1
|
Pai YW, Chen IC, Lin JF, Chen XH, Chen HH, Chang MH, Huang JA, Lin CH. Association of sodium-glucose cotransporter 2 inhibitors with risk of incident dementia and all-cause mortality in older patients with type 2 diabetes: A retrospective cohort study using the TriNetX US collaborative networks. Diabetes Obes Metab 2024; 26:5420-5430. [PMID: 39248211 DOI: 10.1111/dom.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Limited evidence exists to support any specific medication over others to prevent dementia in older patients with type 2 diabetes (T2D). We investigated whether treatment with sodium-glucose cotransporter 2 (SGLT-2) inhibitors is associated with a lower risk of incident dementia and all-cause mortality, relative to dipeptidyl peptidase-4 (DPP-4) inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1 RA). METHODS In this retrospective, active-comparator cohort study, we used data from the TriNetX electronic health records network. Our primary cohort comprised patients with T2D aged ≥50 years, registered between January 2012 and December 2022. Patients with a history of dementia were excluded. We used Kaplan-Meier survival analysis to estimate the incidence of dementia and all-cause mortality in our cohort after they had used glucose-lowering drugs for at least 12 months. Propensity score matching was performed to balance the SGLT-2 inhibitor, DPP-4 inhibitor and GLP-1 RA cohorts. Subgroup analyses for sex and age were also conducted. RESULTS Our first cohort comprised 193 948 patients treated with metformin and SGLT-2 inhibitors and an equal number of patients treated with metformin and DPP-4 inhibitors. In this cohort, the risk of dementia and all-cause mortality was lower in patients treated with SGLT-2 inhibitors than in those treated with DPP-4 inhibitors (hazard ratio [HR]: 0.62, 95% confidence interval [CI]: 0.59-0.65, for dementia; HR: 0.54, 95% CI: 0.52-0.56, for all-cause mortality). Our second cohort comprised 165 566 patients treated with metformin and SGLT-2 inhibitors and an equal number of patients treated with metformin and GLP-1 RAs. In this cohort, the risk of dementia and all-cause mortality was lower in those treated with SGLT-2 inhibitors than in those treated with GLP-1 RAs (HR: 0.92, 95% CI: 0.87-0.98, for dementia; HR: 0.88, 95% CI: 0.85-0.91, for all-cause mortality). CONCLUSIONS The use of SGLT-2 inhibitor was associated with a lower risk of incident dementia and all-cause mortality in older adults with T2D compared to DPP-4 inhibitor and GLP-1 RA.
Collapse
Affiliation(s)
- Yen-Wei Pai
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jun-Fu Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Xiao-Hui Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsin-Hua Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Hong Chang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jin-An Huang
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Health Business Administration, Hungkuang University, Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
- Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Qi Y, Dong Y, Chen J, Xie S, Ma X, Yu X, Yu Y, Wang Y. Lactiplantibacillus plantarum SG5 inhibits neuroinflammation in MPTP-induced PD mice through GLP-1/PGC-1α pathway. Exp Neurol 2024; 383:115001. [PMID: 39406307 DOI: 10.1016/j.expneurol.2024.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Mounting evidence suggests that alterations in gut microbial composition play an active role in the pathogenesis of Parkinson's disease (PD). Probiotics are believed to modulate gut microbiota, potentially influencing PD development through the microbiota-gut-brain axis. However, the potential beneficial effects of Lactiplantibacillus plantarum SG5 (formerly known as Lactobacillus plantarum, abbreviated as L. plantarum) on PD and its underlying mechanisms remain unclear. In this study, we employed immunofluorescence, Western blotting, ELISA, and 16S rRNA gene sequencing to investigate the neuroprotective effects of L. plantarum SG5 against neuroinflammation in an MPTP-induced PD model and to explore the underlying mechanisms. Our results demonstrated that L. plantarum SG5 ameliorated MPTP-induced motor deficits, dopaminergic neuron loss, and elevated α-synuclein protein levels. Furthermore, SG5 inhibited MPTP-triggered overactivation of microglia and astrocytes in the substantia nigra (SN), attenuated disruption of both blood-brain and intestinal barriers, and suppressed the release of inflammatory factors in the colon and SN. Notably, SG5 modulated the composition and structure of the gut microbiota in mice. The MPTP-induced decrease in colonic GLP-1 secretion was reversed by SG5 treatment, accompanied by increased expression of GLP-1R and PGC-1α in the SN. Importantly, the GLP-1R antagonist Exendin 9-39 and PGC-1α inhibitor SR18292 attenuated the protective effects of SG5 in PD mice. In conclusion, we demonstrate a neuroprotective role of L. plantarum SG5 in the MPTP-induced PD mouse model, which likely involves modulation of the gut microbiota and, significantly, the GLP-1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Yueyan Qi
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuxuan Dong
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jinhu Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Siyou Xie
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xin Ma
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Xueping Yu
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Yang Yu
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Yanqin Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
3
|
Tsuji S, Kudo U, Hatakeyama R, Shoda K, Nakamura S, Shimazawa M. Linagliptin decreased the tumor progression on glioblastoma model. Biochem Biophys Res Commun 2024; 711:149897. [PMID: 38608433 DOI: 10.1016/j.bbrc.2024.149897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
PURPOSE Dipeptidyl peptidase-4 (DPP-4) inhibitors are oral hypoglycemic drugs and are used for type II diabetes. Previous studies showed that DPP-4 expression is observed in several tumor types and DPP-4 inhibitors suppress the tumor progression on murine tumor models. In this study, we evaluated the role of DPP-4 and the antitumor effect of a DPP-4 inhibitor, linagliptin, on glioblastoma (GBM). METHODS We analyzed DPP-4 expression in glioma patients by the public database. We also analyzed DPP-4 expression in GBM cells and the murine GBM model. Then, we evaluated the cell viability, cell proliferation, cell migration, and expression of some proteins on GBM cells with linagliptin. Furthermore, we evaluated the antitumor effect of linagliptin in the murine GBM model. RESULTS The upregulation of DPP-4 expression were observed in human GBM tissue and murine GBM model. In addition, DPP-4 expression levels were found to positively correlate with the grade of glioma patients. Linagliptin suppressed cell viability, cell proliferation, and cell migration in GBM cells. Linagliptin changed the expression of phosphorylated NF-kB, cell cycle, and cell adhesion-related proteins. Furthermore, oral administration of linagliptin decreases the tumor progression in the murine GBM model. CONCLUSION Inhibition of DPP-4 by linagliptin showed the antitumor effect on GBM cells and the murine GBM model. The antitumor effects of linagliptin is suggested to be based on the changes in the expression of several proteins related to cell cycle and cell adhesion via the regulation of phosphorylated NF-kB. This study suggested that DPP-4 inhibitors could be a new therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Shohei Tsuji
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Urara Kudo
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryo Hatakeyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kenji Shoda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
4
|
Wang S, Liu A, Xu C, Hou J, Hong J. GLP-1(7-36) protected against oxidative damage and neuronal apoptosis in the hippocampal CA region after traumatic brain injury by regulating ERK5/CREB. Mol Biol Rep 2024; 51:313. [PMID: 38374452 PMCID: PMC10876747 DOI: 10.1007/s11033-024-09244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) (7-36) amide, an endogenous active form of GLP-1, has been shown to modulate oxidative stress and neuronal cell survival in various neurological diseases. OBJECTIVE This study investigated the potential effects of GLP-1(7-36) on oxidative stress and apoptosis in neuronal cells following traumatic brain injury (TBI) and explored the underlying mechanisms. METHODS Traumatic brain injury (TBI) models were established in male SD rats for in vivo experiments. The extent of cerebral oedema was assessed using wet-to-dry weight ratios following GLP-1(7-36) intervention. Neurological dysfunction and cognitive impairment were evaluated through behavioural experiments. Histopathological changes in the brain were observed using haematoxylin and eosin staining. Oxidative stress levels in hippocampal tissues were measured. TUNEL staining and Western blotting were employed to examine cell apoptosis. In vitro experiments evaluated the extent of oxidative stress and neural apoptosis following ERK5 phosphorylation activation. Immunofluorescence colocalization of p-ERK5 and NeuN was analysed using immunofluorescence cytochemistry. RESULTS Rats with TBI exhibited neurological deterioration, increased oxidative stress, and enhanced apoptosis, which were ameliorated by GLP-1(7-36) treatment. Notably, GLP-1(7-36) induced ERK5 phosphorylation in TBI rats. However, upon ERK5 inhibition, oxidative stress and neuronal apoptosis levels were elevated, even in the presence of GLP-1(7-36). CONCLUSION In summary, this study suggested that GLP-1(7-36) suppressed oxidative damage and neuronal apoptosis after TBI by activating ERK5/CREB.
Collapse
Affiliation(s)
- Shuwei Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Aijun Liu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Chaopeng Xu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jingxuan Hou
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jun Hong
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China.
| |
Collapse
|
5
|
Zhang Y, Liu Y, Yong VW, Xue M. Omarigliptin inhibits brain cell ferroptosis after intracerebral hemorrhage. Sci Rep 2023; 13:14339. [PMID: 37658227 PMCID: PMC10474264 DOI: 10.1038/s41598-023-41635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a disastrous disease without effective treatment. An extensive body of evidence indicate that neuronal ferroptosis is a key contributor to neurological disfunctions after ICH. Omarigliptin, also known as MK3102, is an anti-diabetic drug that inhibits dipeptidyl peptidase (DPP4). Recently, MK3102 is reported to exhibit anti-ferroptosis and anti-oxidative effects in different pathological conditions. However, the anti-ferroptosis ability of MK3102 in ICH injury is unknown. Hemin was administrated to model ICH injury in cultured primary cortical neurons, and collagenase VII was used to induce ICH in C57BL/6 mice. MK3102 was administered after ICH. Cell Counting Kit-8 (CCK-8) was applied to detect cell viability. Neurological functions were assessed through the Focal deficits neurological scores and corner test. HE and TUNEL staining was applied to evaluate brain damage areas and cell death, respectively. Ferroptosis was evaluated in cultured neurons by fluorescent probe DCFH-DA, FerroOrange, Liperfluo and immunofluorescence of GPX4, AIFM2 and FACL4. Perls staining was performed to visualize Fe3+ deposition. Ferroptosis-related proteins in mouse brain were measured by immunohistochemistry and western blotting. MK3102 reduced the neurotoxicity of hemin in cultured primary cortical neurons. It improved neurological functions associated with a decrease in the number of dead neurons and the area of brain damage after ICH in mice. Moreover, MK3102 prominently upregulated glucagon-like peptide-1 receptor (GLP-1R) levels after ICH. In addition, the elevation of iron content, lipid peroxidation and FACL4 after ICH; and reduction of GPX4 and AIFM2; were mitigated by MK3102 in vitro and in vivo. The neuroprotective effect of MK3102 may be related to anti-ferroptosis by regulating GLP-1R after ICH injury.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Kim Y, Sohn JH, Kim C, Park SY, Lee SH. The Clinical Value of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Predicting Hematoma Expansion and Poor Outcomes in Patients with Acute Intracerebral Hemorrhage. J Clin Med 2023; 12:jcm12083004. [PMID: 37109337 PMCID: PMC10145379 DOI: 10.3390/jcm12083004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
There is little knowledge of the effect of inflammatory markers on the prognoses of hematoma expansion (HE) in patients with intracranial hemorrhage (ICH). We evaluated the impact of neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) on HE and worse outcomes after acute ICH. This study included 520 consecutive patients with ICH from the registry database enrolled over 80 months. Patients' whole blood samples were collected upon arrival in the emergency department. Brain computed tomography scans were performed during hospitalization and repeated at 24 h and 72 h. The primary outcome measure was HE, defined as relative growth >33% or absolute growth <6 mL. A total of 520 patients were enrolled in this study. Multivariate analysis showed that NLR and PLR were associated with HE (NLR: odds ratio [OR], [95% CI] = 1.19 [1.12-1.27], p < 0.001; PLR: OR, [95% CI] = 1.01 [1.00-1.02], p = 0.04). Receiver operating characteristic curve analysis revealed that NLR and PLR could predict HE (AUC of NLR: 0.84, 95% CI [0.80-0.88], p < 0.001; AUC of PLR: 0.75 95% CI [0.70-0.80], p < 0.001). The cut-off value of NLR for predicting HE was 5.63, and that of PLR was 23.4. Higher NLR and PLR values increase HE risk in patients with ICH. NLR and PLR were reliable for predicting HE after ICH.
Collapse
Affiliation(s)
- Yejin Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jong-Hee Sohn
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Neurology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| | - Chulho Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Neurology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| | - So Young Park
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul 02447, Republic of Korea
| | - Sang-Hwa Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Neurology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| |
Collapse
|
7
|
Zhang L, Zhang W, Tian X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J Neurosci 2023; 133:473-491. [PMID: 33941038 DOI: 10.1080/00207454.2021.1924707] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1(GLP-1) is a multifunctional polypeptide throughout the lifespan via activating Glucagon-like peptide-1 receptor (GLP-1R).GLP-1 can affect food ingestion, enhance the secretion of insulin from pancreatic islets induced by glucose and be utilized to treat type 2 diabetes mellitus(T2DM).But, accumulating evidences from the decades suggest that activation GLP-1R can not only regulate the blood glucose, but also sustain the homeostasis of intracellular environment and protect neuron from various damaged responses such as oxidative stress, inflammation, excitotoxicity, ischemia and so on. And more and more pre-clinical and clinical studies identified that GLP-1 and its analogues may play a significant role in improving multiple central nervous system (CNS) diseases including neurodegenerative diseases, epilepsy, mental disorders, ischemic stroke, hemorrhagic stroke, traumatic brain injury, spinal cord injury, chronic pain, addictive disorders, other diseases neurological complications and so on. In order to better reveal the relationship between GLP-1/GLP-1R axis and the growth, development and survival of neurons, herein, this review is aimed to summarize the multi-function of GLP-1/GLP-1R axis in CNS diseases.
Collapse
Affiliation(s)
- LongQing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - XueBi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Cheng D, Yang S, Zhao X, Wang G. The Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA) in Diabetes-Related Neurodegenerative Diseases. Drug Des Devel Ther 2022; 16:665-684. [PMID: 35340338 PMCID: PMC8943601 DOI: 10.2147/dddt.s348055] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Recent clinical guidelines have emphasized the importance of screening for cognitive impairment in older adults with diabetes, however, there is still a lack of understanding about the drug therapy. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are widely used in the treatment of type 2 diabetes and potential applications may include the treatment of obesity as well as the adjunctive treatment of type 1 diabetes mellitus in combination with insulin. Growing evidence suggests that GLP-1 RA has the potential to treat neurodegenerative diseases, particularly in diabetes-related Alzheimer’s disease (AD) and Parkinson’s disease (PD). Here, we review the molecular mechanisms of the neuroprotective effects of GLP-1 RA in diabetes-related degenerative diseases, including AD and PD, and their potential effects.
Collapse
Affiliation(s)
- Dihe Cheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
9
|
Xie Z, Enkhjargal B, Nathanael M, Wu L, Zhu Q, Zhang T, Tang J, Zhang JH. Exendin-4 Preserves Blood-Brain Barrier Integrity via Glucagon-Like Peptide 1 Receptor/Activated Protein Kinase-Dependent Nuclear Factor-Kappa B/Matrix Metalloproteinase-9 Inhibition After Subarachnoid Hemorrhage in Rat. Front Mol Neurosci 2022; 14:750726. [PMID: 35002615 PMCID: PMC8733623 DOI: 10.3389/fnmol.2021.750726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022] Open
Abstract
In this study, we investigated the role of Exendin-4 (Ex-4), a glucagon-like peptide 1 receptor (GLP-1R) agonist, in blood-brain barrier (BBB) disruption after subarachnoid hemorrhage (SAH) in rats. The endovascular perforation model of SAH was performed in Sprague-Dawley rats. Ex-4 was intraperitoneally injected 1 h after SAH induction. To elucidate the underlying molecular mechanism, small interfering ribonucleic acid (siRNA) for GLP-1R and Dorsomorphin, a specific inhibitor of adenosine monophosphate-activated protein kinase (AMPK), were intracerebroventricularly injected 48 h before induction of SAH correspondingly. Immunofluorescence results supported GLP-1R expressed on the endothelial cells of microvessels in the brain after SAH. Administration of Ex-4 significantly reduced brain water content and Evans blue extravasation in both hemispheres, which improved neurological scores at 24 h after SAH. In the mechanism study, Ex-4 treatment significantly increased the expression of GLP-1R, p-AMPK, IκB-α, Occludin, and Claudin-5, while the expression of p-nuclear factor-kappa B (NF-κB) p65, matrix metalloproteinase-9 (MMP-9), and albumin was significantly decreased. The effects of Ex-4 were reversed by the intervention of GLP-1R siRNA or Dorsomorphin, respectively. In conclusion, Ex-4 could preserve the BBB integrity through GLP-1R/AMPK-dependent NF-κB/MMP-9 inhibition after SAH, which should be further investigated as a potential therapeutic target in SAH.
Collapse
Affiliation(s)
- Zhiyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Matei Nathanael
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Lingyun Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Qiquan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
10
|
Mehmood Siddiqui E, Mehan S, Upadhayay S, Khan A, Halawi M, Ahmed Halawi A, Alsaffar RM. Neuroprotective efficacy of 4-Hydroxyisoleucine in experimentally induced intracerebral hemorrhage. Saudi J Biol Sci 2021; 28:6417-6431. [PMID: 34764759 PMCID: PMC8568986 DOI: 10.1016/j.sjbs.2021.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe form of brain injury, which is a major cause of mortality in humans. Hydrocephalus and cerebral hematoma lead to severe neurological deficits. A single autologous blood (ALB) injection in rats' brains induces hemorrhage and other conditions that regularly interfere with the standard treatment of several cellular and molecular pathways. Several studies have found that IGF-1/GLP-1 decreases the production of inflammatory markers in peripheral tissues, while some have found that they also have pro-inflammatory functions. Since these receptors are down-regulated in hemorrhagic situations, we looked into the potential neuroprotective effect of 4-hydroxyisoleucine (4-HI); 50 mg/kg and 100 mg/kg, an active compound Trigonellafoenum-graecum, on post-hemorrhagic deficits in rats. Long-term oral administration of 4-HI for 35 days has improved behavioral and neurochemical deficits and severe pathological changes and improved cellular and molecular markers, apoptotic markers in the ALB-induced ICH experimental model. Furthermore, the findings revealed that 4-HI also improved the levels of other neurotransmitters (Ach, DOPA, GABA, glutamate); inflammatory cytokines (TNF-alpha, IL-1β, IL-17), and oxidative stress markers (MDA, nitrite, LDH, AchE, SOD, CAT, GPx, GSH) in the brain when evaluated after Day 35. There is no proven treatment available for the prevention of post-brain hemorrhage and neurochemical malfunction; available therapy is only for symptomatic relief of the patient. Thus, 4-HI could be a potential clinical approach for treating post-brain haemorrhage and neurochemical changes caused by neurological damage. Furthermore, 4-HI may be linked to other standard therapeutic therapies utilized in ICH as a potential pharmacological intervention.
Collapse
Affiliation(s)
- Ehraz Mehmood Siddiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Rana M Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O.Box-173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
11
|
Li Y, Glotfelty EJ, Karlsson T, Fortuno LV, Harvey BK, Greig NH. The metabolite GLP-1 (9-36) is neuroprotective and anti-inflammatory in cellular models of neurodegeneration. J Neurochem 2021; 159:867-886. [PMID: 34569615 DOI: 10.1111/jnc.15521] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is best known for its insulinotropic action following food intake. Its metabolite, GLP-1 (9-36), was assumed biologically inactive because of low GLP-1 receptor (GLP-1R) affinity and non-insulinotropic properties; however, recent studies contradict this assumption. Increased use of FDA approved GLP-1 analogues for treating metabolic disorders and neurodegenerative diseases raises interest in GLP-1 (9-36)'s biological role. We use human SH-SY5Y neuroblastoma cells and a GLP-1R over-expressing variety (#9), in both undifferentiated and differentiated states, to evaluate the neurotrophic/neuroprotective effects of GLP-1 (9-36) against toxic glutamate exposure and other oxidative stress models (via the MTS, LDH or ROS assays). In addition, we examine GLP-1 (9-36)'s signaling pathways, including cyclic-adenosine monophosphate (cAMP), protein kinase-A (PKA), and 5' adenosine monophosphate-activated protein kinase (AMPK) via the use of ELISA, pharmacological inhibitors, or GLP-1R antagonist. Human HMC3 and mouse IMG microglial cell lines were used to study the anti-inflammatory effects of GLP-1 (9-36) against lipopolysaccharide (LPS) (via ELISA). Finally, we applied GLP-1 (9-36) to primary dissociation cultures challenged with α-synuclein or amyloid-β and assessed survival and morphology via immunochemistry. We demonstrate evidence of GLP-1R, cAMP, PKA, and AMPK-mediated neurotrophic and neuroprotective effects of GLP-1 (9-36). The metabolite significantly reduced IL-6 and TNF-α levels in HMC3 and IMG microglial cells, respectively. Lastly, we show mild but significant effects of GLP-1 (9-36) in primary neuron cultures challenged with α-synuclein or amyloid-β. These studies enhance understanding of GLP-1 (9-36)'s effects on the nervous system and its potential as a primary or complementary treatment in pathological contexts.
Collapse
Affiliation(s)
- Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lowella V Fortuno
- Molecular Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience Department, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Brandon K Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience Department, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Sun G, Jiang F, Hu S, Cheng H, Qu L, Tao Y, Ma B. Metabolomic analysis reveals potential biomarkers and serum metabolomic profiling in spontaneous intracerebral hemorrhage patients using UPLC/quadrupole time-of-flight MS. Biomed Chromatogr 2021; 36:e5241. [PMID: 34505712 DOI: 10.1002/bmc.5241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) accounts for 10-20% of all strokes and contributes to higher mortalities and severe disabilities. The aims of this study were, therefore, to characterize novel biomarkers, metabolic disruptions, and mechanisms involving ICH. A total 30 ICH patients and 30 controls were enrolled in the study, and their clinical characteristics were analyzed. Nontargeted metabolomic analysis was conducted using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF). Multivariate statistical analysis and receiver operating characteristic curve analysis were used for screening and evaluating the predictive ability of biomarkers. ICH patients showed significantly higher systolic blood pressure, diastolic blood pressure, blood glucose levels, white blood cell counts, neutrophil count, percentage of neutrophils and globulin and a lower albumin/globin ratio when compared with controls. In sum, 11 important metabolites were identified, which were associated with disruption of fatty acid oxidation and sphingolipid and phospholipid metabolism, as well as increased inflammation, oxidative stress, and vascular pathologies. Further multiple logistic regression analyses of these metabolites showed that l-carnitine and phosphatidylcholine (20:3/22:6) have potential as biomarkers of ICH, and the area under the curve, sensitivity, specificity were 0.974, 90%, and 93%, respectively. These findings provide insights into the pathogenesis, early prevention, and diagnosis of ICH.
Collapse
Affiliation(s)
- Guozhang Sun
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Fengling Jiang
- Department of Internal Neurology, Harbin Xiangfang District People's Hospital, Harbin, China
| | - Shaoshan Hu
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huakun Cheng
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Lianlong Qu
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Yu Tao
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Bowen Ma
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
13
|
Liang T, Ma C, Wang T, Deng R, Ding J, Wang W, Xu Z, Li X, Li H, Sun Q, Shen H, Wang Z, Chen G. Galectin-9 Promotes Neuronal Restoration via Binding TLR-4 in a Rat Intracerebral Hemorrhage Model. Neuromolecular Med 2020; 23:267-284. [PMID: 32865657 DOI: 10.1007/s12017-020-08611-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease with high rates of mortality and morbidity. Galactose lectin-9 (Gal-9) belongs to the family of β-galactoside-binding lectins, which has been shown to play a vital role in immune tolerance and inflammation. However, the function of Gal-9 in ICH has not been fully studied in details. Several experiments were carried out to explore the role of Gal-9 in the late period of ICH. Primarily, ICH models were established in male adult Sprague Dawley (SD) rats. Next, the relative protein levels of Gal-9 at different time points after ICH were examined and the result showed that the level of Gal-9 increased and peaked at the 7th day after ICH. Then we found that when the content of Gal-9 increased, both the number of M2-type microglia and the corresponding anti-inflammatory factors also increased. Through co-immunoprecipitation (CO-IP) analysis, it was found that Gal-9 combines with Toll-like receptor-4 (TLR-4) during the period of the recovery after ICH. TUNEL staining and Fluoro-Jade B staining (FJB) proved that the amount of cell death decreased with the increase of Gal-9 content. Additionally, several behavioral experiments also demonstrated that when the level of Gal-9 increased, the motor, sensory, learning, and memory abilities of the rats recovered better compared to the ICH group. In short, this study illustrated that Gal-9 takes a crucial role after ICH. Enhancing Gal-9 could alleviate brain injury and promote the recovery of ICH-induced injury, so that Gal-9 may exploit a new pathway for clinical treatment of ICH.
Collapse
Affiliation(s)
- Tianyu Liang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Ruming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Wenjie Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| |
Collapse
|
14
|
Wang M, Wang H, Niu CQ, Zhang T, Wu Z, Li Z. Tetrazine-TCO Ligation: A Potential Simple Approach to Improve Tumor Uptake through Enhanced Blood Circulation. Bioconjug Chem 2020; 31:1795-1803. [DOI: 10.1021/acs.bioconjchem.0c00264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Crystal Q. Niu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Tao Zhang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Zhanhong Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| |
Collapse
|
15
|
Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer's disease and type 2 diabetes. ALZHEIMERS RESEARCH & THERAPY 2020; 12:40. [PMID: 32264944 PMCID: PMC7140573 DOI: 10.1186/s13195-020-00607-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
Abstract
Background Both Alzheimer’s disease (AD) and type 2 diabetes (T2D) share common pathological features including inflammation, insulin signaling alterations, or vascular damage. AD has no successful treatment, and the close relationship between both diseases supports the study of antidiabetic drugs to limit or slow down brain pathology in AD. Empagliflozin (EMP) is a sodium-glucose co-transporter 2 inhibitor, the newest class of antidiabetic agents. EMP controls hyperglycemia and reduces cardiovascular comorbidities and deaths associated to T2D. Therefore, we have analyzed the role of EMP at the central level in a complex mouse model of AD-T2D. Methods We have treated AD-T2D mice (APP/PS1xdb/db mice) with EMP 10 mg/kg for 22 weeks. Glucose, insulin, and body weight were monthly assessed. We analyzed learning and memory in the Morris water maze and the new object discrimination test. Postmortem brain assessment was conducted to measure brain atrophy, senile plaques, and amyloid-β levels. Tau phosphorylation, hemorrhage burden, and microglia were also measured in the brain after EMP treatment. Results EMP treatment helped to maintain insulin levels in diabetic mice. At the central level, EMP limited cortical thinning and reduced neuronal loss in treated mice. Hemorrhage and microglia burdens were also reduced in EMP-treated mice. Senile plaque burden was lower, and these effects were accompanied by an amelioration of cognitive deficits in APP/PS1xdb/db mice. Conclusions Altogether, our data support a feasible role for EMP to reduce brain complications associated to AD and T2D, including classical pathological features and vascular disease, and supporting further assessment of EMP at the central level.
Collapse
|
16
|
The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke. J Neuroinflammation 2019; 16:242. [PMID: 31779652 PMCID: PMC6883580 DOI: 10.1186/s12974-019-1638-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 11/11/2019] [Indexed: 11/30/2022] Open
Abstract
Background Preserving the integrity of the blood-brain barrier (BBB) is beneficial to avoid further brain damage after acute ischemic stroke (AIS). Astrocytes, an important component of the BBB, promote BBB breakdown in subjects with AIS by secreting inflammatory factors. The glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) protects the BBB and reduces brain inflammation from cerebral ischemia, and GLP-1R is expressed on astrocytes. However, the effect of Ex-4 on astrocytes in subjects with AIS remains unclear. Methods In the present study, we investigated the effect of Ex-4 on astrocytes cultured under oxygen-glucose deprivation (OGD) plus reoxygenation conditions and determined whether the effect influences bEnd.3 cells. We used various methods, including permeability assays, western blotting, immunofluorescence staining, and gelatin zymography, in vitro and in vivo. Results Ex-4 reduced OGD-induced astrocyte-derived vascular endothelial growth factor (VEGF-A), matrix metalloproteinase-9 (MMP-9), chemokine monocyte chemoattractant protein-1 (MCP-1), and chemokine C-X-C motif ligand 1 (CXCL-1). The reduction in astrocyte-derived VEGF-A and MMP-9 was related to the increased expression of tight junction proteins (TJPs) in bEnd.3 cells. Ex-4 improved neurologic deficit scores, reduced the infarct area, and ameliorated BBB breakdown as well as decreased astrocyte-derived VEGF-A, MMP-9, CXCL-1, and MCP-1 levels in ischemic brain tissues from rats subjected to middle cerebral artery occlusion. Ex-4 reduced the activation of the JAK2/STAT3 signaling pathway in astrocytes following OGD. Conclusion Based on these findings, ischemia-induced inflammation and BBB breakdown can be improved by Ex-4 through an astrocyte-dependent manner.
Collapse
|
17
|
Gorgojo-Martínez JJ. [New glucose-lowering drugs for reducing cardiovascular risk in patients with type2 diabetes mellitus]. HIPERTENSION Y RIESGO VASCULAR 2019; 36:145-161. [PMID: 31079957 DOI: 10.1016/j.hipert.2019.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022]
Abstract
Cardiovascular (CV) disease is the most common cause of mortality in patients with type2 diabetes (T2DM). In recent years, several glucose-lowering drugs from two therapeutic families, GLP-1 receptor agonists (GLP-1 RAs) and sodium-glucose co-transporter type 2 inhibitors (SGLT-2i), have shown a reduction in CV morbidity and mortality in patients with T2DM and high CV risk. SGLT-2i, unlike GLP-1 RAs, also reduce the risk of hospital admission due to heart failure. Both therapeutic groups reduce the progression of diabetic kidney disease (DKD). The cardioprotective mechanism of SGLT-2i appears to be predominantly haemodynamic and shows an early onset, while that of GLP-1 RAs is mostly anti-atherosclerotic with a slow and progressive onset. At present, several scientific societies recommend the preferential use of GLP-1 RAs and SGLT-2i, with demonstrated CV benefit in patients with T2DM and cardiovascular disease or DKD.
Collapse
Affiliation(s)
- J J Gorgojo-Martínez
- Unidad de Endocrinología y Nutrición, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España.
| |
Collapse
|
18
|
Erbil D, Eren CY, Demirel C, Küçüker MU, Solaroğlu I, Eser HY. GLP-1's role in neuroprotection: a systematic review. Brain Inj 2019; 33:734-819. [PMID: 30938196 DOI: 10.1080/02699052.2019.1587000] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a target for treatment of diabetes; however, its function in the brain is not well studied. In this systematic review, we aimed to analyze the neuroprotective role of GLP-1 and its defined mechanisms. Methods: We searched 'Web of Science' and 'Pubmed' to identify relevant studies using GLP-1 as the keyword. Two hundred and eighty-nine clinical and preclinical studies have been included. Data have been presented by grouping neurodegenerative, neurovascular and specific cell culture models. Results: Recent literature shows that GLP-1 and its agonists, DPP-4 inhibitors and combined GLP-1/GIP molecules are effective in partially or fully reversing the effects of neurotoxic compounds, neurovascular complications of diabetes, neuropathological changes related with Alzheimer's disease, Parkinson's disease or vascular occlusion. Possible mechanisms that provide neuroprotection are enhancing the viability of the neurons and restoring neurite outgrowth by increased neurotrophic factors, increasing subventricular zone progenitor cells, decreasing apoptosis, decreasing the level of pro-inflammatory factors, and strengthening blood-brain barrier. Conclusion: Based on the preclinical studies, GLP-1 modifying agents are promising targets for neuroprotection. On the other hand, the number of clinical studies that investigate GLP-1 as a treatment is low and further clinical trials are needed for a benchside to bedside translation of recent findings.
Collapse
Affiliation(s)
- Damla Erbil
- a School of Medicine , Koç University , Istanbul , Turkey
| | - Candan Yasemin Eren
- b Research Center for Translational Medicine , Koç University , Istanbul , Turkey
| | - Cağrı Demirel
- a School of Medicine , Koç University , Istanbul , Turkey
| | | | - Ihsan Solaroğlu
- a School of Medicine , Koç University , Istanbul , Turkey.,b Research Center for Translational Medicine , Koç University , Istanbul , Turkey
| | - Hale Yapıcı Eser
- a School of Medicine , Koç University , Istanbul , Turkey.,b Research Center for Translational Medicine , Koç University , Istanbul , Turkey
| |
Collapse
|
19
|
Wang J, Yu M, Xu J, Cheng Y, Li X, Wei G, Wang H, Kong H, Xie W. Glucagon-like peptide-1 (GLP-1) mediates the protective effects of dipeptidyl peptidase IV inhibition on pulmonary hypertension. J Biomed Sci 2019; 26:6. [PMID: 30634956 PMCID: PMC6330403 DOI: 10.1186/s12929-019-0496-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022] Open
Abstract
Background Pulmonary hypertension (PH) is a progressive disease leading to death ultimately. Our recently published data demonstrated that inhibiting dipeptidyl peptidase IV (DPP-4) alleviated pulmonary vascular remodeling in experimental PH. However, whether glucagon-like peptide-1 (GLP-1) mediated the protective effect of DPP-4 inhibition (DPP-4i) on PH is unclear. Results In the present study, GLP-1 receptor antagonist (exendin-3) abolished the protective effects of DPP-4 inhibitor (sitagliptin) on right ventricular systolic pressure (RVSP) and pulmonary vascular remodeling (PVR) in monocrotaline (MCT, 60 mg/kg)-induced PH in rat. Notably, activation of GLP-1 receptor by GLP-1 analogue liraglutide directly attenuated RVSP and PVR in MCT-induced PH, as well as bleomycin- and chronic hypoxia-induced PH. Moreover, liraglutide potently inhibited MCT-induced inflammation and suppressed MCT-induced down-regulation of vascular endothelial marker (VE-cadherin and vWF) in lung. In vitro studies showed liraglutide reversed TGF-β1 (5 ng/ml) combining IL-1β (5 ng/ml) induced endothelial-mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs), which could be abolished by GLP-1 receptor antagonist (exendin-3). Furtermore, liraglutide suppressed TGF-β1-IL-1β-induced phosphorylation of both Smad3 and ERK1/2. Conclusions Our data suggest that GLP-1 mediated the protective effects of DPP-4i on pulmonary vascular and RV remodeling in experimental PH, which may be attributed to the inhibitory effect on EndMT.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Min Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Jian Xu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Yusheng Cheng
- Department of Respiratory and Critical Care Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241001, People's Republic of China
| | - Xiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Guihong Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
| | - Weiping Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
20
|
Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol 2018; 17:157. [PMID: 30545359 PMCID: PMC6292070 DOI: 10.1186/s12933-018-0800-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Patients with type 2 diabetes (T2DM) have a substantial risk of developing cardiovascular disease. The strong connection between the severity of hyperglycaemia, metabolic changes secondary to T2DM and vascular damage increases the risk of macrovascular complications. There is a challenging demand for the development of drugs that control hyperglycaemia and influence other metabolic risk factors to improve cardiovascular outcomes such as cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina and heart failure (major adverse cardiovascular events). In recent years, introduction of the new drug class of glucagon-like peptide-1 receptor agonists (GLP-1RAs) has changed the treatment landscape as GLP-1RAs have become well-established therapies in T2DM. The benefits of GLP-1RAs are derived from their pleiotropic effects, which include appetite control, glucose-dependent secretion of insulin and inhibition of glucagon secretion. Importantly, their beneficial effects extend to the cardiovascular system. Large clinical trials have evaluated the cardiovascular effects of GLP-1RAs in patients with T2DM and elevated risk of cardiovascular disease and the results are very promising. However, important aspects still require elucidation, such as the specific mechanisms involved in the cardioprotective effects of these drugs. Careful interpretation is necessary because of the heterogeneity across the trials concerning the definition of cardiovascular risk or cardiovascular disease, baseline characteristics, routine care and event rates. The aim of this review is to describe the main clinical aspects of the GLP-1RAs, compare them using data from both the mechanistic and randomized controlled trials and discuss potential reasons for improved cardiovascular outcomes observed in these trials. This review may help clinicians to decide which treatment is most appropriate in reducing cardiovascular risk in patients with T2DM.
Collapse
Affiliation(s)
- Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (AtheroLab), Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), 13084-971, Campinas, Sao Paulo, Brazil.
| | - Otávio Berwanger
- Academic Research Organization (ARO), Albert Einstein Hospital, Av. Albert Einstein 627, Sao Paulo, SP, 05651-901, Brazil
| | - Luiz Sérgio F de Carvalho
- Atherosclerosis and Vascular Biology Laboratory (AtheroLab), Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), 13084-971, Campinas, Sao Paulo, Brazil
| | - José Francisco Kerr Saraiva
- Cardiology Division, Pontifical Catholic University of Campinas Medicine School, Rua Engenheiro Carlos Stevenson 560, Campinas, Sao Paulo, 13092-132, Brazil
| |
Collapse
|
21
|
Alford S, Patel D, Perakakis N, Mantzoros CS. Obesity as a risk factor for Alzheimer's disease: weighing the evidence. Obes Rev 2018; 19:269-280. [PMID: 29024348 DOI: 10.1111/obr.12629] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the sixth leading cause of death in the USA today; therefore, it is imperative that public health initiatives and clinical strategies are developed to prevent and effectively treat AD. Despite the enormous impact that AD has on individuals, families, society, and the health care system, there are no biomarkers to clearly identify those at risk for AD, public health prevention strategies in place, or treatments to address the underlying pathology or stop the progression of AD. There is ample scientific as well as empirical evidence that obesity and its metabolic and vascular comorbidities are related to AD and likely in the causative pathway. Obesity prevention and treatment could prove to be an efficacious and safe approach to preventing AD, a serious and daunting epidemic disease. In this review, we present the current pathophysiological and clinical evidence linking obesity and obesity-related comorbidities (eg, insulin resistance, hyperglycaemia, and type 2 diabetes) with AD. Additionally, we discuss which population to target and when to consider treatment for AD. Finally, we summarize the current evidence regarding the efficacy of anti-obesity and anti-diabetic pharmacotherapeutic agents for the treatment of AD.
Collapse
Affiliation(s)
| | - D Patel
- MCPHS University, Boston, MA, USA.,VA Boston Healthcare System, Boston, MA, USA
| | - N Perakakis
- Mantzoros Lab, Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Effects of incretin-based therapies on renal function. Eur J Pharmacol 2018; 818:103-109. [DOI: 10.1016/j.ejphar.2017.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/03/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
|
23
|
Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology 2017; 128:142-151. [PMID: 28986282 DOI: 10.1016/j.neuropharm.2017.09.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 02/05/2023]
Abstract
Neuronal apoptosis is considered to be a crucial therapeutic target against early brain injury (EBI) after subarachnoid hemorrhage (SAH). Emerging evidence indicates that Exendin-4 (Ex-4), a glucagon-like peptide 1 receptor (GLP-1R) agonist, plays a neuroprotective role in cerebrovascular disease. This study was conducted in order to verify the neuroprotective role of EX-4 in EBI after SAH in rats. The endovascular perforation model of SAH was performed in Sprague-Dawley rats (n = 153). Ex-4 was intraperitoneally injected 1 h after SAH induction in the rats (SAH + Ex-4). To elucidate the underlying molecular mechanism, small interfering ribonucleic acid (siRNA) for GLP-1R and a specific inhibitor of PI3K, LY294002, were injected intracerebroventricularly into SAH + Ex-4 rats before induction of SAH (n = 6 per group). SAH grading evaluation, immunohistochemistry, Western blots, neurobehavioral assessment, and Fluoro-Jade C (FJC) staining experiments were performed. Expression of GLP-1R was significantly increased and mainly expressed in neurons at 24 h after SAH induction. Administration of Ex-4 significantly improved both short- and long-term neurobehavior in SAH + Ex-4 group compared to SAH + Vehicle group after SAH. Ex-4 treatment significantly increased the expression of GLP-1R, PI3K, p-Akt, Bcl-xl, and Bcl-2, while at the same time was found to decrease expression of Bax in the brain. Effects of Ex-4 were reversed by the intervention of GLP-1R siRNA and LY294002 in SAH + Ex-4+GLP-1R siRNA and SAH + Ex-4+LY294002 groups, respectively. In conclusion, the neuroprotective effect of Ex-4 in EBI after SAH was mediated by attenuation of neuronal apoptosis via GLP-1R/PI3K/Akt signaling pathway, therefore EX-4 should be further investigated as a potential therapeutic agent in stroke patients.
Collapse
|
24
|
Bolayir A, Cigdem B, Gokce SF, Bolayir HA, Kayim Yildiz O, Bolayir E, Topaktas SA. The Effect of Eosinopenia on Mortality in Patients with Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2017; 26:2248-2255. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/13/2017] [Accepted: 05/07/2017] [Indexed: 01/21/2023] Open
|
25
|
Barreto-Vianna ARC, Aguila MB, Mandarim-de-Lacerda CA. Beneficial effects of liraglutide (GLP1 analog) in the hippocampal inflammation. Metab Brain Dis 2017; 32:1735-1745. [PMID: 28681199 DOI: 10.1007/s11011-017-0059-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
Abstract
The brain is very sensitive to metabolic dysfunctions induced by diets high in saturated fatty acids, leading to neuroinflammation. The liraglutide has been found to have neuroprotective effects. However, its neuroprotective action in a model of palmitate-induced neuroinflammation had not yet been evaluated. Mice were intracerebroventricular (ICV) infused with palmitate and received subcutaneous liraglutide. The hippocampal dentate gyrus and CA1 regions were analyzed (morphology and inflammation-related proteins in microglia and astrocyte by confocal microscopy). Also, a real-time PCR was performed to measure the levels of tumor necrosis factor (TNF) alpha and interleukin (IL) 6. Palmitate ICV infusion resulted in pronounced inflammation response in the hippocampus, reactive microgliosis, and astrogliosis, with hypertrophied IBA1 immunoreactive microglia, increased microglial density with ameboid shape, decreased in the number of branches and junctions and increased the major histocompatibility complex (MHC) II expression. Also, we observed in the hippocampus of ICV palmitate infused mice an elevation in the pro-inflammatory cytokine levels TNFalpha and IL6. Liraglutide induced the neuroprotective microglial phenotype, characterized by an increased microglia complexity (enlarged Feret's diameter), an improved number of both cell junctions and processes, and lower circularity, accompanied by a significant reduction in TNFalpha and IL6 expressions. The study provides evidence that liraglutide may be a suitable treatment against the palmitate-induced neuroinflammation, which it is characterized by the reactive microgliosis and astrogliosis, as well as increased pro-inflammatory cytokines, which has been described as one of the primary causes of several pathologies of the central nervous system.
Collapse
Affiliation(s)
- Andre R C Barreto-Vianna
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia B Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Centro Biomedico, Instituto de Biologia, Laboratorio de Morfometria, Metabolismo e doenca Cardiovascular (www.lmmc.uerj.br), Universidade do Estado do Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
26
|
Eberhardt O, Topka H. Neurological outcomes of antidiabetic therapy: What the neurologist should know. Clin Neurol Neurosurg 2017; 158:60-66. [PMID: 28477558 DOI: 10.1016/j.clineuro.2017.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/05/2017] [Accepted: 04/15/2017] [Indexed: 02/09/2023]
Abstract
Considering the causative or contributory effects of diabetes mellitus on common neurological diseases such as polyneuropathy, stroke and dementia, modern antidiabetic drugs may be expected to reduce incidence or progression of these conditions. Nevertheless, most observed benefits have been small, except in the context of therapy for diabetes mellitus type I and new-onset polyneuropathy. Recently, semaglutide, a GLP-1 analog, has been shown to significantly reduce stroke incidence in a randomized controlled trial. Beneficial effects of antidiabetic drugs on stroke severity or outcome have been controversial, though. The level of risk conferred by diabetes mellitus, the complex pathophysiology of neurological diseases, issues of trial design, side-effects of antidiabetic drugs as well as co-medication might be interacting factors that determine the performance of antidiabetic therapy with respect to neurological outcomes. It might be speculated that early treatment of prediabetes might prevent cerebral arteriosclerosis, cognitive decline or polyneuropathy more effectively, but this remains to be demonstrated.
Collapse
Affiliation(s)
- Olaf Eberhardt
- Department for Neurology, Clinical Neurophysiology, Clinical Neuropsychology and Stroke Unit, Klinikum Bogenhausen Englschalkinger Str. 77, München, 81925, Germany.
| | - Helge Topka
- Department for Neurology, Clinical Neurophysiology, Clinical Neuropsychology and Stroke Unit, Klinikum Bogenhausen Englschalkinger Str. 77, München, 81925, Germany
| |
Collapse
|
27
|
Barale C, Buracco S, Cavalot F, Frascaroli C, Guerrasio A, Russo I. Glucagon-like peptide 1-related peptides increase nitric oxide effects to reduce platelet activation. Thromb Haemost 2017; 117:1115-1128. [PMID: 28405672 PMCID: PMC6291961 DOI: 10.1160/th16-07-0586] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/19/2017] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is object of intensive investigation for not only its metabolic effects but also the protective vascular actions. Since platelets exert a primary role in the pathogenesis of atherosclerosis, inflammation and vascular complications, we investigated whether GLP-1 directly influences platelet reactivity. For this purpose, in platelets from 72 healthy volunteers we evaluated GLP-1 receptor (GLP-1R) expression and the effects of a 15-minute incubation with the native form GLP-1(7–36), the N-terminally truncated form GLP-1(9–36) and the GLP-1 analogue Liraglutide (100 nmol/l) on: i) aggregation induced by collagen or arachidonic acid (AA); ii) platelet function under shear stress; iii) cGMP and cAMP synthesis and cGMP-dependent protein kinase (PKG)-induced Vasodilator-Stimulated-Phosphoprotein (VASP) phosphorylation; iv) activation of the signalling molecules Phosphatidylinositol 3-Kinase (PI3-K)/Akt and Mitogen Activated Protein Kinase (MAPK)/ERK-1/2; and v) oxidative stress. Experiments were repeated in the presence of the nitric oxide donor Na–nitroprusside. We found that platelets constitutively express GLP-1R and that, independently of GLP-1R, GLP-1(7–36), GLP-1(9–36) and Liraglutide exert platelet inhibitory effects as shown by: a) increased NO-antiaggregating effects, b) increased the activation of the cGMP/PKG/VASP pathway, c) reduced the activation of PI3-K/Akt and MAPK/ERK-2 pathways, d) reduced the AA-induced oxidative stress. When the experiments were repeated in the presence of the antagonist of GLP-1R Exendin(9–39), the platelet inhibitory effects were maintained, thus indicating a mechanism independent of GLP-1R. In conclusion, GLP-1(7–36), its degradation product GLP-1(9–36) and Liraglutide exert similar inhibitory effects on platelet activation, suggesting a potential protective effect on the cardiovascular system.
Collapse
Affiliation(s)
| | | | | | | | | | - Isabella Russo
- Dr. Isabella Russo, PhD, Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences of the Turin University, San Luigi Gonzaga Hospital, 10043 Orbassano (Turin), Italy, Tel.: + 39 011 9026622, Fax: + 39 011 9038639, E-mail:
| |
Collapse
|
28
|
Muscogiuri G, DeFronzo RA, Gastaldelli A, Holst JJ. Glucagon-like Peptide-1 and the Central/Peripheral Nervous System: Crosstalk in Diabetes. Trends Endocrinol Metab 2017; 28:88-103. [PMID: 27871675 DOI: 10.1016/j.tem.2016.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/17/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is released in response to meals and exerts important roles in the maintenance of normal glucose homeostasis. GLP-1 is also important in the regulation of neurologic and cognitive functions. These actions are mediated via neurons in the nucleus of the solitary tract that project to multiple regions expressing GLP-1 receptors (GLP-1Rs). Treatment with GLP-1R agonists (GLP-1-RAs) reduces ischemia-induced hyperactivity, oxidative stress, neuronal damage and apoptosis, cerebral infarct volume, and neurologic damage, after cerebral ischemia, in experimental models. Ongoing human trials report a neuroprotective effect of GLP-1-RAs in Alzheimer's and Parkinson's disease. In this review, we discuss the role of GLP-1 and GLP-1-RAs in the nervous system with focus on GLP-1 actions on appetite regulation, glucose homeostasis, and neuroprotection.
Collapse
Affiliation(s)
| | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| | - Amalia Gastaldelli
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA; Institute of Clinical Physiology of the National Research Council (CNR), Pisa, Italy.
| | - Jens J Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Delayed administration of the GLP-1 receptor agonist liraglutide improves metabolic and functional recovery after cerebral ischemia in rats. Neurosci Lett 2017; 641:1-7. [PMID: 28122257 DOI: 10.1016/j.neulet.2017.01.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide 1 receptor (GLP-1R) agonists administered before or immediately after induction of experimental stroke have been shown to provide acute neuroprotection. Here, we determined whether delayed treatment with a GLP-1R agonist could improve metabolic and functional recovery after stroke. Rats were subjected to middle cerebral artery occlusion (MCAO) and given the well-established GLP-1R agonist liraglutide (50, 100, or 200μg/kg) or normal saline (NS) daily for 4 weeks, starting 1 day after MCAO. Cerebral glucose metabolism and neurological deficits were evaluated using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging and modified neurological severity score (mNSS) test. Levels of neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), von Willebrand factor (vWF), and GLP-1R were assessed by immunohistochemical staining and Western blot analysis. PET imaging showed that animals treated with liraglutide had significantly higher 18F-FDG accumulation in the cerebral infarction compared with animals treated with NS. Liraglutide significantly reduced the mNSS score. It also greatly increased the expression of NeuN, GFAP, vWF, and GLP-1R in the cerebral ischemic area at postoperative week 4. These results demonstrated metabolic and functional recovery after delayed treatment with liraglutide in a rat model of cerebral ischemia.
Collapse
|
30
|
Tramutola A, Arena A, Cini C, Butterfield DA, Barone E. Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer’s disease pathology. Expert Rev Neurother 2016; 17:59-75. [DOI: 10.1080/14737175.2017.1246183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - Andrea Arena
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - Chiara Cini
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Eugenio Barone
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
- Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Santiago, Chile
| |
Collapse
|
31
|
Kim H, Edwards NJ, Choi HA, Chang TR, Jo KW, Lee K. Treatment Strategies to Attenuate Perihematomal Edema in Patients With Intracerebral Hemorrhage. World Neurosurg 2016; 94:32-41. [PMID: 27373415 DOI: 10.1016/j.wneu.2016.06.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/24/2022]
Abstract
Spontaneous intracerebral hemorrhage (SICH) continues to be a significant cause of neurologic morbidity and mortality throughout the world. Although recent advances in the treatment of SICH have significantly decreased mortality rates, functional recovery has not been dramatically improved by any intervention to date. There are 2 predominant mechanisms of brain injury from intracerebral hemorrhage: mechanical injury from the primary hematoma (including growth of that hematoma), and secondary injury from perihematomal inflammation. For instance, in the hours to weeks after SICH as the hematoma is being degraded, thrombin and iron are released and can result in neurotoxicity, free radical damage, dysregulated coagulation, and harmful inflammatory cascades; this can clinically and radiologically manifest as perihematomal edema (PHE). PHE can contribute to mass effect, cause acute neurologic deterioration in patients, and has even been associated with poor long-term functional outcomes. PHE therefore lends itself to being a potential therapeutic target. In this article, we will review 1) the pathogenesis and time course of the development of PHE, and 2) the clinical series and trials exploring various methods, with a focus on minimally invasive surgical techniques, to reduce PHE and minimize secondary brain injury. Promising areas of continued research also will be discussed.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Neurosurgery, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nancy J Edwards
- Department of Neurosurgery and Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Huimahn A Choi
- Department of Neurosurgery and Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Tiffany R Chang
- Department of Neurosurgery and Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Kwang Wook Jo
- Department of Neurosurgery, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Kiwon Lee
- Department of Neurosurgery and Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
32
|
Yu A, Duan H, Zhang T, Pan Y, Kou Z, Zhang X, Lu Y, Wang S, Yang Z. IL-17A promotes microglial activation and neuroinflammation in mouse models of intracerebral haemorrhage. Mol Immunol 2016; 73:151-7. [PMID: 27107665 DOI: 10.1016/j.molimm.2016.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 10/21/2022]
Abstract
Microglial activation is an important contributor to neuroinflammation in intracerebral haemorrhage (ICH). IL-17A has been demonstrated to be involved in neuroinflammatory diseases such as multiple sclerosis. However, the exact mechanism of IL-17A mediated microglial activation in ICH has not been well identified. The purpose of this experiment is to investigate the role of IL-17A in ICH induced microglial activation and neuroinflammation. ICH mice were made by injection of autologous blood model. IL-17A expression and inflammatory factors in perihematomal region, and neurological function of mice were examined after ICH. In addition, IL-17A-neutralizing antibody was utilized to potentially prevent microglial activation and neuroinflammation in ICH mice. The expression of IL-17A, inflammatory factors and microglial activation in perihematomal region were significantly increased, and neurological function of mice was impaired after ICH. In addition, IL-17A Ab prevented ICH-induced cytokine expression, including TNF-α, IL-1β and IL-6, and downstream signaling molecules, including MyD88, TRIF, IκBα, and NF-κBp65 expression, and attenuated microglial activation. IL-17A Ab significantly reduced brain water content and improved neurological function of ICH mice. In conclusion, our results demonstrated that IL-17A was involved in ICH-induced microglial activation and neuroinflammation. IL-17A Ab might also provide a promising therapeutic strategy in ICH.
Collapse
Affiliation(s)
- Anyong Yu
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Haizhen Duan
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Tianxi Zhang
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Yong Pan
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Zhi Kou
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Xiaojun Zhang
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Yuanlan Lu
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Song Wang
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Zhao Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China.
| |
Collapse
|
33
|
Sitagliptin attenuated brain damage and cognitive impairment in mice with chronic cerebral hypo-perfusion through suppressing oxidative stress and inflammatory reaction. J Hypertens 2016; 33:1001-13. [PMID: 25689400 DOI: 10.1097/hjh.0000000000000529] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sitagliptin, a new antidiabetic drug that inhibits dipeptidyl peptidase (DPP)-4 enzyme activity, has been reported to possess neuroprotective property. We tested the protective effects of sitagliptin against chronic cerebral hypoperfusion (CHP) in mice after bilateral carotid artery stenosis (BCAS). METHOD Thirty C57BL/6 mice were divided into three groups: sham control (n = 10), CHP (n = 10) and CHP-sitagliptin (orally 600 mg/kg/day) (n = 10). Working memory was assessed with novel-object recognition test. MRI was performed at day 0 and day 90 after BCAS procedure prior to sacrifice. RESULTS Immunohistochemical (IHC) staining showed significantly enhanced white matter lesions, microglia activation and astrocytosis of white matter in CHP group than in sham control, but the changes were significantly suppressed after sitagliptin treatment (all P < 0.01). The mRNA expressions of inflammatory [tumour necrosis factor-alpha (TNF-α), monocyte chemoattractant protein (MCP-1) and matrix metalloproteinase (MMP)-2] and apoptotic (Bax) biomarkers showed an identical pattern, whereas the anti-inflammatory (interleukin, IL-10) and antiapoptotic (Bcl-2) biomarkers showed an opposite pattern compared with that of IHC among all groups (all P < 0.01). The protein expressions of oxidative stress (NOX-I, NOX-II, nitrotyrosin, oxidized protein), inflammatory [nuclear factor-kappa B (NF-κB), TNF-α and MMP-2], apoptotic [mitochondrial Bax, cleaved poly(ADP-ribose) polymerase (PARP)] and DNA-damage (γ-H2AX) markers showed an identical pattern, while expression pattern of antiapoptotic marker (Bcl-2) was opposite to that of IHC (all P < 0.01). Glycogen-like peptide-1 receptor protein expression progressively increased from sham control to CHP-sitagliptin (P < 0.01). The short-term working-memory loss and MRI/diffusion tensor imaging (DTI) showed a pattern identical to that of IHC in all groups (all P < 0.01). CONCLUSION Sitagliptin protected against cognitive impairment and brain damage in a murine CHP model.
Collapse
|
34
|
Wu CH, Chen CC, Lai CY, Hung TH, Lin CC, Chao M, Chen SF. Treatment with TO901317, a synthetic liver X receptor agonist, reduces brain damage and attenuates neuroinflammation in experimental intracerebral hemorrhage. J Neuroinflammation 2016; 13:62. [PMID: 26968836 PMCID: PMC4788882 DOI: 10.1186/s12974-016-0524-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/03/2016] [Indexed: 11/10/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) induces a series of inflammatory processes that contribute to neuronal damage and neurological deterioration. Liver X receptors (LXRs) are nuclear receptors that negatively regulate transcriptional processes involved in inflammatory responses, but their role in the pathology following ICH remains unclear. The present study investigated the neuroprotective effects and anti-inflammatory actions of TO901317, a synthetic LXR agonist, in a model of collagenase-induced ICH and in microglial cultures. Methods Mice subjected to collagenase-induced ICH injury were injected with either TO901317 (30 mg/kg) or vehicle 10 min after ICH and subsequently daily for 2 days. Behavioral studies, histology analysis, and assessments of hematoma volumes, brain water content, and blood-brain barrier (BBB) permeability were performed. The protein expression of LXR-α, LXR-β, ATP binding cassette transporter-1 (ABCA-1), and inflammatory molecules was analyzed. The anti-inflammatory mechanism of TO901317 was investigated in cultured microglia that were stimulated with either lipopolysaccharide (LPS) or thrombin. Results ICH induced an increase in LXR-α protein levels in the hemorrhagic hemisphere at 6 h whereas LXR-β expression remained unaffected. Both LXR-α and LXR-β were expressed in neurons and microglia in the peri-ICH region and but rarely in astrocytes. TO901317 significantly attenuated functional deficits and brain damage up to 28 days post-ICH. TO901317 also reduced neuronal death, BBB disruption, and brain edema at day 4 post-ICH. These changes were associated with marked reductions in microglial activation, neutrophil infiltration, and expression levels of inflammatory mediators at 4 and 7 days. However, TO901317 had no effect on matrix metalloproteinase-9 activity. In BV2 microglial cultures, TO901317 attenuated LPS- and thrombin-stimulated nitric oxide production and reduced LPS-induced p38, JNK, MAPK, and nuclear factor-kappa B (NF-κB) signaling. Moreover, delaying administration of TO901317 to 3 h post-ICH reduced brain tissue damage and neuronal death. Conclusions Our results suggest that enhancing LXR activation may provide a potential therapy for ICH by modulating the cytotoxic functions of microglia. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0524-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun-Hu Wu
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chien-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Chai-You Lai
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Taipei and College of Medicine, Chang Gung University, Taipei, Taiwan, Republic of China
| | - Chao-Chang Lin
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Min Chao
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Szu-Fu Chen
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China. .,Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China.
| |
Collapse
|
35
|
Vlasov TD, Simanenkova AV, Dora SV, Shlyakhto EV. Mechanisms of neuroprotective action of incretin mimetics. DIABETES MELLITUS 2016. [DOI: 10.14341/dm7192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recently, on the pharmacological market, new drugs from the class of incretin mimetics, or glucagon-like peptide-1 (GLP-1) receptor agonists, which have proven their high effectiveness in type 2 diabetes mellitus therapy, have appeared. At present, much attention has been paid to the pleotropic effects of incretin mimetics. In a number of both experimental and clinical studies, cardioprotective effects of this medication group have been demonstrated. The present review elucidates existing data about neuroprotective effects of GLP-1 receptor agonists in brain ischaemia and in nonischaemic nervous system diseases such as diabetic neuropathy and neurodegenerative disorders. The possible mechanisms for these effects, which appear to be primarily antioxidant effects, anti-inflammatory effects, antiapoptotic effects and an increase in neurons differentiation, are discussed.
Collapse
|
36
|
Wang F, Hu S, Ding Y, Ju X, Wang L, Lu Q, Wu X. Neutrophil-to-Lymphocyte Ratio and 30-Day Mortality in Patients with Acute Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2015; 25:182-7. [PMID: 26500171 DOI: 10.1016/j.jstrokecerebrovasdis.2015.09.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/22/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although a highly significant association has been described between neutrophil-to-lymphocyte ratio (NLR) and mortality in patients with various types of stroke, the association between NLR and mortality in intracerebral hemorrhage (ICH) patients remains unclear. METHODS In this observational study, we enrolled 224 ICH patients. They were divided into 2 groups based on their 30-day outcomes. Multivariate logistic regression was performed to identify independent risk factors of 30-day mortality. An optimal cutoff value for the continuous NLR was calculated by applying a receiver operating curve analysis to discriminate between the survival and death groups. RESULTS Among 224 patients, 26 died. No significant difference in NLR at admission was observed between the 2 groups (surviving: 2.39 ± 1.75 versus nonsurviving: 3.09 ± 2.16, P= .065), whereas NLR on the next morning following admission was significantly higher in the patients who died (12.53 ± 9.33) than in those who survived (5.53 ± 4.68) (P <.001). On multivariate logistic analysis, Glasgow Coma Scale score (odds ratio [OR] .805, 95% confidence interval [CI] .661-.979, P = .030), age (≥80 years; OR .203, CI .055-.750, P = .017), ICH volume (≥30 cm(3); OR .112, CI .108-.699, P = .019), and NLR on the next morning (OR 1.091, CI 1.002-1.188, P = .044) were independent risk factors of 30-day mortality. An NLR of 7.35 was identified as the optimal cutoff value. The area under the curve of NLR for 30-day mortality was .762 (P < .001). The mortality was significantly higher in patients with an NLR of 7.35 or higher than in those with an NLR less than 7.35 (31.6% versus 4.8%, P <.001). CONCLUSIONS Higher NLR exhibited an increased mortality in ICH patients. NLR could be used to predict 30-day outcome in ICH patients.
Collapse
Affiliation(s)
- Fei Wang
- Emergency Department, Jiading District Center Hospital, Shanghai, China
| | - Shanyou Hu
- Emergency Department, Jiading District Center Hospital, Shanghai, China
| | - Yong Ding
- Community Health Center, Shanghai, China
| | - Xuefeng Ju
- Emergency Department, Jiading District Center Hospital, Shanghai, China
| | - Li Wang
- Emergency Department, Jiading District Center Hospital, Shanghai, China
| | - Qiuxia Lu
- Community Health Center, Shanghai, China
| | - Xiao Wu
- Emergency Department, Jiading District Center Hospital, Shanghai, China.
| |
Collapse
|
37
|
Candeias EM, Sebastião IC, Cardoso SM, Correia SC, Carvalho CI, Plácido AI, Santos MS, Oliveira CR, Moreira PI, Duarte AI. Gut-brain connection: The neuroprotective effects of the anti-diabetic drug liraglutide. World J Diabetes 2015; 6:807-827. [PMID: 26131323 PMCID: PMC4478577 DOI: 10.4239/wjd.v6.i6.807] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/30/2015] [Accepted: 05/18/2015] [Indexed: 02/05/2023] Open
Abstract
Long-acting glucagon-like peptide-1 (GLP-1) analogues marketed for type 2 diabetes (T2D) treatment have been showing positive and protective effects in several different tissues, including pancreas, heart or even brain. This gut secreted hormone plays a potent insulinotropic activity and an important role in maintaining glucose homeostasis. Furthermore, growing evidences suggest the occurrence of several commonalities between T2D and neurodegenerative diseases, insulin resistance being pointed as a main cause for cognitive decline and increased risk to develop dementia. In this regard, it has also been suggested that stimulation of brain insulin signaling may have a protective role against cognitive deficits. As GLP-1 receptors (GLP-1R) are expressed throughout the central nervous system and GLP-1 may cross the blood-brain-barrier, an emerging hypothesis suggests that they may be promising therapeutic targets against brain dysfunctional insulin signaling-related pathologies. Importantly, GLP-1 actions depend not only on the direct effect mediated by its receptor activation, but also on the gut-brain axis involving an exchange of signals between both tissues via the vagal nerve, thereby regulating numerous physiological functions (e.g., energy homeostasis, glucose-dependent insulin secretion, as well as appetite and weight control). Amongst the incretin/GLP-1 mimetics class of anti-T2D drugs with an increasingly described neuroprotective potential, the already marketed liraglutide emerged as a GLP-1R agonist highly resistant to dipeptidyl peptidase-4 degradation (thereby having an increased half-life) and whose systemic GLP-1R activity is comparable to that of native GLP-1. Importantly, several preclinical studies showed anti-apoptotic, anti-inflammatory, anti-oxidant and neuroprotective effects of liraglutide against T2D, stroke and Alzheimer disease (AD), whereas several clinical trials, demonstrated some surprising benefits of liraglutide on weight loss, microglia inhibition, behavior and cognition, and in AD biomarkers. Herein, we discuss the GLP-1 action through the gut-brain axis, the hormone’s regulation of some autonomic functions and liraglutide’s neuroprotective potential.
Collapse
|
38
|
Preservation of the blood brain barrier and cortical neuronal tissue by liraglutide, a long acting glucagon-like-1 analogue, after experimental traumatic brain injury. PLoS One 2015; 10:e0120074. [PMID: 25822252 PMCID: PMC4379006 DOI: 10.1371/journal.pone.0120074] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/02/2015] [Indexed: 01/04/2023] Open
Abstract
Cerebral edema is a common complication following moderate and severe traumatic brain injury (TBI), and a significant risk factor for development of neuronal death and deterioration of neurological outcome. To this date, medical approaches that effectively alleviate cerebral edema and neuronal death after TBI are not available. Glucagon-like peptide-1 (GLP-1) has anti-inflammatory properties on cerebral endothelium and exerts neuroprotective effects. Here, we investigated the effects of GLP-1 on secondary injury after moderate and severe TBI. Male Sprague Dawley rats were subjected either to TBI by Controlled Cortical Impact (CCI) or sham surgery. After surgery, vehicle or a GLP-1 analogue, Liraglutide, were administered subcutaneously twice daily for two days. Treatment with Liraglutide (200 μg/kg) significantly reduced cerebral edema in pericontusional regions and improved sensorimotor function 48 hours after CCI. The integrity of the blood-brain barrier was markedly preserved in Liraglutide treated animals, as determined by cerebral extravasation of Evans blue conjugated albumin. Furthermore, Liraglutide reduced cortical tissue loss, but did not affect tissue loss and delayed neuronal death in the thalamus on day 7 post injury. Together, our data suggest that the GLP-1 pathway might be a promising target in the therapy of cerebral edema and cortical neuronal injury after moderate and severe TBI.
Collapse
|
39
|
Di L. Strategic approaches to optimizing peptide ADME properties. AAPS J 2015; 17:134-43. [PMID: 25366889 PMCID: PMC4287298 DOI: 10.1208/s12248-014-9687-3] [Citation(s) in RCA: 404] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability.
Collapse
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut, 06340, USA,
| |
Collapse
|
40
|
Sharma AN, Bauer IE, Sanches M, Galvez JF, Zunta-Soares GB, Quevedo J, Kapczinski F, Soares JC. Common biological mechanisms between bipolar disorder and type 2 diabetes: Focus on inflammation. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:289-98. [PMID: 24969830 DOI: 10.1016/j.pnpbp.2014.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) patients present a 3-5 fold greater risk of developing type 2 diabetes (T2D) compared to general population. The underlying mechanisms for the increased prevalence of T2D in BD population are poorly understood. OBJECTIVES The purpose of this review is to critically review evidence suggesting that inflammation may have an important role in the development of both BD and T2D. RESULTS The literature covered in this review suggests that inflammatory dysregulation take place among many BD patients. Such dysregulated and low grade chronic inflammatory process may also increase the prevalence of T2D in BD population. Current evidence supports the hypothesis of dysregulated inflammatory processes as a critical upstream event in BD as well as in T2D. CONCLUSIONS Inflammation may be a factor for the development of T2D in BD population. The identification of inflammatory markers common to these two medical conditions will enable researchers and clinicians to better understand the etiology of BD and develop treatments that simultaneously target all aspects of this multi-system condition.
Collapse
Affiliation(s)
- Ajaykumar N Sharma
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Center for Molecular Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Isabelle E Bauer
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Marsal Sanches
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juan F Galvez
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joao Quevedo
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Flavio Kapczinski
- Center for Molecular Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratory of Molecular Psychiatry, Department of Psychiatry and Legal Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jair C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
41
|
DellaValle B, Hempel C, Johansen FF, Kurtzhals JAL. GLP-1 improves neuropathology after murine cold lesion brain trauma. Ann Clin Transl Neurol 2014; 1:721-32. [PMID: 25493285 PMCID: PMC4241798 DOI: 10.1002/acn3.99] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/07/2014] [Accepted: 08/07/2014] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES In this study, we address a gap in knowledge regarding the therapeutic potential of acute treatment with a glucagon-like peptide-1 (GLP-1) receptor agonist after severe brain trauma. Moreover, it remains still unknown whether GLP-1 treatment activates the protective, anti-neurodegenerative cAMP response element binding protein (CREB) pathway in the brain in vivo, and whether activation leads to observable increases in protective, anti-neurodegenerative proteins. Finally, we report the first use of a highly sensitive in vivo imaging agent to assess reactive species generation after brain trauma. METHODS Severe trauma was induced with a stereotactic cryo-lesion in mice and thereafter treated with vehicle, liraglutide, or liraglutide + GLP-1 receptor antagonist. A therapeutic window was established and lesion size post-trauma was determined. Reactive oxygen species were visualized in vivo and quantified directly ex vivo. Hematological analysis was performed over time. Necrotic and apoptotic tone and neuroinflammation was assessed over time. CREB activation and CREB-regulated cytoprotective proteins were assessed over time. RESULTS Lira treatment reduced lesion size by ∼50% through the GLP-1 receptor. Reactive species generation was reduced by ∼40-60%. Necrotic and apoptotic tone maintained similar to sham in diseased animals with Lira treatment. Phosphorylation of CREB was markedly increased by Lira in a GLP-1 receptor-dependent manner. CREB-regulated cytoprotective and anti-neurodegenerative proteins increased with Lira-driven CREB activation. INTERPRETATION These results show that Lira has potent effects after experimental trauma in mice and thus should be considered a candidate for critical care intervention post-injury. Moreover, activation of CREB in the brain by Lira - described for the first time to be dependent on pathology - should be investigated further as a potential mechanism of action in neurodegenerative disorders.
Collapse
Affiliation(s)
- Brian DellaValle
- Department of Biomedical Sciences, Biotech Research and Innovation Center, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark ; Department of Clinical Microbiology, Copenhagen University Hospital Copenhagen, Denmark ; Department of International Health, Immunology, and Microbiology, University of Copenhagen Copenhagen, Denmark
| | - Casper Hempel
- Department of Clinical Microbiology, Copenhagen University Hospital Copenhagen, Denmark ; Department of International Health, Immunology, and Microbiology, University of Copenhagen Copenhagen, Denmark
| | - Flemming Fryd Johansen
- Department of Biomedical Sciences, Biotech Research and Innovation Center, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark ; Department of Clinical Microbiology, Copenhagen University Hospital Copenhagen, Denmark
| | - Jørgen Anders Lindholm Kurtzhals
- Department of Clinical Microbiology, Copenhagen University Hospital Copenhagen, Denmark ; Department of International Health, Immunology, and Microbiology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
42
|
Darsalia V, Olverling A, Larsson M, Mansouri S, Nathanson D, Nyström T, Klein T, Sjöholm Å, Patrone C. Linagliptin enhances neural stem cell proliferation after stroke in type 2 diabetic mice. ACTA ACUST UNITED AC 2014; 190-191:25-31. [PMID: 24821550 DOI: 10.1016/j.regpep.2014.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 01/07/2023]
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitors are current drugs for the treatment of type 2 diabetes (T2D) based on their main property to enhance endogenous glucagon-like peptide-1 (GLP-1) levels, thus increasing insulin secretion. However, the mechanism of action of DPP-4 inhibition in extra pancreatic tissues has been poorly investigated and it might occur differently from that induced by GLP-1R agonists. Increased adult neurogenesis by GLP-1R agonists has been suggested to play a role in functional recovery in animal models of brain disorders. We recently showed that the DPP-4 inhibitor linagliptin reduces brain damage after stroke in normal and type 2 diabetic (T2D) mice. The aim of this study was to determine whether linagliptin impacts stroke-induced neurogenesis. T2D was induced by 25 weeks of high-fat diet. Linagliptin treatment was carried out for 7 weeks. Standard diet fed-mice were used as controls. Stroke was induced by middle cerebral artery occlusion 4 weeks into the linagliptin treatment. Neural stem cell (NSC) proliferation/neuroblast formation and striatal neurogenesis/gliogenesis were assessed 3 weeks after stroke. The effect of linagliptin on NSC viability was also determined in vitro. The results show that linagliptin enhances NSC proliferation in T2D mice but not in normal mice. Linagliptin did not increase NSC number in vitro indicating that the effect of linagliptin on NSC proliferation in T2D is indirect. Neurogenesis and gliogenesis were not affected. In conclusion, we found no correlation between acute neuroprotection (occurring in both T2D and normal mice) and increased NSC proliferation (occurring only in T2D mice). However, our results show that linagliptin evokes a differential response on NSC proliferation after stroke in normal and T2D mice suggesting that DPP-4 inhibition effect in the CNS might go beyond the well known increase of GLP-1.
Collapse
Affiliation(s)
- Vladimer Darsalia
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Anna Olverling
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Martin Larsson
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Shiva Mansouri
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - David Nathanson
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Thomas Nyström
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Åke Sjöholm
- University of South Alabama, College of Medicine, Department of Biochemistry and Molecular Biology, Mobile, AL, USA; Department of Internal Medicine, Diabetes Research Unit, Södertälje Hospital, Södertälje, Sweden
| | - Cesare Patrone
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden.
| |
Collapse
|
43
|
Neuroprotective effects of liraglutide for stroke model of rats. Int J Mol Sci 2013; 14:21513-24. [PMID: 24177570 PMCID: PMC3856019 DOI: 10.3390/ijms141121513] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 12/17/2022] Open
Abstract
The number of diabetes mellitus (DM) patients is increasing, and stroke is deeply associated with DM. Recently, neuroprotective effects of glucagon-like peptide-1 (GLP-1) are reported. In this study, we explored whether liraglutide, a GLP-1 analogue exerts therapeutic effects on a rat stroke model. Wistar rats received occlusion of the middle cerebral artery for 90 min. At one hour after reperfusion, liraglutide or saline was administered intraperitoneally. Modified Bederson's test was performed at 1 and 24 h and, subsequently, rats were euthanized for histological investigation. Peripheral blood was obtained for measurement of blood glucose level and evaluation of oxidative stress. Brain tissues were collected to evaluate the level of vascular endothelial growth factor (VEGF). The behavioral scores of liraglutide-treated rats were significantly better than those of control rats. Infarct volumes of liraglutide-treated rats at were reduced, compared with those of control rats. The level of derivatives of reactive oxygen metabolite was lower in liraglutide-treated rats. VEGF level of liraglutide-treated rats in the cortex, but not in the striatum significantly increased, compared to that of control rats. In conclusion, this is the first study to demonstrate neuroprotective effects of liraglutide on cerebral ischemia through anti-oxidative effects and VEGF upregulation.
Collapse
|
44
|
Gejl M, Lerche S, Egefjord L, Brock B, Møller N, Vang K, Rodell AB, Bibby BM, Holst JJ, Rungby J, Gjedde A. Glucagon-like peptide-1 (GLP-1) raises blood-brain glucose transfer capacity and hexokinase activity in human brain. FRONTIERS IN NEUROENERGETICS 2013; 5:2. [PMID: 23543638 PMCID: PMC3608902 DOI: 10.3389/fnene.2013.00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/27/2013] [Indexed: 12/31/2022]
Abstract
In hyperglycemia, glucagon-like peptide-1 (GLP-1) lowers brain glucose concentration together with increased net blood-brain clearance and brain metabolism, but it is not known whether this effect depends on the prevailing plasma glucose (PG) concentration. In hypoglycemia, glucose depletion potentially impairs brain function. Here, we test the hypothesis that GLP-1 exacerbates the effect of hypoglycemia. To test the hypothesis, we determined glucose transport and consumption rates in seven healthy men in a randomized, double-blinded placebo-controlled cross-over experimental design. The acute effect of GLP-1 on glucose transfer in the brain was measured by positron emission tomography (PET) during a hypoglycemic clamp (3 mM plasma glucose) with (18)F-fluoro-2-deoxy-glucose (FDG) as tracer of glucose. In addition, we jointly analyzed cerebrometabolic effects of GLP-1 from the present hypoglycemia study and our previous hyperglycemia study to estimate the Michaelis-Menten constants of glucose transport and metabolism. The GLP-1 treatment lowered the vascular volume of brain tissue. Loading data from hypo- to hyperglycemia into the Michaelis-Menten equation, we found increased maximum phosphorylation velocity (V max) in the gray matter regions of cerebral cortex, thalamus, and cerebellum, as well as increased blood-brain glucose transport capacity (T max) in gray matter, white matter, cortex, thalamus, and cerebellum. In hypoglycemia, GLP-1 had no effects on net glucose metabolism, brain glucose concentration, or blood-brain glucose transport. Neither hexokinase nor transporter affinities varied significantly with treatment in any region. We conclude that GLP-1 changes blood-brain glucose transfer and brain glucose metabolic rates in a PG concentration-dependent manner. One consequence is that hypoglycemia eliminates these effects of GLP-1 on brain glucose homeostasis.
Collapse
Affiliation(s)
- Michael Gejl
- Department of Biomedicine - Pharmacology, Aarhus University Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|