1
|
Ciryam P, Gerzanich V, Simard JM. Interleukin-6 in Traumatic Brain Injury: A Janus-Faced Player in Damage and Repair. J Neurotrauma 2023; 40:2249-2269. [PMID: 37166354 PMCID: PMC10649197 DOI: 10.1089/neu.2023.0135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and often devastating illness, with wide-ranging public health implications. In addition to the primary injury, victims of TBI are at risk for secondary neurological injury by numerous mechanisms. Current treatments are limited and do not target the profound immune response associated with injury. This immune response reflects a convergence of peripheral and central nervous system-resident immune cells whose interaction is mediated in part by a disruption in the blood-brain barrier (BBB). The diverse family of cytokines helps to govern this communication and among these, Interleukin (IL)-6 is a notable player in the immune response to acute neurological injury. It is also a well-established pharmacological target in a variety of other disease contexts. In TBI, elevated IL-6 levels are associated with worse outcomes, but the role of IL-6 in response to injury is double-edged. IL-6 promotes neurogenesis and wound healing in animal models of TBI, but it may also contribute to disruptions in the BBB and the progression of cerebral edema. Here, we review IL-6 biology in the context of TBI, with an eye to clarifying its controversial role and understanding its potential as a target for modulating the immune response in this disease.
Collapse
Affiliation(s)
- Prajwal Ciryam
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Guo X, Liu R, Jia M, Wang Q, Wu J. Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism. Neurochem Res 2023:10.1007/s11064-023-03923-x. [PMID: 37017889 DOI: 10.1007/s11064-023-03923-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Stroke is characterized by the abrupt failure of blood flow to a specific brain region, resulting in insufficient supply of oxygen and glucose to the ischemic tissues. Timely reperfusion of blood flow can rescue dying tissue but can also lead to secondary damage to both the infarcted tissues and the blood-brain barrier, known as ischemia/reperfusion injury. Both primary and secondary damage result in biphasic opening of the blood-brain barrier, leading to blood-brain barrier dysfunction and vasogenic edema. Importantly, blood-brain barrier dysfunction, inflammation, and microglial activation are critical factors that worsen stroke outcomes. Activated microglia secrete numerous cytokines, chemokines, and inflammatory factors during neuroinflammation, contributing to the second opening of the blood-brain barrier and worsening the outcome of ischemic stroke. TNF-α, IL-1β, IL-6, and other microglia-derived molecules have been shown to be involved in the breakdown of blood-brain barrier. Additionally, other non-microglia-derived molecules such as RNA, HSPs, and transporter proteins also participate in the blood-brain barrier breakdown process after ischemic stroke, either in the primary damage stage directly influencing tight junction proteins and endothelial cells, or in the secondary damage stage participating in the following neuroinflammation. This review summarizes the cellular and molecular components of the blood-brain barrier and concludes the association of microglia-derived and non-microglia-derived molecules with blood-brain barrier dysfunction and its underlying mechanisms.
Collapse
Affiliation(s)
- Xi Guo
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Ru Liu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China.
| |
Collapse
|
3
|
Association of Platelet-to-Lymphocyte Ratio with Stroke-Associated Pneumonia in Acute Ischemic Stroke. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1033332. [PMID: 35340256 PMCID: PMC8956427 DOI: 10.1155/2022/1033332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
Abstract
A common consequence of acute ischemic stroke (AIS), stroke-associated pneumonia (SAP), might result in a poor prognosis after stroke. Based on the critical position of inflammation in SAP, this study aimed to explore the correlation between platelet-to-lymphocyte ratio (PLR) and the occurrence of SAP. We included 295 patients with acute ischemic stroke, 40 with SAP, and 255 without SAP. The area under the receiver operating characteristic curve was used to determine the diagnostic value of SAP risk factors using binary logistic regression analysis. The comparison between the two groups showed that age, the baseline National Institutes of Health Stroke Scale (NIHSS) score, and the proportion of dysphagia, atrial fibrillation, and total anterior circulation infarct were higher, and the proportion of lacunar circulation infarct was lower in the SAP group (P < 0.001). In terms of laboratory data, the SAP group had considerably greater neutrophil counts and PLR, while the non-SAP group (P < 0.001) had significantly lower lymphocyte counts and triglycerides. Binary logistic regression analysis revealed that older age (aOR = 1.062, 95% CI: 1.023–1.102, P = 0.002), atrial fibrillation (aOR = 3.585, 95% CI: 1.605–8.007, P = 0.019), and PLR (aOR = 1.003, 95% CI: 1.001–1.006, P = 0.020) were independent risk factors associated with SAP after adjusting for potential confounders. The sensitivity and specificity of PLR with a cutoff value of 152.22 (AUC: 0.663, 95% CI: 0.606–0.717, P = 0.0006) were 57.5% and 70.6%, respectively. This study showed that high PLR is an associated factor for SAP in AIS patients. Increased systemic inflammation is linked to SAP in ischemic stroke. Inflammatory biomarkers that are easily accessible may aid in the diagnosis of high-risk SAP patients.
Collapse
|
4
|
Zhang B, Yin X, Lang Y, Han X, Shao J, Bai R, Cui L. Role of cellular prion protein in splenic CD4 + T cell differentiation in cerebral ischaemic/reperfusion. Ann Clin Transl Neurol 2021; 8:2040-2051. [PMID: 34524735 PMCID: PMC8528449 DOI: 10.1002/acn3.51453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/25/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Cellular prion protein (PrPC), the primary form of prion diseases pathogen, has received increasing attention for its protective effect against ischaemic stroke. Little is known about its role in peripheral immune responses after cerebral ischaemia/reperfusion (I/R) injury. This study is to detect the variation of splenic CD4+ T lymphocytes differentiation and the concentration of inflammatory cytokines after murine cerebral I/R injury in the context of PRNP expression as well as its influence on the ischaemic neuronal apoptosis. Methods We established the cerebral ischaemic murine model of different PRNP genotypes. We detected the percentage of splenic CD4+PrPC+ T cells of PRNP wild‐type mice and the ratio of splenic Th1/2/17 lymphocytes of mice of different PRNP expression. The relevant inflammatory cytokines were then measured. Oxygen glucose deprivation/reperfusion (OGD/R) HT22 mouse hippocampal neurons were co‐cultured with the T‐cell‐conditioned medium harvested from the spleen of modelled mice and then the neuronal apoptosis was detected. Results CD4+ PrPC+ T lymphocytes in wild‐type mice elevated after MCAO/R. PRNP expression deficiency led to an elevation of Th1/17 phenotypes and the promotion of pro‐inflammatory cytokines, while PRNP overexpression led to the elevation of Th2 phenotype and upregulation of anti‐inflammatory cytokines. In addition, PrPC‐overexpressed CD4+T cells weakened the apoptosis of OGD/R HT‐22 murine hippocampal neurons caused by MCAO/R CD4+ T‐cell‐conditioned medium, while PrPC deficiency enhanced apoptosis. Interpretation PrPC works as a neuron protector in the CNS when I/R injury occurs and affects the peripheral immune responses and defends against stroke‐induced neuronal apoptosis.
Collapse
Affiliation(s)
- Baizhuo Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaoou Han
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Rongrong Bai
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
5
|
Van Zanden JE, 't Hart NA, Ottens PJ, Liu B, Rebolledo RA, Erasmus ME, Leuvenink HGD. Methylprednisolone Treatment in Brain Death-Induced Lung Inflammation-A Dose Comparative Study in Rats. Front Pharmacol 2021; 12:587003. [PMID: 33692687 PMCID: PMC7937885 DOI: 10.3389/fphar.2021.587003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The process of brain death (BD) leads to a pro-inflammatory state of the donor lung, which deteriorates its quality. In an attempt to preserve lung quality, methylprednisolone is widely recommended in donor lung management. However, clinical treatment doses vary and the dose-effect relation of methylprednisolone on BD-induced lung inflammation remains unknown. The aim of this study was to investigate the effect of three different doses methylprednisolone on the BD-induced inflammatory response. Methods: BD was induced in rats by inflation of a Fogarty balloon catheter in the epidural space. After 60 min of BD, saline or methylprednisolone (low dose (5 mg/kg), intermediate dose (12.5 mg/kg) or high dose (22.5 mg/kg)) was administered intravenously. The lungs were procured and processed after 4 h of BD. Inflammatory gene expressions were analyzed by RT-qPCR and influx of neutrophils and macrophages were quantified with immunohistochemical staining. Results: Methylprednisolone treatment reduced neutrophil chemotaxis as demonstrated by lower IL-8-like CINC-1 and E-selectin levels, which was most evident in rats treated with intermediate and high doses methylprednisolone. Macrophage chemotaxis was attenuated in all methylprednisolone treated rats, as corroborated by lower MCP-1 levels compared to saline treated rats. Thereby, all doses methylprednisolone reduced TNF-α, IL-6 and IL-1β tissue levels. In addition, intermediate and high doses methylprednisolone induced a protective anti-inflammatory response, as reflected by upregulated IL-10 expression when compared to saline treated brain-dead rats. Conclusion: We showed that intermediate and high doses methylprednisolone share most potential to target BD-induced lung inflammation in rats. Considering possible side effects of high doses methylprednisolone, we conclude from this study that an intermediate dose of 12.5 mg/kg methylprednisolone is the optimal treatment dose for BD-induced lung inflammation in rats, which reduces the pro-inflammatory state and additionally promotes a protective, anti-inflammatory response.
Collapse
Affiliation(s)
- Judith E Van Zanden
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nils A 't Hart
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Petra J Ottens
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bo Liu
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Rolando A Rebolledo
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Institute for Medical and Biological Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michiel E Erasmus
- Department of cardiothoracic surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Aliena-Valero A, Rius-Pérez S, Baixauli-Martín J, Torregrosa G, Chamorro Á, Pérez S, Salom JB. Uric Acid Neuroprotection Associated to IL-6/STAT3 Signaling Pathway Activation in Rat Ischemic Stroke. Mol Neurobiol 2021; 58:408-423. [PMID: 32959172 DOI: 10.1007/s12035-020-02115-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
Despite the promising neuroprotective effects of uric acid (UA) in acute ischemic stroke, the seemingly pleiotropic underlying mechanisms are not completely understood. Recent evidence points to transcription factors as UA targets. To gain insight into the UA mechanism of action, we investigated its effects on pertinent biomarkers for the most relevant features of ischemic stroke pathophysiology: (1) oxidative stress (antioxidant enzyme mRNAs and MDA), (2) neuroinflammation (cytokine and Socs3 mRNAs, STAT3, NF-κB p65, and reactive microglia), (3) brain swelling (Vegfa, Mmp9, and Timp1 mRNAs), and (4) apoptotic cell death (Bcl-2, Bax, caspase-3, and TUNEL-positive cells). Adult male Wistar rats underwent intraluminal filament transient middle cerebral artery occlusion (tMCAO) and received UA (16 mg/kg) or vehicle (Locke's buffer) i.v. at 20 min reperfusion. The outcome measures were neurofunctional deficit, infarct, and edema. UA treatment reduced cortical infarct and brain edema, as well as neurofunctional impairment. In brain cortex, increased UA: (1) reduced tMCAO-induced increases in Vegfa and Mmp9/Timp1 ratio expressions; (2) induced Sod2 and Cat expressions and reduced MDA levels; (3) induced Il6 expression, upregulated STAT3 and NF-κB p65 phosphorylation, induced Socs3 expression, and inhibited microglia activation; and (4) ameliorated the Bax/Bcl-2 ratio and induced a reduction in caspase-3 cleavage as well as in TUNEL-positive cell counts. In conclusion, the mechanism for morphological and functional neuroprotection by UA in ischemic stroke is multifaceted, since it is associated to activation of the IL-6/STAT3 pathway, attenuation of edematogenic VEGF-A/MMP-9 signaling, and modulation of relevant mediators of oxidative stress, neuroinflammation, and apoptotic cell death.
Collapse
Affiliation(s)
- Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universitat de València, Torre A, Lab 5.05, Ave Fernando Abril Martorell 106, 46026, Valencia, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universitat de València, Ave Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Sergio Rius-Pérez
- Departamento de Fisiología, Facultad de Farmacia, Universitat de València, Ave Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Júlia Baixauli-Martín
- Departamento de Fisiología, Facultad de Farmacia, Universitat de València, Ave Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Germán Torregrosa
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universitat de València, Torre A, Lab 5.05, Ave Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Ángel Chamorro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departamento de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Pérez
- Departamento de Fisiología, Facultad de Farmacia, Universitat de València, Ave Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain.
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universitat de València, Torre A, Lab 5.05, Ave Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Departamento de Fisiología, Facultad de Farmacia, Universitat de València, Ave Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain.
| |
Collapse
|
7
|
Chong JY, Ahn HJ, Park JS, You Y, Min JH, Jeong W, Cho Y, Cho SU, Oh SK, Kang CS, Lee J. Interleukin-6 as a Potential Predictor of Neurologic Outcomes in Cardiac Arrest Survivors Who Underwent Target Temperature Management. J Emerg Med 2020; 59:828-835. [PMID: 33059990 DOI: 10.1016/j.jemermed.2020.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/28/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Serum interleukin-6 (IL-6) is a cytokine released in response to an inflammatory stimulus or tissue injury. IL-6 levels are known to increase in patients with brain injury. OBJECTIVE We investigated the neurologic outcomes associated with serum IL-6 levels in out-of-hospital cardiac arrest (OHCA) survivors who underwent target temperature management (TTM). METHODS This was a prospective single-center observational study from October 2018 to November 2019 in a cohort of 45 patients. Serum inflammatory markers (IL-6, C-reactive protein, white blood cells) were determined in samples obtained immediately and at 24, 48, and 72 h after the return of spontaneous circulation (ROSC). Poor neurologic outcome, defined as Cerebral Performance Category 3-5 at 3 months after cardiac arrest, was the primary outcome. RESULTS Among 45 patients enrolled in this study, 25 (55.6%) patients showed a poor neurologic outcome. IL-6 levels were significantly higher in the poor neurologic outcome group immediately (IL-60) after ROSC. The area under the curve (AUC) value of IL-60 was the highest among those of serum IL-6, CRP, and WBC at each time point. The IL-6 levels for predicting poor neurologic outcome had a sensitivity of 75.0%, with 80% specificity at IL-60. The AUC of IL-60 was 0.810 (95% confidence interval 0.664-0.913), with a cutoff value of 346.7 pg mL-1. CONCLUSIONS Serum IL-6 level immediately after ROSC was a highly specific and sensitive marker for the 3-month poor neurologic outcome, and may be a useful early predictive marker of neurologic outcome in OHCA survivors treated with TTM.
Collapse
Affiliation(s)
- Jun Young Chong
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Hong Joon Ahn
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jung Soo Park
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yeonho You
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Hong Min
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Wonjoon Jeong
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Yongchul Cho
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Sung Uk Cho
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Se Kwang Oh
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Chang Shin Kang
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jaekwang Lee
- Department of Emergency Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Abstract
Stroke is the second most common cause of death and the leading cause of disability worldwide. Brain injury following stroke results from a complex series of pathophysiological events including excitotoxicity, oxidative and nitrative stress, inflammation, and apoptosis. Moreover, there is a mechanistic link between brain ischemia, innate and adaptive immune cells, intracranial atherosclerosis, and also the gut microbiota in modifying the cerebral responses to ischemic insult. There are very few treatments for stroke injuries, partly owing to an incomplete understanding of the diverse cellular and molecular changes that occur following ischemic stroke and that are responsible for neuronal death. Experimental discoveries have begun to define the cellular and molecular mechanisms involved in stroke injury, leading to the development of numerous agents that target various injury pathways. In the present article, we review the underlying pathophysiology of ischemic stroke and reveal the intertwined pathways that are promising therapeutic targets.
Collapse
|
9
|
Abstract
Global and focal ischemias induce a variety of gene families, including immediate early genes, cytokines, neurotransmitter receptors, and heat-shock proteins. The Janus-like effects of several of these gene prod ucts promote neuronal survival and degeneration. Therefore, determining the molecular pathways respon sible for the differential regulation of these genes is of paramount importance. The discovery of apoptosis as a mediator of delayed neuronal death has led to the identification of a number of other genes involved in postischemic brain damage. Future neuroprotective therapies for cerebral ischemia may be directed at preventing alterations in gene expression. NEUROSCIENTIST 5:238-253, 1999
Collapse
Affiliation(s)
- Sean I. Savitz
- Department of Neurology, Neuroscience, Albert Einstein
College of Medicine Bronx, New York
| | - Daniel M. Rosenbaum
- Department of Neurology, Neuroscience and Ophthalmology
Albert Einstein College of Medicine Bronx, New York
| |
Collapse
|
10
|
Doll D, Barr TL, Simpkins JW. Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis 2014; 5:294-306. [PMID: 25276489 DOI: 10.14336/ad.2014.0500294] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/30/2022] Open
Abstract
Inflammatory mechanisms both in the periphery and in the CNS are important in the pathophysiologic processes occurring after the onset of ischemic stroke (IS). Cytokines are key players in the inflammatory mechanism and contribute to the progression of ischemic damage. This literature review focuses on the effects of inflammation on ischemic stroke, and the role pro-inflammatory and anti-inflammatory cytokines play on deleterious or beneficial stroke outcome. The discovery of biomarkers and novel therapeutics for stroke has been the focus of extensive research recently; thus, understanding the roles of pro-inflammatory and anti-inflammatory cytokines that are up-regulated during stroke will help us further understand how inflammation contributes to the progression of ischemic damage and provide potential targets for novel therapeutics and biomarkers for diagnosis and prognosis of stroke.
Collapse
Affiliation(s)
| | - Taura L Barr
- School of Nursing, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA ; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA ; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| |
Collapse
|
11
|
Famakin BM. The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review. Aging Dis 2014; 5:307-26. [PMID: 25276490 DOI: 10.14336/ad.2014.0500307] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke.
Collapse
Affiliation(s)
- Bolanle M Famakin
- National Institutes of Health, National Institute of Neurological Diseases and Stroke, Stroke Branch, Branch, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Chatzipanteli K, Vitarbo E, Alonso OF, Bramlett HM, Dietrich WD. Temporal profile of cerebrospinal fluid, plasma, and brain interleukin-6 after normothermic fluid-percussion brain injury: effect of secondary hypoxia. Ther Hypothermia Temp Manag 2014; 2:167-75. [PMID: 23667780 DOI: 10.1089/ther.2012.0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that may play multiple roles in the pathogenesis of traumatic brain injury (TBI). The present study determined time-dependent changes in IL-6 concentrations in vulnerable brain regions, cerebrospinal fluid (CSF) samples, and plasma after normothermic TBI. Because secondary insults are common in head injured patients, we also assessed the consequences of a post-traumatic secondary hypoxic insult on this pleiotropic cytokine. Male Sprague-Dawley rats were intubated, anesthetized, and underwent a moderate parasagittal fluid-percussion brain injury (1.8-2.1 atm, 37°C) followed by either 30 minutes of normoxic or hypoxic (pO₂ = 30-40 mmHg) gas levels. Rats were sacrificed 3, 6, or 24 hours after TBI or shamoperated procedures. Brain samples, including the ipsilateral cerebral cortex and hippocampus were dissected and analyzed. Plasma and CSF samples were collected at similar times and stored at -80°C until analysis. IL-6 levels were significantly increased ( p < 0.05) at 3, 6, and 24 hours in the cerebral cortex and at 6 hours in the hippocampus after TBI. IL-6 levels in the TBI normoxic group for both structures returned to control levels by 24 hours. Plasma levels of IL-6 were elevated at all time points, while CSF levels were high at 3 and 6 hours, but normalized by 24 hours. Post-traumatic hypoxia led to significantly elevated ( p < 0.05) IL-6 protein levels in the cerebral cortex at 24 hours compared to sham-operated controls. These findings demonstrate that moderate TBI leads to an early increase in IL-6 brain, plasma, and CSF protein levels. Secondary post-traumatic hypoxia, a common secondary injury mechanism, led to prolonged elevations in plasma IL-6 levels that may participate in the pathophysiology of this complicated TBI model.
Collapse
|
13
|
Expression analysis following argon treatment in an in vivo model of transient middle cerebral artery occlusion in rats. Med Gas Res 2014; 4:11. [PMID: 25671080 PMCID: PMC4322493 DOI: 10.1186/2045-9912-4-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/29/2014] [Indexed: 01/02/2023] Open
Abstract
Background Argon treatment following experimental neurotrauma has been found neuroprotective in an array of in vivo and in vitro models. The inherent cellular and molecular mechanisms are still unknown. We seeked to shed light on these processes by examinig the cellular distribution and the expression of inflammatory markers and growth factors in argon treated brain tissue. Methods Male adult Sprague-Dawley rats were randomly assigned to one of the study groups: sham surgery + placebo, sham surgery + argon, tMCAO + placebo, and tMCAO + argon. Animals underwent 2 h-transient middle cerebral artery occlusion (tMCAO) using the endoluminal thread model or sham surgery without tMCAO. After the first hour of tMCAO or sham surgery a 1 h inhalative argon (50% argon/50% O2) or placebo (50% N2/50% O2) treatment was performed. Brains were removed and evaluated after 24 h. RealTime-PCR was performed from biopsies of the penumbra and contralateral corresponding regions. Paraffin sections were immunostained with antibodies against GFAP, NeuN, and Iba1. Cell counts of astrocytes, neurons and microglia in different cortical regions were performed in a double-blinded manner. Results Fifteen animals per tMCAO group and twelve sham + placebo respectively eleven sham + argon animals completed the interventional procedure. We identified several genes (IL-1β, IL-6, iNOS, TGF-β, and NGF) whose transcription was elevated 24 h after the study intervention, and whose expression levels significantly differed between argon treatment and placebo following tMCAO. Except for the core region of ischemia, cell numbers were comparable between different treatment groups. Conclusion In our study, we found an elevated expression of several inflammatory markers and growth factors following tMCAO + argon compared to tMCAO + placebo. Although conflicting the previously described neuroprotective effects of argon following experimental ischemia, these findings might still be associated with each other. Further studies will have to evaluate their relevance and potential relationship.
Collapse
|
14
|
LEÓN R, PAVÓN N, PENTÓN G, ALMAGUER W, MARÍN J, CRUZ A, LORIGADOS L, BLANCO L, ESTUPIÑÁN B, MERCERON D, MACÍAS L, BERGADO J. Experimental Model of Cerebral Hypoperfusion Produced Memory-learning Deficits, and Modifications in Gene Expression. ACTA BIOLÓGICA COLOMBIANA 2014. [DOI: 10.15446/abc.v20n1.40976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
Isoquercetin protects cortical neurons from oxygen-glucose deprivation-reperfusion induced injury via suppression of TLR4-NF-кB signal pathway. Neurochem Int 2013; 63:741-9. [PMID: 24099731 DOI: 10.1016/j.neuint.2013.09.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 09/10/2013] [Accepted: 09/22/2013] [Indexed: 12/29/2022]
Abstract
In the present study, oxygen-glucose deprivation followed by reperfusion (OGD/R), an in vitro model of ischemia, was used to evaluate the neuroprotective effect of isoquercetin in primary culture of rat cortical neuronal cells. It was found that isoquercetin administered prior to the insult could prevent OGD/R-induced intracellular calcium concentrations ([Ca(2+)]i) increase, lactate dehydrogenase (LDH) release and cell viability decrease. For the first time, isoquercetin is described as a neuroprotective agent that potentially explains the alleviation and prevention from OGD/R-induced injury in neurons. Mechanistic studies showed that the neuroprotective effect of isoquercetin was carried out by anti-inflammatory signaling pathway of inhibiting protein expression of toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB), and mRNA expression of TNF-α and IL-6, accompanied by the anti-apoptotic signaling pathway of deactivation of extracellular-regulated kinase (ERK), Jun kinase (JNK) and p38, and inhibition of activity of caspase-3. Therefore, these studies highlighted the confirmation of isoquercetin, a flavonoid compound, as an anti-inflammation and anti-apoptosis factor which might be used as a therapeutic strategy for the ischemia/reperfusion (I/R) brain injury and related diseases.
Collapse
|
16
|
Dacho AK, Dietz A, Mueller K. Histological effect on the adipocutaneous flap in rats after preconditioning with 2-chloro-N(6) -cyclopentyladenosine. Head Neck 2013; 36:1189-99. [PMID: 23893540 DOI: 10.1002/hed.23433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/03/2013] [Accepted: 07/04/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND 2-chloro-N(6) -cyclopentyladenosine (CCPA) was proven to be a protective factor in ischemic reperfusion injury. The purpose of this study was to determine how CCPA would affect the single tissue layers of the adipocutaneous flap. METHODS Seventy male Wistar rats were divided into 5 experimental groups. Samples were taken of the area of flap necrosis and the wound margin after classical or pharmacological preconditioning on the fifth postoperative day. All samples were fixed in formaldehyde, embedded in paraplast, and analyzed in 3- to 4-μm sections (hemalaun-eosin stain and light microscopy). RESULTS In general, wound healing was alike and remained unaffected by the experimental design. The most sensitive part of the flap during preconditioning is the subcutis. The number of neutrophils and of plasma cells is reduced significantly (p < .05). CONCLUSION CCPA has an effect on each tissue layer of the flap. Subcutis became apparent as the most sensitive layer. CCPA influences complement pathway and neutrophils directly and indirectly.
Collapse
Affiliation(s)
- Andreas K Dacho
- Department of Plastic Surgery, St. Josef Medical Center, Essen, Germany
| | | | | |
Collapse
|
17
|
Tuna M, Yılmaz DM, Erman T, Arslan A, Özgür H, Polat S. Effect of neutralization of rat interleukin 6 bioactivity on inducible nitric oxide synthase up-regulation and cerebral ischemic damage. Neurol Res 2013; 31:714-20. [DOI: 10.1179/174313209x380892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Yang L, Zhang Z, Sun D, Xu Z, Zhang X, Li L. The serum interleukin-18 is a potential marker for development of post-stroke depression. Neurol Res 2013; 32:340-6. [DOI: 10.1179/016164110x12656393665080] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Clark WM, Beamer NB, Wynn M, Coull BM. The initial acute phase response predicts long-term stroke recovery. J Stroke Cerebrovasc Dis 2012; 7:128-31. [PMID: 17895069 DOI: 10.1016/s1052-3057(98)80139-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1997] [Accepted: 09/25/1997] [Indexed: 01/17/2023] Open
Abstract
Indicators of an acute phase response (APR) in acute ischemic stroke have been shown to correlate with infarct size and predict stroke recurrence. In this study, we examined how well the APR indicators predicted long-term stroke recovery compared with standard clinical predictors of recovery. Plasma levels of interleukin-6 (IL-6), fibrinogen, white blood cells (WBCs), and serum albumin were measured within 4+/-2 days of onset in 131 stroke patients who were free of apparent infections. Standard clinical predictors included initial National Institutes of Health Stroke Scale (NIHSS), infarct size on computed tomography (CT), and Glasgow scale. The individual correlations with 6-month Glasgow outcome were IL-6, 0.42; fibrinogen, 0.24; WBC, 0.35; albumin, 0.47; NIHSS, 0.53; infarct size, 0.19; and initial Glasgow, 0.57. (all P<.005). Multiple regression analysis yielded an adjusted R(2) of .31 for the APR indicators, compared with .38 for the clinical variables. These results indicate that the initial APR is highly correlated with 6-month stroke recovery and that this correlation approaches that observed with standard clinical predictors.
Collapse
|
20
|
Loss of neuron-astroglial interaction rapidly induces protective CNTF expression after stroke in mice. J Neurosci 2012; 32:9277-87. [PMID: 22764235 DOI: 10.1523/jneurosci.1746-12.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a potent neural cytokine with very low expression in the CNS, predominantly by astrocytes. CNTF increases rapidly and greatly following traumatic or ischemic injury. Understanding the underlying mechanisms would help to design pharmacological treatments to increase endogenous CNTF levels for neuroprotection. Here, we show that astroglial CNTF expression in the adult mouse striatum is increased twofold within 1 h and increases up to >30-fold over 2 weeks following a focal stroke caused by a transient middle cerebral artery occlusion (MCAO). Selective neuronal loss caused by intrastriatal injection of quinolinic acid resulted in a comparable increase. Cocultured neurons reduced CNTF expression in astrocytes, which was prevented by light trypsinization. RGD (arginine-glycine-aspartic acid) blocking peptides induced CNTF expression, which was dependent on transcription. Astroglial CNTF expression was not affected by diffusible neuronal molecules or by neurotransmitters. The transient ischemia does not seem to directly increase CNTF, as intrastriatal injection of an ischemic solution or exposure of naive mice or cultured cells to severe hypoxia had minimal effects. Inflammatory mechanisms were probably also not involved, as intrastriatal injection of proinflammatory cytokines (IFNγ, IL6) in naive mice had no or small effects, and anti-inflammatory treatments did not diminish the increase in CNTF after MCAO. CNTF-/- mice had more extensive tissue loss and similar astrocyte activation after MCAO than their wild-type littermates. These data suggest that contact-mediated integrin signaling between neurons and astrocytes normally represses CNTF expression and that neuronal dysfunction causes a rapid protective response by the CNS.
Collapse
|
21
|
Abstract
Inflammation is a hallmark of stroke pathology. The cytokines, tumor necrosis factor (TNF), interleukin (IL)-1, and IL-6, modulate tissue injury in experimental stroke and are therefore potential targets in future stroke therapy. The effect of these cytokines on infarct evolution depends on their availability in the ischemic penumbra in the early phase after stroke onset, corresponding to the therapeutic window (<4.5 hours), which is similar in human and experimental stroke. This review summarizes a large body of literature on the spatiotemporal and cellular production of TNF, IL-1, and IL-6, focusing on the early phase in experimental and human stroke. We also review studies of cytokines in blood and cerebrospinal fluid in stroke. Tumor necrosis factor and IL-1 are upregulated early in peri-infarct microglia. Newer literature suggests that IL-6 is produced by microglia, in addition to neurons. Tumor necrosis factor- and IL-1-producing macrophages infiltrate the infarct and peri-infarct with a delay. This information is discussed in the context of suggestions that neuronal sensitivity to ischemia may be modulated by cytokines. The fact that TNF and IL-1, and suppossedly also IL-6, are produced by microglia within the therapeutic window place these cells centrally in potential future stroke therapy.
Collapse
Affiliation(s)
- Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
22
|
Stress and social isolation increase vulnerability to stroke. Exp Neurol 2012; 233:33-9. [DOI: 10.1016/j.expneurol.2011.01.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 01/24/2011] [Indexed: 01/18/2023]
|
23
|
Ryang YM, Dang J, Kipp M, Petersen KU, Fahlenkamp AV, Gempt J, Wesp D, Rossaint R, Beyer C, Coburn M. Solulin reduces infarct volume and regulates gene-expression in transient middle cerebral artery occlusion in rats. BMC Neurosci 2011; 12:113. [PMID: 22082476 PMCID: PMC3251036 DOI: 10.1186/1471-2202-12-113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/14/2011] [Indexed: 11/18/2022] Open
Abstract
Background Thrombolysis after acute ischemic stroke has only proven to be beneficial in a subset of patients. The soluble recombinant analogue of human thrombomodulin, Solulin, was studied in an in vivo rat model of acute ischemic stroke. Methods Male SD rats were subjected to 2 hrs of transient middle cerebral artery occlusion (tMCAO). Rats treated with Solulin intravenously shortly before reperfusion were compared to rats receiving normal saline i.v. with respect to infarct volumes, neurological deficits and mortality. Gene expression of IL-6, IL-1β, TNF-α, MMP-9, CD11B and GFAP were semiquantitatively analyzed by rtPCR of the penumbra. Results 24 hrs after reperfusion, rats were neurologically tested, euthanized and infarct volumes determined. Solulin significantly reduced mean total (p = 0.001), cortical (p = 0.002), and basal ganglia (p = 0.036) infarct volumes. Hippocampal infarct volumes (p = 0.191) were not significantly affected. Solulin significantly downregulated the expression of IL-1β (79%; p < 0.001), TNF-α (59%; p = 0.001), IL-6 (47%; p = 0.04), and CD11B (49%; p = 0.001) in the infarcted cortex compared to controls. Conclusions Solulin reduced mean total, cortical and basal ganglia infarct volumes and regulated a subset of cytokines and proteases after tMCAO suggesting the potency of this compound for therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Mi Ryang
- Department of Neurosurgery, Klinikum rechts der Isar, Hospital of the Technical University Munich, Ismaningerstr, 22, 81675 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chaung WW, Wu R, Ji Y, Wang Z, Dong W, Cheyuo C, Qi L, Qiang X, Wang H, Wang P. Peripheral administration of human adrenomedullin and its binding protein attenuates stroke-induced apoptosis and brain injury in rats. Mol Med 2011; 17:1075-83. [PMID: 21695352 DOI: 10.2119/molmed.2010.00104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 06/16/2011] [Indexed: 11/06/2022] Open
Abstract
Stroke is a leading cause of death and the primary medical cause of acquired adult disability worldwide. The progressive brain injury after acute stroke is partly mediated by ischemia-elicited inflammatory responses. The vasoactive hormone adrenomedullin (AM), upregulated under various inflammatory conditions, counterbalances inflammatory responses. However, regulation of AM activity in ischemic stroke remains largely unknown. Recent studies have demonstrated the presence of a specific AM binding protein (that is, AMBP-1) in mammalian blood. AMBP-1 potentiates AM biological activities. Using a rat model of focal cerebral ischemia induced by permanent middle cerebral artery occlusion (MCAO), we found that plasma levels of AM increased significantly, whereas plasma levels of AMBP-1 decreased significantly after stroke. When given peripherally early after MCAO, exogenous human AM in combination with human AMBP-1 reduced brain infarct volume 24 and 72 h after MCAO, an effect not observed after the treatment by human AM or human AMBP-1 alone. Furthermore, treatment of human AM/AMBP-1 reduced neuron apoptosis and morphological damage, inhibited neutrophil infiltration in the brain and decreased serum levels of S100B and lactate. Thus, human AM/AMBP-1 has the ability to reduce stroke-induced brain injury in rats. AM/AMBP-1 can be developed as a novel therapeutic agent for patients with ischemic stroke.
Collapse
Affiliation(s)
- Wayne W Chaung
- The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rajput SK, Siddiqui MA, Kumar V, Meena CL, Pant AB, Jain R, Sharma SS. Protective effects of L-pGlu-(2-propyl)-L-His-L-ProNH2, a newer thyrotropin releasing hormone analog in in vitro and in vivo models of cerebral ischemia. Peptides 2011; 32:1225-31. [PMID: 21515320 DOI: 10.1016/j.peptides.2011.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 12/31/2022]
Abstract
In the present study, the newly synthesized TRH analog (L-pGlu-(2-propyl)-L-His-l-ProNH(2); NP-647) was evaluated for its effects in in vitro (oxygen glucose deprivation (OGD)-, glutamate- and H(2)O(2)-induced injury in PC-12 cells) and in vivo (transient global ischemia) models of cerebral ischemic injury. PC-12 cells were subjected to oxygen and glucose deprivation for 6h. Exposure of NP-647 was given before and during OGD. In glutamate and H(2)O(2) induced injury, exposure of NP-647 was given 1, 6 and 24h prior to exposure of glutamate and H(2)O(2) exposure. NP-647, per se found to be non-toxic in 1-100μM concentrations. NP-647 showed protection against OGD at the 1 and 10μM. The concentration-dependent protection was observed in H(2)O(2)- and glutamate-induced cellular injury. In in vivo studies, NP-647 treatment showed protection of hippocampal (CA1) neuronal damage in transient global ischemia in mice and subsequent improvement in memory retention was observed using passive avoidance retention test. Moreover, administration of NP-647 resulted in decrease in inflammatory cytokines TNF-α and IL-6 as well as lipid peroxidation. These results suggest potential of NP-647 in the treatment of cerebral ischemia and its neuroprotective effect may be attributed to reduction of excitotoxicity, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Satyendra Kumar Rajput
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, (Mohali), Punjab 160 062, India
| | | | | | | | | | | | | |
Collapse
|
26
|
Pascoe MC, Crewther SG, Carey LM, Crewther DP. Inflammation and depression: why poststroke depression may be the norm and not the exception. Int J Stroke 2011; 6:128-35. [PMID: 21371275 DOI: 10.1111/j.1747-4949.2010.00565.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ischaemic stroke often precedes the appearance of clinical depression. Poststroke depression in turn influences the prognostic outcome. In the interest of advancing our understanding of the biological mechanisms underlying the development of poststroke depression, this systematic review explores the immunological processes driving the development of inflammation-related cell death in mood-related brain regions. Particular attention has been paid to cytokine-driven intrinsic apoptosis factors, including intracellular calcium, glutamate excitotoxicity and free radicals that appear in the brain following ischaemic damage and whose presence significantly increases the likelihood of clinically defined depression.
Collapse
Affiliation(s)
- Michaela C Pascoe
- Brain Sciences Institute, Swinburne University, Melbourne, Vic, Australia
| | | | | | | |
Collapse
|
27
|
Kara I, Nurten A, Aydin M, Özkök E, Özen I, Özerman B, Tuna S, Karamürsel S. Ischemia/reperfusion in rat: antioxidative effects of enoant on EEG, oxidative stress and inflammation. Brain Inj 2010; 25:113-26. [PMID: 21117911 DOI: 10.3109/02699052.2010.531688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVE The present study was undertaken to evaluate whether enoant, which is rich in polyphenols, has any effect on electroencephalogram (EEG), oxidative stress and inflammation in ischemia/reperfusion (I/R) injury. METHODS Ischemia was induced by 2-hour occlusion of bilateral common carotid artery. Animals orally received enoant. Group 1 was the ischemic control group. Group 2 was treated with enoant of 1.25 g kg⁻¹ per day for 15 days after I/R. Group 3 received the same concentration of enoant as in group 2 for 15 days before and after I/R. Group 4 was the sham operation group. EEG activities were recorded and the levels of TNF-α, IL-1β and IL-6, TBARS and GSH were measured in the whole brain homogenate. RESULTS There were significant changes in EEG activity in groups treated with enoant either before or after ischemia when compared with their basal EEG values. TNF-α, IL-6 and IL-1β levels were significantly increased after I/R. GSH levels in group 3 treated with enoant in both pre- and post-ischemic periods were significantly increased and TBARS concentration was decreased compared with the ischemic group. CONCLUSION The findings support that both pre-ischemic and post-ischemic administrations of enoant might produce neuroprotective action against cerebral ischemia.
Collapse
Affiliation(s)
- Ihsan Kara
- Department of Neuroscience, The Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bernardi A, Frozza RL, Horn AP, Campos MM, Calixto JB, Salbego C, Pohlmann AR, Guterres SS, Battastini AMO. Protective effects of indomethacin-loaded nanocapsules against oxygen-glucose deprivation in organotypic hippocampal slice cultures: Involvement of neuroinflammation. Neurochem Int 2010; 57:629-36. [DOI: 10.1016/j.neuint.2010.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 11/27/2022]
|
29
|
Chen ZB, Huang DQ, Niu FN, Zhang X, Li EG, Xu Y. Human urinary kallidinogenase suppresses cerebral inflammation in experimental stroke and downregulates nuclear factor-kappaB. J Cereb Blood Flow Metab 2010; 30:1356-65. [PMID: 20179726 PMCID: PMC2949229 DOI: 10.1038/jcbfm.2010.19] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study is to investigate the possible mechanism and the neuroprotective effect of human urinary kallidinogenase (HUK) in cerebral ischemia. The mouse middle cerebral artery occlusion (MCAO) model was used. Mice were treated with HUK (20 PNAU/g per day, intravenous) or saline as control, from the beginning of reperfusion to 72 h. Neurological deficits, infarct size, and BWC were measured at 6, 24, 48, and 72 h after MCAO, respectively. Pathological changes of brain were observed by TUNEL assay. Inflammatory factors were measured by real-time PCR and western blotting. Activation of MAPKs, Akt, and nuclear factor-kappaB (NF-kappaB) was detected by western blotting. Our results indicated that HUK significantly improved neurofunction, decreased infarct size, and suppressed edema, as well as inflammatory mediators as compared with the vehicle group. Furthermore, HUK inhibited the NF-kappaB pathway and activated the MAPK/ERK pathway in this neuroprotection.
Collapse
Affiliation(s)
- Zhi-bin Chen
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
30
|
Zhang B, Subramanian S, Dziennis S, Jia J, Uchida M, Akiyoshi K, Migliati E, Lewis AD, Vandenbark AA, Offner H, Hurn PD. Estradiol and G1 reduce infarct size and improve immunosuppression after experimental stroke. THE JOURNAL OF IMMUNOLOGY 2010; 184:4087-94. [PMID: 20304826 DOI: 10.4049/jimmunol.0902339] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced risk and severity of stroke in adult females is thought to depend on normal endogenous levels of estrogen, a well-known neuroprotectant and immunomodulator. In male mice, experimental stroke induces immunosuppression of the peripheral immune system, characterized by a reduction in spleen size and cell numbers and decreased cytokine and chemokine expression. However, stroke-induced immunosuppression has not been evaluated in female mice. To test the hypothesis that estradiol (E2) deficiency exacerbates immunosuppression after focal stroke in females, we evaluated the effect of middle cerebral artery occlusion on infarct size and peripheral and CNS immune responses in ovariectomized mice with or without sustained, controlled levels of 17-beta-E2 administered by s.c. implant or the putative membrane estrogen receptor agonist, G1. Both E2- and G1-replacement decreased infarct volume and partially restored splenocyte numbers. Moreover, E2-replacement increased splenocyte proliferation in response to stimulation with anti-CD3/CD28 Abs and normalized aberrant mRNA expression for cytokines, chemokines, and chemokine receptors and percentage of CD4(+)CD25(+)FoxP3(+) T regulatory cells observed in E2-deficient animals. These beneficial changes in peripheral immunity after E2 replacement were accompanied by a profound reduction in expression of the chemokine, MIP-2, and a 40-fold increased expression of CCR7 in the lesioned brain hemisphere. These results demonstrate for the first time that E2 replacement in ovariectomized female mice improves stroke-induced peripheral immunosuppression.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Laskowitz DT, Grocott H, Hsia A, Copeland KR. Serum markers of cerebral ischemia. J Stroke Cerebrovasc Dis 2009; 7:234-41. [PMID: 17895090 DOI: 10.1016/s1052-3057(98)80032-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/1997] [Accepted: 01/30/1998] [Indexed: 12/20/2022] Open
Abstract
Rapid diagnosis and management of stroke patients is becoming increasingly important with the emergence of new interventional strategies for acute cerebral ischemia. A biochemical surrogate of cerebral ischemia, rapidly detectable in the serum before radiological diagnosis, might have clinical utility in the setting of acute stroke, high-risk cardiovascular procedures, and subarachnoid hemorrhage. Such a marker might also aid in the neurological prognosis of anoxic brain injury. Several serum markers have been evaluated in acute cerebral ischemia. These include neuronal enzymes such as neuron-specific enolase; markers of glial injury and activation, such as protein S100beta; and mediators of inflammation, such as interleukin-6. The clinical and preclinical data supporting the use of these biochemical surrogates of cerebral ischemia are reviewed.
Collapse
Affiliation(s)
- D T Laskowitz
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
32
|
Benton RL, Maddie MA, Dincman TA, Hagg T, Whittemore SR. Transcriptional activation of endothelial cells by TGFβ coincides with acute microvascular plasticity following focal spinal cord ischaemia/reperfusion injury. ASN Neuro 2009; 1:e00015. [PMID: 19663807 PMCID: PMC2810814 DOI: 10.1042/an20090008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 11/17/2022] Open
Abstract
Microvascular dysfunction, loss of vascular support, ischaemia and sub-acute vascular instability in surviving blood vessels contribute to secondary injury following SCI (spinal cord injury). Neither the precise temporal profile of the cellular dynamics of spinal microvasculature nor the potential molecular effectors regulating this plasticity are well understood. TGFβ (transforming growth factor β) isoforms have been shown to be rapidly increased in response to SCI and CNS (central nervous system) ischaemia, but no data exist regarding their contribution to microvascular dysfunction following SCI. To examine these issues, in the present study we used a model of focal spinal cord ischaemia/reperfusion SCI to examine the cellular response(s) of affected microvessels from 30 min to 14 days post-ischaemia. Spinal endothelial cells were isolated from affected tissue and subjected to focused microarray analysis of TGFβ-responsive/related mRNAs 6 and 24 h post-SCI. Immunohistochemical analyses of histopathology show neuronal disruption/loss and astroglial regression from spinal microvessels by 3 h post-ischaemia, with complete dissolution of functional endfeet (loss of aquaporin-4) by 12 h post-ischaemia. Coincident with this microvascular plasticity, results from microarray analyses show 9 out of 22 TGFβ-responsive mRNAs significantly up-regulated by 6 h post-ischaemia. Of these, serpine 1/PAI-1 (plasminogen-activator inhibitor 1) demonstrated the greatest increase (>40-fold). Furthermore, uPA (urokinase-type plasminogen activator), another member of the PAS (plasminogen activator system), was also significantly increased (>7.5-fold). These results, along with other select up-regulated mRNAs, were confirmed biochemically or immunohistochemically. Taken together, these results implicate TGFβ as a potential molecular effector of the anatomical and functional plasticity of microvessels following SCI.
Collapse
Key Words
- endothelin
- insulin-like growth factor binding protein 3 (igfbp-3)
- interleukin-6 (il-6)
- matrix metalloproteinase 9 (mmp-9)
- plasminogen-activator inhibitor 1 (pai-1)
- urokinase-type plasminogen activator (upa)
- aqp-4, aquaporin-4
- bmp, bone morphogenetic protein
- bscb, blood-spinal cord-barrier
- cns, central nervous system
- ec, endothelial cell
- et, endothelin
- gfap, glial fibrillary acidic protein
- huvec, human umbilical vein endothelial cell
- igf, insulin-like growth factor
- igfbp-3, igf-binding protein 3
- il, interleukin
- lea, lycopersicon esculentum agglutinin
- llc, large latent complex
- map2, microtubule-associated protein 2
- mcao, middle cerebral artery occlusion
- mmp, matrix metalloproteinase
- nvu, neurovascular unit
- pa, plasminogen activator
- pai, pa inhibitor
- pas, pa system
- sci, spinal cord injury
- smvec, spinal microvascular ec
- tbs, tris-buffered saline
- tgfβ, transforming growth factor β
- tpa, tissue-type pa
- tsp-1, thrombospondin-1
- upa, urokinase-type pa
- upar, upa receptor
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
- Richard L Benton
- daggerKentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
33
|
Wang DD, Zhao YF, Wang GY, Sun B, Kong QF, Zhao K, Zhang Y, Wang JH, Liu YM, Mu LL, Wang DS, Li HL. IL-17 potentiates neuronal injury induced by oxygen–glucose deprivation and affects neuronal IL-17 receptor expression. J Neuroimmunol 2009; 212:17-25. [DOI: 10.1016/j.jneuroim.2009.04.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 04/09/2009] [Accepted: 04/14/2009] [Indexed: 12/11/2022]
|
34
|
Sun Y, Lu CJ, Lin CH, Wen LL. Interleukin-1β is increased in the cerebrospinal fluid of patients with small infarcts. Eur J Neurol 2009; 16:858-63. [DOI: 10.1111/j.1468-1331.2009.02609.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Suzuki S, Tanaka K, Suzuki N. Ambivalent aspects of interleukin-6 in cerebral ischemia: inflammatory versus neurotrophic aspects. J Cereb Blood Flow Metab 2009; 29:464-79. [PMID: 19018268 DOI: 10.1038/jcbfm.2008.141] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interleukin-6 (IL-6) is pleiotropic cytokine involved in many central nervous system disorders including stroke, and elevated serum IL-6 has been found in acute stroke patients. IL-6 is implicated in the inflammation, which contributes to both injury and repair process after cerebral ischemia. However, IL-6 is one of the neurotrophic cytokines sharing a common receptor subunit, gp130, with other neurotrophic cytokines, such as leukemia inhibitory factor (LIF) and ciliary neurotrophic factor. The expression of IL-6 is most prominently identified in neurons in the peri-ischemic regions, and LIF expression shows a similar pattern. The direct injection of these cytokines into the brain after ischemia can reduce ischemic brain injury. The cytokine receptors are localized on the neuron surface, suggesting that neurons are the cytokine target. The major IL-6 downstream signaling pathway is JAK-STAT, and Stat3 activation occurs mainly in neurons during postischemic reperfusion. Further investigation is necessary to clarify the exact role of Stat3 signaling in neuroprotection. Taken together, the information suggests that IL-6 plays a double role in cerebral ischemia, as an inflammatory mediator during the acute phase and as a neurotrophic mediator between the subacute and prolonged phases.
Collapse
Affiliation(s)
- Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | | | | |
Collapse
|
36
|
The potential role of carbon dioxide in the neuroimmunoendocrine changes following cerebral ischemia. Life Sci 2008; 83:381-7. [DOI: 10.1016/j.lfs.2008.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/29/2008] [Accepted: 07/17/2008] [Indexed: 12/18/2022]
|
37
|
Oto J, Suzue A, Inui D, Fukuta Y, Hosotsubo K, Torii M, Nagahiro S, Nishimura M. Plasma proinflammatory and anti-inflammatory cytokine and catecholamine concentrations as predictors of neurological outcome in acute stroke patients. J Anesth 2008; 22:207-12. [PMID: 18685925 DOI: 10.1007/s00540-008-0639-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 04/17/2008] [Indexed: 11/28/2022]
Abstract
PURPOSE Proinflammatory and anti-inflammatory cytokines may play a pivotal role in cerebral inflammation, which is implicated in the development of brain injury. Systemic cytokine release is mediated by the sympathetic nervous system and catecholamines. The aim of this study was to investigate which parameters, among plasma levels of interleukin-1beta (IL-1beta), interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor alpha (TNF-alpha) and the levels of the catecholamines, epinephrine and norepinephrine, contribute to the clinical outcome in acute stroke patients. METHODS Thirty-seven acute stroke patients (ischemic, n = 19; hemorrhagic, n = 18) were enrolled. All of them were admitted to our hospital within 8 h after stroke onset. Neurological status was evaluated by a modified National Institute of Health Stroke Scale (mNIHSS) on admission and by a modified Rankin Scale (mRS) at 1 month. An mRS score of 3 or more at 1 month was considered to indicate poor outcome. Serum samples for the cytokine and catecholamine measurements were collected on admission. Plasma levels of IL-1beta, IL-6, IL-10, and TNF-alpha were determined by an enzyme-linked immunosorbent assay (ELISA) method and epinephrine and norepinephrine concentrations were determined by high-performance liquid chromatography with electrochemical detection (HPLC-EC). RESULTS In the ischemic stroke patients, poor outcome was noted in 9 (47%). There were no significant differences in cytokine or catecholamine concentrations between patients with poor and good outcomes, and there was no association between clinical outcome and cytokine and catecholamine concentrations. In the hemorrhagic stroke patients, poor outcome was noted in 10 (56%). IL-6 and IL-10 levels were higher in patients with poor outcome. On logistic regression analysis, higher values of IL-6 were significantly associated with clinical outcome at 1 month (odds ratio [OR], 1.25; 95% confidence interval [CI], 1.02-1.54). CONCLUSION In ischemic stroke, plasma cytokines and catecholamines were not predictors of neurological outcome at 1 month. In hemorrhagic stroke, high levels of IL-6 in the early phase indicated a poor neurological outcome.
Collapse
Affiliation(s)
- Jun Oto
- Department of Emergency and Critical Care Medicine, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Offner H, Vandenbark AA, Hurn PD. Effect of experimental stroke on peripheral immunity: CNS ischemia induces profound immunosuppression. Neuroscience 2008; 158:1098-111. [PMID: 18597949 DOI: 10.1016/j.neuroscience.2008.05.033] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 11/27/2022]
Abstract
The profound damage to the CNS caused by ischemic lesions has been well documented. Yet, relatively little is known about the contribution to and effects on the immune system during stroke. We have focused on both early and late events in the peripheral immune system during stroke in mice and have observed an early activation of splenocytes that conceivably could result in immune-mediated damage in the developing CNS lesion, followed by global immunosuppression that affects the spleen, thymus, lymph nodes and circulation. While this second immunosuppressive phase may not directly enhance infarction size, it without doubt leads to an inability to respond to antigenic challenges, thereby enhancing the risk for crippling systemic infection and septicemia in stroke survivors. These novel findings advocate the need to develop or effectively utilize agents that can block early neural splenic activation and modulate immune cells specific for brain antigens as a means to prevent mobilization of T and B cells carrying a cytokine death warrant to the brain. Equally important for the recovering stroke patient are approaches that can derail the second phase of immune dysfunction and restore the ability to mount a defense against systemic infectious insults.
Collapse
Affiliation(s)
- H Offner
- Neuroimmunology Research R&D-31, Portland Veterans Affairs Medical Center, 3710 Southwest US Veterans Hospital Road, and Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
39
|
Acute neurodegeneration and the inflammasome: central processor for danger signals and the inflammatory response? J Cereb Blood Flow Metab 2008; 28:867-81. [PMID: 18212795 DOI: 10.1038/sj.jcbfm.9600609] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the inflammatory response is a crucial event in the adverse outcome of cerebral ischemia, which is promoted by proinflammatory cytokines such as interleukin (IL)-1beta. Although caspase-1 is necessary for IL-1beta processing, the 'upstream' signaling pathways were, until recently, essentially unknown. Fortunately, the inflammasome, a multiprotein complex responsible for activating caspase-1 and caspase-5, has recently been characterized. The activation of the inflammasome can result in one of several consequences such as cytokine secretion, cell death, or the development of a stress-resistant state. The significance of the inflammasome for the initiation of the inflammatory response during systemic diseases has already been shown and members of the inflammasome complex were recently found to be induced in acute brain injury. However, the specific pathophysiologic role of the inflammasome in neurodegenerative disorders still remains to be clarified. The underlying theories (e.g., danger signal theory) along with the signaling pathways that link the inflammasome to acute neurodegeneration will be discussed here. Furthermore, the stimuli that potentially activate the inflammasome in cerebral ischemia will be specified, as well as their relation to well-known pathways activating the innate immune response (e.g., Toll-like receptor signaling) and the consequences that result from their activation (beneficial versus deleterious).
Collapse
|
40
|
Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology 2008; 55:310-8. [PMID: 18308346 DOI: 10.1016/j.neuropharm.2008.01.005] [Citation(s) in RCA: 619] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 12/25/2022]
Abstract
In the United States stroke is the third leading cause of death and the leading cause of disability. Brain injury following stroke results from the complex interplay of multiple pathways including excitotoxicity, acidotoxicity, ionic imbalance, peri-infarct depolarization, oxidative and nitrative stress, inflammation and apoptosis. There are very few treatments for stroke and the development of new treatments requires a comprehensive understanding of the diverse mechanisms of ischemic brain damage that are responsible for neuronal death. Here, we discuss the underlying pathophysiology of this devastating disease and reveal the intertwined pathways that are the target of therapeutic intervention.
Collapse
Affiliation(s)
- Kristian P Doyle
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
41
|
Kim DK, Han SB, Hong ST, Choi YJ, Sun W, Geum D, Kim H. Expression of Sox11 and Brn transcription factors during development and following transient forebrain ischemia in the rat. Neurosci Lett 2008; 433:259-64. [PMID: 18261853 DOI: 10.1016/j.neulet.2008.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/09/2008] [Accepted: 01/10/2008] [Indexed: 11/18/2022]
Abstract
Sox11 is a transcription factor that is proposed to be involved in the development and regeneration of the brain [M.P. Jankowski, P.K. Cornuet, S. Mcllwrath, H.R. Koerber, K.M. Albers, SRY-box containing gene 11 (Sox11) transcription factor is required for neuron survive and neurite growth, Neuroscience 143 (2006) 501-514]. In this study, we compared the expression patterns of Sox11 and its two putative binding partners, Brn1 and Brn2 during development and following transient forebrain ischemia in the rat. The spatiotemporal expression pattern of Brn1 was similar to that of Sox11 from the late embryonic to postnatal development, and they are strongly expressed in the brain regions where neuronal progenitors and immature neurons are enriched. On the other hand, Brn2 was ubiquitously expressed in most tissues including developing nervous system. Neuronal depolarization of cerebral cortex neurons in vitro enhanced both Sox11 and Brn1 expression, whereas the induction of Brn2 was only marginal, further suggesting the similar transcriptional modulation of Sox11 and Brn1. In the hippocampus, however, they showed a little different expression patterns. The expression of Brn1 was not substantial in developing dentate gyrus (DG) where Sox11 expression was strong. The transient forebrain ischemia enhanced Sox11 gene expression moderately in the CA1 and strongly in the DG, whereas Brn1 was selectively induced only in the CA1 of the hippocampal formation. Collectively, overall results suggest that the expression of Sox11 and Brn1 may be modulated by the cell-type specific machinery.
Collapse
Affiliation(s)
- Dong Ki Kim
- Department of Anatomy, College of Medicine, South Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Ross AM, Hurn P, Perrin N, Wood L, Carlini W, Potempa K. Evidence of the peripheral inflammatory response in patients with transient ischemic attack. J Stroke Cerebrovasc Dis 2007; 16:203-7. [PMID: 17845917 PMCID: PMC2570354 DOI: 10.1016/j.jstrokecerebrovasdis.2007.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 05/09/2007] [Accepted: 05/09/2007] [Indexed: 12/20/2022] Open
Abstract
The peripheral inflammatory response, as a proxy for the acute-phase response (a known mechanism for ischemic preconditioning), and non-damage-producing transient ischemia must exist together in humans if this candidate mechanism confers ischemic tolerance. The present study was aimed at determining whether the peripheral inflammatory response (ie, elevated white blood cell, neutrophil, and monocyte counts) exists in transient ischemic attack (TIA) and stroke patients at the time of emergency room admission. The null hypothesis was tested for the variables of the peripheral inflammatory response between the mean of the laboratory normal population versus stroke and TIA patients. A retrospective review of 1041 medical records yielded 12 first-time TIA patients and 34 first-time stroke patients with no confounding evidence of other inflammatory processes. In both groups, neutrophil and monocyte percentages were significantly higher than the laboratory means (in TIA cases: neutrophils, 67.9% [12.67%], P = .001; monocytes, 8.2% [2.7%], P = .020; in stroke cases: neutrophils, 64.9% [9.1%], monocytes, 7.7% [1.6%]; both P < .001). Absolute neutrophil count was significantly higher than the laboratory mean for the stroke cases (5.13 [1.88] K/UL; P = .022). Lymphocyte percentages and absolute lymphocyte count in both groups were significantly and abnormally lower than the laboratory mean (in TIA cases, 21.7% [10.5%] and 1.4 [0.6] K/UL, respectively; in stroke cases, 24.7% [8.4%] and 1.9 [0.7] K/UL, respectively; all P <or= .001). No other absolute counts were significant. These findings suggest that the peripheral inflammatory response exists in transient ischemia, which hypothetically does not damage brain tissue, as well as in stroke (or permanent ischemia), which is known to produce brain tissue damage.
Collapse
Affiliation(s)
- Amy Miner Ross
- School of Nursing, Oregon Health & Science University, Ashland, Oregon 97520, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Kumari R, Willing LB, Krady JK, Vannucci SJ, Simpson IA. Impaired wound healing after cerebral hypoxia-ischemia in the diabetic mouse. J Cereb Blood Flow Metab 2007; 27:710-8. [PMID: 16926846 DOI: 10.1038/sj.jcbfm.9600382] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impaired peripheral wound healing is a hallmark of diabetics pathology and has been attributed to compromised macrophage activation. Stroke is another component of diabetic pathology, with increased tissue infarction and worsened recovery although the mechanisms remain unresolved. In this study, we investigated whether a compromised glial/macrophage response might contribute to cerebral hypoxic-ischemic (H/I) brain damage in diabetic (db/db), relative to their normoglycemic db/+ mice. Hypoxia-ischemia was induced in 8-week-old male db/db and db/+ mice by the ligation of right common carotid artery followed by systemic hypoxia (8% O2: 92% N2) for 17 mins. Mice were killed at specific intervals of reperfusion/recovery and the brains analyzed by in situ hybridization or total RNA isolation. In situ hybridization using bfl-1 (microglia) and glial fibrillary acidic protein (GFAP) (astrocytes) revealed expression of both bfl-1 and GFAP in the ipsilateral hemisphere at 4 h in the db/+ mice, which was delayed and minimal in the db/db mice. RNase protection assays showed a robust increase in expression of the proinflammatory cytokines tumor necrosis factor-alpha (TNFalpha), interleukin-1 IL-1alpha, and IL-1beta mRNA in the db/+ mice at 6 to 8 h of reperfusion peaking at 8 to 12 h; in db/db mice expression was markedly delayed and diminished. Real-time-polymerase chain reaction (RT-PCR) confirmed the reduced and delayed expression TNFalpha, IL-1alpha, IL-1beta, and the growth factors insulin-like growth factor-1 and ciliary neurotrophic factor in the db/db mice; enzyme-linked immunosorbent assays confirmed the reduced and delayed translation of IL-1beta protein. These findings suggest that a compromised inflammatory response may underlie the greater infarct associated with diabetic db/db mice compared with their nondiabetic littermates following a hypoxic/ischemic insult.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Neural and Behavioral Sciences, Milton S Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
44
|
Tajima G, Shiozaki T, Seiyama A, Mohri T, Kajino K, Nakae H, Tasaki O, Ogura H, Kuwagata Y, Tanaka H, Shimazu T, Sugimoto H. Mismatch recovery of regional cerebral blood flow and brain temperature during reperfusion after prolonged brain ischemia in gerbils. ACTA ACUST UNITED AC 2007; 62:36-43; discussion 43. [PMID: 17215731 DOI: 10.1097/ta.0b013e31802dd73c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recovery of cerebral reperfusion after stroke or cardiac arrest can take a long time. We aimed to identify differences in the postischemic recovery of physiologic parameters between short and prolonged brain ischemia. METHODS Eighteen Mongolian gerbils were assigned to one of three groups: 5-minute (G5), 15-minute (G15), or 30-minute (G30) ischemia. With the use of our original microspectroscopy system, global ischemic reperfusion was performed. We measured changes in regional cerebral blood flow (r-CBF), microvessel diameter, and brain temperature (BrT) simultaneously. We also monitored somatosensory evoked potentials (SEPs) to evaluate electrophysiologic response. RESULTS Both G5 and G15 showed concurrent recovery of r-CBF and BrT with hyperemia and hyperthermia, respectively, 10 to 15 minutes after reperfusion. The increase in BrT was <1 degree C and recovered to baseline within 60 minutes after reperfusion. In G30, recovery of r-CBF was significantly delayed relative to that of BrT. The increase in BrT was >2 degrees C, peaking approximately 15 minutes after reperfusion, and then maintained increases of >1 degree C for 120 minutes. SEPs in G5 and G15 showed concomitant recovery with that of r-CBF, whereas SEP recovery in G30 was delayed relative to that of r-CBF, eventually disappearing. All except one of the G30 gerbils died within 24 hours, but all in G5 and G15 survived. CONCLUSIONS These results suggest that mismatch recovery of r-CBF and BrT after prolonged ischemia initiates metabolic derangement in brain tissue, leading to the electrochemical dysfunction and mortality.
Collapse
Affiliation(s)
- Goro Tajima
- Departments of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. ACTA ACUST UNITED AC 2007; 54:34-66. [PMID: 17222914 DOI: 10.1016/j.brainresrev.2006.11.003] [Citation(s) in RCA: 532] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 11/20/2022]
Abstract
Cerebral ischemia (stroke) triggers a complex series of biochemical and molecular mechanisms that impairs the neurologic functions through breakdown of cellular integrity mediated by excitotoxic glutamatergic signalling, ionic imbalance, free-radical reactions, etc. These intricate processes lead to activation of signalling mechanisms involving calcium/calmodulin-dependent kinases (CaMKs) and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). The distribution of these transducers bring them in contact with appropriate molecular targets leading to altered gene expression, e.g. ERK and JNK mediated early gene induction, responsible for activation of cell survival/damaging mechanisms. Moreover, inflammatory reactions initiated at the neurovascular interface and alterations in the dynamic communication between the endothelial cells, astrocytes and neurons are thought to substantially contribute to the pathogenesis of the disease. The damaging mechanisms may proceed through rapid nonspecific cell lysis (necrosis) or by active form of cell demise (apoptosis or necroptosis), depending upon the severity and duration of the ischemic insult. A systematic understanding of these molecular mechanisms with prospect of modulating the chain of events leading to cellular survival/damage may help to generate the potential strategies for neuroprotection. This review briefly covers the current status on the molecular mechanisms of stroke pathophysiology with an endeavour to identify potential molecular targets such as targeting postsynaptic density-95 (PSD-95)/N-methyl-d-aspartate (NMDA) receptor interaction, certain key proteins involved in oxidative stress, CaMKs and MAPKs (ERK, p38 and JNK) signalling, inflammation (cytokines, adhesion molecules, etc.) and cell death pathways (caspases, Bcl-2 family proteins, poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis-inducing factor (AIF), inhibitors of apoptosis proteins (IAPs), heat shock protein 70 (HSP70), receptor interacting protein (RIP), etc., besides targeting directly the genes itself. However, selecting promising targets from various signalling cascades, for drug discovery and development is very challenging, nevertheless such novel approaches may lead to the emergence of new avenues for therapeutic intervention in cerebral ischemia.
Collapse
Affiliation(s)
- Suresh L Mehta
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow-226001, India
| | | | | |
Collapse
|
46
|
Role of inflammation and cellular stress in brain injury and central nervous system diseases. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cnr.2006.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Leira R, Rodríguez-Yáñez M, Castellanos M, Blanco M, Nombela F, Sobrino T, Lizasoain I, Dávalos A, Castillo J. Hyperthermia is a surrogate marker of inflammation-mediated cause of brain damage in acute ischaemic stroke. J Intern Med 2006; 260:343-9. [PMID: 16961671 DOI: 10.1111/j.1365-2796.2006.01694.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UNLABELLED The influence of temperature on the outcome observed in experimental models of ischaemic stroke has not been definitively proved in patients with stroke. Interleukin-6 (IL-6) acts as important endogenous pyrogen, and it is an important regulator of spontaneous body temperature during cerebral ischaemia. The objective of this study was to determine, during the acute phase of cerebral ischaemia, the potential relationship between proinflammatory cytokines and hyperthermia as a cause of larger cerebral infarcts. PATIENTS AND METHODS We studied 229 patients with a first-ever acute hemispheric infarction admitted within the first 24 h from onset of symptoms. On admission, axillary temperature was recorded and blood chemistry studies and cranial computed tomography were performed. We classified body temperature into two groups: hyperthermia (>or=37.5 degrees C) and normothermia (<37.5 degrees C). We determined proinflammatory markers [IL-6, tumour necrosis factor-alpha (TNF-alpha), intercellular adhesion molecule (ICAM-1) and vascular cellular adhesion molecule] on admission. Two outcome variables were evaluated: (i) infarct volume; (ii) Canadian Stroke Scale (CSS) at 3 months (CSS <or= 7 was considered poor outcome and CSS > 7 good outcome). RESULTS Patients with hyperthermia had higher infarct volume [46.5 (9.8-78.5) cm(3) vs. 19.1 (5.0-23.5) cm(3); P < 0.0001], as well as poor outcome at 3 months. Plasma levels of IL-6, TNF-alpha and ICAM-1 were significantly higher in the group of patients with hyperthermia than in the normothermic group. There was a significant correlation between body temperature on admission and infarct volume (r = 0.302; P < 0.0001), and between proinflammatory markers (IL-6 and TNF-alpha) and infarct volume. A significant association was also found between proinflammatory markers (IL-6, TNF-alpha, and ICAM-1) and poor outcome. However, after adjustment for potential confounders, hyperthermia was not independently associated with either larger infarct volume or with poor outcome at 3 months. CONCLUSIONS Inflammatory mediators play a role in acute ischaemic brain damage independently of hyperthermia.
Collapse
Affiliation(s)
- R Leira
- Department of Neurology, Stroke Unit and Neurovascular Research Laboratory, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. ACTA ACUST UNITED AC 2006; 66:232-45. [PMID: 16935624 DOI: 10.1016/j.surneu.2005.12.028] [Citation(s) in RCA: 480] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 12/26/2005] [Indexed: 10/24/2022]
Abstract
BACKGROUND A growing number of recent investigations have established a critical role for leukocytes in propagating tissue damage after ischemia and reperfusion in stroke. Experimental data obtained from animal models of middle cerebral artery occlusion implicate inflammatory cell adhesion molecules, chemokines, and cytokines in the pathogenesis of this ischemic damage. METHODS Data from recent animal and human studies were reviewed to demonstrate that inflammatory events occurring at the blood-endothelium interface of the cerebral capillaries underlie the resultant ischemic tissue damage. RESULTS After arterial occlusion, the up-regulated expression of cytokines including IL-1, and IL-6 act upon the vascular endothelium to increase the expression of intercellular adhesion molecule-1, P-selectin, and E-selectin, which promote leukocyte adherence and accumulation. Integrins then serve to structurally modify the basal lamina and extracellular matrix. These inflammatory signals then promote leukocyte transmigration across the endothelium and mediate inflammatory cascades leading to further cerebral infarction. CONCLUSIONS Inflammatory interactions that occur at the blood-endothelium interface, involving cytokines, adhesion molecules, chemokines and leukocytes, are critical to the pathogenesis of tissue damage in cerebral infarction. Exploring these pathophysiological mechanisms underlying ischemic tissue damage may direct rational drug design in the therapeutic treatment of stroke.
Collapse
Affiliation(s)
- Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
49
|
Haddad M, Rhinn H, Bloquel C, Coqueran B, Szabó C, Plotkine M, Scherman D, Margaill I. Anti-inflammatory effects of PJ34, a poly(ADP-ribose) polymerase inhibitor, in transient focal cerebral ischemia in mice. Br J Pharmacol 2006; 149:23-30. [PMID: 16865091 PMCID: PMC1629400 DOI: 10.1038/sj.bjp.0706837] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Activation of poly(ADP-ribose) polymerase (PARP) is deleterious during cerebral ischemia. We assessed the influence of PARP activation induced by cerebral ischemia on the synthesis of proinflammatory mediators including the cytokines, tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) and the adhesion molecules, E-selectin and intercellular adhesion molecule-1 (ICAM-1). EXPERIMENTAL APPROACH Ischemia was induced by intravascular occlusion of the left middle cerebral artery for 1 h in male Swiss mice anaesthetized with ketamine and xylazine. The PARP inhibitor PJ34 (1.25-25 mg kg(-1)) was administered intraperitoneally 15 min before and 4 hours after, the onset of ischemia. Animals were killed 6 h or 24 h after ischemia and cerebral tissue removed for analysis. KEY RESULTS Ischemia increased TNF-alpha protein in cerebral tissue at 6 and 24 h after ischemia. All doses of PJ34 blocked the increase in TNF-alpha at 6 h and 25 mg kg(-1) PJ34 had a sustained effect for up to 24 h. Quantitative real time polymerase chain reaction showed that PJ34 (25 mg kg(-1)) reduced the increase in TNF-alpha mRNA by 70% at 6 h. PJ34 also prevented the increase in mRNAs encoding IL-6 (-41%), E-selectin (-81%) and ICAM-1 (-54%). PJ34 (25 mg kg(-1)) reduced the infarct volume (-26%) and improved neurological deficit, 24 h after ischemia. CONCLUSIONS AND IMPLICATIONS PJ34 inhibited the increase in the mRNAs of four inflammatory mediators, caused by cerebral ischemia. The contribution of this effect of PJ34 to neuroprotection remains to be clarified.
Collapse
Affiliation(s)
- M Haddad
- Paris Descartes University, Faculty of Pharmacy, UPRES EA2510 ‘Pharmacologie de la Circulation Cérébrale', Paris, France
| | - H Rhinn
- U640 INSERM/ UMR 8151 CNRS ‘Pharmacologie Chimique et Génétique', Paris, France
| | - C Bloquel
- U640 INSERM/ UMR 8151 CNRS ‘Pharmacologie Chimique et Génétique', Paris, France
| | - B Coqueran
- Paris Descartes University, Faculty of Pharmacy, UPRES EA2510 ‘Pharmacologie de la Circulation Cérébrale', Paris, France
| | - C Szabó
- CellScreen Applied Research Center, Semmelweis University Medical School, Budapest, Hungary
| | - M Plotkine
- Paris Descartes University, Faculty of Pharmacy, UPRES EA2510 ‘Pharmacologie de la Circulation Cérébrale', Paris, France
| | - D Scherman
- U640 INSERM/ UMR 8151 CNRS ‘Pharmacologie Chimique et Génétique', Paris, France
| | - I Margaill
- Paris Descartes University, Faculty of Pharmacy, UPRES EA2510 ‘Pharmacologie de la Circulation Cérébrale', Paris, France
- Author for correspondence:
| |
Collapse
|
50
|
Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD. Splenic Atrophy in Experimental Stroke Is Accompanied by Increased Regulatory T Cells and Circulating Macrophages. THE JOURNAL OF IMMUNOLOGY 2006; 176:6523-31. [PMID: 16709809 DOI: 10.4049/jimmunol.176.11.6523] [Citation(s) in RCA: 316] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Induction of stroke not only produces local ischemia and brain damage, but also has profound effects on peripheral immune responses. In the current study, we evaluated effects on spleen and blood cells 4 days after stroke induction. Surprisingly, there was a less inflammatory cytokine profile in the middle cerebral artery occlusion-affected right brain hemisphere at 96 h compared with earlier time points. Moreover, our results demonstrate that stroke leads to splenic atrophy characterized by a reduction in organ size, a drastic loss of splenocyte numbers, and induction of annexin V+ and TUNEL+ cells within the spleen that are in the late stages of apoptosis. The consequence of this process was to reduce T cell proliferation responses and secretion of inflammatory cytokines, resulting in a state of profound immunosuppression. These changes produced a drastic reduction in B cell numbers in spleen and blood, and a novel increase in CD4+FoxP3+ regulatory T cells. Moreover, we detected a striking increase in the percentage of nonapoptotic CD11b+ VLA-4-negative macrophages/monocytes in blood. Immunosuppression in response to brain injury may account for the reduction of inflammatory factors in the stroke-affected brain, but also potentially could curtail protective immune responses in the periphery. These findings provide new evidence to support the contention that damage to the brain caused by cerebral ischemia provides a powerful negative signal to the peripheral immune system that ultimately induces a drastic state of immunosuppression caused by cell death as well as an increased presence of CD4+FoxP3+ regulatory T cells.
Collapse
Affiliation(s)
- Halina Offner
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|