1
|
Wang X, Padawer-Curry JA, Bice AR, Kim B, Rosenthal ZP, Lee JM, Goyal MS, Macauley SL, Bauer AQ. Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain. Cell Rep 2024; 43:114723. [PMID: 39277861 PMCID: PMC11523563 DOI: 10.1016/j.celrep.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.g., resting-state functional connectivity [RSFC]) because it is unclear whether changes in NMC/NVC affect RSFC measures. We leverage wide-field optical imaging in Thy1-jRGECO1a mice to map cortical calcium activity in pyramidal neurons, flavoprotein autofluorescence (representing oxidative metabolism), and hemodynamic activity during wake and ketamine/xylazine anesthesia. Spontaneous dynamics of all contrasts exhibit patterns consistent with RSFC. NMC/NVC relative to excitatory activity varies over the cortex. Ketamine/xylazine profoundly alters NVC but not NMC. Compared to awake RSFC, ketamine/xylazine affects metabolic-based connectomes moreso than hemodynamic-based measures of RSFC. Anesthesia-related differences in NMC/NVC timing do not appreciably alter RSFC structure.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jonah A Padawer-Curry
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zachary P Rosenthal
- Department of Psychiatry, University of Pennsylvania Health System Penn Medicine, Philadelphia, PA 19104, USA
| | - Jin-Moo Lee
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Manu S Goyal
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
2
|
Kann O. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations. J Neurochem 2024; 168:608-631. [PMID: 37309602 DOI: 10.1111/jnc.15867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023]
Abstract
Lactate shuttled from the blood circulation, astrocytes, oligodendrocytes or even activated microglia (resident macrophages) to neurons has been hypothesized to represent a major source of pyruvate compared to what is normally produced endogenously by neuronal glucose metabolism. However, the role of lactate oxidation in fueling neuronal signaling associated with complex cortex function, such as perception, motor activity, and memory formation, is widely unclear. This issue has been experimentally addressed using electrophysiology in hippocampal slice preparations (ex vivo) that permit the induction of different neural network activation states by electrical stimulation, optogenetic tools or receptor ligand application. Collectively, these studies suggest that lactate in the absence of glucose (lactate only) impairs gamma (30-70 Hz) and theta-gamma oscillations, which feature high energy demand revealed by the cerebral metabolic rate of oxygen (CMRO2, set to 100%). The impairment comprises oscillation attenuation or moderate neural bursts (excitation-inhibition imbalance). The bursting is suppressed by elevating the glucose fraction in energy substrate supply. By contrast, lactate can retain certain electric stimulus-induced neural population responses and intermittent sharp wave-ripple activity that features lower energy expenditure (CMRO2 of about 65%). Lactate utilization increases the oxygen consumption by about 9% during sharp wave-ripples reflecting enhanced adenosine-5'-triphosphate (ATP) synthesis by oxidative phosphorylation in mitochondria. Moreover, lactate attenuates neurotransmission in glutamatergic pyramidal cells and fast-spiking, γ-aminobutyric acid (GABA)ergic interneurons by reducing neurotransmitter release from presynaptic terminals. By contrast, the generation and propagation of action potentials in the axon is regular. In conclusion, lactate is less effective than glucose and potentially detrimental during neural network rhythms featuring high energetic costs, likely through the lack of some obligatory ATP synthesis by aerobic glycolysis at excitatory and inhibitory synapses. High lactate/glucose ratios might contribute to central fatigue, cognitive impairment, and epileptic seizures partially seen, for instance, during exhaustive physical exercise, hypoglycemia and neuroinflammation.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Renden RB, Institoris A, Sharma K, Tran CHT. Modulatory effects of noradrenergic and serotonergic signaling pathway on neurovascular coupling. Commun Biol 2024; 7:287. [PMID: 38459113 PMCID: PMC10923894 DOI: 10.1038/s42003-024-05996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Dynamic changes in astrocyte Ca2+ are recognized as contributors to functional hyperemia, a critical response to increased neuronal activity mediated by a process known as neurovascular coupling (NVC). Although the critical role of glutamatergic signaling in this process has been extensively investigated, the impact of behavioral state, and the release of behavior-associated neurotransmitters, such as norepinephrine and serotonin, on astrocyte Ca2+ dynamics and functional hyperemia have received less attention. We used two-photon imaging of the barrel cortex in awake mice to examine the role of noradrenergic and serotonergic projections in NVC. We found that both neurotransmitters facilitated sensory stimulation-induced increases in astrocyte Ca2+. Interestingly, while ablation of serotonergic neurons reduced sensory stimulation-induced functional hyperemia, ablation of noradrenergic neurons caused both attenuation and potentiation of functional hyperemia. Our study demonstrates that norepinephrine and serotonin are involved in modulating sensory stimulation-induced astrocyte Ca2+ elevations and identifies their differential effects in regulating functional hyperemia.
Collapse
Affiliation(s)
- Robert B Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kushal Sharma
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Cam Ha T Tran
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, USA.
| |
Collapse
|
4
|
Ju J, Liu L, Yang X, Men S, Hou ST. Distinctive effects of NMDA receptor modulators on cerebral microcirculation in a schizophrenia mouse model. Biochem Biophys Res Commun 2023; 653:62-68. [PMID: 36857901 DOI: 10.1016/j.bbrc.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Substantial evidence demonstrates that schizophrenia patients have altered cerebral microcirculation. However, little is known regarding how cerebral microcirculatory blood flow (microCBF) changes in schizophrenia. Here, using time-lapse two-photon imaging of individual capillaries, we demonstrated a substantial decrease in cerebral microcirculation in a mouse model of schizophrenia. The involvement of NMDA receptor (NMDAR) functions was investigated to understand further the mechanism of microcirculation reduction in this animal model. Administration of D-serine, a selective full agonist at the glycine site of NMDAR, significantly increased the microCBF in the schizophrenia mouse. Interestingly, administration of GNE-8324, a GluN2A-selective positive allosteric modulator that selectively enhances NMDAR-mediated synaptic responses in inhibitory but not excitatory neurons, had no effect on the microCBF of the schizophrenia mice. Together, these data indicated that NMDAR participated in the regulation of microcirculation in schizophrenia using a mechanism dependent on the tonic NMDAR signaling and the selective modulation of inhibitory neuron activity. Further studies are warranted to establish NMDAR's role in modulating microcirculation in schizophrenia.
Collapse
Affiliation(s)
- Jun Ju
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Luping Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region of China
| | - Xinyi Yang
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Siqi Men
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
5
|
Winkelmeier L, Filosa C, Hartig R, Scheller M, Sack M, Reinwald JR, Becker R, Wolf D, Gerchen MF, Sartorius A, Meyer-Lindenberg A, Weber-Fahr W, Clemm von Hohenberg C, Russo E, Kelsch W. Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning. Nat Commun 2022; 13:3305. [PMID: 35676281 PMCID: PMC9177857 DOI: 10.1038/s41467-022-30978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying the circuits responsible for cognition and understanding their embedded computations is a challenge for neuroscience. We establish here a hierarchical cross-scale approach, from behavioral modeling and fMRI in task-performing mice to cellular recordings, in order to disentangle local network contributions to olfactory reinforcement learning. At mesoscale, fMRI identifies a functional olfactory-striatal network interacting dynamically with higher-order cortices. While primary olfactory cortices respectively contribute only some value components, the downstream olfactory tubercle of the ventral striatum expresses comprehensively reward prediction, its dynamic updating, and prediction error components. In the tubercle, recordings reveal two underlying neuronal populations with non-redundant reward prediction coding schemes. One population collectively produces stabilized predictions as distributed activity across neurons; in the other, neurons encode value individually and dynamically integrate the recent history of uncertain outcomes. These findings validate a cross-scale approach to mechanistic investigations of higher cognitive functions in rodents. Where and how the brain learns from experience is not fully understood. Here the authors use a hierarchical approach from behavioural modelling to systems fMRI to cellular coding reveals brain mechanisms for history informed updating of future predictions.
Collapse
Affiliation(s)
- Laurens Winkelmeier
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Carla Filosa
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Renée Hartig
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Max Scheller
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Markus Sack
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Jonathan R Reinwald
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Robert Becker
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - David Wolf
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Martin Fungisai Gerchen
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Alexander Sartorius
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang Weber-Fahr
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | | | - Eleonora Russo
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany. .,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany.
| |
Collapse
|
6
|
Tran CHT. Toolbox for studying neurovascular coupling in vivo, with a focus on vascular activity and calcium dynamics in astrocytes. NEUROPHOTONICS 2022; 9:021909. [PMID: 35295714 PMCID: PMC8920490 DOI: 10.1117/1.nph.9.2.021909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/23/2022] [Indexed: 05/14/2023]
Abstract
Significance: Insights into the cellular activity of each member of the neurovascular unit (NVU) is critical for understanding their contributions to neurovascular coupling (NVC)-one of the key control mechanisms in cerebral blood flow regulation. Advances in imaging and genetic tools have enhanced our ability to observe, manipulate and understand the cellular activity of NVU components, namely neurons, astrocytes, microglia, endothelial cells, vascular smooth muscle cells, and pericytes. However, there are still many unresolved questions. Since astrocytes are considered electrically unexcitable,Ca 2 + signaling is the main parameter used to monitor their activity. It is therefore imperative to study astrocyticCa 2 + dynamics simultaneously with vascular activity using tools appropriate for the question of interest. Aim: To highlight currently available genetic and imaging tools for studying the NVU-and thus NVC-with a focus on astrocyteCa 2 + dynamics and vascular activity, and discuss the utility, technical advantages, and limitations of these tools for elucidating NVC mechanisms. Approach: We draw attention to some outstanding questions regarding the mechanistic basis of NVC and emphasize the role of astrocyticCa 2 + elevations in functional hyperemia. We further discuss commonly used genetic, and optical imaging tools, as well as some newly developed imaging modalities for studying NVC at the cellular level, highlighting their advantages and limitations. Results: We provide an overview of the current state of NVC research, focusing on the role of astrocyticCa 2 + elevations in functional hyperemia; summarize recent advances in genetically engineeredCa 2 + indicators, fluorescence microscopy techniques for studying NVC; and discuss the unmet challenges for future imaging development. Conclusions: Advances in imaging techniques together with improvements in genetic tools have significantly contributed to our understanding of NVC. Many pieces of the puzzle have been revealed, but many more remain to be discovered. Ultimately, optimizing NVC research will require a concerted effort to improve imaging techniques, available genetic tools, and analytical software.
Collapse
Affiliation(s)
- Cam Ha T. Tran
- University of Nevada, Reno School of Medicine, Department of Physiology and Cell Biology, Reno, Nevada, United States
| |
Collapse
|
7
|
Abstract
The cerebral microcirculation undergoes dynamic changes in parallel with the development of neurons, glia, and their energy metabolism throughout gestation and postnatally. Cerebral blood flow (CBF), oxygen consumption, and glucose consumption are as low as 20% of adult levels in humans born prematurely but eventually exceed adult levels at ages 3 to 11 years, which coincide with the period of continued brain growth, synapse formation, synapse pruning, and myelination. Neurovascular coupling to sensory activation is present but attenuated at birth. By 2 postnatal months, the increase in CBF often is disproportionately smaller than the increase in oxygen consumption, in contrast to the relative hyperemia seen in adults. Vascular smooth muscle myogenic tone increases in parallel with developmental increases in arterial pressure. CBF autoregulatory response to increased arterial pressure is intact at birth but has a more limited range with arterial hypotension. Hypoxia-induced vasodilation in preterm fetal sheep with low oxygen consumption does not sustain cerebral oxygen transport, but the response becomes better developed for sustaining oxygen transport by term. Nitric oxide tonically inhibits vasomotor tone, and glutamate receptor activation can evoke its release in lambs and piglets. In piglets, astrocyte-derived carbon monoxide plays a central role in vasodilation evoked by glutamate, ADP, and seizures, and prostanoids play a large role in endothelial-dependent and hypercapnic vasodilation. Overall, homeostatic mechanisms of CBF regulation in response to arterial pressure, neuronal activity, carbon dioxide, and oxygenation are present at birth but continue to develop postnatally as neurovascular signaling pathways are dynamically altered and integrated. © 2021 American Physiological Society. Compr Physiol 11:1-62, 2021.
Collapse
|
8
|
István L, Czakó C, Élő Á, Mihály Z, Sótonyi P, Varga A, Ungvári Z, Csiszár A, Yabluchanskiy A, Conley S, Csipő T, Lipecz Á, Kovács I, Nagy ZZ. Imaging retinal microvascular manifestations of carotid artery disease in older adults: from diagnosis of ocular complications to understanding microvascular contributions to cognitive impairment. GeroScience 2021; 43:1703-1723. [PMID: 34100219 PMCID: PMC8492863 DOI: 10.1007/s11357-021-00392-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Carotid artery stenosis (CAS) is a consequence of systemic atherosclerotic disease affecting the aging populations of the Western world. CAS is frequently associated with cognitive impairment. However, the mechanisms contributing to the development of vascular cognitive impairment (VCI) associated with CAS are multifaceted and not fully understood. In addition to embolization and decreased blood flow due to the atherosclerotic lesion in the carotid artery, microcirculatory dysfunction in the cerebral circulation also plays a critical role in CAS-related VCI. To better understand the microvascular contributions to cognitive decline associated with CAS and evaluate microvascular protective effects of therapeutic interventions, it is essential to examine the structural and functional changes of the microvessels in the central nervous system (CNS). However, there are some limitations of in vivo brain vascular imaging modalities. The retinal microvasculature provides a unique opportunity to study pathogenesis of cerebral small vessel disease and VCI, because the cerebral circulation and the retinal circulation share similar anatomy, physiology and embryology. Similar microvascular pathologies may manifest in the brain and the retina, thus ocular examination can be used as a noninvasive screening tool to investigate pathological changes in the CNS associated with CAS. In this review, ocular signs of CAS and the retinal manifestations of CAS-associated microvascular dysfunction are discussed. The advantages and limitation of methods that are capable of imaging the ocular circulation (including funduscopy, fluorescein angiography, Doppler sonography, optical coherence tomography [OCT] and optical coherence tomography angiography [OCTA]) are discussed. The potential use of dynamic retinal vessel analysis (DVA), which allows for direct visualization of neurovascular coupling responses in the CNS, for understanding microvascular contributions to cognitive decline in CAS patients is also considered.
Collapse
Affiliation(s)
- Lilla István
- Department of Ophthalmology, Semmelweis University, 39 Mária Street, 1085, Budapest, Hungary
| | - Cecilia Czakó
- Department of Ophthalmology, Semmelweis University, 39 Mária Street, 1085, Budapest, Hungary
| | - Ágnes Élő
- Department of Ophthalmology, Semmelweis University, 39 Mária Street, 1085, Budapest, Hungary
| | - Zsuzsanna Mihály
- Department of Vascular & Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Péter Sótonyi
- Department of Vascular & Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Andrea Varga
- Department of Vascular & Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Zoltán Ungvári
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Anna Csiszár
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamás Csipő
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ágnes Lipecz
- Department of Ophthalmology, Semmelweis University, 39 Mária Street, 1085, Budapest, Hungary
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
| | - Illés Kovács
- Department of Ophthalmology, Semmelweis University, 39 Mária Street, 1085, Budapest, Hungary.
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA.
- Department of Clinical Ophtalmology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary.
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, 39 Mária Street, 1085, Budapest, Hungary
| |
Collapse
|
9
|
Lee J, Stile CL, Bice AR, Rosenthal ZP, Yan P, Snyder AZ, Lee JM, Bauer AQ. Opposed hemodynamic responses following increased excitation and parvalbumin-based inhibition. J Cereb Blood Flow Metab 2021; 41:841-856. [PMID: 33736512 PMCID: PMC7983494 DOI: 10.1177/0271678x20930831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/24/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023]
Abstract
Understanding cellular contributions to hemodynamic activity is essential for interpreting blood-based brain mapping signals. Optogenetic studies examining cell-specific influences on local hemodynamics have reported that excitatory activity results in cerebral perfusion and blood volume increase, while inhibitory activity contributes to both vasodilation and vasoconstriction. How specific subpopulations of interneurons regulate the brain's blood supply is less examined. Parvalbumin interneurons are the largest subpopulation of GABAergic neurons in the brain, critical for brain development, plasticity, and long-distance excitatory neurotransmission. Despite their essential role in brain function, the contribution of parvalbumin neurons to neurovascular coupling has been relatively unexamined. Using optical intrinsic signal imaging and laser speckle contrast imaging, we photostimulated awake and anesthetized transgenic mice expressing channelrhodopsin under a parvalbumin promoter. Increased parvalbumin activity reduced local oxygenation, cerebral blood volume, and cerebral blood flow. These "negative" hemodynamic responses were consistent within and across mice and reproducible across a broad range of photostimulus parameters. However, the sign and magnitude of the hemodynamic response resulting from increased parvalbumin activity depended on the type and level of anesthesia used. Opposed hemodynamic responses following increased excitation or parvalbumin-based inhibition suggest unique contributions from different cell populations to neurovascular coupling.
Collapse
Affiliation(s)
- Joonhyuk Lee
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chloe L Stile
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachary P Rosenthal
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ping Yan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Pfeiffer T, Li Y, Attwell D. Diverse mechanisms regulating brain energy supply at the capillary level. Curr Opin Neurobiol 2021; 69:41-50. [PMID: 33485189 DOI: 10.1016/j.conb.2020.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/28/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
Neural information processing depends critically on the brain's energy supply, which is provided in the form of glucose and oxygen in the blood. Regulation of this supply occurs by smooth muscle and contractile pericytes adjusting the diameter of arterioles and capillaries, respectively. Controversies exist over the relative importance of capillary and arteriolar level control, whether enzymatically generated signals or K+ ions are the dominant controller of cerebral blood flow, and the involvement of capillary endothelial cells. Here, we try to synthesise the relevant recent data into a coherent view of how brain energy supply is controlled and suggest approaches to answering key questions.
Collapse
Affiliation(s)
- Thomas Pfeiffer
- Department of Neuroscience, Physiology & Pharmacology, University College London Gower Street, London, WC1E 6BT, UK.
| | - Yuening Li
- Department of Neuroscience, Physiology & Pharmacology, University College London Gower Street, London, WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
11
|
Poplawsky AJ, Iordanova B, Vazquez AL, Kim SG, Fukuda M. Postsynaptic activity of inhibitory neurons evokes hemodynamic fMRI responses. Neuroimage 2021; 225:117457. [PMID: 33069862 PMCID: PMC7818351 DOI: 10.1016/j.neuroimage.2020.117457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/15/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Functional MRI responses are localized to the synaptic sites of evoked inhibitory neurons, but it is unknown whether, or by what mechanisms, these neurons initiate functional hyperemia. Here, the neuronal origins of these hemodynamic responses were investigated by fMRI or local field potential and blood flow measurements during topical application of pharmacological agents when GABAergic granule cells in the rat olfactory bulb were synaptically targeted. First, to examine if postsynaptic activation of these inhibitory neurons was required for neurovascular coupling, we applied an NMDA receptor antagonist during cerebral blood volume-weighted fMRI acquisition and found that responses below the drug application site (up to ~1.5 mm) significantly decreased within ~30 min. Similarly, large decreases in granule cell postsynaptic activities and blood flow responses were observed when AMPA or NMDA receptor antagonists were applied. Second, inhibition of nitric oxide synthase preferentially decreased the initial, fast component of the blood flow response, while inhibitors of astrocyte-specific glutamate transporters and vasoactive intestinal peptide receptors did not decrease blood flow responses. Third, inhibition of GABA release with a presynaptic GABAB receptor agonist caused less reduction of neuronal and blood flow responses compared to the postsynaptic glutamate receptor antagonists. In conclusion, local hyperemia by synaptically-evoked inhibitory neurons was primarily driven by their postsynaptic activities, possibly through NMDA receptor-dependent calcium signaling that was not wholly dependent on nitric oxide.
Collapse
Affiliation(s)
| | - Bistra Iordanova
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15203, United States
| | - Alberto L Vazquez
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15203, United States
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 440-330, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 440-330, Korea
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, United States.
| |
Collapse
|
12
|
Wilson R, Thomas A, Mayhew SD. Spatially congruent negative BOLD responses to different stimuli do not summate in visual cortex. Neuroimage 2020; 218:116891. [DOI: 10.1016/j.neuroimage.2020.116891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023] Open
|
13
|
Boillat Y, Xin L, van der Zwaag W, Gruetter R. Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. J Cereb Blood Flow Metab 2020; 40:488-500. [PMID: 30755134 PMCID: PMC7026843 DOI: 10.1177/0271678x19831022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Negative blood oxygenation-level dependent (BOLD) signal observed during task execution in functional magnetic resonance imaging (fMRI) can be caused by different mechanisms, such as a blood-stealing effect or neuronal deactivation. Electrophysiological recordings showed that neuronal deactivation underlies the negative BOLD observed in the occipital lobe during visual stimulation. In this study, the metabolic demand of such a response was studied by measuring local metabolite concentration changes during a visual checkerboard stimulation using functional magnetic resonance spectroscopy (fMRS) at 7 Tesla. The results showed increases of glutamate and lactate concentrations during the positive BOLD response, consistent with previous fMRS studies. In contrast, during the negative BOLD response, decreasing concentrations of glutamate, lactate and gamma-aminobutyric acid (GABA) were found, suggesting a reduction of glycolytic and oxidative metabolic demand below the baseline. Additionally, the respective changes of the BOLD signal, glutamate and lactate concentrations of both groups suggest that a local increase of inhibitory activity might occur during the negative BOLD response.
Collapse
Affiliation(s)
- Yohan Boillat
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wietske van der Zwaag
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Optical Imaging of Brain Motor Cortex Activation During Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS). ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.90089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Lipecz A, Csipo T, Tarantini S, Hand RA, Ngo BTN, Conley S, Nemeth G, Tsorbatzoglou A, Courtney DL, Yabluchanska V, Csiszar A, Ungvari ZI, Yabluchanskiy A. Age-related impairment of neurovascular coupling responses: a dynamic vessel analysis (DVA)-based approach to measure decreased flicker light stimulus-induced retinal arteriolar dilation in healthy older adults. GeroScience 2019; 41:341-349. [PMID: 31209739 DOI: 10.1007/s11357-019-00078-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Aging is a major risk factor for vascular cognitive impairment and dementia (VCID). Recent studies demonstrate that cerebromicrovascular dysfunction plays a causal role in the development of age-related cognitive impairment, in part via disruption of neurovascular coupling (NVC) responses. NVC (functional hyperemia) is responsible for adjusting cerebral blood flow to the increased energetic demands of activated neurons, and in preclinical animal models of aging, pharmacological restoration of NVC is associated with improved cognitive performance. To translate these findings, there is an increasing need to develop novel and sensitive tools to assess cerebromicrovascular function and NVC to assess risk for VCID and evaluate treatment efficacy. Due to shared developmental origins, anatomical features, and physiology, assessment of retinal vessel function may serve as an important surrogate outcome measure to study neurovascular dysfunction. The present study was designed to compare NVC responses in young (< 45 years of age; n = 18) and aged (> 65 years of age; n = 11) healthy human subjects by assessing flicker light-induced changes in the diameter of retinal arterioles using a dynamic vessel analyzer (DVA)-based approach. We found that NVC responses in retinal arterioles were significantly decreased in older adults as compared with younger subjects. We propose that the DVA-based approach can be used to assess NVC, as a surrogate cerebromicrovascular outcome measure, to evaluate the effects of therapeutic interventions in older individuals.
Collapse
Affiliation(s)
- Agnes Lipecz
- Translational Geroscience Laboratory, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
| | - Tamas Csipo
- Translational Geroscience Laboratory, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.,Department of Cardiology, Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Stefano Tarantini
- Translational Geroscience Laboratory, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Rachel A Hand
- Translational Geroscience Laboratory, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Bich-Thy N Ngo
- Translational Geroscience Laboratory, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gabor Nemeth
- Department of Ophthalmology, Borsod-Abaúj-Zemplén County Hospital and University Teaching Hospital, Miskolc, Hungary
| | | | - Donald L Courtney
- Translational Geroscience Laboratory, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Valeriya Yabluchanska
- Translational Geroscience Laboratory, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Bon Secours St. Francis Family Medicine Center, Midlothian, VA, USA
| | - Anna Csiszar
- Translational Geroscience Laboratory, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Department of Cardiology, Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan I Ungvari
- Translational Geroscience Laboratory, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.,Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Translational Geroscience Laboratory, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
16
|
Physiological Considerations of Functional Magnetic Resonance Imaging in Animal Models. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:522-532. [DOI: 10.1016/j.bpsc.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
17
|
Schneider J, Berndt N, Papageorgiou IE, Maurer J, Bulik S, Both M, Draguhn A, Holzhütter HG, Kann O. Local oxygen homeostasis during various neuronal network activity states in the mouse hippocampus. J Cereb Blood Flow Metab 2019; 39:859-873. [PMID: 29099662 PMCID: PMC6501513 DOI: 10.1177/0271678x17740091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022]
Abstract
Cortical information processing comprises various activity states emerging from timed synaptic excitation and inhibition. However, the underlying energy metabolism is widely unknown. We determined the cerebral metabolic rate of oxygen (CMRO2) along a tissue depth of <0.3 mm in the hippocampal CA3 region during various network activities, including gamma oscillations and sharp wave-ripples that occur during wakefulness and sleep. These physiological states associate with sensory perception and memory formation, and critically depend on perisomatic GABA inhibition. Moreover, we modelled vascular oxygen delivery based on quantitative microvasculature analysis. (1) Local CMRO2 was highest during gamma oscillations (3.4 mM/min), medium during sharp wave-ripples, asynchronous activity and isoflurane application (2.0-1.6 mM/min), and lowest during tetrodotoxin application (1.4 mM/min). (2) Energy expenditure of axonal and synaptic signaling accounted for >50% during gamma oscillations. (3) CMRO2 positively correlated with number and synchronisation of activated synapses, and neural multi-unit activity. (4) The median capillary distance was 44 µm. (5) The vascular oxygen partial pressure of 33 mmHg was needed to sustain oxidative phosphorylation during gamma oscillations. We conclude that gamma oscillations featuring high energetics require a hemodynamic response to match oxygen consumption of respiring mitochondria, and that perisomatic inhibition significantly contributes to the brain energy budget.
Collapse
Affiliation(s)
- Justus Schneider
- Institute of Physiology and Pathophysiology, and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Nikolaus Berndt
- Computational Systems Biochemistry, Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Ismini E Papageorgiou
- Institute of Physiology and Pathophysiology, and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Jana Maurer
- Institute of Physiology and Pathophysiology, and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Sascha Bulik
- Computational Systems Biochemistry, Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Hermann-Georg Holzhütter
- Computational Systems Biochemistry, Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Integrated models of neurovascular coupling and BOLD signals: Responses for varying neural activations. Neuroimage 2018. [DOI: 10.1016/j.neuroimage.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Iordanova B, Vazquez A, Kozai TDY, Fukuda M, Kim SG. Optogenetic investigation of the variable neurovascular coupling along the interhemispheric circuits. J Cereb Blood Flow Metab 2018; 38:627-640. [PMID: 29372655 PMCID: PMC5888863 DOI: 10.1177/0271678x18755225] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
The interhemispheric circuit connecting the left and the right mammalian brain plays a key role in integration of signals from the left and the right side of the body. The information transfer is carried out by modulation of simultaneous excitation and inhibition. Hemodynamic studies of this circuit are inconsistent since little is known about neurovascular coupling of mixed excitatory and inhibitory signals. We investigated the variability in hemodynamic responses driven by the interhemispheric circuit during optogenetic and somatosensory activation. We observed differences in the neurovascular response based on the stimulation site - cell bodies versus distal projections. In half of the experiments, optogenetic stimulation of the cell bodies evoked a predominant post-synaptic inhibition in the other hemisphere, accompanied by metabolic oxygen consumption without coupled functional hyperemia. When the same transcallosal stimulation resulted in predominant post-synaptic excitation, the hemodynamic response was biphasic, consisting of metabolic dip followed by functional hyperemia. Optogenetic suppression of the postsynaptic excitation abolished the coupled functional hyperemia. In contrast, light stimulation at distal projections evoked consistently a metabolic response. Our findings suggest that functional hyperemia requires signals originating from the cell body and the hemodynamic response variability appears to reflect the balance between the post-synaptic excitation and inhibition.
Collapse
Affiliation(s)
- Bistra Iordanova
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alberto Vazquez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi DY Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
20
|
Freeman RD, Li B. Neural-metabolic coupling in the central visual pathway. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0357. [PMID: 27574310 DOI: 10.1098/rstb.2015.0357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 01/19/2023] Open
Abstract
Studies are described which are intended to improve our understanding of the primary measurements made in non-invasive neural imaging. The blood oxygenation level-dependent signal used in functional magnetic resonance imaging (fMRI) reflects changes in deoxygenated haemoglobin. Tissue oxygen concentration, along with blood flow, changes during neural activation. Therefore, measurements of tissue oxygen together with the use of a neural sensor can provide direct estimates of neural-metabolic interactions. We have used this relationship in a series of studies in which a neural microelectrode is combined with an oxygen micro-sensor to make simultaneous co-localized measurements in the central visual pathway. Oxygen responses are typically biphasic with small initial dips followed by large secondary peaks during neural activation. By the use of established visual response characteristics, we have determined that the oxygen initial dip provides a better estimate of local neural function than the positive peak. This contrasts sharply with fMRI for which the initial dip is unreliable. To extend these studies, we have examined the relationship between the primary metabolic agents, glucose and lactate, and associated neural activity. For this work, we also use a Doppler technique to measure cerebral blood flow (CBF) together with neural activity. Results show consistent synchronously timed changes such that increases in neural activity are accompanied by decreases in glucose and simultaneous increases in lactate. Measurements of CBF show clear delays with respect to neural response. This is consistent with a slight delay in blood flow with respect to oxygen delivery during neural activation.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Ralph D Freeman
- Group in Vision Science, School of Optometry, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-2020, USA
| | - Baowang Li
- Group in Vision Science, School of Optometry, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-2020, USA
| |
Collapse
|
21
|
Csiszar A, Tarantini S, Fülöp GA, Kiss T, Valcarcel-Ares MN, Galvan V, Ungvari Z, Yabluchanskiy A. Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer's disease. GeroScience 2017; 39:359-372. [PMID: 28853030 PMCID: PMC5636770 DOI: 10.1007/s11357-017-9991-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Hypertension in the elderly substantially increases both the risk of vascular cognitive impairment (VCI) and Alzheimer's disease (AD); however, the underlying mechanisms are not completely understood. This review discusses the effects of hypertension on structural and functional integrity of cerebral microcirculation, including hypertension-induced alterations in neurovascular coupling responses, cellular and molecular mechanisms involved in microvascular damage (capillary rarefaction, blood-brain barrier disruption), and the genesis of cerebral microhemorrhages and their potential role in exacerbation of cognitive decline associated with AD. Understanding and targeting the hypertension-induced cerebromicrovascular alterations that are involved in the onset and progression of AD and contribute to cognitive impairment are expected to have a major role in preserving brain health in high-risk older individuals.
Collapse
Affiliation(s)
- Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gábor A Fülöp
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - M Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology, Barshop Institute for Longevity and Aging Studies University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
22
|
Sutherland BA, Fordsmann JC, Martin C, Neuhaus AA, Witgen BM, Piilgaard H, Lønstrup M, Couch Y, Sibson NR, Lauritzen M, Buchan AM. Multi-modal assessment of neurovascular coupling during cerebral ischaemia and reperfusion using remote middle cerebral artery occlusion. J Cereb Blood Flow Metab 2017; 37:2494-2508. [PMID: 27629101 PMCID: PMC5531347 DOI: 10.1177/0271678x16669512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022]
Abstract
Hyperacute changes in cerebral blood flow during cerebral ischaemia and reperfusion are important determinants of injury. Cerebral blood flow is regulated by neurovascular coupling, and disruption of neurovascular coupling contributes to brain plasticity and repair problems. However, it is unknown how neurovascular coupling is affected hyperacutely during cerebral ischaemia and reperfusion. We have developed a remote middle cerebral artery occlusion model in the rat, which enables multi-modal assessment of neurovascular coupling immediately prior to, during and immediately following reperfusion. Male Wistar rats were subjected to remote middle cerebral artery occlusion, where a long filament was advanced intraluminally through a guide cannula in the common carotid artery. Transcallosal stimulation evoked increases in blood flow, tissue oxygenation and neuronal activity, which were diminished by middle cerebral artery occlusion and partially restored during reperfusion. These evoked responses were not affected by administration of the thrombolytic alteplase at clinically used doses. Evoked cerebral blood flow responses were fully restored at 24 h post-middle cerebral artery occlusion indicating that neurovascular dysfunction was not sustained. These data show for the first time that the rat remote middle cerebral artery occlusion model coupled with transcallosal stimulation provides a novel method for continuous assessment of hyperacute neurovascular coupling changes during ischaemia and reperfusion, and offers unique insight into hyperacute ischaemic pathophysiology.
Collapse
Affiliation(s)
- Brad A Sutherland
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Jonas C Fordsmann
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Chris Martin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Ain A Neuhaus
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Brent M Witgen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Henning Piilgaard
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Micael Lønstrup
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne Couch
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | | |
Collapse
|
23
|
Just N, Sonnay S. Investigating the Role of Glutamate and GABA in the Modulation of Transthalamic Activity: A Combined fMRI-fMRS Study. Front Physiol 2017; 8:30. [PMID: 28197105 PMCID: PMC5281558 DOI: 10.3389/fphys.2017.00030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/11/2017] [Indexed: 11/29/2022] Open
Abstract
The Excitatory-Inhibitory balance (EIB) between glutamatergic and GABAergic neurons is known to regulate the function of thalamocortical neurocircuits. The thalamus is known as an important relay for glutamatergic and GABAergic signals ascending/descending to/from the somatosensory cortex in rodents. However, new investigations attribute a larger role to thalamic nuclei as modulators of information processing within the cortex. In this study, functional Magnetic Resonance Spectroscopy (fMRS) was used to measure glutamate (Glu) and GABA associations with BOLD responses during activation of the thalamus to barrel cortex (S1BF) pathway at 9.4T. In line with previous studies in humans, resting GABA and Glu correlated negatively and positively respectively with BOLD responses in S1BF. Moreover, a significant negative correlation (R = −0.68, p = 0.0024) between BOLD responses in the thalamus and the barrel cortex was found. Rats with low Glu levels and high resting GABA levels in S1BF demonstrated lower BOLD responses in S1BF and high amplitude BOLD responses in the thalamus themselves linked to the release of high GABA levels during stimulation. In addition, early analysis of resting state functional connectivity suggested EIB controlled thalamocortical neuronal synchrony. We propose that the presented approach may be useful for further characterization of diseases affecting thalamocortical neurotransmission.
Collapse
Affiliation(s)
- Nathalie Just
- CIBM-AIT core, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland; University Hospital MünsterMünster, Germany
| | - Sarah Sonnay
- LIFMET, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
24
|
Sonnay S, Duarte JMN, Just N. Lactate and glutamate dynamics during prolonged stimulation of the rat barrel cortex suggest adaptation of cerebral glucose and oxygen metabolism. Neuroscience 2017; 346:337-348. [PMID: 28153690 DOI: 10.1016/j.neuroscience.2017.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/29/2022]
Abstract
A better understanding of BOLD responses stems from a better characterization of the brain's ability to metabolize glucose and oxygen. Non-invasive techniques such as functional magnetic resonance spectroscopy (fMRS) have thus been developed allowing for the reproducible assessment of metabolic changes during barrel cortex (S1BF) activations in rats. The present study aimed at further exploring the role of neurotransmitters on local and temporal changes in vascular and metabolic function in S1BF. fMRS and fMRI data were acquired sequentially in α-chloralose anesthetized rats during 32-min rest and trigeminal nerve stimulation periods. During stimulation, concentrations of lactate (Lac) and glutamate (Glu) increased in S1BF by 0.23±0.05 and 0.34±0.05μmol/g respectively in S1BF. Dynamic analysis of metabolite concentrations allowed estimating changes in cerebral metabolic rates of glucose (ΔCMRGlc) and oxygen (ΔCMRO2). Findings confirmed a prevalence of oxidative metabolism during prolonged S1BF activation. Habituation led to a significant BOLD magnitude decline as a function of time while both total ΔCMRGlc and ΔCMRO2 remained constant revealing adaptation of glucose and oxygen metabolisms to support ongoing trigeminal nerve stimulation.
Collapse
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale Lausanne, Switzerland
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale Lausanne, Switzerland
| | - Nathalie Just
- CIBM-AIT core, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
25
|
Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 2017; 312:H1-H20. [PMID: 27793855 PMCID: PMC5283909 DOI: 10.1152/ajpheart.00581.2016] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022]
Abstract
Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined.
Collapse
Affiliation(s)
- Peter Toth
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Pecs, Hungary; and
| | - Stefano Tarantini
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
26
|
Harris JJ, Reynell C. How do antidepressants influence the BOLD signal in the developing brain? Dev Cogn Neurosci 2016; 25:45-57. [PMID: 28089656 PMCID: PMC6987820 DOI: 10.1016/j.dcn.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
Depression is a highly prevalent life-threatening disorder, with its first onset commonly occurring during adolescence. Adolescent depression is increasingly being treated with antidepressants, such as fluoxetine. The use of medication during this sensitive period of physiological and cognitive brain development produces neurobiological changes, some of which may outlast the course of treatment. In this review, we look at how antidepressant treatment in adolescence is likely to alter neurovascular coupling and brain energy use and how these changes, in turn, affect our ability to identify neuronal activity changes between participant groups. BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging), the method most commonly used to record brain activity in humans, is an indirect measure of neuronal activity. This means that between-group comparisons – adolescent versus adult, depressed versus healthy, medicated versus non-medicated – rely upon a stable relationship existing between neuronal activity and the BOLD response across these groups. We use data from animal studies to detail the ways in which fluoxetine may alter this relationship, and explore how these alterations may influence the interpretation of BOLD signal differences between groups that have been treated with fluoxetine and those that have not.
Collapse
Affiliation(s)
- Julia J Harris
- Life Sciences Department, Imperial College London, SW7 2AZ, UK; Francis Crick Institute, Midland Road, London, NW1 1AT, UK.
| | - Clare Reynell
- Département de Neurosciences, Université de Montréal, H3C 3J7, Canada.
| |
Collapse
|
27
|
Tarantini S, Tran CHT, Gordon GR, Ungvari Z, Csiszar A. Impaired neurovascular coupling in aging and Alzheimer's disease: Contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol 2016; 94:52-58. [PMID: 27845201 DOI: 10.1016/j.exger.2016.11.004] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022]
Abstract
The importance of (micro)vascular contributions to cognitive impairment and dementia (VCID) in aging cannot be overemphasized, and the pathogenesis and prevention of age-related cerebromicrovascular pathologies are a subject of intensive research. In particular, aging impairs the increase in cerebral blood flow triggered by neural activation (termed neurovascular coupling or functional hyperemia), a critical mechanism that matches oxygen and nutrient delivery with the increased demands in active brain regions. From epidemiological, clinical and experimental studies the picture emerges of a complex functional impairment of cerebral microvessels and astrocytes, which likely contribute to neurovascular dysfunction and cognitive decline in aging and in age-related neurodegenerative diseases. This overview discusses age-related alterations in neurovascular coupling responses responsible for impaired functional hyperemia. The mechanisms and consequences of astrocyte dysfunction (including potential alteration of astrocytic endfeet calcium signaling, dysregulation of eicosanoid gliotransmitters and astrocyte energetics) and functional impairment of the microvascular endothelium are explored. Age-related mechanisms (cellular oxidative stress, senescence, circulating IGF-1 deficiency) impairing the function of cells of the neurovascular unit are discussed and the evidence for the causal role of neurovascular uncoupling in cognitive decline is critically examined.
Collapse
Affiliation(s)
- Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cam Ha T Tran
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
28
|
Mathias EJ, Plank MJ, David T. A model of neurovascular coupling and the BOLD response: PART I. Comput Methods Biomech Biomed Engin 2016; 20:508-518. [PMID: 27832709 DOI: 10.1080/10255842.2016.1255732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mechanisms with which neurons communicate with the vasculature to increase blood flow, termed neurovascular coupling is still unclear primarily due to the complex interactions between many parameters and the difficulty in accessing, monitoring and measuring them in the highly heterogeneous brain. Hence a solid theoretical framework based on existing experimental knowledge is necessary to study the relation between neural activity, the associated vasoactive factors released and their effects on the vasculature. Such a framework should also be related to experimental data so that it can be validated against repetitive experiments and generate verifiable hypothesis. We have developed a mathematical model which describes a signaling mechanism of neurovascular coupling with a model of pyramidal neuron and its corresponding fMRI BOLD response. In the first part of two papers we describe the integration of the neurovascular coupling unit extended to include a complex neuron model, which includes the important Na/K ATPase pump, with a model that provides a BOLD signal taking its input from the cerebral blood flow and the metabolic rate of oxygen consumption. We show that this produces a viable signal in terms of initial dip, positive and negative BOLD signals.
Collapse
Affiliation(s)
- E J Mathias
- a UC HPC , University of Canterbury , Christchurch , New Zealand
| | - M J Plank
- b School of Mathematics and Statistics , University of Canterbury , Christchurch , New Zealand
| | - T David
- a UC HPC , University of Canterbury , Christchurch , New Zealand
| |
Collapse
|
29
|
Mathias EJ, Plank MJ, David T. A model of neurovascular coupling and the BOLD response PART II. Comput Methods Biomech Biomed Engin 2016; 20:519-529. [PMID: 27832702 DOI: 10.1080/10255842.2016.1255733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A mathematical model is developed which describes a signalling mechanism of neurovascular coupling with a model of a pyramidal neuron and its corresponding fMRI BOLD response. In the first part of two papers (Part I) we described the integration of the neurovascular coupling unit extended to include a complex neuron model, which includes the important Na/K ATPase pump, with a model that provides a BOLD signal taking its input from the cerebral blood flow and the metabolic rate of oxygen consumption. We showed that this produced a viable signal in terms of initial dip, positive and negative BOLD signals. In this paper (PART II) our model predicts the variations of the BOLD response due to variations in neuronal activity and indicates that the BOLD signal could be used as an initial biomarker for neuronal dysfunction or variations in the perfusion of blood to the cerebral tissue. We have compared the simulated hypoxic BOLD response to experimental BOLD signals observed in the hippocampus during hypoxia showing good agreement. This approach of combined quantitative modelling of neurovascular coupling response and its BOLD response will enable more specific assessment of a brain region.
Collapse
Affiliation(s)
- E J Mathias
- a UC HPC , University of Canterbury , Christchurch , NewZealand
| | - M J Plank
- b School of Mathematics and Statistics , University of Canterbury , Christchurch , NewZealand
| | - T David
- a UC HPC , University of Canterbury , Christchurch , NewZealand
| |
Collapse
|
30
|
Wei HS, Kang H, Rasheed IYD, Zhou S, Lou N, Gershteyn A, McConnell ED, Wang Y, Richardson KE, Palmer AF, Xu C, Wan J, Nedergaard M. Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation. Neuron 2016; 91:851-862. [PMID: 27499087 DOI: 10.1016/j.neuron.2016.07.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 05/11/2016] [Accepted: 06/26/2016] [Indexed: 01/23/2023]
Abstract
Energy production in the brain depends almost exclusively on oxidative metabolism. Neurons have small energy reserves and require a continuous supply of oxygen (O2). It is therefore not surprising that one of the hallmarks of normal brain function is the tight coupling between cerebral blood flow and neuronal activity. Since capillaries are embedded in the O2-consuming neuropil, we have here examined whether activity-dependent dips in O2 tension drive capillary hyperemia. In vivo analyses showed that transient dips in tissue O2 tension elicit capillary hyperemia. Ex vivo experiments revealed that red blood cells (RBCs) themselves act as O2 sensors that autonomously regulate their own deformability and thereby flow velocity through capillaries in response to physiological decreases in O2 tension. This observation has broad implications for understanding how local changes in blood flow are coupled to synaptic transmission.
Collapse
Affiliation(s)
- Helen Shinru Wei
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hongyi Kang
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Izad-Yar Daniel Rasheed
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sitong Zhou
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Nanhong Lou
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anna Gershteyn
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Evan Daniel McConnell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yixuan Wang
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA; School of Mechanical Engineering, University of Science and Technology, Beijing 100083, China
| | - Kristopher Emil Richardson
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Andre Francis Palmer
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chris Xu
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jiandi Wan
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
31
|
Mayhew SD, Mullinger KJ, Ostwald D, Porcaro C, Bowtell R, Bagshaw AP, Francis ST. Global signal modulation of single-trial fMRI response variability: Effect on positive vs negative BOLD response relationship. Neuroimage 2016; 133:62-74. [PMID: 26956909 DOI: 10.1016/j.neuroimage.2016.02.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 01/25/2023] Open
Abstract
In functional magnetic resonance imaging (fMRI), the relationship between positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to stimulation is potentially informative about the balance of excitatory and inhibitory brain responses in sensory cortex. In this study, we performed three separate experiments delivering visual, motor or somatosensory stimulation unilaterally, to one side of the sensory field, to induce PBR and NBR in opposite brain hemispheres. We then assessed the relationship between the evoked amplitudes of contralateral PBR and ipsilateral NBR at the level of both single-trial and average responses. We measure single-trial PBR and NBR peak amplitudes from individual time-courses, and show that they were positively correlated in all experiments. In contrast, in the average response across trials the absolute magnitudes of both PBR and NBR increased with increasing stimulus intensity, resulting in a negative correlation between mean response amplitudes. Subsequent analysis showed that the amplitude of single-trial PBR was positively correlated with the BOLD response across all grey-matter voxels and was not specifically related to the ipsilateral sensory cortical response. We demonstrate that the global component of this single-trial response modulation could be fully explained by voxel-wise vascular reactivity, the BOLD signal standard deviation measured in a separate resting-state scan (resting state fluctuation amplitude, RSFA). However, bilateral positive correlation between PBR and NBR regions remained. We further report that modulations in the global brain fMRI signal cannot fully account for this positive PBR-NBR coupling and conclude that the local sensory network response reflects a combination of superimposed vascular and neuronal signals. More detailed quantification of physiological and noise contributions to the BOLD signal is required to fully understand the trial-by-trial PBR and NBR relationship compared with that of average responses.
Collapse
Affiliation(s)
- S D Mayhew
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - K J Mullinger
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - D Ostwald
- Arbeitsbereich Computational Cognitive Neuroscience, Department of Education and Psychology, Free University Berlin, Berlin, Germany; Center for Adaptive Rationality (ARC), Max-Planck-Institute for Human Development, Berlin, Germany
| | - C Porcaro
- Laboratory of Electrophysiology for Translational Neuroscience (LET'S) - ISTC - CNR, Department of Neuroscience, Fatebenefratelli Hospital Isola Tiberina, Rome, Italy; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK; Department of Information Engineering,Università Politecnica delle Marche, Ancona, Italy
| | - R Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - A P Bagshaw
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - S T Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
32
|
Abstract
Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks.
Collapse
Affiliation(s)
- Bradley R Buchbinder
- Department of Radiology, Division of Neuroradiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Jessen SB, Mathiesen C, Lind BL, Lauritzen M. Interneuron Deficit Associates Attenuated Network Synchronization to Mismatch of Energy Supply and Demand in Aging Mouse Brains. Cereb Cortex 2015; 27:646-659. [DOI: 10.1093/cercor/bhv261] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Sanne Barsballe Jessen
- Department of Neuroscience and Pharmacology
- Center for Healthy Aging, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Claus Mathiesen
- Department of Neuroscience and Pharmacology
- Center for Healthy Aging, University of Copenhagen, Copenhagen N 2200, Denmark
| | | | - Martin Lauritzen
- Department of Neuroscience and Pharmacology
- Center for Healthy Aging, University of Copenhagen, Copenhagen N 2200, Denmark
- Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup 2600, Denmark
| |
Collapse
|
34
|
Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow. J Cereb Blood Flow Metab 2015; 35:1579-86. [PMID: 26082013 PMCID: PMC4640302 DOI: 10.1038/jcbfm.2015.140] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/04/2015] [Accepted: 05/20/2015] [Indexed: 12/27/2022]
Abstract
We investigated the link between direct activation of inhibitory neurons, local neuronal activity, and hemodynamics. Direct optogenetic cortical stimulation in the sensorimotor cortex of transgenic mice expressing Channelrhodopsin-2 in GABAergic neurons (VGAT-ChR2) greatly attenuated spontaneous cortical spikes, but was sufficient to increase blood flow as measured with laser speckle contrast imaging. To determine whether the observed optogenetically evoked gamma aminobutyric acid (GABA)-neuron hemodynamic responses were dependent on ionotropic glutamatergic or GABAergic synaptic mechanisms, we paired optogenetic stimulation with application of antagonists to the cortex. Incubation of glutamatergic antagonists directly on the cortex (NBQX and MK-801) blocked cortical sensory evoked responses (as measured with electroencephalography and intrinsic optical signal imaging), but did not significantly attenuate optogenetically evoked hemodynamic responses. Significant light-evoked hemodynamic responses were still present after the addition of picrotoxin (GABA-A receptor antagonist) in the presence of the glutamatergic synaptic blockade. This activation of cortical inhibitory interneurons can mediate large changes in blood flow in a manner that is by and large not dependent on ionotropic glutamatergic or GABAergic synaptic transmission. This supports the hypothesis that activation of inhibitory neurons can increase local cerebral blood flow in a manner that is not entirely dependent on levels of net ongoing neuronal activity.
Collapse
|
35
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
36
|
The effects of capillary transit time heterogeneity (CTH) on brain oxygenation. J Cereb Blood Flow Metab 2015; 35:806-17. [PMID: 25669911 PMCID: PMC4420854 DOI: 10.1038/jcbfm.2014.254] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/11/2014] [Accepted: 12/10/2014] [Indexed: 11/09/2022]
Abstract
We recently extended the classic flow-diffusion equation, which relates blood flow to tissue oxygenation, to take capillary transit time heterogeneity (CTH) into account. Realizing that cerebral oxygen availability depends on both cerebral blood flow (CBF) and capillary flow patterns, we have speculated that CTH may be actively regulated and that changes in the capillary morphology and function, as well as in blood rheology, may be involved in the pathogenesis of conditions such as dementia and ischemia-reperfusion injury. The first extended flow-diffusion equation involved simplifying assumptions which may not hold in tissue. Here, we explicitly incorporate the effects of oxygen metabolism on tissue oxygen tension and extraction efficacy, and assess the extent to which the type of capillary transit time distribution affects the overall effects of CTH on flow-metabolism coupling reported earlier. After incorporating tissue oxygen metabolism, our model predicts changes in oxygen consumption and tissue oxygen tension during functional activation in accordance with literature reports. We find that, for large CTH values, a blood flow increase fails to cause significant improvements in oxygen delivery, and can even decrease it; a condition of malignant CTH. These results are found to be largely insensitive to the choice of the transit time distribution.
Collapse
|
37
|
Mayhew S, Mullinger K, Bagshaw A, Bowtell R, Francis S. Investigating intrinsic connectivity networks using simultaneous BOLD and CBF measurements. Neuroimage 2014; 99:111-21. [DOI: 10.1016/j.neuroimage.2014.05.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/18/2014] [Accepted: 05/14/2014] [Indexed: 11/29/2022] Open
|
38
|
Martin C. Contributions and complexities from the use of in vivo animal models to improve understanding of human neuroimaging signals. Front Neurosci 2014; 8:211. [PMID: 25191214 PMCID: PMC4137227 DOI: 10.3389/fnins.2014.00211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/01/2014] [Indexed: 01/18/2023] Open
Abstract
Many of the major advances in our understanding of how functional brain imaging signals relate to neuronal activity over the previous two decades have arisen from physiological research studies involving experimental animal models. This approach has been successful partly because it provides opportunities to measure both the hemodynamic changes that underpin many human functional brain imaging techniques and the neuronal activity about which we wish to make inferences. Although research into the coupling of neuronal and hemodynamic responses using animal models has provided a general validation of the correspondence of neuroimaging signals to specific types of neuronal activity, it is also highlighting the key complexities and uncertainties in estimating neural signals from hemodynamic markers. This review will detail how research in animal models is contributing to our rapidly evolving understanding of what human neuroimaging techniques tell us about neuronal activity. It will highlight emerging issues in the interpretation of neuroimaging data that arise from in vivo research studies, for example spatial and temporal constraints to neuroimaging signal interpretation, or the effects of disease and modulatory neurotransmitters upon neurovascular coupling. We will also give critical consideration to the limitations and possible complexities of translating data acquired in the typical animals models used in this area to the arena of human fMRI. These include the commonplace use of anesthesia in animal research studies and the fact that many neuropsychological questions that are being actively explored in humans have limited homologs within current animal models for neuroimaging research. Finally we will highlighting approaches, both in experimental animals models (e.g. imaging in conscious, behaving animals) and human studies (e.g. combined fMRI-EEG), that mitigate against these challenges.
Collapse
Affiliation(s)
- Chris Martin
- Department of Psychology, The University of Sheffield Sheffield, UK
| |
Collapse
|
39
|
Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J Cereb Blood Flow Metab 2014; 34:1270-82. [PMID: 24896567 PMCID: PMC4126088 DOI: 10.1038/jcbfm.2014.104] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/09/2014] [Accepted: 05/21/2014] [Indexed: 01/09/2023]
Abstract
Gamma oscillations (∼30 to 100 Hz) provide a fundamental mechanism of information processing during sensory perception, motor behavior, and memory formation by coordination of neuronal activity in networks of the hippocampus and neocortex. We review the cellular mechanisms of gamma oscillations about the underlying neuroenergetics, i.e., high oxygen consumption rate and exquisite sensitivity to metabolic stress during hypoxia or poisoning of mitochondrial oxidative phosphorylation. Gamma oscillations emerge from the precise synaptic interactions of excitatory pyramidal cells and inhibitory GABAergic interneurons. In particular, specialized interneurons such as parvalbumin-positive basket cells generate action potentials at high frequency ('fast-spiking') and synchronize the activity of numerous pyramidal cells by rhythmic inhibition ('clockwork'). As prerequisites, fast-spiking interneurons have unique electrophysiological properties and particularly high energy utilization, which is reflected in the ultrastructure by enrichment with mitochondria and cytochrome c oxidase, most likely needed for extensive membrane ion transport and γ-aminobutyric acid metabolism. This supports the hypothesis that highly energized fast-spiking interneurons are a central element for cortical information processing and may be critical for cognitive decline when energy supply becomes limited ('interneuron energy hypothesis'). As a clinical perspective, we discuss the functional consequences of metabolic and oxidative stress in fast-spiking interneurons in aging, ischemia, Alzheimer's disease, and schizophrenia.
Collapse
|
40
|
Dynamic perfusion and diffusion MRI of cortical spreading depolarization in photothrombotic ischemia. Neurobiol Dis 2014; 71:131-9. [PMID: 25066776 DOI: 10.1016/j.nbd.2014.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/15/2014] [Accepted: 07/16/2014] [Indexed: 11/21/2022] Open
Abstract
Cortical spreading depolarization (CSD) is known to exacerbate ischemic damage, as the number of CSDs correlates with the final infarct volumes and suppressing CSDs improves functional outcomes. To investigate the role of CSD in ischemic damage, we developed a novel rat model of photothrombotic ischemia using a miniature implantable optic fiber that allows lesion induction inside the magnetic resonance imaging (MRI) scanner. We were able to precisely control the location and the size of the ischemic lesion, and continuously monitor dynamic perfusion and diffusion MRI signal changes at high temporal resolution before, during and after the onset of focal ischemia. Our model showed that apparent diffusion coefficient (ADC) and cerebral blood flow (CBF) in the ischemic core dropped immediately after lesion onset by 20±6 and 41±23%, respectively, and continually declined over the next 5h. Meanwhile, CSDs were observed in all animals (n=36) and displayed either a transient decrease of ADC by 17±3% or an increase of CBF by 104±15%. All CSDs were initiated from the rim of the ischemic core, propagated outward, and confined to the ipsilesional cortex. Additionally, we demonstrated that by controlling the size of perfusion-diffusion mismatch (which approximates the penumbra) in our model, the number of CSDs correlated with the mismatch area rather than the final infarct volume. This study introduces a novel platform to study CSDs in real-time with high reproducibility using MRI.
Collapse
|
41
|
Jessen SB, Brazhe A, Lind BL, Mathiesen C, Thomsen K, Jensen K, Lauritzen M. GABAA Receptor-Mediated Bidirectional Control of Synaptic Activity, Intracellular Ca2+, Cerebral Blood Flow, and Oxygen Consumption in Mouse Somatosensory Cortex In Vivo. Cereb Cortex 2014; 25:2594-609. [PMID: 24692513 DOI: 10.1093/cercor/bhu058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neural activity regulates local increases in cerebral blood flow (ΔCBF) and the cortical metabolic rate of oxygen (ΔCMRO2) that constitutes the basis of BOLD functional neuroimaging signals. Glutamate signaling plays a key role in brain vascular and metabolic control; however, the modulatory effect of GABA is incompletely understood. Here we performed in vivo studies in mice to investigate how THIP (which tonically activates extrasynaptic GABAARs) and Zolpidem (a positive allosteric modulator of synaptic GABAARs) impact stimulation-induced ΔCBF, ΔCMRO2, local field potentials (LFPs), and fluorescent cytosolic Ca(2+) transients in neurons and astrocytes. Low concentrations of THIP increased ΔCBF and ΔCMRO2 at low stimulation frequencies. These responses were coupled to increased synaptic activity as indicated by LFP responses, and to Ca(2+) activities in neurons and astrocytes. Intermediate and high concentrations of THIP suppressed ΔCBF and ΔCMRO2 at high stimulation frequencies. Zolpidem had similar but less-pronounced effects, with similar dependence on drug concentration and stimulation frequency. Our present findings suggest that slight increases in both synaptic and extrasynaptic GABAAR activity might selectively gate and amplify transient low-frequency somatosensory inputs, filter out high-frequency inputs, and enhance vascular and metabolic responses that are likely to be reflected in BOLD functional neuroimaging signals.
Collapse
Affiliation(s)
- Sanne Barsballe Jessen
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Alexey Brazhe
- Biological Faculty Moscow State University, 119234 Moscow, Russia
| | - Barbara Lykke Lind
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Claus Mathiesen
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kirsten Thomsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kimmo Jensen
- Synaptic Physiology Laboratory, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen N, Denmark Department of Clinical Neurophysiology, Glostrup Hospital, 2600 Glostrup, Denmark
| |
Collapse
|
42
|
Mullinger KJ, Mayhew SD, Bagshaw AP, Bowtell R, Francis ST. Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG-BOLD-CBF study in humans. Neuroimage 2014; 94:263-274. [PMID: 24632092 DOI: 10.1016/j.neuroimage.2014.02.029] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022] Open
Abstract
Unambiguous interpretation of changes in the BOLD signal is challenging because of the complex neurovascular coupling that translates changes in neuronal activity into the subsequent haemodynamic response. In particular, the neurophysiological origin of the negative BOLD response (NBR) remains incompletely understood. Here, we simultaneously recorded BOLD, EEG and cerebral blood flow (CBF) responses to 10 s blocks of unilateral median nerve stimulation (MNS) in order to interrogate the NBR. Both negative BOLD and negative CBF responses to MNS were observed in the same region of the ipsilateral primary sensorimotor cortex (S1/M1) and calculations showed that MNS induced a decrease in the cerebral metabolic rate of oxygen consumption (CMRO2) in this NBR region. The ∆CMRO2/∆CBF coupling ratio (n) was found to be significantly larger in this ipsilateral S1/M1 region (n=0.91±0.04, M=10.45%) than in the contralateral S1/M1 (n=0.65±0.03, M=10.45%) region that exhibited a positive BOLD response (PBR) and positive CBF response, and a consequent increase in CMRO2 during MNS. The fMRI response amplitude in ipsilateral S1/M1 was negatively correlated with both the power of the 8-13 Hz EEG mu oscillation and somatosensory evoked potential amplitude. Blocks in which the largest magnitude of negative BOLD and CBF responses occurred therefore showed greatest mu power, an electrophysiological index of cortical inhibition, and largest somatosensory evoked potentials. Taken together, our results suggest that a neuronal mechanism underlies the NBR, but that the NBR may originate from a different neurovascular coupling mechanism to the PBR, suggesting that caution should be taken in assuming the NBR simply represents the neurophysiological inverse of the PBR.
Collapse
Affiliation(s)
- K J Mullinger
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK; Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham, UK.
| | - S D Mayhew
- Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham, UK
| | - A P Bagshaw
- Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham, UK
| | - R Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - S T Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
43
|
Li N, van Zijl P, Thakor N, Pelled G. Study of the spatial correlation between neuronal activity and BOLD fMRI responses evoked by sensory and channelrhodopsin-2 stimulation in the rat somatosensory cortex. J Mol Neurosci 2014; 53:553-61. [PMID: 24443233 DOI: 10.1007/s12031-013-0221-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/22/2013] [Indexed: 12/11/2022]
Abstract
In this work, we combined optogenetic tools with high-resolution blood oxygenation level-dependent functional MRI (BOLD fMRI), electrophysiology, and optical imaging of cerebral blood flow (CBF), to study the spatial correlation between the hemodynamic responses and neuronal activity. We first investigated the spatial and temporal characteristics of BOLD fMRI and the underlying neuronal responses evoked by sensory stimulations at different frequencies. The results demonstrated that under dexmedetomidine anesthesia, BOLD fMRI and neuronal activity in the rat primary somatosensory cortex (S1) have different frequency-dependency and distinct laminar activation profiles. We then found that localized activation of channelrhodopsin-2 (ChR2) expressed in neurons throughout the cortex induced neuronal responses that were confined to the light stimulation S1 region (<500 μm) with distinct laminar activation profile. However, the spatial extent of the hemodynamic responses measured by CBF and BOLD fMRI induced by both ChR2 and sensory stimulation was greater than 3 mm. These results suggest that due to the complex neurovascular coupling, it is challenging to determine specific characteristics of the underlying neuronal activity exclusively from the BOLD fMRI signals.
Collapse
Affiliation(s)
- Nan Li
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
44
|
Abstract
The cerebrovascular regulation involves highly complex mechanisms to assure that the brain is perfused at all times. These mechanisms depend on all components of the neurovascular units: neurons, glia, and vascular cells. All these cell types can produce nitric oxide (NO), a powerful vasodilator through different NO synthases. Many studies underlined the key role of NO in the maintenance of resting cerebral blood flow (CBF) as well as in the mechanisms that control cerebrovascular tone: autoregulation and neurovascular coupling. However, although the role of NO in the control of CBF has been largely investigated, the complexity of the NO system and the lack of specific NO synthase inhibitors led to still unresolved questions such as the origin of NO and the pathways by which it controls the vascular tone. In this chapter, the role of NO in the regulation of CBF is critically reviewed and discussed in the context of the neurovascular unit and the general principles of cerebrovascular regulation.
Collapse
|
45
|
Atabaki A, Marciniak K, Dicke PW, Karnath HO, Thier P. Parietal blood oxygenation level-dependent response evoked by covert visual search reflects set-size effect in monkeys. Eur J Neurosci 2013; 39:832-40. [PMID: 24279771 DOI: 10.1111/ejn.12427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 10/13/2013] [Accepted: 10/17/2013] [Indexed: 12/01/2022]
Abstract
Distinguishing a target from distractors during visual search is crucial for goal-directed behaviour. The more distractors that are presented with the target, the larger is the subject's error rate. This observation defines the set-size effect in visual search. Neurons in areas related to attention and eye movements, like the lateral intraparietal area (LIP) and frontal eye field (FEF), diminish their firing rates when the number of distractors increases, in line with the behavioural set-size effect. Furthermore, human imaging studies that have tried to delineate cortical areas modulating their blood oxygenation level-dependent (BOLD) response with set size have yielded contradictory results. In order to test whether BOLD imaging of the rhesus monkey cortex yields results consistent with the electrophysiological findings and, moreover, to clarify if additional other cortical regions beyond the two hitherto implicated are involved in this process, we studied monkeys while performing a covert visual search task. When varying the number of distractors in the search task, we observed a monotonic increase in error rates when search time was kept constant as was expected if monkeys resorted to a serial search strategy. Visual search consistently evoked robust BOLD activity in the monkey FEF and a region in the intraparietal sulcus in its lateral and middle part, probably involving area LIP. Whereas the BOLD response in the FEF did not depend on set size, the LIP signal increased in parallel with set size. These results demonstrate the virtue of BOLD imaging in monkeys when trying to delineate cortical areas underlying a cognitive process like visual search. However, they also demonstrate the caution needed when inferring neural activity from BOLD activity.
Collapse
Affiliation(s)
- A Atabaki
- Department of Cognitive Neurology, Hertie-Institute for Clinical Brain Research, Otfried-Müller-Strasse 27, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
46
|
Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc Natl Acad Sci U S A 2013; 110:E4678-87. [PMID: 24218625 DOI: 10.1073/pnas.1310065110] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2+) elevations with rapid onset and short duration in a large proportion of cortical astrocytes in the adult mouse somatosensory cortex. Our improved detection of the fast Ca(2+) signals is due to a signal-enhancing analysis of the Ca(2+) activity. The rapid stimulation-evoked Ca(2+) increases identified in astrocyte somas, processes, and end-feet preceded local vasodilatation. Fast Ca(2+) responses in both neurons and astrocytes correlated with synaptic activity, but only the astrocytic responses correlated with the hemodynamic shifts. These data establish that a large proportion of cortical astrocytes have brief Ca(2+) responses with a rapid onset in vivo, fast enough to initiate hemodynamic responses or influence synaptic activity.
Collapse
|
47
|
Zehendner CM, Tsohataridis S, Luhmann HJ, Yang JW. Developmental switch in neurovascular coupling in the immature rodent barrel cortex. PLoS One 2013; 8:e80749. [PMID: 24224059 PMCID: PMC3818260 DOI: 10.1371/journal.pone.0080749] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/17/2013] [Indexed: 12/21/2022] Open
Abstract
Neurovascular coupling (NVC) in the adult central nervous system (CNS) is a mechanism that provides regions of the brain with more oxygen and glucose upon increased levels of neural activation. Hemodynamic changes that go along with neural activation evoke a blood oxygen level-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) that can be used to study brain activity non-invasively. A correct correlation of the BOLD signal to neural activity is pivotal to understand this signal in neuronal development, health and disease. However, the function of NVC during development is largely unknown. The rodent whisker-to-barrel cortex is an experimentally well established model to study neurovascular interdependences. Using extracellular multi-electrode recordings and laser-Doppler-flowmetry (LDF) we show in the murine barrel cortex of postnatal day 7 (P7) and P30 mice in vivo that NVC undergoes a physiological shift during the first month of life. In the mature CNS it is well accepted that cortical sensory processing results in a rise in regional cerebral blood flow (rCBF). We show in P7 animals that rCBF decreases during prolonged multi-whisker stimulation and goes along with multi unit activity (MUA) fatigue. In contrast at P30, MUA remains stable during repetitive stimulation and is associated with an increase in rCBF. Further we characterize in both age groups the responses in NVC to single sensory stimuli. We suggest that the observed shift in NVC is an important process in cortical development that may be of high relevance for the correct interpretation of brain activity e.g. in fMRI studies of the immature central nervous system (CNS).
Collapse
Affiliation(s)
- Christoph M. Zehendner
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Simeon Tsohataridis
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
48
|
Dunn KM, Nelson MT. Neurovascular signaling in the brain and the pathological consequences of hypertension. Am J Physiol Heart Circ Physiol 2013; 306:H1-14. [PMID: 24163077 DOI: 10.1152/ajpheart.00364.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The execution and maintenance of all brain functions are dependent on a continuous flow of blood to meet the metabolic needs of the tissue. To ensure the delivery of resources required for neural processing and the maintenance of neural homeostasis, the cerebral vasculature is elaborately and extensively regulated by signaling from neurons, glia, interneurons, and perivascular nerves. Hypertension is associated with impaired neurovascular regulation of the cerebral circulation and culminates in neurodegeneration and cognitive dysfunction. Here, we review the physiological processes of neurovascular signaling in the brain and discuss mechanisms of hypertensive neurovascular dysfunction.
Collapse
Affiliation(s)
- Kathryn M Dunn
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont; and
| | | |
Collapse
|
49
|
Reynell C, Harris JJ. The BOLD signal and neurovascular coupling in autism. Dev Cogn Neurosci 2013; 6:72-9. [PMID: 23917518 PMCID: PMC3989023 DOI: 10.1016/j.dcn.2013.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/03/2013] [Accepted: 07/03/2013] [Indexed: 12/03/2022] Open
Abstract
Neurovascular coupling and energy use may be changed in autism. The relationship between neural activity and the BOLD signal may be altered in autism. Simply comparing the BOLD signal of control and autistic people may not be meaningful. Combined techniques will aid the interpretation of group differences in the BOLD signal.
BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging) is commonly used to study differences in neuronal activity between human populations. As the BOLD response is an indirect measure of neuronal activity, meaningful interpretation of differences in BOLD responses between groups relies upon a stable relationship existing between neuronal activity and the BOLD response across these groups. However, this relationship can be altered by changes in neurovascular coupling or energy consumption, which would lead to problems in identifying differences in neuronal activity. In this review, we focus on fMRI studies of people with autism, and comparisons that are made of their BOLD responses with those of control groups. We examine neurophysiological differences in autism that may alter neurovascular coupling or energy use, discuss recent studies that have used fMRI to identify differences between participants with autism and control participants, and explore experimental approaches that could help attribute between-group differences in BOLD signals to either neuronal or neurovascular factors.
Collapse
Affiliation(s)
- Clare Reynell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London, WC1E 6BT, UK.
| | | |
Collapse
|
50
|
Airan RD, Li N, Gilad AA, Pelled G. Genetic tools to manipulate MRI contrast. NMR IN BIOMEDICINE 2013; 26:803-809. [PMID: 23355411 PMCID: PMC3669659 DOI: 10.1002/nbm.2907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
Advances in molecular biology in the early 1970s revolutionized research strategies for the study of complex biological processes, which, in turn, created a high demand for new means to visualize these dynamic biological changes noninvasively and in real time. In this respect, MRI was a perfect fit, because of the versatile possibility to alter the different contrast mechanisms. Genetic manipulations are now being translated to MRI through the development of reporters and sensors, as well as the imaging of transgenic and knockout mice. In the past few years, a new molecular biology toolset, namely optogenetics, has emerged, which allows for the manipulation of cellular behavior using light. This technology provides a few particularly attractive features for combination with newly developed MRI techniques for the probing of in vivo cellular and, in particular, neural processes, specifically the ability to control focal, genetically defined cellular populations with high temporal resolution using equipment that is magnetically inert and does not interact with radiofrequency pulses. Recent studies have demonstrated that the combination of optogenetics and functional MRI (fMRI) can provide an appropriate platform to investigate in vivo, at the cellular and molecular levels, the neuronal basis of fMRI signals. In addition, this novel combination of optogenetics with fMRI has the potential to resolve pre-synaptic versus post-synaptic changes in neuronal activity and changes in the activity of large neuronal networks in the context of plasticity associated with development, learning and pathophysiology.
Collapse
Affiliation(s)
- Raag D. Airan
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nan Li
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Assaf A. Gilad
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Galit Pelled
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|