogeneity (ReHo) and functional connectivity (FC) alterations before and after exposure. Areas with changes in both GM and ReHo were used as seeds in the inter-regional FC analysis. RESULTS The subjects showed significantly lower accuracy in memory tests and longer reaction times after exposure, and neuroimaging analysis showed markedly decreased GM volumes and ReHo in the left putamen. FC analysis seeding of the left putamen showed significantly weakened FC with the superior temporal gyrus, anterior/middle cingulate gyrus and other brain regions. In addition, decreased ReHo was found in the superior temporal gyrus, superior parietal lobule, anterior cingulate gyrus and medial frontal gyrus, while increased ReHo was found in the hippocampus. Differences in ReHo/FC before and after high-altitude exposure in multiple regions were significantly correlated with the cognitive changes. CONCLUSION Cognitive functions such as working memory and psychomotor function are impaired during chronic high-altitude exposure. The putamen may play an important role in chronic hypoxia-induced cognitive impairment. Hum Brain Mapp 38:3865-3877, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Qian Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jiye Wang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jie Liu
- Department of Radiology, General Hospital of Tibet Military Region, Lhasa, China
| | - Wenbin Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Shun Qi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Xu
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haitao Zhao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shanshan Meng
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Dan Li
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Huanyu Lu
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York
| | - Bin Li
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Amelioration of apelin-13 in chronic normobaric hypoxia-induced anxiety-like behavior is associated with an inhibition of NF-κB in the hippocampus. Brain Res Bull 2017; 130:67-74. [DOI: 10.1016/j.brainresbull.2017.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 12/25/2022]
|
28
|
Wei W, Wang X, Gong Q, Fan M, Zhang J. Cortical Thickness of Native Tibetans in the Qinghai-Tibetan Plateau. AJNR Am J Neuroradiol 2017; 38:553-560. [PMID: 28104637 DOI: 10.3174/ajnr.a5050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE High-altitude environmental factors and genetic variants together could have exerted their effects on the human brain. The present study was designed to investigate the cerebral morphology in high-altitude native Tibetans. MATERIALS AND METHODS T1-weighted brain images were obtained from 77 Tibetan adolescents on the Qinghai-Tibetan Plateau (altitude, 2300-5300 m) and 80 matched Han controls living at sea level. Cortical thickness, curvature, and sulcus were analyzed by using FreeSurfer. RESULTS Cortical thickness was significantly decreased in the left posterior cingulate cortex, lingual gyrus, superior parietal cortex, precuneus, and rostral middle frontal cortex and the right medial orbitofrontal cortex, lateral occipital cortex, precuneus, and paracentral lobule. Curvature was significantly decreased in the left superior parietal cortex and right superior marginal gyrus; the depth of the sulcus was significantly increased in the left inferior temporal gyrus and significantly decreased in the right superior marginal gyrus, superior temporal gyrus, and insular cortex. Moreover, cortical thickness was negatively correlated with altitude in the left superior and middle temporal gyri, rostral middle frontal cortex, insular cortex, posterior cingulate cortex, precuneus, lingual gyrus, and the right superior temporal gyrus. Curvature was positively correlated with altitude in the left rostral middle frontal cortex, insular cortex, and middle temporal gyrus. The depth of the sulcus was negatively correlated with altitude in the left lingual gyrus and right medial orbitofrontal cortex. CONCLUSIONS Differences in cortical morphometry in native Tibetans may reflect adaptations related to high altitude.
Collapse
Affiliation(s)
- W Wei
- From the MRI Center (W.W.), First Affiliated Hospital of Xiamen University, Xiamen, China.,Institute of Brain Disease and Cognition (W.W., J.Z.), Medical College of Xiamen University, Xiamen, China
| | - X Wang
- Department of Neurology (X.W.), Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Q Gong
- Huaxi Magnetic Resonance Research Center (Q.G.), West China Hospital, Sichuan University, Chengdu, China
| | - M Fan
- Department of Cognitive Sciences (M.F.), Institute of Basic Medical Sciences, Beijing, China
| | - J Zhang
- Institute of Brain Disease and Cognition (W.W., J.Z.), Medical College of Xiamen University, Xiamen, China
| |
Collapse
|
29
|
Lawley JS, Macdonald JH, Oliver SJ, Mullins PG. Unexpected reductions in regional cerebral perfusion during prolonged hypoxia. J Physiol 2016; 595:935-947. [PMID: 27506309 DOI: 10.1113/jp272557] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/04/2016] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS Cognitive performance is impaired by hypoxia despite global cerebral oxygen delivery and metabolism being maintained. Using arterial spin labelled (ASL) magnetic resonance imaging, this is the first study to show regional reductions in cerebral blood flow (CBF) in response to decreased oxygen supply (hypoxia) at 2 h that increased in area and became more pronounced at 10 h. Reductions in CBF were seen in brain regions typically associated with the 'default mode' or 'task negative' network. Regional reductions in CBF, and associated vasoconstriction, within the default mode network in hypoxia is supported by increased vasodilatation in these regions to a subsequent hypercapnic (5% CO2 ) challenge. These results suggest an anatomical mechanism through which hypoxia may cause previously reported deficits in cognitive performance. ABSTRACT Hypoxia causes an increase in global cerebral blood flow, which maintains global cerebral oxygen delivery and metabolism. However, neurological deficits are abundant under hypoxic conditions. We investigated regional cerebral microvascular responses to acute (2 h) and prolonged (10 h) poikilocapnic normobaric hypoxia. We found that 2 h of hypoxia caused an expected increase in frontal cortical grey matter perfusion but unexpected perfusion decreases in regions of the brain normally associated with the 'default mode' or 'task negative' network. After 10 h in hypoxia, decreased blood flow to the major nodes of the default mode network became more pronounced and widespread. The use of a hypercapnic challenge (5% CO2 ) confirmed that these reductions in cerebral blood flow from hypoxia were related to vasoconstriction. Our findings demonstrate steady-state deactivation of the default network under acute hypoxia, which become more pronounced over time. Moreover, these data provide a unique insight into the nuanced localized cerebrovascular response to hypoxia that is not attainable through traditional methods. The observation of reduced perfusion in the posterior cingulate and cuneal cortex, which are regions assumed to play a role in declarative and procedural memory, provides an anatomical mechanism through which hypoxia may cause deficits in working memory.
Collapse
Affiliation(s)
- Justin S Lawley
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK.,Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, TX, USA
| | - Jamie H Macdonald
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK
| | - Paul G Mullins
- Bangor Imaging Centre, School of Psychology, Bangor University, Gwynedd, UK
| |
Collapse
|
30
|
Chen J, Li J, Han Q, Lin J, Yang T, Chen Z, Zhang J. Long-term acclimatization to high-altitude hypoxia modifies interhemispheric functional and structural connectivity in the adult brain. Brain Behav 2016; 6:e00512. [PMID: 27688941 PMCID: PMC5036434 DOI: 10.1002/brb3.512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Structural and functional networks can be reorganized to adjust to environmental pressures and physiologic changes in the adult brain, but such processes remain unclear in prolonged adaptation to high-altitude (HA) hypoxia. This study aimed to characterize the interhemispheric functionally and structurally coupled modifications in the brains of adult HA immigrants. METHODS We performed resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) in 16 adults who had immigrated to the Qinghai-Tibet Plateau (2300-4400 m) for 2 years and in 16 age-matched sea-level (SL) controls. A recently validated approach of voxel-mirrored homotopic connectivity (VMHC) was employed to examine the interhemispheric resting-state functional connectivity. Areas showing changed VMHC in HA immigrants were selected as regions of interest for follow-up DTI tractography analysis. The fiber parameters of fractional anisotropy and fiber length were obtained. Cognitive and physiological assessments were made and correlated with the resulting image metrics. RESULTS Compared with SL controls, VMHC in the bilateral visual cortex was significantly increased in HA immigrants. The mean VMHC value extracted within the visual cortex was positively correlated with hemoglobin concentration. Moreover, the path length of the commissural fibers connecting homotopic visual areas was increased in HA immigrants, covarying positively with VMHC. CONCLUSIONS These observations are the first to demonstrate interhemispheric functional and structural connectivity resilience in the adult brain after prolonged HA acclimatization independent of inherited and developmental effects, and the coupled modifications in the bilateral visual cortex indicate important neural compensatory mechanisms underlying visual dysfunction in physiologically well-acclimatized HA immigrants. The study of human central adaptation to extreme environments promotes the understanding of our brain's capacity for survival.
Collapse
Affiliation(s)
- Ji Chen
- Department of Medical ImagingFuzhou Dongfang HospitalXiamen UniversityFuzhouFujianChina
- Department of Physiology and NeurobiologyMedical College of Xiamen UniversityXiamenFujianChina
| | - Jinqiang Li
- Department of Clinical PsychologyGulangyu Sanatorium of PLAXiamenFujianChina
| | - Qiaoqing Han
- Department of Clinical PsychologyGulangyu Sanatorium of PLAXiamenFujianChina
| | - Jianzhong Lin
- Magnetic Resonance CenterThe Affiliated Zhongshan Hospital of Xiamen UniversityXiamenFujianChina
| | - Tianhe Yang
- Magnetic Resonance CenterThe Affiliated Zhongshan Hospital of Xiamen UniversityXiamenFujianChina
| | - Ziqian Chen
- Department of Medical ImagingFuzhou Dongfang HospitalXiamen UniversityFuzhouFujianChina
| | - Jiaxing Zhang
- Department of Physiology and NeurobiologyMedical College of Xiamen UniversityXiamenFujianChina
| |
Collapse
|
31
|
Ma Q, Hu L, Li J, Hu Y, Xia L, Chen X, Hu W. Different Effects of Hypoxia on Mental Rotation of Normal and Mirrored Letters: Evidence from the Rotation-Related Negativity. PLoS One 2016; 11:e0154479. [PMID: 27144444 PMCID: PMC4856360 DOI: 10.1371/journal.pone.0154479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
The present study explored the neural mechanism underlying the effect of moderate and transient hypoxic exposure on mental rotation of two-dimensional letters in both normal and mirror versions. Event-related potential data and behavioral data were acquired in the task of discrimination between normal and mirrored versions separately in conditions of normoxia (simulated sea level) and hypoxia conditions (simulated 5000 meter altitude). The behavioral results revealed no significant difference between the normoxia and hypoxia conditions both in response time and error rate. However, obvious differences between these two conditions in ERP were found. First, enlarged P300 and Rotation-related Negativity (RRN) were observed in the hypoxia condition compared to the normoxia condition only with normal letters. Second, the angle effect on the amplitude of RRN was more evident with normal letters in the hypoxia condition than that in the normoxia condition. However, this angle effect nearly disappeared with the mirrored letters in the hypoxia condition. Third, more bilateral parietal activation was observed in the hypoxia condition than the normoxia condition. These results suggested that the compensation mechanism existed in the hypoxia condition and was effective with normal letters but had little effect on the mirrored letters. This study extends the research about the hypoxic effect on spatial ability of humans by employing a mental rotation task and further provides neural evidence for this effect.
Collapse
Affiliation(s)
- Qingguo Ma
- Institute of Neural Management Sciences, Zhejiang University of Technology, Hangzhou, China
- Neuromanagement Lab, Zhejiang University, Hangzhou, China
- * E-mail:
| | - Linfeng Hu
- School of Management, Zhejiang University, Hangzhou, China
- Neuromanagement Lab, Zhejiang University, Hangzhou, China
| | - Jiaojie Li
- Hangzhou Aviation Medicine Assessment and Training Center of Air Force, Hangzhou, China
| | - Yue Hu
- School of Management, Zhejiang University, Hangzhou, China
- Neuromanagement Lab, Zhejiang University, Hangzhou, China
| | - Ling Xia
- Hangzhou Aviation Medicine Assessment and Training Center of Air Force, Hangzhou, China
| | - Xiaojian Chen
- Hangzhou Aviation Medicine Assessment and Training Center of Air Force, Hangzhou, China
| | - Wendong Hu
- Faculty of Aerospace Medicine, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
32
|
Zhang T, Wang Y, Li G. Effect of intermittent hypoxic training on hypoxia tolerance based on single-channel EEG. Neurosci Lett 2016; 617:39-45. [DOI: 10.1016/j.neulet.2016.01.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/11/2015] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|
33
|
Chen J, Fan C, Li J, Han Q, Lin J, Yang T, Zhang J. Increased Intraregional Synchronized Neural Activity in Adult Brain After Prolonged Adaptation to High-Altitude Hypoxia: A Resting-State fMRI Study. High Alt Med Biol 2016; 17:16-24. [PMID: 26906285 DOI: 10.1089/ham.2015.0104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human brain is intrinsically plastic such that its functional architecture can be reorganized in response to environmental pressures and physiological changes. However, it remains unclear whether a compensatory modification of spontaneous neural activity occurs in adult brain during prolonged high-altitude (HA) adaptation. In this study, we obtained resting-state functional magnetic resonance (MR) images in 16 adults who have immigrated to Qinghai-Tibet Plateau (2300-4400 m) for 2 years and in 16 age-matched sea level (SL) controls. A validated regional homogeneity (Reho) method was employed to investigate the local synchronization of resting-state functional magnetic resonance imaging (fMRI) signals. Seed connectivity analysis was carried out subsequently. Cognitive and physiological assessments were made and correlated with the image metrics. Compared with SL controls, global mean Reho was significantly increased in HA immigrants as well as a regional increase in the right inferolateral sensorimotor cortex. Furthermore, mean z-Reho value extracted within the inferolateral sensorimotor area showed trend-level significant inverse correlation with memory search reaction time in HA immigrants. These observations, for the first time, provide evidence of adult brain resilience of spontaneous neural activity after long-term HA exposure without inherited and developmental effects. Resting-state fMRI could yield valuable information for central mechanisms underlying respiratory and cognitive compensations in adults during prolonged environmentally hypoxic adaptation, paving the way for future HA-adaptive training.
Collapse
Affiliation(s)
- Ji Chen
- 1 Department of Physiology and Neurobiology, Medical College of Xiamen University , Xiamen, Fujian, China .,2 Department of Medical Imaging Center, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA , Fuzhou, Fujian, China
| | - Cunxiu Fan
- 1 Department of Physiology and Neurobiology, Medical College of Xiamen University , Xiamen, Fujian, China
| | - Jinqiang Li
- 3 Department of Clinical Psychology, Gulangyu Sanatorium of PLA , Xiamen, Fujian, China
| | - Qiaoqing Han
- 3 Department of Clinical Psychology, Gulangyu Sanatorium of PLA , Xiamen, Fujian, China
| | - Jianzhong Lin
- 4 Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University , Xiamen, Fujian, China
| | - Tianhe Yang
- 4 Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University , Xiamen, Fujian, China
| | - Jiaxing Zhang
- 1 Department of Physiology and Neurobiology, Medical College of Xiamen University , Xiamen, Fujian, China
| |
Collapse
|
34
|
Kushwah N, Jain V, Deep S, Prasad D, Singh SB, Khan N. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats. PLoS One 2016; 11:e0149309. [PMID: 26901349 PMCID: PMC4763568 DOI: 10.1371/journal.pone.0149309] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 01/30/2016] [Indexed: 11/19/2022] Open
Abstract
Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH) in Unpredictable Chronic Mild Stress (UCMS) induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM), open field test (OFT), force swim test (FST), as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks) these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF) in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state.
Collapse
Affiliation(s)
- Neetu Kushwah
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Vishal Jain
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Satayanarayan Deep
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Dipti Prasad
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Shashi Bala Singh
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Nilofar Khan
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| |
Collapse
|
35
|
Ma H, Wang Y, Wu J, Wang B, Guo S, Luo P, Han B. Long-Term Exposure to High Altitude Affects Conflict Control in the Conflict-Resolving Stage. PLoS One 2015; 10:e0145246. [PMID: 26671280 PMCID: PMC4682854 DOI: 10.1371/journal.pone.0145246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/30/2015] [Indexed: 12/02/2022] Open
Abstract
The neurocognitive basis of the effect of long-term high altitude exposure on conflict control is unclear. Event related potentials (ERPs) were recorded in a flanker task to investigate the influence of high altitude on conflict control in the high-altitude group (who had lived at high altitude for three years but were born at low altitude) and the low-altitude group (living in low altitude only). Although altitude effect was not significant at the behavioral level, ERPs showed cognitive conflict modulation. The interaction between group and trial type was significant: P3 amplitude was greater in the low-altitude group than in the high-altitude group in the incongruent trial. This result suggests that long-term exposure to high altitude affects conflict control in the conflict-resolving stage, and that attentional resources are decreased to resist the conflict control in the high-altitude group.
Collapse
Affiliation(s)
- Hailin Ma
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Education and Psychology, Tibet University, Tibet, China
| | - Yan Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jianhui Wu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Baoxi Wang
- Key Laboratory of Jiangxi Province for Psychology and Cognition Science, School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Shichun Guo
- Department of Psychology, Tsinghua University, Beijing, China
| | - Ping Luo
- Institute of Education and Psychology, Tibet University, Tibet, China
| | - Buxin Han
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Pagida MA, Konstantinidou AE, Korelidou A, Katsika D, Tsekoura E, Patsouris E, Panayotacopoulou MT. The Effect of Perinatal Hypoxic/Ischemic Injury on Tyrosine Hydroxylase Expression in the Locus Coeruleus of the Human Neonate. Dev Neurosci 2015; 38:41-53. [DOI: 10.1159/000439270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 08/08/2015] [Indexed: 11/19/2022] Open
Abstract
We have previously shown that perinatal hypoxic/ischemic injury (HII) may cause selective vulnerability of the mesencephalic dopaminergic neurons of human neonate. In the present study, we investigated the effect of perinatal HII on the noradrenergic neurons of the locus coeruleus (LC) of the same sample. We studied immunohistochemically the expression of tyrosine hydroxylase (TH, first limiting enzyme for catecholamine synthesis) in LC neurons of 15 autopsied infants (brains collected from the Greek Brain Bank) in relation to the neuropathological changes of acute or chronic HII of the neonatal brain. Our results showed that perinatal HII appears to affect the expression of TH and the size of LC neurons of the human neonate. In subjects with neuropathological lesions consistent with abrupt/severe HII, intense TH immunoreactivity was found in almost all neurons of the LC. In most of the neonates with neuropathological changes of prolonged or older injury, however, reduction in cell size and a decrease or absence of TH staining were observed in the LC. Intense TH immunoreactivity was found in the LC of 3 infants of the latter group, who interestingly had a longer survival time and had been treated with anticonvulsant drugs. Based on our observations and in view of experimental evidence indicating that the reduction of TH-immunoreactive neurons occurring in the LC after perinatal hypoxic insults persists into adulthood, we suggest that a dysregulation of monoaminergic neurotransmission in critical periods of brain development in humans is likely to predispose the survivors of perinatal HII, in combination with genetic susceptibility, to psychiatric and/or neurological disorders later in life.
Collapse
|
37
|
West JB. Barcroft's bold assertion: All dwellers at high altitudes are persons of impaired physical and mental powers. J Physiol 2015; 594:1127-34. [PMID: 25962370 DOI: 10.1113/jp270284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/04/2015] [Indexed: 11/08/2022] Open
Abstract
Barcroft's bold assertion that everyone at high altitude has physical and mental impairment compared with sea level was very provocative. It was a result of the expedition that he led to Cerro de Pasco in Peru, altitude 4300 m. Although it is clear that newcomers to high altitude have reduced physical powers, some people believe that this does not apply to permanent residents who have been at high altitude for generations. The best evidence supports Barcroft's contention, although permanent residents often perform better than acclimatized lowlanders. Turning to neuropsychological function, newcomers to high altitude certainly have some impairment, and there is evidence that the same applies to highlanders. However the notion that permanent residents are impaired is anathema to many people. For example the eminent Peruvian physician Carlos Monge took great exception to Barcroft's remark and even attributed it to the fact that Barcroft was suffering from acute mountain sickness when he made it! Monge referred to 'climatic aggression', by which he meant the negative consequences of the inevitable hypoxia of high altitude. Recent technological advances such as oxygen enrichment of room air can overcome this 'aggression'. This might be useful in some settings at high altitude such as a nursery where newborn babies are cared for, and possibly operating rooms where the surgeon's dexterity may be enhanced. Other situations might be dormitories, conference rooms, and perhaps some school rooms. These constitute possible ways by which the effects of Barcroft's assertion might be countered.
Collapse
Affiliation(s)
- John B West
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093-0623, USA
| |
Collapse
|
38
|
Willie CK, MacLeod DB, Smith KJ, Lewis NC, Foster GE, Ikeda K, Hoiland RL, Ainslie PN. The contribution of arterial blood gases in cerebral blood flow regulation and fuel utilization in man at high altitude. J Cereb Blood Flow Metab 2015; 35:873-81. [PMID: 25690474 PMCID: PMC4420871 DOI: 10.1038/jcbfm.2015.4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/16/2014] [Accepted: 12/25/2014] [Indexed: 11/09/2022]
Abstract
The effects of partial acclimatization to high altitude (HA; 5,050 m) on cerebral metabolism and cerebrovascular function have not been characterized. We hypothesized (1) increased cerebrovascular reactivity (CVR) at HA; and (2) that CO2 would affect cerebral metabolism more than hypoxia. PaO2 and PaCO2 were manipulated at sea level (SL) to simulate HA exposure, and at HA, SL blood gases were simulated; CVR was assessed at both altitudes. Arterial-jugular venous differences were measured to calculate cerebral metabolic rates and cerebral blood flow (CBF). We observed that (1) partial acclimatization yields a steeper CO2-H(+) relation in both arterial and jugular venous blood; yet (2) CVR did not change, despite (3) mean arterial pressure (MAP)-CO2 reactivity being doubled at HA, thus indicating effective cerebral autoregulation. (4) At SL hypoxia increased CBF, and restoration of oxygen at HA reduced CBF, but neither had any effect on cerebral metabolism. Acclimatization resets the cerebrovasculature to chronic hypocapnia.
Collapse
Affiliation(s)
- Christopher K Willie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - David B MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Kurt J Smith
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Nia C Lewis
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Glen E Foster
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Keita Ikeda
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
39
|
Abstract
This brief review traces the last 50 years of research related to cerebral blood flow (CBF) in humans exposed to high altitude. The increase in CBF within the first 12 hours at high altitude and its return to near sea level values after 3-5 days of acclimatization was first documented with use of the Kety-Schmidt technique in 1964. The degree of change in CBF at high altitude is influenced by many variables, including arterial oxygen and carbon dioxide tensions, oxygen content, cerebral spinal fluid pH, and hematocrit, but can be collectively summarized in terms of the relative strengths of four key integrated reflexes: 1) hypoxic cerebral vasodilatation; 2) hypocapnic cerebral vasoconstriction; 3) hypoxic ventilatory response; and 4) hypercapnic ventilatory response. Understanding the mechanisms underlying these reflexes and their interactions with one another is critical to advance our understanding of global and regional CBF regulation. Whether high altitude populations exhibit cerebrovascular adaptations to chronic levels of hypoxia or if changes in CBF are related to the development of acute mountain sickness are currently unknown; yet overall, the integrated CBF response to high altitude appears to be sufficient to meet the brain's large and consistent demand for oxygen. This short review is organized as follows: An historical overview of the earliest CBF measurements collected at high altitude introduces a summary of reported CBF changes at altitude over the last 50 years in both lowlanders and high-altitude natives. The most tenable candidate mechanism(s) regulating CBF at altitude are summarized with a focus on available data in humans, and a role for these mechanisms in the pathophysiology of AMS is considered. Finally, suggestions for future directions are provided.
Collapse
Affiliation(s)
- Philip N Ainslie
- 1 School of Health and Exercise Sciences, University of British Columbia , Okanagan Campus, Kelowna, British Columbia, Canada
| | | |
Collapse
|
40
|
Affiliation(s)
- Fabiola León-Velarde
- Departamentao de Ciencias Biologicas y Fisiologicas, facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia , Lima, Peru
| | | |
Collapse
|
41
|
Yan X. Pro: All dwellers at high altitude are persons of impaired physical and mental powers. High Alt Med Biol 2014; 14:208-11. [PMID: 24067176 DOI: 10.1089/ham.2013.1026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xiaodan Yan
- New York University School of Medicine , New York, New York
| |
Collapse
|
42
|
Affiliation(s)
- Xiaodan Yan
- New York University School of Medicine, New York, New York
| |
Collapse
|
43
|
Goodall S, Twomey R, Amann M. Acute and chronic hypoxia: implications for cerebral function and exercise tolerance. FATIGUE-BIOMEDICINE HEALTH AND BEHAVIOR 2014; 2:73-92. [PMID: 25593787 DOI: 10.1080/21641846.2014.909963] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE To outline how hypoxia profoundly affects neuronal functionality and thus compromise exercise-performance. METHODS Investigations using electroencephalography (EEG) and transcranial magnetic stimulation (TMS) detecting neuronal changes at rest and those studying fatiguing effects on whole-body exercise performance in acute (AH) and chronic hypoxia (CH) were evaluated. RESULTS At rest during very early hypoxia (<1-h), slowing of cerebral neuronal activity is evident despite no change in corticospinal excitability. As time in hypoxia progresses (3-h), increased corticospinal excitability becomes evident; however, changes in neuronal activity are unknown. Prolonged exposure (3-5 d) causes a respiratory alkalosis which modulates Na+ channels, potentially explaining reduced neuronal excitability. Locomotor exercise in AH exacerbates the development of peripheral-fatigue; as the severity of hypoxia increases, mechanisms of peripheral-fatigue become less dominant and CNS hypoxia becomes the predominant factor. The greatest central-fatigue in AH occurs when SaO2 is ≤75%, a level that coincides with increasing impairments in neuronal activity. CH does not improve the level of peripheral-fatigue observed in AH; however, it attenuates the development of central-fatigue paralleling increases in cerebral O2 availability and corticospinal excitability. CONCLUSIONS The attenuated development of central-fatigue in CH might explain, the improvements in locomotor exercise-performance commonly observed after acclimatisation to high altitude.
Collapse
Affiliation(s)
- Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Rosie Twomey
- School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
44
|
Bogdanova OV, Abdullah O, Kanekar S, Bogdanov VB, Prescot AP, Renshaw PF. Neurochemical alterations in frontal cortex of the rat after one week of hypobaric hypoxia. Behav Brain Res 2014; 263:203-9. [PMID: 24486259 PMCID: PMC4699295 DOI: 10.1016/j.bbr.2014.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/16/2022]
Abstract
Residing at high altitude may lead to reduced blood oxygen saturation in the brain and altered metabolism in frontal cortical brain areas, probably due to chronic hypobaric hypoxia. These changes may underlie the increased rates of depression and suicidal behavior that have been associated with life at higher altitudes. To test the hypothesis that hypobaric hypoxia is responsible for development of mood disorders due to alterations in neurochemistry, we assessed depression-like behavior in parallel to levels of brain metabolites in rats housed at simulated altitude. 32 female Sprague Dawley rats were housed either in a hypobaric hypoxia chamber at 10,000 ft of simulated altitude for 1 week or at local conditions (4500 ft of elevation in Salt Lake City, Utah). Depression-like behavior was assessed using the forced swim test (FST) and levels of neurometabolites were estimated by in vivo proton magnetic resonance spectroscopy in the frontal cortex, the striatum and the hippocampus at baseline and after a week of exposure to hypobaric hypoxia. After hypoxia exposure the animals demonstrated increased immobility behavior and shortened latency to immobility in the FST. Elevated ratios of myo-inositol, glutamate, and the sum of myo-inositol and glycine to total creatine were observed in the frontal cortex of hypoxia treated rats. A decrease in the ratio of alanine to total creatine was also noted. This study shows that hypoxia induced alterations in frontal lobe brain metabolites, aggravated depression-like behavior and might be a factor in increased rates of psychiatric disorders observed in populations living at high altitudes.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA.
| | - Osama Abdullah
- Department of Bioengineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City 84112, UT USA
| | - Shami Kanekar
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; Psychiatry Department, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA
| | - Volodymyr B Bogdanov
- INRA, Nutrition et Neurobiologie Intégrée and University Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 146 rue Léo-Saignat, Bordeaux Cedex 33076, France
| | - Andrew P Prescot
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; Department of Radiology, University of Utah, 30 North 1900 East, Salt Lake City 84132, UT USA
| | - Perry F Renshaw
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; Psychiatry Department, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; VISN19 MIRECC Salt Lake City UAMC, 500 Foothill Drive, Salt Lake City 84148, UT USA
| |
Collapse
|
45
|
Wang Y, Ma H, Fu S, Guo S, Yang X, Luo P, Han B. Long-Term Exposure to High Altitude Affects Voluntary Spatial Attention at Early and Late Processing Stages. Sci Rep 2014. [DOI: 10.1038/srep04443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
46
|
Caffrey D, Miranda JJ, Gilman RH, Davila-Roman VG, Cabrera L, Dowling R, Stewart T, Bernabe-Ortiz A, Wise R, Leon-Velarde F, Checkley W. A cross-sectional study of differences in 6-min walk distance in healthy adults residing at high altitude versus sea level. EXTREME PHYSIOLOGY & MEDICINE 2014; 3:3. [PMID: 24484777 PMCID: PMC3909455 DOI: 10.1186/2046-7648-3-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/10/2014] [Indexed: 01/08/2023]
Abstract
Background We sought to determine if adult residents living at high altitude have developed sufficient adaptation to a hypoxic environment to match the functional capacity of a similar population at sea level. To test this hypothesis, we compared the 6-min walk test distance (6MWD) in 334 residents living at sea level vs. at high altitude. Methods We enrolled 168 healthy adults aged ≥35 years residing at sea level in Lima and 166 individuals residing at 3,825 m above sea level in Puno, Peru. Participants completed a 6-min walk test, answered a sociodemographics and clinical questionnaire, underwent spirometry, and a blood test. Results Average age was 54.0 vs. 53.8 years, 48% vs. 43% were male, average height was 155 vs. 158 cm, average blood oxygen saturation was 98% vs. 90%, and average resting heart rate was 67 vs. 72 beats/min in Lima vs. Puno. In multivariable regression, participants in Puno walked 47.6 m less (95% CI -81.7 to -13.6 m; p < 0.01) than those in Lima. Other variables besides age and height that were associated with 6MWD include change in heart rate (4.0 m per beats/min increase above resting heart rate; p < 0.001) and percent body fat (-1.4 m per % increase; p = 0.02). Conclusions The 6-min walk test predicted a lowered functional capacity among Andean high altitude vs. sea level natives at their altitude of residence, which could be explained by an incomplete adaptation or a protective mechanism favoring neuro- and cardioprotection over psychomotor activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, 1800 Orleans St, Suite 9121, Baltimore, MD 21205, USA.
| | | |
Collapse
|
47
|
Zhang J, Zhang H, Li J, Chen J, Han Q, Lin J, Yang T, Fan M. Adaptive modulation of adult brain gray and white matter to high altitude: structural MRI studies. PLoS One 2013; 8:e68621. [PMID: 23874692 PMCID: PMC3712920 DOI: 10.1371/journal.pone.0068621] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/31/2013] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to investigate brain structural alterations in adult immigrants who adapted to high altitude (HA). Voxel-based morphometry analysis of gray matter (GM) volumes, surface-based analysis of cortical thickness, and Tract-Based Spatial Statistics analysis of white matter fractional anisotropy (FA) based on MRI images were conducted on 16 adults (20-22 years) who immigrated to the Qinghai-Tibet Plateau (2300-4400 m) for 2 years. They had no chronic mountain sickness. Control group consisted of 16 matched sea level subjects. A battery of neuropsychological tests was also conducted. HA immigrants showed significantly decreased GM volumes in the right postcentral gyrus and right superior frontal gyrus, and increased GM volumes in the right middle frontal gyrus, right parahippocampal gyrus, right inferior and middle temporal gyri, bilateral inferior ventral pons, and right cerebellum crus1. While there was some divergence in the left hemisphere, surface-based patterns of GM changes in the right hemisphere resembled those seen for VBM analysis. FA changes were observed in multiple WM tracts. HA immigrants showed significant impairment in pulmonary function, increase in reaction time, and deficit in mental rotation. Parahippocampal and middle frontal GM volumes correlated with vital capacity. Superior frontal GM volume correlated with mental rotation and postcentral GM correlated with reaction time. Paracentral lobule and frontal FA correlated with mental rotation reaction time. There might be structural modifications occurred in the adult immigrants during adaptation to HA. The changes in GM may be related to impaired respiratory function and psychological deficits.
Collapse
Affiliation(s)
- Jiaxing Zhang
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen, Fujian, China.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang J, Zhang H, Chen J, Fan M, Gong Q. Structural modulation of brain development by oxygen: evidence on adolescents migrating from high altitude to sea level environment. PLoS One 2013; 8:e67803. [PMID: 23874449 PMCID: PMC3706444 DOI: 10.1371/journal.pone.0067803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 05/27/2013] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate structural modulation of brain by high level of oxygen during its peak period of development. Voxel-based morphometry analysis of gray matter (GM) and white matter (WM) volumes and Tract-Based Spatial Statistics analysis of WM fractional anisotropy (FA) and mean diffusion (MD) based on MRI images were carried out on 21 Tibetan adolencents (15-18 years), who were born and raised in Qinghai-Tibetan Plateau (2900-4700 m) and have lived at sea level (SL) in the last 4 years. The control group consisted of matched Tibetan adolescents born and raised at high altitude all the time. SL immigrants had increased GM volume in the left insula, left inferior parietal gyrus, and right superior parietal gyrus and decreased GM in the left precentral cortex and multiple sites in cerebellar cortex (left lobule 8, bilateral lobule 6 and crus 1/2). Decreased WM volume was found in the right superior frontal gyrus in SL immigrants. SL immigrants had higher FA and lower MD at multiple sites of WM tracts. Moreover, we detected changes in ventilation and circulation. GM volume in cerebellum lobule 8 positively correlated with diastolic pressure, while GM volume in insula positively correlated vital capacity and hypoxic ventilatory response. Our finding indicate that the structural modulations of GM by high level of oxygen during its peak period of development are related to respiratory and circulatory regulations, while the modulation in WM mainly exhibits an enhancement in myelin maturation.
Collapse
Affiliation(s)
- Jiaxing Zhang
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen, China
| | - Haiyan Zhang
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen, China
- Department of Physiology, Weifang Nursing Vocational College, Weifang, China
| | - Ji Chen
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, China
| | - Qiyong Gong
- Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Zhou D, Haddad GG. Genetic analysis of hypoxia tolerance and susceptibility in Drosophila and humans. Annu Rev Genomics Hum Genet 2013; 14:25-43. [PMID: 23808366 DOI: 10.1146/annurev-genom-091212-153439] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxygen is essential for metazoans' life on earth. Oxygen deprivation, or hypoxia, contributes significantly to the pathophysiology of many human diseases. A better understanding of the fundamental molecular and genetic basis for adaptation to low-oxygen environments will help us develop therapeutic strategies to prevent or treat diseases that have hypoxia as a major part of their pathogenesis. Different cells and organisms have evolved different ways to cope with this life-threatening challenge, and the molecular and genetic mechanisms remain largely unknown. The current revolution of genomic technology has advanced our understanding of the genetic basis of many diseases and conditions, including hypoxia tolerance and susceptibility. In this review, we highlight the progress made in understanding the molecular responses to hypoxia in an animal model organism (Drosophila melanogaster) and genetic adaptation to high-altitude hypoxia in humans.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pediatrics (Division of Respiratory Medicine) and
| | | |
Collapse
|
50
|
Smith ZM, Krizay E, Guo J, Shin DD, Scadeng M, Dubowitz DJ. Sustained high-altitude hypoxia increases cerebral oxygen metabolism. J Appl Physiol (1985) 2012; 114:11-8. [PMID: 23019310 DOI: 10.1152/japplphysiol.00703.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute mountain sickness (AMS) is a common condition occurring within hours of rapid exposure to high altitude. Despite its frequent occurrence, the pathophysiological mechanisms that underlie the condition remain poorly understood. We investigated the role of cerebral oxygen metabolism (CMR(O(2))) in AMS. The purpose of this study was to test 1) if CMR(O(2)) changes in response to hypoxia, and 2) if there is a difference in how individuals adapt to oxygen metabolic changes that may determine who develops AMS and who does not. Twenty-six normal human subjects were recruited into two groups based on Lake Louise AMS score (LLS): those with no AMS (LLS ≤ 2), and those with unambiguous AMS (LLS ≥ 5). [Subjects with intermediate scores (LLS 3-4) were not included.] CMR(O(2)) was calculated from cerebral blood flow and arterial-venous difference in O(2) content. Cerebral blood flow was measured using arterial spin labeling MRI; venous O(2) saturation was calculated from the MRI of transverse relaxation in the superior sagittal sinus. Arterial O(2) saturation was measured via pulse oximeter. Measurements were made during normoxia and after 2-day high-altitude exposure at 3,800 m. In all subjects, CMR(O(2)) increased with sustained high-altitude hypoxia [1.54 (0.37) to 1.82 (0.49) μmol·g(-1)·min(-1), n = 26, P = 0.045]. There was no significant difference in CMR(O(2)) between AMS and no-AMS groups. End-tidal Pco(2) was significantly reduced during hypoxia. Low arterial Pco(2) is known to increase neural excitability, and we hypothesize that the low arterial Pco(2) resulting from ventilatory acclimatization causes the observed increase in CMR(O(2)).
Collapse
Affiliation(s)
- Zachary M Smith
- Center for Functional MRI, Department of Radiology, University of California San Diego, San Diego, California, USA
| | | | | | | | | | | |
Collapse
|