1
|
Suryavanshi P, Baule S, Glykys J. Trauma in Neonatal Acute Brain Slices Alters Calcium and Network Dynamics and Causes Calpain-Mediated Cell Death. eNeuro 2024; 11:ENEURO.0007-24.2024. [PMID: 38886064 PMCID: PMC11232372 DOI: 10.1523/eneuro.0007-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Preparing acute brain slices produces trauma that mimics severe penetrating brain injury. In neonatal acute brain slices, the spatiotemporal characteristics of trauma-induced calcium dynamics in neurons and its effect on network activity are relatively unknown. Using multiphoton laser scanning microscopy of the somatosensory neocortex in acute neonatal mouse brain slices (P8-12), we simultaneously imaged neuronal Ca2+ dynamics (GCaMP6s) and cytotoxicity (propidium iodide or PI) to determine the relationship between cytotoxic Ca2+ loaded neurons (GCaMP-filled) and cell viability at different depths and incubation times. PI+ cells and GCaMP-filled neurons were abundant at the surface of the slices, with an exponential decrease with depth. Regions with high PI+ cells correlated with elevated neuronal and neuropil Ca2+ The number of PI+ cells and GCaMP-filled neurons increased with prolonged incubation. GCaMP-filled neurons did not participate in stimulus-evoked or seizure-evoked network activity. Significantly, the superficial tissue, with a higher degree of trauma-induced injury, showed attenuated seizure-related neuronal Ca2+ responses. Calpain inhibition prevented the increase in PI+ cells and GCaMP-filled neurons in the deep tissue and during prolonged incubation times. Isoform-specific pharmacological inhibition implicated calpain-2 as a significant contributor to trauma-induced injury in acute slices. Our results show a calpain-mediated spatiotemporal relationship between cell death and aberrant neuronal Ca2+ load in acute neonatal brain slices. Also, we demonstrate that neurons in acute brain slices exhibit altered physiology depending on the degree of trauma-induced injury. Blocking calpains may be a therapeutic option to prevent acute neuronal death during traumatic brain injury in the young brain.
Collapse
Affiliation(s)
- Pratyush Suryavanshi
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52241
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52241
| | - Samuel Baule
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52241
- Departments of Biomedical Engineering, The University of Iowa, Iowa City, Iowa 52241
| | - Joseph Glykys
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52241
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52241
- Neurology, The University of Iowa, Iowa City, Iowa 52241
| |
Collapse
|
2
|
Korczowska-Łącka I, Słowikowski B, Piekut T, Hurła M, Banaszek N, Szymanowicz O, Jagodziński PP, Kozubski W, Permoda-Pachuta A, Dorszewska J. Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants (Basel) 2023; 12:1811. [PMID: 37891890 PMCID: PMC10604347 DOI: 10.3390/antiox12101811] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In diseases of the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), stroke, amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and even epilepsy and migraine, oxidative stress load commonly surpasses endogenous antioxidative capacity. While oxidative processes have been robustly implicated in the pathogenesis of these diseases, the significance of particular antioxidants, both endogenous and especially exogenous, in maintaining redox homeostasis requires further research. Among endogenous antioxidants, enzymes such as catalase, superoxide dismutase, and glutathione peroxidase are central to disabling free radicals, thereby preventing oxidative damage to cellular lipids, proteins, and nucleic acids. Whether supplementation with endogenously occurring antioxidant compounds such as melatonin and glutathione carries any benefit, however, remains equivocal. Similarly, while the health benefits of certain exogenous antioxidants, including ascorbic acid (vitamin C), carotenoids, polyphenols, sulforaphanes, and anthocyanins are commonly touted, their clinical efficacy and effectiveness in particular neurological disease contexts need to be more robustly defined. Here, we review the current literature on the cellular mechanisms mitigating oxidative stress and comment on the possible benefit of the most common exogenous antioxidants in diseases such as AD, PD, ALS, HD, stroke, epilepsy, and migraine. We selected common neurological diseases of a basically neurodegenerative nature.
Collapse
Affiliation(s)
- Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Agnieszka Permoda-Pachuta
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| |
Collapse
|
3
|
Lietzau G, Sienkiewicz W, Karwacki Z, Dziewiątkowski J, Kaleczyc J, Kowiański P. The Effect of Simvastatin on the Dynamics of NF-κB-Regulated Neurodegenerative and Neuroprotective Processes in the Acute Phase of Ischemic Stroke. Mol Neurobiol 2023; 60:4935-4951. [PMID: 37204689 PMCID: PMC10415422 DOI: 10.1007/s12035-023-03371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
Statins are lipid-lowering drugs that act by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A reductase, a rate-limiting enzyme in cholesterol biosynthesis. Animal studies have shown neuroprotective effects of statins in cerebral stroke. However, the underlying mechanisms are not fully understood. The nuclear factor-kappa B (NF-κB) transcription factor is involved in the regulation of apoptosis in stroke. Different dimers of NF-κB regulate the gene expression of proteins involved in both neurodegeneration and neuroprotection. We aimed to determine whether simvastatin improves stroke outcome via inhibition of the RelA/p65-containing subunit and downregulation of stroke-induced pro-apoptotic genes or via activation of NF-κB dimers containing the c-Rel subunit and upregulation of anti-apoptotic genes during the acute stroke phase. Eighteen-month-old Wistar rats, subjected to permanent MCAO or sham surgery, were administered simvastatin (20 mg/kg b.w.) or saline for 5 days before the procedure. Stroke outcome was determined by measuring cerebral infarct and assessing motor functions. The expression of NF-κB subunits in various cell populations was investigated using immunofluorescence/confocal microscopy. RelA and c-Rel were detected by WB. The NF-κB-DNA binding activity was investigated using EMSA, and expression of Noxa, Puma, Bcl-2, and Bcl-x genes was analyzed by qRT-PCR. Results showed a 50% infarct size reduction and significant motor function improvement in the simvastatin-treated animals which correlated with a decrease in RelA and a transient increase in the c-Rel level in the nucleus, normalization of the NF-κB-DNA binding activity, and downregulation of the NF-κB-regulated genes. Our results provide new insights into the statin-mediated neuroprotective action against stroke based on NF-κB pathway inhibition.
Collapse
Affiliation(s)
- Grazyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Waldemar Sienkiewicz
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Zbigniew Karwacki
- Department of Neuroanaesthesiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Jerzy Dziewiątkowski
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
- Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland
| |
Collapse
|
4
|
Mohamadzadeh O, Hajinouri M, Moammer F, Tamehri Zadeh SS, Omid Shafiei G, Jafari A, Ostadian A, Talaei Zavareh SA, Hamblin MR, Yazdi AJ, Sheida A, Mirzaei H. Non-coding RNAs and Exosomal Non-coding RNAs in Traumatic Brain Injury: the Small Player with Big Actions. Mol Neurobiol 2023; 60:4064-4083. [PMID: 37020123 DOI: 10.1007/s12035-023-03321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Nowadays, there is an increasing concern regarding traumatic brain injury (TBI) worldwide since substantial morbidity is observed after it, and the long-term consequences that are not yet fully recognized. A number of cellular pathways related to the secondary injury in brain have been identified, including free radical production (owing to mitochondrial dysfunction), excitotoxicity (regulated by excitatory neurotransmitters), apoptosis, and neuroinflammatory responses (as a result of activation of the immune system and central nervous system). In this context, non-coding RNAs (ncRNAs) maintain a fundamental contribution to post-transcriptional regulation. It has been shown that mammalian brains express high levels of ncRNAs that are involved in several brain physiological processes. Furthermore, altered levels of ncRNA expression have been found in those with traumatic as well non-traumatic brain injuries. The current review highlights the primary molecular mechanisms participated in TBI that describes the latest and novel results about changes and role of ncRNAs in TBI in both clinical and experimental research.
Collapse
Affiliation(s)
- Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsasadat Hajinouri
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moammer
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
5
|
Qi S, Zhang X, Fu Z, Pi A, Shi F, Fan Y, Zhang J, Xiao T, Shang D, Lin M, Gao N, Chang J, Gao Y. (±)-5-bromo-2-(5-fluoro-1-hydroxyamyl) Benzoate Protects Against Oxidative Stress Injury in PC12 Cells Exposed to H2O2 Through Activation of Nrf2 Pathway. Front Pharmacol 2022; 13:943111. [PMID: 35935850 PMCID: PMC9348035 DOI: 10.3389/fphar.2022.943111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Oxidative stress is associated with the pathogenesis of ischemic stroke (±)-5-bromo-2-(5-fluoro-1-hydroxyamyl) benzoate (BFB) is a novel compound modified by dl-3-n-butylphthalide (NBP). Here, we hypothesized that BFB may protect the PC12 cells against H2O2-induced oxidative stress injury through activation of the Nrf2 pathway. Methods: We measured the cell viability and levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) to determine the construction of the H2O2-induced models of oxidative stress in PC12 cells. Additionally, apoptotic cell death, mitochondrial membrane potential, and cellular morphology were examined to determine the effect of BFB on oxidative stress injury in H2O2-treated PC12 cells. The expression levels of Nrf2-related and autophagy-related genes and proteins were detected using real time quantative PCR (RT-qPCR), Western Blot, and immunofluorescence analyses. Results: Our study showed that BFB treatment reduced the elevated levels of MDA, LDH, and ROS, and decreased cell viability and GSH in H2O2-treated PC12 cells. We also observed the elevated expression of Nrf2 pathway-related factors and intranuclear transitions and found that Nrf2 inhibitors (ML385) could block the protective effect of BFB. The inhibitory effect of BFB on oxidative stress may be partially regulated by Nrf2 activation, and the initiation and induction of autophagy. Conclusion: BFB inhibited H2O2-induced oxidative stress injury in PC12 cells by activating the Nrf2 pathway, initiating and inducing autophagy, suggesting that BFB may be a promising therapeutic agent in treating neurological disorders like cerebral ischemia.
Collapse
Affiliation(s)
- Saidan Qi
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Xiaojiao Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Fu
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Anran Pi
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Feiyan Shi
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yanan Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Jiahua Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Tingting Xiao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Dong Shang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Meng Lin
- Department of Experimental Center, School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Na Gao
- Department of Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Junbiao Chang
- Department of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Yuan Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yuan Gao,
| |
Collapse
|
6
|
D'Orsi B, Niewidok N, Düssmann H, Prehn JHM. Mitochondrial Carrier Homolog 2 Functionally Co-operates With BH3 Interacting-Domain Death Agonist in Promoting Ca 2+-Induced Neuronal Injury. Front Cell Dev Biol 2021; 9:750100. [PMID: 34708044 PMCID: PMC8542846 DOI: 10.3389/fcell.2021.750100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022] Open
Abstract
The BH3 interacting-domain death agonist (BID) is a pro-apoptotic member of the Bcl-2 protein family. While proteolytic processing of BID links death receptor-induced apoptosis to the mitochondrial apoptosis pathway, we previously showed that full length BID also translocates to mitochondria during Ca2+-induced neuronal cell death. Moreover, mitochondrial carrier homolog 2 (MTCH2) was identified as a mitochondrial protein that interacts with BID during cell death. We started our studies by investigating the effect of Mtch2 silencing in a well-established model of Ca2+-induced mitochondrial permeability transition pore opening in non-neuronal HCT116 cells. We found that silencing of Mtch2 inhibited mitochondrial swelling and the associated decrease in mitochondrial energetics, suggesting a pro-death function for MTCH2 during Ca2+-induced injury. Next, we explored the role of BID and MTCH2 in mediating Ca2+-induced injury in primary cortical neurons triggered by prolonged activation of NMDA glutamate receptors. Analysis of intracellular Ca2+ transients, using time-lapse confocal microscopy, revealed that neurons lacking Bid showed markedly reduced Ca2+ levels during the NMDA excitation period. These Ca2+ transients were further decreased when Mtch2 was also silenced. Collectively, our data suggest that BID and MTCH2 functionally interact to promote Ca2+-induced neuronal injury.
Collapse
Affiliation(s)
- Beatrice D'Orsi
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland.,Institute of Neuroscience, Italian National Research Council, Pisa, Italy
| | - Natalia Niewidok
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Heiko Düssmann
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
7
|
Ryan F, Khoshnam SE, Khodagholi F, Ashabi G, Ahmadiani A. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 2021; 36:1445-1467. [PMID: 34173922 DOI: 10.1007/s11011-021-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Centre, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, PO Box: 1417613151, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021; 9:biomedicines9020169. [PMID: 33572080 PMCID: PMC7914955 DOI: 10.3390/biomedicines9020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Bianca Vezzani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Ilaria Casetta
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
- Correspondence:
| |
Collapse
|
9
|
Modi J, Menzie-Suderam J, Xu H, Trujillo P, Medley K, Marshall ML, Tao R, Prentice H, Wu JY. Mode of action of granulocyte-colony stimulating factor (G-CSF) as a novel therapy for stroke in a mouse model. J Biomed Sci 2020; 27:19. [PMID: 31907023 PMCID: PMC6943893 DOI: 10.1186/s12929-019-0597-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The FDA approved drug granulocyte-colony stimulating factor (G-CSF) displays anti-apoptotic and immunomodulatory properties with neurogenesis and angiogenic functions. It is known to demonstrate neuroprotective mechanisms against ischemic global stroke. Autophagy is a method for the degradation of intracellular components and in particular, unrestrained autophagy may lead to uncontrolled digestion of affected neurons as well as neuronal death in cerebral ischemia. Mitochondrial dynamics is vital for the regulation of cell survival and death after cerebral ischemia and an early upstream event in neuronal death is mitochondrial fission. We examined the pro-survival mechanisms of G-CSF against apoptosis resulting from autophagy, mitochondrial stress and endoplasmic reticulum (ER) stress. METHODS Male Swiss Webster mice (20 weeks of age) were subjected to bilateral common carotid artery occlusion (BCAO) for 30 min. After occlusion, mice were injected with G-CSF (50 μg/kg) subcutaneously for 4 days. Behavioral analysis was carried out using the corner test and locomotor activity test before animals were sacrificed on day 4 or day 7. Key proteins in ER stress, autophagy and mitochondrial stress induced apoptosis were analyzed by immunoblotting. RESULTS G-CSF improved neurological deficits and improved behavioral performance on corner and locomotor test. G-CSF binds to G-CSF receptors and its activation leads to upregulation of Akt phosphorylation (P-Akt) which in turn decreases levels of the ER stress sensor, GRP 78 and expression of proteins involved in ER stress apoptosis pathway; ATF6, ATF4, eIF2α, XBP1, Caspase 12 and CHOP. G-CSF treatment significantly decreased Beclin-1, an autophagy marker, and decreased mitochondrial stress biomarkers DRP1 and P53. G-CSF also up-regulated the mitochondrial fusion protein, OPA1 and anti-apoptotic protein Bcl-2 while down-regulating the pro-apoptotic proteins Bax, Bak and PUMA. CONCLUSIONS G-CSF is an endogenous ligand in the CNS that has a dual activity that is beneficial both in reducing acute neuronal degeneration and adding to long-term plasticity after cerebral ischemia. G-CSF treatment exerts neuroprotective effects on damaged neurons through the suppression of the ER stress and mitochondrial stress and maintains cellular homeostasis by decreasing pro-apoptotic proteins and increasing of anti-apoptotic proteins.
Collapse
Affiliation(s)
- Jigar Modi
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
- Center of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Janet Menzie-Suderam
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Hongyuan Xu
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Paola Trujillo
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Kristen Medley
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | | | - Rui Tao
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Howard Prentice
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA.
- Center of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA.
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| | - Jang-Yen Wu
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA.
- Center of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA.
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
10
|
He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med 2020; 146:45-58. [PMID: 31704373 DOI: 10.1016/j.freeradbiomed.2019.11.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/07/2019] [Accepted: 11/03/2019] [Indexed: 12/24/2022]
Abstract
Stroke is the leading cause of death and physical disability worldwide. Mitochondrial dysfunction has been considered as one of the hallmarks of ischemic stroke and contributes to the pathology of ischemia and reperfusion. Mitochondria is essential in promoting neural survival and neurological improvement following ischemic stroke. Therefore, mitochondria represent an important drug target for stroke treatment. This review discusses the mitochondrial molecular mechanisms underlying cerebral ischemia and involved in reactive oxygen species generation, mitochondrial electron transport dysfunction, mitochondria-mediated regulation of inflammasome activation, mitochondrial dynamics and biogenesis, and apoptotic cell death. We highlight the potential of mitochondrial transfer by stem cells as a therapeutic target for stroke treatment and provide valuable insights for clinical strategies. A better understanding of the roles of mitochondria in ischemia-induced cell death and protection may provide a rationale design of novel therapeutic interventions in the ischemic stroke.
Collapse
Affiliation(s)
- Zhi He
- Department of Pharmacy, Luohe Medical College, Luohe, 462000, China
| | - Niya Ning
- Department of Obstetrics and Gynecology, Shaoling District People's Hospital of Luohe City, Luohe, 462300, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, 610052, China.
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
11
|
A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed Pharmacother 2019; 117:109078. [DOI: 10.1016/j.biopha.2019.109078] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
|
12
|
Wang YQ, Tang YF, Yang MK, Huang XZ. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury in rats via inhibition of hypoxia-inducible factor-1α. J Cell Biochem 2019; 120:7834-7844. [PMID: 30456861 DOI: 10.1002/jcb.28058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Dexmedetomidine (Dex) was reported to reduce ischemia-reperfusion (I/R) injury in kidney and brain tissues. Thus, we aimed to study the role and mechanism of Dex in cerebral I/R injury by inhibiting hypoxia-inducible factor-1α (HIF-1α) and apoptosis. First, I/R injury models were established. Six groups were assigned after different treatments: sham, I/R, I/R+Dex, I/R+2-methoxyestradiol (2ME2) (HIF-1α inhibitor), I/R+CoCl 2 (HIF-1α activator), and I/R+Dex+CoCl 2 groups. Neurological function, cerebral infarction volume, survival, and apoptosis of brain cells were then analyzed. Besides, immunohistochemistry and Western blot analysis were used to detect the expression of HIF-1α, BCL-2[B-cell leukemia/lymphoma 2] adenovirus E1B interacting protein 3 (BNIP3), B-cell leukemia/lymphoma 2 (BCL2), BCL2[B-cell leukemia/lymphoma 2] associated X (Bax), and cleaved-caspase3 proteins in brain tissues. I/R rats showed cerebral infarction, increased neurological function score, number of terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL)-positive cells and HIF-1α-positive cells as well as decreased neurons. Inhibition of HIF-1α can reduce the apoptosis induced by I/R, and overexpression of HIF-1α can aggravate apoptosis in brain tissue of I/R rats. Furthermore, activation of HIF-1α expression blocks the inhibitory effect of Dex on neuronal apoptosis in I/R rats. Dex may inhibit the neuronal apoptosis of I/R rats by inhibiting the HIF-1α pathway and then improve the cerebral I/R injury in rats.
Collapse
Affiliation(s)
- Yuan-Qing Wang
- Department of Neurology, Rizhao People's Hospital, Rizhao, China
| | - Yu-Feng Tang
- Department of Neurology, Mianyang Central Hospital, Mianyang, China
| | - Ming-Kun Yang
- Department of Neurology, Chiping People's Hospital, Chiping, China
| | - Xi-Zhao Huang
- Department of Anesthesiology, Guangdong Women and Children's Hospital, Guangzhou, China
| |
Collapse
|
13
|
Wendland K, Meisel A, Mergenthaler P. Investigating Gene Function for Neuronal Survival After Metabolic Stress Using Semi-Automated Fluorescence Microscopy and Automated Image Analysis. Front Mol Neurosci 2018; 11:393. [PMID: 30450034 PMCID: PMC6224347 DOI: 10.3389/fnmol.2018.00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/09/2018] [Indexed: 11/13/2022] Open
Abstract
Overexpression approaches and fluorescence microscopy techniques allow investigating important spatiotemporal aspects of gene regulation as well as quantifying gene function. Consequently, fluorescence microscopy techniques help answer important questions on gene regulation such as addressing the role of a specific gene product for neuronal survival under different treatments. Here, we describe a versatile tool to measure effects of a transfected gene of interest on neuronal survival upon metabolic stress. We focus on nutrient starvation of cultured rodent primary neurons as a model of metabolic stress but our approach can easily be generalized and adapted to other cell types or to investigate single gene function in regulating neuronal survival under various conditions.
Collapse
Affiliation(s)
- Kristin Wendland
- Charité-Universitätsmedizin Berlin, Department of Experimental Neurology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Berlin, Germany
| | - Andreas Meisel
- Charité-Universitätsmedizin Berlin, Department of Experimental Neurology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
| | - Philipp Mergenthaler
- Charité-Universitätsmedizin Berlin, Department of Experimental Neurology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
14
|
Engel T, Gómez-Sintes R, Alves M, Jimenez-Mateos EM, Fernández-Nogales M, Sanz-Rodriguez A, Morgan J, Beamer E, Rodríguez-Matellán A, Dunleavy M, Sano T, Avila J, Medina M, Hernandez F, Lucas JJ, Henshall DC. Bi-directional genetic modulation of GSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death Dis 2018; 9:969. [PMID: 30237424 PMCID: PMC6147910 DOI: 10.1038/s41419-018-0963-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is ubiquitously expressed throughout the brain and involved in vital molecular pathways such as cell survival and synaptic reorganization and has emerged as a potential drug target for brain diseases. A causal role for GSK-3, in particular the brain-enriched GSK-3β isoform, has been demonstrated in neurodegenerative diseases such as Alzheimer’s and Huntington’s, and in psychiatric diseases. Recent studies have also linked GSK-3 dysregulation to neuropathological outcomes in epilepsy. To date, however, there has been no genetic evidence for the involvement of GSK-3 in seizure-induced pathology. Status epilepticus (prolonged, damaging seizure) was induced via a microinjection of kainic acid into the amygdala of mice. Studies were conducted using two transgenic mouse lines: a neuron-specific GSK-3β overexpression and a neuron-specific dominant-negative GSK-3β (GSK-3β-DN) expression in order to determine the effects of increased or decreased GSK-3β activity, respectively, on seizures and attendant pathological changes in the hippocampus. GSK-3 inhibitors were also employed to support the genetic approach. Status epilepticus resulted in a spatiotemporal regulation of GSK-3 expression and activity in the hippocampus, with decreased GSK-3 activity evident in non-damaged hippocampal areas. Consistent with this, overexpression of GSK-3β exacerbated status epilepticus-induced neurodegeneration in mice. Surprisingly, decreasing GSK-3 activity, either via overexpression of GSK-3β-DN or through the use of specific GSK-3 inhibitors, also exacerbated hippocampal damage and increased seizure severity during status epilepticus. In conclusion, our results demonstrate that the brain has limited tolerance for modulation of GSK-3 activity in the setting of epileptic brain injury. These findings caution against targeting GSK-3 as a treatment strategy for epilepsy or other neurologic disorders where neuronal hyperexcitability is an underlying pathomechanism.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Raquel Gómez-Sintes
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CIB-CSIC, C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Marta Fernández-Nogales
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - James Morgan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Alberto Rodríguez-Matellán
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mark Dunleavy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Takanori Sano
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jesus Avila
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miguel Medina
- CIEN Foundation-Queen Sofia Foundation Alzheimer Center and CIBERNED, Instituto de Salud Carlos III Madrid, Madrid, Spain
| | - Felix Hernandez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José J Lucas
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,FutureNeuro Research Centre, Dublin 2, Ireland
| |
Collapse
|
15
|
Jazvinšćak Jembrek M, Slade N, Hof PR, Šimić G. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer’s disease. Prog Neurobiol 2018; 168:104-127. [DOI: 10.1016/j.pneurobio.2018.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/04/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022]
|
16
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 690] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
17
|
Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol 2018; 16:263-275. [PMID: 29549824 PMCID: PMC5854930 DOI: 10.1016/j.redox.2018.03.002] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Stroke is the leading cause of adult disability and mortality in most developing and developed countries. The current best practices for patients with acute ischemic stroke include intravenous tissue plasminogen activator and endovascular thrombectomy for large-vessel occlusion to improve clinical outcomes. However, only a limited portion of patients receive thrombolytic therapy or endovascular treatment because the therapeutic time window after ischemic stroke is narrow. To address the current shortage of stroke management approaches, it is critical to identify new potential therapeutic targets. The mitochondrion is an often overlooked target for the clinical treatment of stroke. Early studies of mitochondria focused on their bioenergetic role; however, these organelles are now known to be important in a wide range of cellular functions and signaling events. This review aims to summarize the current knowledge on the mitochondrial molecular mechanisms underlying cerebral ischemia and involved in reactive oxygen species generation and scavenging, electron transport chain dysfunction, apoptosis, mitochondrial dynamics and biogenesis, and inflammation. A better understanding of the roles of mitochondria in ischemia-related neuronal death and protection may provide a rationale for the development of innovative therapeutic regimens for ischemic stroke and other stroke syndromes. Review of current treatment of ischemic stroke indicates deficiency in the contemporary methods. Discuss the mitochondrial ROS-related signaling that affect neuronal fate after ischemic stroke. Mechanisms of mitochondrial dynamics and mitophagy could be pivotal for ischemic stroke. Inhibiting mitochondrion-induced inflammatory response is a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Jenq-Lin Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC
| | - Sujira Mukda
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Shang-Der Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC; College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan, ROC.
| |
Collapse
|
18
|
Martínez-François JR, Fernández-Agüera MC, Nathwani N, Lahmann C, Burnham VL, Danial NN, Yellen G. BAD and K ATP channels regulate neuron excitability and epileptiform activity. eLife 2018; 7:32721. [PMID: 29368690 PMCID: PMC5785210 DOI: 10.7554/elife.32721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad (BCL-2 agonist of cell death) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (KATP) channels. Here we investigated the effect of BAD manipulation on KATP channel activity and excitability in acute brain slices. We found that BAD’s influence on neuronal KATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal KATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of KATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a ‘dentate gate’ function that is reinforced by increased KATP channel activity.
Collapse
Affiliation(s)
| | | | - Nidhi Nathwani
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Carolina Lahmann
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Veronica L Burnham
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Nika N Danial
- Department of Neurobiology, Harvard Medical School, Boston, United States.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
19
|
A Small-Molecule Inhibitor of Bax and Bak Oligomerization Prevents Genotoxic Cell Death and Promotes Neuroprotection. Cell Chem Biol 2017; 24:493-506.e5. [PMID: 28392146 DOI: 10.1016/j.chembiol.2017.03.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/29/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022]
Abstract
Aberrant apoptosis can lead to acute or chronic degenerative diseases. Mitochondrial outer membrane permeabilization (MOMP) triggered by the oligomerization of the Bcl-2 family proteins Bax/Bak is an irreversible step leading to execution of apoptosis. Here, we describe the discovery of small-molecule inhibitors of Bax/Bak oligomerization that prevent MOMP. We demonstrate that these molecules disrupt multiple, but not all, interactions between Bax dimer interfaces thereby interfering with the formation of higher-order oligomers in the MOM, but not recruitment of Bax to the MOM. Small-molecule inhibition of Bax/Bak oligomerization allowed cells to evade apoptotic stimuli and rescued neurons from death after excitotoxicity, demonstrating that oligomerization of Bax is essential for MOMP. Our discovery of small-molecule Bax/Bak inhibitors provides novel tools for the investigation of the mechanisms leading to MOMP and will ultimately facilitate development of compounds inhibiting Bax/Bak in acute and chronic degenerative diseases.
Collapse
|
20
|
D'Orsi B, Mateyka J, Prehn JHM. Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochem Int 2017; 109:162-170. [PMID: 28315370 DOI: 10.1016/j.neuint.2017.03.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 01/14/2023]
Abstract
Neuronal cell death is often triggered by events that involve intracellular increases in Ca2+. Under resting conditions, the intracellular Ca2+ concentration is tightly controlled by a number of extrusion and sequestering mechanisms involving the plasma membrane, mitochondria, and ER. These mechanisms act to prevent a disruption of neuronal ion homeostasis. As these processes require ATP, excessive Ca2+ overloading may cause energy depletion, mitochondrial dysfunction, and may eventually lead to Ca2+-dependent cell death. Excessive Ca2+ entry though glutamate receptors (excitotoxicity) has been implicated in several neurologic and chronic neurodegenerative diseases, including ischemic stroke, epilepsy, and Alzheimer's disease. Recent evidence has revealed that excitotoxic cell death is regulated by the B-cell lymphoma-2 (Bcl-2) family of proteins. Bcl-2 proteins, comprising of both pro-apoptotic and anti-apoptotic members, have been shown to not only mediate the intrinsic apoptosis pathway by controlling mitochondrial outer membrane (MOM) integrity, but to also control neuronal Ca2+ homeostasis and energetics. In this review, the role of Bcl-2 family proteins in the regulation of apoptosis, their expression in the central nervous system and how they control Ca2+-dependent neuronal injury are summarized. We review the current knowledge on Bcl-2 family proteins in the regulation of mitochondrial function and bioenergetics, including the fusion and fission machinery, and their role in Ca2+ homeostasis regulation at the mitochondria and ER. Specifically, we discuss how the 'pro-apoptotic' Bcl-2 family proteins, Bax and Bok, physiologically expressed in the nervous system, regulate such 'non-apoptotic/daytime' functions.
Collapse
Affiliation(s)
- Beatrice D'Orsi
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Julia Mateyka
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
21
|
Yang Y, Wang H, Li L, Li X, Wang Q, Ding H, Wang X, Ye Z, Wu L, Zhang X, Zhou M, Pan H. Sinomenine Provides Neuroprotection in Model of Traumatic Brain Injury via the Nrf2-ARE Pathway. Front Neurosci 2016; 10:580. [PMID: 28066165 PMCID: PMC5179594 DOI: 10.3389/fnins.2016.00580] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022] Open
Abstract
The neuroprotective effect of sinomenine (SIN) has been demonstrated in several brain injury models. However, its role and molecular mechanism in traumatic brain injury (TBI) remain unknown. In this study, we investigated the neuroprotective effects of SIN in the weight-drop model of TBI in male ICR mice. Mice were randomly divided into the sham and TBI groups, SIN (10 mg/kg, 30 mg/kg and 50 mg/kg, administered intraperitoneally) or equal volume of vehicle was given at 30 min after TBI. Treatment with 30 mg/kg SIN significantly improved motor performance and alleviated cerebral edema. However, treatment with 10 mg/kg or 50 mg/kg SIN did not exhibit a better outcome. Therefore, we chose 30 mg/kg SIN for our subsequent experiments. SIN significantly increased the expression of Bcl-2 and decreased that of cleaved caspase-3, indicating that SIN is anti-apoptotic. This was confirmed by the observation that SIN-treated animals had fewer apoptotic neurons. Cortical malondialdehyde content, glutathione peroxidase (GPx) activity and superoxide dismutase (SOD) activity were restored in the group that received SIN. Furthermore, Western blot and immunofluorescence experiments showed that SIN enhanced the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus. SIN administration also significantly upregulated the expression of the downstream factors heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 at pre- and post-transcriptional levels. Together, these data demonstrate that SIN exerts a neuroprotective effect in a model of TBI, possibly by activating the Nrf2–antioxidant response element (ARE) pathway.
Collapse
Affiliation(s)
- Youqing Yang
- Department of Neurosurgery, Jinling Hospital, Clinical Medical College of Southern Medical University (Guangzhou) Nanjing, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Clinical Medical College of Southern Medical University (Guangzhou) Nanjing, China
| | - Liwen Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing, China
| | - Xiang Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing, China
| | - Qiang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing, China
| | - Hui Ding
- Department of Neurosurgery, Jinling Hospital, Clinical Medical College of Southern Medical University (Guangzhou) Nanjing, China
| | - Xiaoliang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing, China
| | - Zhennan Ye
- Department of Neurosurgery, Jinling Hospital, Clinical Medical College of Southern Medical University (Guangzhou) Nanjing, China
| | - Lingyun Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing, China
| | - Xiangsheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing, China
| | - Hao Pan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing, China
| |
Collapse
|
22
|
Liu H, Zhao L, Yue L, Wang B, Li X, Guo H, Ma Y, Yao C, Gao L, Deng J, Li L, Feng D, Qu Y. Pterostilbene Attenuates Early Brain Injury Following Subarachnoid Hemorrhage via Inhibition of the NLRP3 Inflammasome and Nox2-Related Oxidative Stress. Mol Neurobiol 2016; 54:5928-5940. [DOI: 10.1007/s12035-016-0108-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/06/2016] [Indexed: 01/15/2023]
|
23
|
Bok Is Not Pro-Apoptotic But Suppresses Poly ADP-Ribose Polymerase-Dependent Cell Death Pathways and Protects against Excitotoxic and Seizure-Induced Neuronal Injury. J Neurosci 2016; 36:4564-78. [PMID: 27098698 DOI: 10.1523/jneurosci.3780-15.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Bok (Bcl-2-related ovarian killer) is a Bcl-2 family member that, because of its predicted structural homology to Bax and Bak, has been proposed to be a pro-apoptotic protein. In this study, we demonstrate that Bok is highly expressed in neurons of the mouse brain but that bok was not required for staurosporine-, proteasome inhibition-, or excitotoxicity-induced apoptosis of cultured cortical neurons. On the contrary, we found that bok-deficient neurons were more sensitive to oxygen/glucose deprivation-induced injury in vitro and seizure-induced neuronal injury in vivo Deletion of bok also increased staurosporine-, excitotoxicity-, and oxygen/glucose deprivation-induced cell death in bax-deficient neurons. Single-cell imaging demonstrated that bok-deficient neurons failed to maintain their neuronal Ca(2+)homeostasis in response to an excitotoxic stimulus; this was accompanied by a prolonged deregulation of mitochondrial bioenergetics.bok deficiency led to a specific reduction in neuronal Mcl-1 protein levels, and deregulation of both mitochondrial bioenergetics and Ca(2+)homeostasis was rescued by Mcl-1 overexpression. Detailed analysis of cell death pathways demonstrated the activation of poly ADP-ribose polymerase-dependent cell death in bok-deficient neurons. Collectively, our data demonstrate that Bok acts as a neuroprotective factor rather than a pro-death effector during Ca(2+)- and seizure-induced neuronal injury in vitro and in vivo SIGNIFICANCE STATEMENT Bcl-2 proteins are essential regulators of the mitochondrial apoptosis pathway. The Bcl-2 protein Bok is highly expressed in the CNS. Because of its sequence similarity to Bax and Bak, Bok has long been considered part of the pro-apoptotic Bax-like subfamily, but no studies have yet been performed in neurons to test this hypothesis. Our study provides important new insights into the functional role of Bok during neuronal apoptosis and specifically in the setting of Ca(2+)- and seizure-mediated neuronal injury. We show that Bok controls neuronal Ca(2+)homeostasis and bioenergetics and, contrary to previous assumptions, exerts neuroprotective activities in vitro and in vivo Our results demonstrate that Bok cannot be placed unambiguously into the Bax-like Bcl-2 subfamily of pro-apoptotic proteins.
Collapse
|
24
|
Nuclear translocation of annexin 1 following oxygen-glucose deprivation-reperfusion induces apoptosis by regulating Bid expression via p53 binding. Cell Death Dis 2016; 7:e2356. [PMID: 27584794 PMCID: PMC5059862 DOI: 10.1038/cddis.2016.259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 11/08/2022]
Abstract
Previous data have suggested that the nuclear translocation of annexin 1 (ANXA1) is involved in neuronal apoptosis after ischemic stroke. As the mechanism and function of ANXA1 nuclear migration remain unclear, it is important to clarify how ANXA1 performs its role as an apoptosis 'regulator' in the nucleus. Here we report that importazole (IPZ), an importin β (Impβ)-specific inhibitor, decreased ANXA1 nuclear accumulation and reduced the rate of neuronal death induced by nuclear ANXA1 migration after oxygen-glucose deprivation-reoxygenation (OGD/R). Notably, ANXA1 interacted with the Bid (BH3-interacting-domain death agonist) promoter directly; however; this interaction could be partially blocked by the p53 inhibitor pifithrin-α (PFT-α). Accordingly, ANXA1 was shown to interact with p53 in the nucleus and this interaction was enhanced following OGD/R. A luciferase reporter assay revealed that ANXA1 was involved in the regulation of p53-mediated transcriptional activation after OGD/R. Consistent with this finding, the nuclear translocation of ANXA1 after OGD/R upregulated the expression of Bid, which was impeded by IPZ, ANXA1 shRNA, or PFT-α. Finally, cell-survival testing demonstrated that silencing ANXA1 could improve the rate of cell survival and decrease the expression of both cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. These data suggested that Impβ-dependent nuclear ANXA1 migration participates in the OGD/R-dependent induction of neuronal apoptosis. ANXA1 interacts with p53 and promotes p53 transcriptional activity, which in turn regulates Bid expression. Silencing ANXA1 decreases the expression of Bid and suppresses caspase-3 pathway activation, thus improving cell survival after OGD/R. This study provides a novel mechanism whereby ANXA1 regulates apoptosis, suggesting the potential for a previously unidentified treatment strategy in minimizing apoptosis after OGD/R.
Collapse
|
25
|
Moore IM(K, Merkle CJ, Byrne H, Ross A, Hawkins AM, Ameli SS, Montgomery DW. Effects of Intraventricular Methotrexate on Neuronal Injury and Gene Expression in a Rat Model. Biol Res Nurs 2016; 18:505-14. [DOI: 10.1177/1099800416644780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Central nervous system (CNS)-directed treatment for acute lymphoblastic leukemia, used to prevent disease recurrence in the brain, is essential for survival. Systemic and intrathecal methotrexate, commonly used for CNS-directed treatment, have been associated with cognitive problems during and after treatment. The cortex, hippocampus, and caudate putamen, important brain regions for learning and memory, may be involved in methotrexate-induced brain injury. Objectives of this study were to (1) quantify neuronal degeneration in selected regions of the cortex, hippocampus, and caudate putamen and (2) measure changes in the expression of genes with known roles in oxidant defense, apoptosis/inflammation, and protection from injury. Male Sprague Dawley rats were administered 2 or 4 mg/kg of methotrexate diluted in artificial cerebrospinal fluid (aCSF) or aCSF only into the left cerebral lateral ventricle. Gene expression changes were measured using customized reverse transcription (RT)2 polymerase chain reaction arrays. The greatest percentage of degenerating neurons in methotrexate-treated animals was in the medial region of the cortex; percentage of degenerating neurons in the dentate gyrus and cornu ammonis 3 regions of the hippocampus was also greater in rats treated with methotrexate compared to perfusion and vehicle controls. There was a greater percentage of degenerating neurons in the inferior cortex of control versus methotrexate-treated animals. Eight genes involved in protection from injury, oxidant defense, and apoptosis/inflammation were significantly downregulated in different brain regions of methotrexate-treated rats. To our knowledge, this is the first study to investigate methotrexate-induced injury in selected brain regions and gene expression changes using a rat model of intraventricular drug administration.
Collapse
Affiliation(s)
| | | | | | - Adam Ross
- College of Nursing, The University of Arizona, Tucson AZ, USA
| | | | - Sara S. Ameli
- College of Nursing, The University of Arizona, Tucson AZ, USA
| | - David W. Montgomery
- College of Nursing, The University of Arizona, Tucson AZ, USA
- Southern Arizona VA Healthcare System, Tucson AZ, USA
| |
Collapse
|
26
|
Martin NA, Bonner H, Elkjær ML, D'Orsi B, Chen G, König HG, Svensson M, Deierborg T, Pfeiffer S, Prehn JH, Lambertsen KL. BID Mediates Oxygen-Glucose Deprivation-Induced Neuronal Injury in Organotypic Hippocampal Slice Cultures and Modulates Tissue Inflammation in a Transient Focal Cerebral Ischemia Model without Changing Lesion Volume. Front Cell Neurosci 2016; 10:14. [PMID: 26869884 PMCID: PMC4737886 DOI: 10.3389/fncel.2016.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/14/2016] [Indexed: 01/08/2023] Open
Abstract
The BH3 interacting-domain death agonist (BID) is a pro-apoptotic protein involved in death receptor-induced and mitochondria-mediated apoptosis. Recently, it has also been suggested that BID is involved in the regulation of inflammatory responses in the central nervous system. We found that BID deficiency protected organotypic hippocampal slice cultures in vitro from neuronal injury induced by oxygen-glucose deprivation. In vivo, BID-knockout (KO) mice and wild type (WT) mice were subjected to 60 min of transient middle cerebral artery occlusion (tMCAO) to induce focal cerebral ischemia, and allowed to recover for 24 h. Infarct volumes and functional outcome were assessed and the inflammatory response was evaluated using immunofluorescence, Western blotting, quantitative PCR (qPCR) and Mesoscale multiplex analysis. We observed no difference in the infarct volume or neurological outcome between BID-KO and WT mice. The inflammatory response was reduced by BID deficiency as indicated by a change in microglial/leukocyte response. In conclusion, our data suggest that BID deficiency is neuroprotective in an in vitro model and modulates the inflammatory response to focal cerebral ischemia in vivo. However, this is not translated into a robust neuroprotection in vivo.
Collapse
Affiliation(s)
- Nellie Anne Martin
- Department of Neurology, Institute of Clinical Research, Odense University HospitalOdense, Denmark; Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders and 3U-COEN, Royal College of Surgeons in IrelandDublin, Ireland; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern DenmarkOdense, Denmark
| | - Helena Bonner
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders and 3U-COEN, Royal College of Surgeons in Ireland Dublin, Ireland
| | - Maria Louise Elkjær
- Department of Neurology, Institute of Clinical Research, Odense University HospitalOdense, Denmark; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern DenmarkOdense, Denmark
| | - Beatrice D'Orsi
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders and 3U-COEN, Royal College of Surgeons in Ireland Dublin, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders and 3U-COEN, Royal College of Surgeons in Ireland Dublin, Ireland
| | - Hans Georg König
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders and 3U-COEN, Royal College of Surgeons in Ireland Dublin, Ireland
| | - Martina Svensson
- Department of Experimental Medical Sciences, Experimental Neuroinflammation Laboratory, Lund University Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Sciences, Experimental Neuroinflammation Laboratory, Lund University Lund, Sweden
| | - Shona Pfeiffer
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders and 3U-COEN, Royal College of Surgeons in Ireland Dublin, Ireland
| | - Jochen H Prehn
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders and 3U-COEN, Royal College of Surgeons in Ireland Dublin, Ireland
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark Odense, Denmark
| |
Collapse
|
27
|
Sabirzhanov B, Stoica BA, Zhao Z, Loane DJ, Wu J, Dorsey SG, Faden AI. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ 2015; 23:654-68. [PMID: 26470728 DOI: 10.1038/cdd.2015.132] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/18/2015] [Accepted: 09/03/2015] [Indexed: 11/09/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and disability. MicroRNAs (miRs) are small noncoding RNAs that negatively regulate gene expression at post-transcriptional level and may be key modulators of neuronal apoptosis, yet their role in secondary injury after TBI remains largely unexplored. Changes in miRs after controlled cortical impact (CCI) in mice were examined during the first 72 h using miR arrays and qPCR. One selected miR (711) was examined with regard to its regulation and relation to cell death; effects of miR-711 modulation were evaluated after CCI and using in vitro cell death models of primary cortical neurons. Levels of miR-711 were increased in the cortex early after TBI and in vitro models through rapid upregulation of miR-711 transcription (pri-miR-711) rather than catabolism. Increases coincided with downregulation of the pro-survival protein Akt, a predicted target of miR-711, with sequential activation of forkhead box O3 (FoxO3)a/glycogen synthase kinase 3 (GSK3)α/β, pro-apoptotic BH3-only molecules PUMA (Bcl2-binding component 3) and Bim (Bcl2-like 11 (apoptosis facilitator)), and mitochondrial release of cytochrome c and AIF. miR-711 and Akt (mRNA) co-immunoprecipitated with the RNA-induced silencing complex (RISC). A miR-711 hairpin inhibitor attenuated the apoptotic mechanisms and decreased neuronal death in an Akt-dependent manner. Conversely, a miR-711 mimic enhanced neuronal apoptosis. Central administration of the miR-711 hairpin inhibitor after TBI increased Akt expression and attenuated apoptotic pathways. Treatment reduced cortical lesion volume, neuronal cell loss in cortex and hippocampus, and long-term neurological dysfunction. miR-711 changes contribute to neuronal cell death after TBI, in part by inhibiting Akt, and may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- B Sabirzhanov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - B A Stoica
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Z Zhao
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - D J Loane
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - J Wu
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - S G Dorsey
- University of Maryland School of Nursing, Baltimore, MD, USA.,Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | - A I Faden
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Zhao Z, Sabirzhanov B, Wu J, Faden AI, Stoica BA. Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury. J Neurotrauma 2015; 32:1347-60. [PMID: 25419789 DOI: 10.1089/neu.2014.3739] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3-only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI.
Collapse
Affiliation(s)
- Zaorui Zhao
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
29
|
Yang LY, Chu YH, Tweedie D, Yu QS, Pick CG, Hoffer BJ, Greig NH, Wang JY. Post-trauma administration of the pifithrin-α oxygen analog improves histological and functional outcomes after experimental traumatic brain injury. Exp Neurol 2015; 269:56-66. [PMID: 25819102 DOI: 10.1016/j.expneurol.2015.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 01/10/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Programmed death of neuronal cells plays a crucial role in acute and chronic neurodegeneration following TBI. The tumor suppressor protein p53, a transcription factor, has been recognized as an important regulator of apoptotic neuronal death. The p53 inactivator pifithrin-α (PFT-α) has been shown to be neuroprotective against stroke. A previous cellular study indicated that PFT-α oxygen analog (PFT-α (O)) is more stable and active than PFT-α. We aimed to investigate whether inhibition of p53 using PFT-α or PFT-α (O) would be a potential neuroprotective strategy for TBI. To evaluate whether these drugs protect against excitotoxicity in vitro, primary rat cortical cultures were challenged with glutamate (50mM) in the presence or absence of various concentrations of the p53 inhibitors PFT-α or PFT-α (O). Cell viability was estimated by LDH assay. In vivo, adult Sprague Dawley rats were subjected to controlled cortical impact (CCI, with 4m/s velocity, 2mm deformation). Five hours after injury, PFT-α or PFT-α (O) (2mg/kg, i.v.) was administered to animals. Sensory and motor functions were evaluated by behavioral tests at 24h after TBI. The p53-positive neurons were identified by double staining with cell-specific markers. Levels of mRNA encoding for p53-regulated genes (BAX, PUMA, Bcl-2 and p21) were measured by reverse transcription followed by real time-PCR from TBI animals without or with PFT-α/PFT-α (O) treatment. We found that PFT-α(O) (10 μM) enhanced neuronal survival against glutamate-induced cytotoxicity in vitro more effectively than PFT-α (10 μM). In vivo PFT-α (O) treatment enhanced functional recovery and decreased contusion volume at 24h post-injury. Neuroprotection by PFT-α (O) treatment also reduced p53-positive neurons in the cortical contusion region. In addition, p53-regulated PUMA mRNA levels at 8h were significantly reduced by PFT-α (O) administration after TBI. PFT-α (O) treatment also decreased phospho-p53 positive neurons in the cortical contusion region. Our data suggest that PFT-α (O) provided a significant reduction of cortical cell death and protected neurons from glutamate-induced excitotoxicity in vitro, as well as improved neurological functional outcome and reduced brain injury in vivo via anti-apoptotic mechanisms. The inhibition of p53-induced apoptosis by PFT-α (O) provides a useful tool to evaluate reversible apoptotic mechanisms and may develop into a novel therapeutic strategy for TBI.
Collapse
Affiliation(s)
- L-Y Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Y-H Chu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - D Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Q-S Yu
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - C G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - B J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - N H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - J-Y Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
30
|
DuBray BJ, Conzen KD, Upadhya GA, Gunter KL, Jia J, Knolhoff BL, Mohanakumar T, Chapman WC, Anderson CD. BH3-only proteins contribute to steatotic liver ischemia-reperfusion injury. J Surg Res 2014; 194:653-658. [PMID: 25483735 DOI: 10.1016/j.jss.2014.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/07/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) to the liver continues to be a source of significant morbidity, especially in patients with hepatic steatosis. This is a growing problem given the increase in nonalcoholic fatty liver disease. B-cell lymphoma-2 homology3-only members of the B-cell lymphoma-2 protein family are known mediators of cellular apoptosis, although their role in hepatic IRI is still emerging. The goal of this study was to investigate the effect of Bim and Bid on warm hepatic IRI in the setting of steatosis. METHODS Lean and obese Bim and/or Bid wild-type (WT) and double knockout (DKO) mice underwent 60 min of warm hepatic ischemia using a 70% segmental occlusion technique. Obesity and hepatic steatosis were induced using a high fat diet. Hepatocellular injury patterns were compared among lean and steatotic mice after reperfusion. Differences were analyzed using a Student t-test and reported as mean ± standard error of the mean. RESULTS DKO mice were protected from IRI relative to WT. A high fat diet created equal degrees of steatosis in both WT and DKO mice. The IRI was increased in steatotic WT livers; however, DKO mice remained protected relative to WT despite hepatic steatosis. CONCLUSIONS The B-cell lymphoma-2 homology3-only proteins are important mediators of hepatic IRI in both lean and steatotic livers. These mechanisms have been underappreciated in steatotic liver injury and may be leveraged as targets for intervention in clinical scenarios such as transplant and hypovolemic shock.
Collapse
Affiliation(s)
- Bernard J DuBray
- Department of Surgery, Washington University, Saint Louis, Missouri
| | - Kendra D Conzen
- Department of Surgery, Washington University, Saint Louis, Missouri
| | | | - Kristen L Gunter
- Department of Surgery, Washington University, Saint Louis, Missouri
| | - Jianluo Jia
- Department of Surgery, Washington University, Saint Louis, Missouri
| | - Brett L Knolhoff
- Department of Surgery, Washington University, Saint Louis, Missouri
| | | | | | | |
Collapse
|
31
|
Anilkumar U, Prehn JHM. Anti-apoptotic BCL-2 family proteins in acute neural injury. Front Cell Neurosci 2014; 8:281. [PMID: 25324720 PMCID: PMC4179715 DOI: 10.3389/fncel.2014.00281] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/25/2014] [Indexed: 12/17/2022] Open
Abstract
Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal survival, development and injury by anti-apoptotic BCL-2 family proteins. We discuss overlapping and differential effects of the individual family members BCL-2, BCL-extra long (BCL-XL), myeloid cell leukemia 1 (MCL-1), and BCL2-like 2 (BCL-W) in the control of survival during development and pathophysiological processes such as trophic factor withdrawal, ischemic injury, excitotoxicity, oxidative stress and energy stress. Finally we discuss recent evidence that several anti-apoptotic BCL-2 proteins influence mitochondrial bioenergetics and control neuronal Ca2+ homeostasis independent of their classical role in cell death signaling.
Collapse
Affiliation(s)
- Ujval Anilkumar
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland Dublin, Ireland
| |
Collapse
|
32
|
Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. J Neurosci 2014; 34:10055-71. [PMID: 25057207 DOI: 10.1523/jneurosci.1260-14.2014] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRs) are small noncoding RNAs that negatively regulate gene expression at the post-transcriptional level. To identify miRs that may regulate neuronal cell death after experimental traumatic brain injury (TBI), we profiled miR expression changes during the first several days after controlled cortical impact (CCI) in mice. miR-23a and miR-27a were rapidly downregulated in the injured cortex in the first hour after TBI. These changes coincided with increased expression of the proapoptotic Bcl-2 family members Noxa, Puma, and Bax. In an etoposide-induced in vitro model of apoptosis in primary cortical neurons, miR-23a and miR-27a were markedly downregulated as early as 1 h after exposure, before the upregulation of proapoptotic Bcl-2 family molecules. Administration of miR-23a and miR-27a mimics attenuated etoposide-induced changes in Noxa, Puma, and Bax, reduced downstream markers of caspase-dependent (cytochrome c release and caspase activation) and caspase-independent (apoptosis-inducing factor release) pathways, and limited neuronal cell death. In contrast, miRs hairpin inhibitors enhanced etoposide-induced neuronal apoptosis and caspase activation. Importantly, administration of miR-23a and miR-27a mimics significantly reduced activation of Puma, Noxa, and Bax as well as attenuated markers of caspase-dependent and -independent apoptosis after TBI. Furthermore, miR-23a and miR-27a mimics significantly attenuated cortical lesion volume and neuronal cell loss in the hippocampus after TBI. These findings indicate that post-traumatic decreases in miR-23a and miR-27a contribute to neuronal cell death after TBI by upregulating proapoptotic Bcl-2 family members, thus providing a novel therapeutic target.
Collapse
|
33
|
Liang J, Luan Y, Lu B, Zhang H, Luo YN, Ge P. Protection of ischemic postconditioning against neuronal apoptosis induced by transient focal ischemia is associated with attenuation of NF-κB/p65 activation. PLoS One 2014; 9:e96734. [PMID: 24800741 PMCID: PMC4011781 DOI: 10.1371/journal.pone.0096734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/10/2014] [Indexed: 11/19/2022] Open
Abstract
Background and Purpose Accumulating evidences have demonstrated that nuclear factor κB/p65 plays a protective role in the protection of ischemic preconditioning and detrimental role in lethal ischemia-induced programmed cell death including apoptosis and autophagic death. However, its role in the protection of ischemic postconditioning is still unclear. Methods Rat MCAO model was used to produce transient focal ischemia. The procedure of ischemic postconditioning consisted of three cycles of 30 seconds reperfusion/reocclusion of MCA. The volume of cerebral infarction was measured by TTC staining and neuronal apoptosis was detected by TUNEL staining. Western blotting was used to analyze the changes in protein levels of Caspase-3, NF-κB/p65, phosphor- NF-κB/p65, IκBα, phosphor- IκBα, Noxa, Bim and Bax between rats treated with and without ischemic postconditioning. Laser scanning confocal microscopy was used to examine the distribution of NF-κB/p65 and Noxa. Results Ischemic postconditioning made transient focal ischemia-induced infarct volume decrease obviously from 38.6%±5.8% to 23.5%±4.3%, and apoptosis rate reduce significantly from 46.5%±6.2 to 29.6%±5.3% at reperfusion 24 h following 2 h focal cerebral ischemia. Western blotting analysis showed that ischemic postconditioning suppressed markedly the reduction of NF-κB/p65 in cytoplasm, but elevated its content in nucleus either at reperfusion 6 h or 24 h. Moreover, the decrease of IκBα and the increase of phosphorylated IκBα and phosphorylated NF-κB/p65 at indicated reperfusion time were reversed by ischemic postconditioning. Correspondingly, proapoptotic proteins Caspase-3, cleaved Caspase-3, Noxa, Bim and Bax were all mitigated significantly by ischemic postconditioning. Confocal microscopy revealed that ischemic postconditioning not only attenuated ischemia-induced translocation of NF-κB/p65 from neuronal cytoplasm to nucleus, but also inhibited the abnormal expression of proapoptotic protein Noxa within neurons. Conclusions We demonstrated in this study that the protection of ischemic postconditioning on neuronal apoptosis caused by transient focal ischemia is associated with attenuation of the activation of NF-κB/p65 in neurons.
Collapse
Affiliation(s)
- Jianmin Liang
- Department of Pediatrics, First hospital of Jilin University, Changchun, China
- Neuroscience Research Center, First hospital of Jilin University, Changchun, China
| | - Yongxin Luan
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
| | - Bin Lu
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
| | - Hongbo Zhang
- Department of Pediatrics, First hospital of Jilin University, Changchun, China
| | - Yi-nan Luo
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
- Neuroscience Research Center, First hospital of Jilin University, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
- Neuroscience Research Center, First hospital of Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
34
|
Yang R, Cui HJ, Wang H, Wang Y, Liu JH, Li Y, Lu Y. N-Stearoyltyrosine Protects Against Glutamate-Induced Oxidative Toxicity by an Apoptosis-Inducing Factor (AIF)-Mediated Caspase-Independent Cell Death Pathway. J Pharmacol Sci 2014; 124:169-79. [DOI: 10.1254/jphs.13184fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
35
|
Ouyang YB, Giffard RG. MicroRNAs affect BCL-2 family proteins in the setting of cerebral ischemia. Neurochem Int 2013; 77:2-8. [PMID: 24373752 DOI: 10.1016/j.neuint.2013.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 02/01/2023]
Abstract
The BCL-2 family is centrally involved in the mechanism of cell death after cerebral ischemia. It is well known that the proteins of the BCL-2 family are key regulators of apoptosis through controlling mitochondrial outer membrane permeabilization. Recent findings suggest that many BCL-2 family members are also directly involved in controlling transmission of Ca(2+) from the endoplasmic reticulum (ER) to mitochondria through a specialization called the mitochondria-associated ER membrane (MAM). Increasing evidence supports the involvement of microRNAs (miRNAs), some of them targeting BCL-2 family proteins, in the regulation of cerebral ischemia. In this mini-review, after highlighting current knowledge about the multiple functions of BCL-2 family proteins and summarizing their relationship to outcome from cerebral ischemia, we focus on the regulation of BCL-2 family proteins by miRNAs, especially miR-29 which targets multiple BCL-2 family proteins.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Rona G Giffard
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Zhang L, Wang S, Dong H, Li Y, Wang P, Li S, Guo Y, Yao R. Spermine attenuates the preconditioning of diazoxide against transient focal cerebral ischemia in rats. Neurol Res 2013; 36:666-72. [PMID: 24620960 DOI: 10.1179/1743132813y.0000000299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
It is known that mitochondrial ATP-sensitive potassium channels (mitoKATP) play a significant role in protecting cerebral function from ischemia-reperfusion injury, which is related with a decrease in the mitochondrial matrix calcium. However, the effect of mitochondrial calcium uniporter (MCU) on diazoxide-induced cerebral protection is still indistinct. The purpose of the present paper is to further observe the relationship between mitoKATP and MCU, and to probe the mechanism. Adult male Wistar rats were randomly divided into five groups: the Sham group, the I-R group, the Dzx+I-R group, the Dzx+Sper+I-R group, and the Sper+I-R group. Rats not in the Sham group were exposed to 2-hour ischemia followed by 24-hour reperfusion. Diazoxide and spermine were administrated 30 minutes before ischemia or 10 minutes before reperfusion, respectively. After 24-hour reperfusion, animals were given neurological performance tests, overdosed with general anesthesia, and then their brains were excised for infarct volume, pathological changes, and apoptosis analysis. The beneficial effects of diazoxide (improved neurological deficits, decreased infarct volume, and apoptosis, evidenced by the decreased expression of cytochrome c and Bax) were significantly neutralized by spermine. The results of the present work suggest that diazoxide-induced cerebral protection against ischemia-reperfusion injury is mediated by spermine through apoptotic pathway.
Collapse
|
37
|
Wang X, Jiang C, Wan H, Wu J, Quan W, Wu K, Li D. Neuroprotection against permanent focal cerebral ischemia by ginkgolides A and B is associated with obstruction of the mitochondrial apoptotic pathway via inhibition of c‐Jun N‐terminal kinase in rats. J Neurosci Res 2013; 92:232-42. [PMID: 24327346 DOI: 10.1002/jnr.23306] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/28/2013] [Accepted: 08/30/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Xuan Wang
- Department of PharmacyPutuo People's HospitalShanghai China
| | - Cui‐Min Jiang
- Department of PharmacyPutuo People's HospitalShanghai China
| | - Hai‐Ying Wan
- Department of Clinical LaboratoryTongji Hospital of Tongji UniversityShanghai China
| | - Jun‐Lu Wu
- Department of Clinical LaboratoryTongji Hospital of Tongji UniversityShanghai China
| | - Wen‐Qiang Quan
- Department of Clinical LaboratoryTongji Hospital of Tongji UniversityShanghai China
| | - Kai‐Yin Wu
- Institute of PathologyCharité University HospitalBerlin Germany
| | - Dong Li
- Department of Clinical LaboratoryTongji Hospital of Tongji UniversityShanghai China
| |
Collapse
|
38
|
Caspase-2 is essential for c-Jun transcriptional activation and Bim induction in neuron death. Biochem J 2013; 455:15-25. [PMID: 23815625 DOI: 10.1042/bj20130556] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuronal apoptotic death generally requires de novo transcription, and activation of the transcription factor c-Jun has been shown to be necessary in multiple neuronal death paradigms. Caspase-2 has been implicated in death of neuronal and non-neuronal cells, but its relationship to transcriptional activation has not been clearly elucidated. In the present study, using two different neuronal apoptotic paradigms, β-amyloid treatment and NGF (nerve growth factor) withdrawal, we examined the hierarchical role of caspase-2 activation in the transcriptional control of neuron death. Both paradigms induce rapid activation of caspase-2 as well as activation of the transcription factor c-Jun and subsequent induction of the pro-apoptotic BH3 (Bcl-homology domain 3)-only protein Bim (Bcl-2-interacting mediator of cell death). Caspase-2 activation is dependent on the adaptor protein RAIDD {RIP (receptor-interacting protein)-associated ICH-1 [ICE (interleukin-1β-converting enzyme)/CED-3 (cell-death determining 3) homologue 1] protein with a death domain}, and both caspase-2 and RAIDD are required for c-Jun activation and Bim induction. The present study thus shows that rapid caspase-2 activation is essential for c-Jun activation and Bim induction in neurons subjected to apoptotic stimuli. This places caspase-2 at an apical position in the apoptotic cascade and demonstrates for the first time that caspase-2 can regulate transcription.
Collapse
|
39
|
Upregulated expression of NF-YC contributes to neuronal apoptosis via proapoptotic protein bim in rats' brain hippocampus following middle cerebral artery occlusion (MCAO). J Mol Neurosci 2013; 52:552-65. [PMID: 24014123 DOI: 10.1007/s12031-013-0111-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/27/2013] [Indexed: 01/10/2023]
Abstract
Cerebral ischemia represents a severe brain injury that could lead to significant neuronal damage and death. In this study, we performed a middle cerebral artery occlusion (MCAO) in adult rats and observed that a subunit of nuclear factor-Y (NF-Y) transcriptional factor, NF-YC, was accumulated in rat hippocampal CA1 neurons. Immunochemistrical and immunofluorescent analysis revealed that NF-YC was primarily expressed in the nucleus of neurons. Meanwhile, we found that the changes of bim, one of the target genes of NF-Y, were consistent with the expression of NF-YC and Bim was mainly located in the NF-YC positive cells. Moreover, there was a concomitant upregulation of active caspase-3 and TUNEL positive cells. Taken together, these results suggested that the upregulation of NF-YC might play an important role in the pathophysiology via proapoptotic protein Bim after MCAO and further research is needed to have a better understanding of its function and mechanism.
Collapse
|
40
|
Defining the role of the Bcl-2 family proteins in Huntington's disease. Cell Death Dis 2013; 4:e772. [PMID: 23949221 PMCID: PMC3763461 DOI: 10.1038/cddis.2013.300] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/29/2023]
Abstract
B-cell lymphoma 2 (Bcl-2) family proteins regulate survival, mitochondria morphology dynamics and metabolism in many cell types including neurons. Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat tract in the IT15 gene that encodes for the protein huntingtin (htt). In vitro and in vivo models of HD and HD patients' tissues show abnormal mitochondrial function and increased cell death rates associated with alterations in Bcl-2 family protein expression and localization. This review aims to draw together the information related to Bcl-2 family protein alterations in HD to decipher their potential role in mutated htt-related cell death and mitochondrial dysfunction.
Collapse
|
41
|
Henshall DC, Engel T. Contribution of apoptosis-associated signaling pathways to epileptogenesis: lessons from Bcl-2 family knockouts. Front Cell Neurosci 2013; 7:110. [PMID: 23882182 PMCID: PMC3712126 DOI: 10.3389/fncel.2013.00110] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/22/2013] [Indexed: 01/22/2023] Open
Abstract
Neuronal cell death is a pathophysiological consequence of many brain insults that trigger epilepsy and has been implicated as a causal factor in epileptogenesis. Seizure-induced neuronal death features excitotoxic necrosis and apoptosis-associated signaling pathways, including activation of multiple members of the Bcl-2 gene family. The availability of mice in which individual Bcl-2 family members have been deleted has provided the means to determine whether they have causal roles in neuronal death and epileptogenesis in vivo. Studies show that multiple members of the Bcl-2 family are activated following status epilepticus and the seizure and damage phenotypes of eight different knockouts of the Bcl-2 family have now been characterized. Loss of certain pro-apoptotic members, including Puma, protected against seizure-induced neuronal death whereas loss of anti-apoptotic Mcl-1 and Bcl-w enhanced hippocampal damage. Notably, loss of two putatively pro-apoptotic members, Bak and Bmf, resulted in more seizure-damage while deletion of Bid had no effect, indicating the role of certain Bcl-2 family proteins in epileptic brain injury is distinct from their contributions following other stressors or in non-CNS tissue. Notably, Puma-deficient mice develop fewer spontaneous seizures after status epilepticus suggesting neuroprotection may preserve functional inhibition, either directly by preserving neuronal networks or indirectly, for example by limiting reactive gliosis and pro-inflammatory responses to neuronal death. Together, these studies support apoptosis-associated molecular mechanisms controlling neuronal death as a component of epileptogenesis which might be targetable to protect against seizure-damage, cognitive deficits and mitigate the severity of syndrome following epilepsy-precipitating injuries to the brain.
Collapse
Affiliation(s)
- David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen's GreenDublin, Ireland
| | | |
Collapse
|
42
|
Hara H, Takeda T, Yamamoto N, Furuya K, Hirose K, Kamiya T, Adachi T. Zinc-induced modulation of SRSF6 activity alters Bim splicing to promote generation of the most potent apoptotic isoform BimS. FEBS J 2013; 280:3313-27. [PMID: 23648111 DOI: 10.1111/febs.12318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 12/12/2022]
Abstract
Bim is a member of the pro-apoptotic BH3-only Bcl-2 family of proteins. Bim gene undergoes alternative splicing to produce three predominant splicing variants (BimEL, BimL and BimS). The smallest variant BimS is the most potent inducer of apoptosis. Zinc (Zn(2+)) has been reported to stimulate apoptosis in various cell types. In this study, we examined whether Zn(2+) affects the expression of Bim in human neuroblastoma SH-SY5Y cells. Zn(2+) triggered alterations in Bim splicing and induced preferential generation of BimS, but not BimEL and BimL, in a dose- and time-dependent manner. Other metals (cadmium, cobalt and copper) and stresses (oxidative, endoplasmic reticulum and genotoxic stresses) had little or no effect on the expression of BimS. To address the mechanism of Zn(2+)-induced preferential generation of BimS, which lacks exon 4, we developed a Bim mini-gene construct. Deletion analysis using the Bim mini-gene revealed that predicted binding sites of the SR protein SRSF6, also known as SRp55, are located in the intronic region adjacent to exon 4. We also found that mutations in the predicted SRSF6-binding sites abolished generation of BimS mRNA from the mutated Bim mini-gene. In addition, a UV cross-linking assay followed by Western blotting showed that SRSF6 directly bound to the predicted binding site and Zn(2+) suppressed this binding. Moreover, Zn(2+) stimulated SRSF6 hyper-phosphorylation. TG003, a cdc2-like kinase inhibitor, partially prevented Zn(2+)-induced generation of BimS and SRSF6 hyper-phosphorylation. Taken together, our findings suggest that Zn(2+) inhibits the activity of SRSF6 and promotes elimination of exon 4, leading to preferential generation of BimS.
Collapse
Affiliation(s)
- Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Webster KA. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol 2013; 8:863-84. [PMID: 23176689 DOI: 10.2217/fca.12.58] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia-reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia-reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed.
Collapse
Affiliation(s)
- Keith A Webster
- Department of Molecular & Cellular Pharmacology, University of Miami Medical Center, FL 33101, USA.
| |
Collapse
|
44
|
Bmf upregulation through the AMP-activated protein kinase pathway may protect the brain from seizure-induced cell death. Cell Death Dis 2013; 4:e606. [PMID: 23618904 PMCID: PMC3668628 DOI: 10.1038/cddis.2013.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prolonged seizures (status epilepticus, SE) can cause neuronal death within brain regions such as the hippocampus. This may contribute to impairments in cognitive functioning and trigger or exacerbate epilepsy. Seizure-induced neuronal death is mediated, at least in part, by apoptosis-associated signaling pathways. Indeed, mice lacking certain members of the potently proapoptotic BH3-only subfamily of Bcl-2 proteins are protected against hippocampal damage caused by status epilepticus. The recently identified BH3-only protein Bcl-2-modifying factor (Bmf) normally interacts with the cytoskeleton, but upon certain cellular stresses, such as loss of extracellular matrix adhesion or energy crisis, Bmf relocalizes to mitochondria, where it can promote Bax activation and mitochondrial dysfunction. Although Bmf has been widely reported in the hematopoietic system to exert a proapoptotic effect, no studies have been undertaken in models of neurological disorders. To examine whether Bmf is important for seizure-induced neuronal death, we studied Bmf induction after prolonged seizures induced by intra-amygdala kainic acid (KA) in mice, and examined the effect of Bmf-deficiency on seizures and damage caused by SE. Seizures triggered an early (1-8 h) transcriptional activation and accumulation of Bax in the cell death-susceptible hippocampal CA3 subfield. Bmf mRNA was biphasically upregulated beginning at 1 h after SE and returning to normal by 8 h, while again being found elevated in the hippocampus of epileptic mice. Bmf upregulation was prevented by Compound C, an inhibitor of adenosine monophosphate-activated protein kinase, indicating Bmf expression may be induced in response to bioenergetic stress. Bmf-deficient mice showed normal sensitivity to the convulsant effects of KA, but, surprisingly, displayed significantly more neuronal death in the hippocampal CA1 and CA3 subfields after SE. These are the first studies investigating Bmf in a model of neurologic injury, and suggest that Bmf may protect neurons against seizure-induced neuronal death in vivo.
Collapse
|
45
|
Michalak Z, Sano T, Engel T, Miller-Delaney SF, Lerner-Natoli M, Henshall DC. Spatio-temporally restricted blood–brain barrier disruption after intra-amygdala kainic acid-induced status epilepticus in mice. Epilepsy Res 2013. [DOI: 10.1016/j.eplepsyres.2012.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Engel T, Sanz-Rodgriguez A, Jimenez-Mateos EM, Concannon CG, Jimenez-Pacheco A, Moran C, Mesuret G, Petit E, Delanty N, Farrell MA, O'Brien DF, Prehn JHM, Lucas JJ, Henshall DC. CHOP regulates the p53-MDM2 axis and is required for neuronal survival after seizures. ACTA ACUST UNITED AC 2013; 136:577-92. [PMID: 23361066 DOI: 10.1093/brain/aws337] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hippocampal sclerosis is a frequent pathological finding in patients with temporal lobe epilepsy and can be caused by prolonged single or repeated brief seizures. Both DNA damage and endoplasmic reticulum stress have been implicated as underlying molecular mechanisms in seizure-induced brain injury. The CCAAT/enhancer-binding protein homologous protein (CHOP) is a transcriptional regulator induced downstream of DNA damage and endoplasmic reticulum stress, which can promote or inhibit apoptosis according to context. Recent work has proposed inhibition of CHOP as a suitable neuroprotective strategy. Here, we show that transcript and protein levels of CHOP increase in surviving subfields of the hippocampus after prolonged seizures (status epilepticus) in mouse models. CHOP was also elevated in the hippocampus from epileptic mice and patients with pharmacoresistant epilepsy. The hippocampus of CHOP-deficient mice was much more vulnerable to damage in mouse models of status epilepticus. Moreover, compared with wild-type animals, CHOP-deficient mice subject to status epilepticus developed more spontaneous seizures, displayed protracted hippocampal neurodegeneration and a deficit in a hippocampus-dependent object-place recognition task. The absence of CHOP was associated with a supra-maximal induction of p53 after status epilepticus, and inhibition of p53 abolished the cell death-promoting consequences of CHOP deficiency. The protective effect of CHOP could be partly explained by activating transcription of murine double minute 2 that targets p53 for degradation. These data demonstrate that CHOP is required for neuronal survival after seizures and caution against inhibition of CHOP as a neuroprotective strategy where excitotoxicity is an underlying pathomechanism.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Brennan GP, Jimenez-Mateos EM, McKiernan RC, Engel T, Tzivion G, Henshall DC. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo. PLoS One 2013; 8:e54491. [PMID: 23359526 PMCID: PMC3554740 DOI: 10.1371/journal.pone.0054491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/12/2012] [Indexed: 01/05/2023] Open
Abstract
14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ) isoform has been linked to endoplasmic reticulum (ER) function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress.
Collapse
Affiliation(s)
- Gary P. Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eva M. Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross C. McKiernan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Guri Tzivion
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
48
|
Heverin M, Engel T, Meaney S, Jimenez-Mateos EM, Al-Saudi R, Henshall DC. Bi-lateral changes to hippocampal cholesterol levels during epileptogenesis and in chronic epilepsy following focal-onset status epilepticus in mice. Brain Res 2012; 1480:81-90. [DOI: 10.1016/j.brainres.2012.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/17/2012] [Accepted: 08/08/2012] [Indexed: 01/18/2023]
|
49
|
Harder JM, Libby RT. Deficiency in Bim, Bid and Bbc3 (Puma) do not prevent axonal injury induced death. Cell Death Differ 2012; 20:182. [PMID: 22996683 DOI: 10.1038/cdd.2012.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
50
|
Masel BE, Bell RS, Brossart S, Grill RJ, Hayes RL, Levin HS, Rasband MN, Ritzel DV, Wade CE, DeWitt DS. Galveston Brain Injury Conference 2010: Clinical and Experimental Aspects of Blast Injury. J Neurotrauma 2012; 29:2143-71. [DOI: 10.1089/neu.2011.2258] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brent E. Masel
- Transitional Learning Center, Galveston, Texas; Department of Neurology, The University of Texas Medical Branch, Galveston, Texas
| | - Randy S. Bell
- Department of Neurosurgery, National Naval Medical Center, Bethesda, Maryland
| | - Shawn Brossart
- Project Victory, The Transitional Learning Center, Galveston, Texas
| | - Raymond J. Grill
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas
| | - Ronald L. Hayes
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | | | | | | | - Charles E. Wade
- Department of Surgery, The University of Texas Medical School at Houston, Houston, Texas
| | - Douglas S. DeWitt
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|