1
|
Kumar VS, Patanapu SK, Sreeja CS, Kyasanoor SP, Veeraboina N, Nanamadri NK. Assessment of oral health status among occupational chefs and pantry workers in Hyderabad city. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2024; 13:482. [PMID: 39850305 PMCID: PMC11756670 DOI: 10.4103/jehp.jehp_1517_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/06/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND The chefs and pantry workers environment plays a crucial role in the general and oral health. These workers have some unusual work timings and have a lot of stress and anxiety, and they also consume tobacco, alcohol, and smoke the cigarettes, which has a greater impact on oral health. MATERIAL AND METHODS A total of 86 kitchen workers (53 chefs and 33 pantry workers) of ten well-known restaurants in Hyderabad city were included. In clinical oral examination, oral hygiene status was assessed using Simplified-Oral Hygiene Index (OHI-S) along with demographic details. Dentition status, periodontal condition, and loss of attachment (LOA) according to WHO criteria 2013. The collected data were analyzed using the Statistical Package Social Sciences (SPSS) package version 21.0. Statistically significance was set at P < 0.05. RESULTS Age-wise comparison of mean OHI-S scores among chefs and pantry workers reported that all age groups among chefs had significantly higher mean scores compared to workers (P = 0.0001*) for the same age group. When periodontal health status of the study population was considered, chefs of all age groups reported a poor periodontal health with significantly high LOA scores compared to workers except for the age group 25-35 years (P = 0.0001*). Both males and females in the chef group had significantly higher scores for all the oral parameters compared to workers (OHI-S, DMFT, gingival status, periodontitis, and LOA) (P = 0.0001*). CONCLUSION The results of this study show that kitchen workers (chefs and pantry workers) in the community do suffer from various oral health problems such as dental caries and periodontal problems.
Collapse
Affiliation(s)
- Velthuru Srujan Kumar
- Department of Public Health Dentistry, Mamata Dental College and Hospital, Khammam Telangana, India
| | - Siva Kumar Patanapu
- Associate Professor, Department of Public Health Dentistry, Tirumala Institute of Dental Sciences and Research Centre, Dichpally, Nizamabad, Telangana, India
| | - Chilukuri Sai Sreeja
- Masters in Biomedical Health Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Nagarani Veeraboina
- Department of Public Health Dentistry, Positive Dental Pvt. Ltd, Dilsukhnagar, Hyderabad, India
| | - Nitya Krishna Nanamadri
- Department of Public Health Dentistry, Kamineni Institute of Dental Sciences and Research Centre, Narketpally, Nalgonda, Telangana, India
| |
Collapse
|
2
|
Zhu H, Xu C, Yakovlev VV, Zhang D. What is cooking in your kitchen: seeing "invisible" with time-resolved coherent anti-Stokes Raman spectroscopy. Anal Bioanal Chem 2023; 415:6471-6480. [PMID: 37656211 DOI: 10.1007/s00216-023-04923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Cooking oil is a critical component of human food and its main component, lipid, is influential to health, but assessing its authenticity and quality can be challenging due to its complex chemical composition. In this study, we introduce a novel application of time-resolved coherent anti-Stokes Raman scattering (T-CARS) spectroscopy for detecting adulteration and understanding the mechanisms of lipid oxidation in various cooking oils. Our research surpasses the limitations of conventional spontaneous Raman spectroscopy, demonstrating that intra-molecular interactions from unsaturated bonds in triglycerides significantly influence vibrational dephasing time. We observed that these dephasing times, although diverse initially, converge to a similar value after heating cycles. Notably, a longer vibrational dephasing of the CH2 symmetric stretching mode was found to correlate with a higher lipid oxidation rate. These findings underscore the potential of T-CARS in identifying and characterizing subtle molecular interactions, offering a transformative approach to understanding molecular dynamics. This research paves the way for broader applications of T-CARS across fields such as chemistry, biomedicine, and material science, marking a significant advancement in the development of innovative analytical techniques.
Collapse
Affiliation(s)
- Hanlin Zhu
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, 310028, Zhejiang, China
| | - Chenran Xu
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, 310028, Zhejiang, China
| | - Vladislav V Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA.
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Delong Zhang
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, 310028, Zhejiang, China.
| |
Collapse
|
3
|
Jin XEF, Low DY, Ang L, Lu L, Yin X, Tan YQ, Lee AKY, Seow WJ. Exposure to cooking fumes is associated with perturbations in nasal microbiota composition: A pilot study. ENVIRONMENTAL RESEARCH 2023; 234:116392. [PMID: 37302739 DOI: 10.1016/j.envres.2023.116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/02/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Air pollution is one of the leading causes of overall mortality globally. Cooking emissions are a major source of fine particulate matter (PM2.5). However, studies on their potential perturbations on the nasal microbiota as well as their association with respiratory health are lacking. This pilot study aims to assess the environmental air quality among occupational cooks and its associations with nasal microbiota and respiratory symptoms. A total of 20 cooks (exposed) and 20 unexposed controls (mainly office workers), were recruited in Singapore from 2019 to 2021. Information on sociodemographic factors, cooking methods, and self-reported respiratory symptoms were collected using a questionnaire. Personal PM2.5 concentrations and reactive oxygen species (ROS) levels were measured using portable sensors and filter samplers. DNA was extracted from nasal swabs and sequenced using 16s sequencing. Alpha-diversity and beta-diversity were calculated, and between-group variation analysis of species was performed. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between exposure groups and self-reported respiratory symptoms. Higher daily mean PM2.5 (P = 2 × 10-7) and environmental ROS exposure (P = 3.25 × 10-7) were observed in the exposed group. Alpha diversity of the nasal microbiota between the two groups was not significantly different. However, beta diversity was significantly different (unweighted UniFrac P = 1.11 × 10-5, weighted UniFrac P = 5.42 × 10-6) between the two exposure groups. In addition, certain taxa of bacteria were slightly more abundant in the exposed group compared to unexposed controls. There were no significant associations between the exposure groups and self-reported respiratory symptoms. In summary, the exposed group had higher PM2.5 and ROS exposure levels and altered nasal microbiotas as compared to unexposed controls, though further studies are required to replicate these findings in a larger population.
Collapse
Affiliation(s)
- Xin Er Frances Jin
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
| | - Dorrain Yanwen Low
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lina Ang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Lu Lu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Xin Yin
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Yue Qian Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Alex King Yin Lee
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore; Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore.
| |
Collapse
|
4
|
Wei HS, Berekute AK, Siregar S, Yu KP. High-efficiency carbon-coated steel wool filter for controlling cooking-induced oil smoke. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122144. [PMID: 37414121 DOI: 10.1016/j.envpol.2023.122144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Cooking oil smoke (COS) contains many harmful substances, such as particulate matter, formaldehyde, and phenyl esters. Currently, commercial COS treatment equipment is expensive and requires a large space. Furthermore, a large amount of agricultural waste is generated and is mainly burned onsite, producing large amounts of greenhouse gases and air pollutants. This waste could be reused as a precursor for biochar and activated carbon. Therefore, this research used saccharification and catalytic hydrothermal carbonization to process rice straw and produce compact carbon-based filters (steel wool-C) for removing cooking-induced pollutants. Scanning electron microscopy indicated that carbon layers were coated on the steel wool. The Brunauer-Emmett-Teller surface area of the carbon filter was 71.595 m2/g, 43 times larger than that of steel wool. The steel wool filter removed 28.9%-45.4% of submicron aerosol particles. Adding a negative air ionizer (NAI) to the filter system enhanced the particle removal efficiency by 10%-25%. The removal efficiency of total volatile organic compounds was 27.3%-37.1% with the steel wool filter, but 57.2%-74.2% with the carbon-containing steel wool filter, and the NAI improved the removal efficiency by approximately 1%-5%. The aldehyde removal efficiency of the carbon filter with NAI was 59.0%-72.0%. Conclusively, the compact steel wool-C and NAI device could be promising COS treatment equipment for households and small eateries.
Collapse
Affiliation(s)
- Ho-Sheng Wei
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Abiyu Kerebo Berekute
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan; Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arbaminch, Ethiopia
| | - Sepridawati Siregar
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan; Faculty of Mineral Technology, AKPRIND Institute of Science & Technology, Yogyakarta, Indonesia
| | - Kuo-Pin Yu
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
5
|
Cani M, Turco F, Butticè S, Vogl UM, Buttigliero C, Novello S, Capelletto E. How Does Environmental and Occupational Exposure Contribute to Carcinogenesis in Genitourinary and Lung Cancers? Cancers (Basel) 2023; 15:2836. [PMID: 37345174 PMCID: PMC10216822 DOI: 10.3390/cancers15102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Environmental and occupational exposures have been associated with an increased risk of different types of cancers, although the exact mechanisms of higher carcinogenesis risk are not always well understood. Lung cancer is the leading cause of global cancer mortality, and, also, genitourinary neoplasms are among the main causes of cancer-related deaths in Western countries. The purpose of this review is to describe the main environmental and occupational factors that increase the risk of developing lung and genitourinary cancers and to investigate carcinogenesis mechanisms that link these agents to cancer onset. Further objectives are to identify methods for the prevention or the early detection of carcinogenic agents and, therefore, to reduce the risk of developing these cancers or to detect them at earlier stages.
Collapse
Affiliation(s)
- Massimiliano Cani
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| | - Fabio Turco
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Simona Butticè
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| | - Ursula Maria Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Consuelo Buttigliero
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| | - Silvia Novello
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| | - Enrica Capelletto
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| |
Collapse
|
6
|
Jiang N, Bao WW, Gui ZH, Chen YC, Zhao Y, Huang S, Zhang YS, Liang JH, Pu XY, Huang SY, Dong GH, Chen YJ. Findings of indoor air pollution and childhood obesity in a cross-sectional study of Chinese schoolchildren. ENVIRONMENTAL RESEARCH 2023; 225:115611. [PMID: 36878271 DOI: 10.1016/j.envres.2023.115611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Air pollution exposures are increasingly suspected to influence the development of childhood adiposity, especially focusing on outdoor exposure, but few studies investigated indoor exposure and childhood obesity. OBJECTIVES We aimed to examine the association between exposure to multiple indoor air pollutants and childhood obesity in Chinese schoolchildren. METHODS In 2019, we recruited 6499 children aged 6-12 years from five Chinese elementary schools in Guangzhou, China. We measured age-sex-specific body mass index z score (z-BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) on standard procedures. Four different indoor air pollution (IAP) exposures, including cooking oil fumes (COFs), home decoration, secondhand smoke (SHS), and incense burning, were collected by questionnaire and then converted into an IAP exposure index with four categories. Association between indoor air pollutants and childhood overweight/obesity as well as four obese anthropometric indices were assessed by logistic regression models and multivariable linear regression models, respectively. RESULTS Children exposed to ≥3 types of indoor air pollutants had higher z-BMI (coefficient [β]:0.142, 95% confidence interval [CI]:0.011-0.274) and higher risk of overweight/obesity (odd ratio [OR]:1.27, 95%CI:1.01-1.60). And a dose-response relationship was discovered between the IAP exposure index and z-BMI as well as overweight/obesity (pfor trend<0.05). We also found that exposure to SHS and COFs was positively associated with z-BMI and overweight/obesity (p < 0.05). Moreover, there was a significant interaction between SHS exposure and COFs on the higher risk of overweight/obesity among schoolchildren. Boys appear more susceptible to multiple indoor air pollutants than girls. CONCLUSIONS Indoor air pollution exposures were positively associated with higher obese anthropometric indices and increased odds of overweight/obesity in Chinese schoolchildren. More well-designed cohort studies are needed to verify our results.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Wen Bao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhao-Huan Gui
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yi-Can Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Zhao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shan Huang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu-Shan Zhang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing-Hong Liang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xue-Ya Pu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shao-Yi Huang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Jun Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Shamsedini N, Dehghani M, Samaei MR, Nozari M, Bahrany S, Tabatabaei Z, Azhdarpoor A, Hoseini M, Fararoei M, Roosta S. Non-carcinogenic and cumulative risk assessment of exposure of kitchen workers in restaurants and local residents in the vicinity of polycyclic aromatic hydrocarbons. Sci Rep 2023; 13:6649. [PMID: 37095265 PMCID: PMC10125965 DOI: 10.1038/s41598-023-33193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are often formed when organic substances do not burn completely. This study evaluates the non-carcinogenic and cumulative risks associated with PAHs levels by testing blood and urine samples in kitchen workers and residents near restaurants in Shiraz, Iran. Metabolites of PAH in the urine samples as well as clinical parameters in the blood samples were measured. The non-carcinogenic and cumulative risk assessments from exposure of the study groups to PAH metabolites were also evaluated. The highest average concentrations of PAH metabolites were related to kitchen workers (2126.7 ng/g creatinine (ng/g cr)). The metabolites of 1-Hydroxypyrene (1-OHP) and 9-Phenanthrene (9-OHPhe) had the highest and lowest mean concentrations, respectively. A direct correlation was observed between the levels of PAH metabolites with malondialdehyde (MDA) and total antioxidation capacity (TAC) levels (p < 0.05). Hazard Index (HIi) was obtained less than one (HIi < 1), indicating low-risk negative health impacts on the target groups. Nevertheless, conducting more studies to determine the health status of these people is quite evident.
Collapse
Affiliation(s)
- Narges Shamsedini
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Fars Water and Wastewater Company, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Reza Samaei
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Nozari
- Department of Environmental Health Engineering, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Shayan Bahrany
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Tabatabaei
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aboolfazl Azhdarpoor
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararoei
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Roosta
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Roh S, Ryu Y, Joung YS. The effect of PhIP precursors on the generation of particulate matter in cooking oil fumes at high cooking temperatures and the inflammation response in human lung cells. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129792. [PMID: 36084470 DOI: 10.1016/j.jhazmat.2022.129792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Cooking Oil Fumes (COFs) contain carcinogenic organic substances such as polycyclic aromatic hydrocarbons (PAHs) and heterocyclic amines (HCAs), of which 2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) is known as mainly meat-borne carcinogens. In this work, to identify the mechanisms to induce the inflammation response in human lung cells (A549) exposed to COFs, we investigated the physicochemical and biological characteristics of COFs generated with PhIP precursors (L-phenylalanine, creatinine, and glucose) at high cooking temperatures (300 °C and 600 °C). Interestingly, we found that PhIP was not formed both at 300 °C and 600 °C, while a large number of carbon nanoparticles were generated from soybean oil containing the PhIP precursors at 600 °C. From the biological analysis, COFs generated with the PhIP precursors at 600 °C induced the most significant pro-inflammatory cytokine (IL-6). This result indicates that the particulate matter in COFs generated with the PhIP precursors above the smoke temperature is the primary factor directly affecting the lung inflammatory response rather than PhIP. This study demonstrates for the first time a novel principle of the inflammatory response that the PhIP precursors can aggravate lung injury by affecting the physical properties of COFs depending on cooking temperature. Therefore, our finding is a significant result of overcoming the bias in previous studies focusing only on the chemical toxicity of PhIP in the inflammatory response of COFs.
Collapse
Affiliation(s)
- Soonjong Roh
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Youngri Ryu
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Young Soo Joung
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Zheng S, Shen H, Shen G, Chen Y, Ma J, Cheng H, Tao S. Vertically-resolved indoor measurements of air pollution during Chinese cooking. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100200. [PMID: 36157347 PMCID: PMC9500372 DOI: 10.1016/j.ese.2022.100200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 05/07/2023]
Abstract
Chinese cooking features several unique processes, e.g., stir-frying and pan-frying, which represent important sources of household air pollution. However, factors affecting household air pollution and the vertical variations of indoor pollutants during Chinese cooking are less clear. Here, using low-cost sensors with high time resolutions, we measured concentrations of five gas species and particulate matter (PM) in three different sizes at multiple heights in a kitchen during eighteen different Chinese cooking events. We found indoor gas species were elevated by 21%-106% during cooking, compared to the background, and PMs were elevated by 44%-159%. Vertically, the pollutants concentrations were highly variable during cooking periods. Gas species generally showed a monotonic increase with height, while PMs changed more diversely depending on the cooking activity's intensity. Intense cooking, e.g., stir-frying, pan-frying, or cooking on high heat, tended to shoot PMs to the upper layers, while moderate ones left PMs within the breathing zone. Individuals with different heights would be subject to different levels of household air pollution exposure during cooking. The high vertical variability challenges the current indoor standard that presumes a uniform pollution level within the breathing zone and thus has important implications for public health and policy making.
Collapse
Affiliation(s)
- Shuxiu Zheng
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing, 100871, China
| | - Huizhong Shen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing, 100871, China
| | - Yilin Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianmin Ma
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing, 100871, China
| | - Shu Tao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing, 100871, China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
Tabatabaei Z, Hoseini M, Fararooei M, Shamsedini N, Baghapour MA. Biomonitoring of BTEX in primary school children exposed to hookah smoke. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69008-69021. [PMID: 35554839 PMCID: PMC9100313 DOI: 10.1007/s11356-022-19882-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/20/2022] [Indexed: 05/16/2023]
Abstract
Hookah smoking is one of the major indoor sources of benzene, toluene, ethylbenzene, and xylenes (BTEX). This study aimed to investigate the potential exposure to BTEX among primary school children, particularly those exposed to hookah smoke. This cross-sectional study was conducted in Khesht, one of the southwestern cities in Iran, in mid-June 2020. Totally, 50 primary school children exposed to hookah smoke were chosen as the case group and 50 primary school children were selected as the control group. Urinary un-metabolized BTEX was measured by a headspace gas chromatography mass spectrometry (GC-MS). Additionally, a detailed questionnaire was used to gather data and information from the students' parents. The mean levels of urinary benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene were 1.44, 5.87, 2.49, 6.93, and 7.17 μg/L, respectively in the exposed children. Urinary BTEX was 3.93-folds higher in the case group than in the controls (p<0.05). Household cleaning products, the floor on which the house was located, children's sleeping place, and playing outdoors were found to be important factors in predicting urinary BTEX levels. Overall, it was found necessary to avoid indoor smoking to prevent the emission of BTEX compounds via exhaled mainstream smoke and to protect vulnerable non-smokers, especially children, from exposure to second-hand and third-hand smoke.
Collapse
Affiliation(s)
- Zeynab Tabatabaei
- Department of Environment Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararooei
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Shamsedini
- Department of Environment Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Fars Water and Wastewater Company, Shiraz, Iran
| | - Mohammad Ali Baghapour
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Navruz-Varli S, Bilici S, Ari A, Ertürk-Ari P, Ilhan MN, O Gaga E. Organic pollutant exposure and health effects of cooking emissions on kitchen staff in food services. INDOOR AIR 2022; 32:e13093. [PMID: 36040287 DOI: 10.1111/ina.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/01/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
This study was conducted to determine the exposure and health risk to cooking fumes of a total of 88 volunteer kitchen staff aged between 18 and 65 years working in five different kitchens in Ankara. Gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs), and volatile organic compound (VOCs) concentrations were evaluated in the indoor air of 5 kitchens. Serum malondialdehyde (MDA) and superoxide dismutase (SOD) levels were analyzed to determine the oxidative damage as a result of the exposure to cooking fumes among the cooks and waiters. Significant positive relationships were found between serum MDA levels of the hot kitchen workers and indoor chrysene (Chr), indeno(1,2,3-c,d)pyrene (Ind), and total VOC levels. Although the carcinogenic risks estimated for the exposed population were between the acceptable/tolerable levels, the hazard quotient (HQ) estimated for the exposure to indoor benzene exceeded the safe level. The results of the study revealed that exposure to organic pollutants in indoor air may be a risk factor for the development of oxidative stress, especially in hot kitchen workers. The importance of efficient ventilation in the kitchen has been pointed out to reduce health risks caused by cooking fumes.
Collapse
Affiliation(s)
| | - Saniye Bilici
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkiye
| | - Akif Ari
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkiye
| | - Pelin Ertürk-Ari
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkiye
| | | | - Eftade O Gaga
- Department of Environmental Engineering, Eskişehir Technical University, Eskisehir, Turkiye
| |
Collapse
|
12
|
Yang K, Fahad S, He H. Assessing the cooking oil fume exposure impacts on Chinese women health: an influential mechanism analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53860-53872. [PMID: 35292892 DOI: 10.1007/s11356-022-19368-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Oil fume is always considered as a major source of indoor air pollution. This article aims to examine the effects of cooking oil fume as environmental pollution on the health of Chinese women by using the data obtained from China Labor force Dynamic Survey (CLDS). In order to estimate the effect of environmental pollution on the human health, we utilize probit model approach and baseline regression method. The results showed that oil fume has a significant negative impact on the health indicators of "physical pain, health impact on work and injury." By conducting endogeneity analysis, our results show the robustness and indicate that oil fume has a robust effect on the women health. Heterogeneity analysis show that heavier oil fume has a negative impact on the subjective health of middle-aged and young women, while it has a significant negative impact on the objective health of middle-aged women. Analysis of the impact mechanism reveal that heavier oil fumes will reduce women's sleep quality and will lead to the poorer health. Based on our study findings, this study proposes policy recommendations from the perspectives of the use of smoke extraction equipment, cooking methods, and sleep quality to reduce the negative impact of cooking fumes on women's health.
Collapse
Affiliation(s)
- Kewen Yang
- College of Economics and Management, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shah Fahad
- School of Economics and Management, Leshan Normal University, Leshan, 614000, Sichuan, People's Republic of China.
| | - Huan He
- School of Public Administration, Southwestern University of Finance and Economics, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
13
|
Shamsedini N, Dehghani M, Samaei M, Azhdarpoor A, Hoseini M, Fararouei M, Bahrany S, Roosta S. Health risk assessment of polycyclic aromatic hydrocarbons in individuals living near restaurants: a cross-sectional study in Shiraz, Iran. Sci Rep 2022; 12:8254. [PMID: 35585178 PMCID: PMC9117185 DOI: 10.1038/s41598-022-12040-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent toxic substances that have ubiquitous presence in water, air, soil, and sediment environments, posing serious environmental risks. The present study aimed to investigate the concentrations of urinary PAHs and their health effects in individuals living near restaurants via a health risk assessment analysis. This cross-sectional study was performed on 57 people living near restaurants and 30 individuals as the control group. Five urinary metabolites of PAHs were monitored. In order to evaluate the effects of the urinary metabolites of PAHs on Malondialdehyde (MDA) concentration, Total Anti-oxidation Capacity (TAC) in urine samples, and C-Reactive Protein (CRP) in serum samples, regression model was used by considering the effects of the possible confounding factors. Non-carcinogenic health risk was calculated, as well. The median concentration of urinary PAHs was 1196.70 and 627.54 ng/g creatinine in the people living near restaurants and the control group, respectively. Among the metabolites, the lowest and highest mean concentrations were related to 9-OHPhe and 1-OHP, respectively in the two study groups. Moreover, PAHs were significantly associated with MDA level and TAC (p < 0.05). Hazard Quotient (HQ) and Hazard Index (HI) were less than 1. Long-term studies are required to determine the actual health effects by identifying the sources of PAHs emission and to find ways to decrease the production of these compounds.
Collapse
Affiliation(s)
- Narges Shamsedini
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Fars Water and Wastewater Company, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammadreza Samaei
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aboolfazl Azhdarpoor
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Bahrany
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Roosta
- Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Liu J, Fu M, Miao J, Sun Y, Zhu R, Liu C, Bi R, Wang S, Cao X. The toxicity of cooking oil fumes on human bronchial epithelial cells through ROS-mediated MAPK, NF-κB signaling pathways and NLRP3 inflammasome. ENVIRONMENTAL TOXICOLOGY 2022; 37:1071-1080. [PMID: 35060675 DOI: 10.1002/tox.23465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Cooking oil fumes (COFs) are the main pollutants in kitchen and indoor air, which threaten human health. Exposure to COFs may lead to respiratory diseases and impair pulmonary function. To investigate the toxicity of COFs on human bronchial epithelial cells (Beas-2B) and explore the underlying mechanisms, MTT assay was conducted to detect the viability of Beas-2B. Intracellular reactive oxygen species (ROS) levels and nitric oxide (NO) levels were determined with DCFH-DA assay and DAF-FM assay. The expression of genes involved in inflammation were measured with quantitative real-time PCR (qRT-PCR). The phosphorylation and the expression of proteins related to Mitogen-activated protein kinase (MAPK), NF-κB signaling pathways were measured with western blot. Our results revealed that COFs decreased cell viability, increased the ROS levels and NO levels and induced apoptosis in Beas-2B cells. The results of qRT-PCR and western blot showed that the expression of NLRP3, p65, iNOS, IL-1β, and the factors related to oxidative stress and inflammation increased, NF-κB signaling pathway and MAPK signaling pathway were activated. This study provided some useful information to evaluate the toxicity of COFs and revealed the possible mechanism for the damage on respiratory system induced by COFs.
Collapse
Affiliation(s)
- Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Mingyang Fu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Jingyi Miao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Yueling Sun
- School Hospital, Liaoning University, Shenyang, China
| | - Rugang Zhu
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang, China
| | - Chengying Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Ruochen Bi
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Shuai Wang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
15
|
Shamsedini N, Dehghani M, Samaei M, Azhdarpoor A, Hosseini M, Fararoei M, Bahrany S. Exposure to polycyclic aromatic hydrocarbon-induced oxidative stress in individuals living near restaurants: a cross-sectional study in Shiraz, Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:285. [PMID: 35298709 DOI: 10.1007/s10661-022-09868-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons are environmental pollutants caused by the incomplete combustion of organic matter. The aim of this study was to investigate the concentration of urinary PAHs and their health effects in individuals living near restaurants. This cross-sectional study was done on 57 individuals who were living near 36 restaurants, and 30 individuals as the control group. Five urinary metabolites of PAHs (1-OH pyrene, 1-OH naphthalene, 2-OH naphthalene, 2-OH fluorine, and 9-OH phenanthrenen) were monitored. The total anti-oxidation capacity (TAC), malondialdehyde (MDA), C-reactive protein (CRP), and creatinine were also measured. The mean concentration of the sum of urinary PAHs (ΣOH-PAHs) was 1973.7, and 1687.61 ng/g creatinine in people living near restaurants and control group, respectively. Among the metabolites, the highest mean concentration was related to 1-OH Pyrene in the two study groups. In the individuals living near restaurants, the concentration of PAH metabolites was directly related to MDA and TAC (p < 0.05 for both). The present study findings revealed no significant correlation between PAH metabolites and CRP in the two study groups (P > 0.05). People living near restaurants are more exposed to components in cooking fumes, which may adversely affect their health. Further researches are required to elucidate the effect of PAHs exposure on these individuals' health status.
Collapse
Affiliation(s)
- Narges Shamsedini
- Department of Environmental Health Engineering, Student Research Committee, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Fars Water and Wastewater Company, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammadreza Samaei
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aboolfazl Azhdarpoor
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hosseini
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararoei
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Bahrany
- Department of Environmental Health Engineering, Student Research Committee, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Huang S, Li Q, Liu H, Ma S, Long C, Li G, Yu Y. Urinary monohydroxylated polycyclic aromatic hydrocarbons in the general population from 26 provincial capital cities in China: Levels, influencing factors, and health risks. ENVIRONMENT INTERNATIONAL 2022; 160:107074. [PMID: 34995968 DOI: 10.1016/j.envint.2021.107074] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) derived from the incomplete combustion of organic materials are associated with adverse health effects. However, little is known about PAH exposure levels and their influencing factors on a large scale in developing countries. In this study, urinary monohydroxylated metabolites of PAHs (OH-PAHs), including the metabolites of naphthalene, fluorene, phenanthrene, pyrene, chrysene, and benzo[a]pyrene, were measured in 1154 samples in the general population nationwide from 26 provincial capitals in China. Concentrations of OH-PAHs ranged from 1.39 to 228 μg/L. OH-Nap, metabolite of naphthalene, was the predominant compound, accounting for 65.1% of totals. People in eastern, southwest and northeast China, such as Shanghai, Kunming, Nanning, and Changchun, suffered more PAH exposure than other regions which might associate with sampling time, living habits of the subjects, and the imbalance of economic development and energy consumption across regions. Urinary OH-PAH concentrations were associated with body mass index, gender, and age, and smoking was the main correlating factor. Inhalation and diet might be the main exposure route of human exposure to PAHs, especially for smokers by inhalation. Hazard indices showed that no subject was exposed to PAHs with potential non-carcinogenic risk. Furthermore, the carcinogenic risk was the most significant health effects, with almost all subjects having carcinogenic risk values higher than the acceptable level of 10-6. Naphthalene and phenanthrene were the main contributors. The results also suggested a possible relationship between PAH exposure and lung cancer in the Chinese population. This first nationwide study on human internal exposure to PAHs provides a large body of scientific information for governmental decision-making about associated human health and the prevention of human exposure to PAHs.
Collapse
Affiliation(s)
- Senyuan Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qin Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, PR China
| | - Hao Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chaoyang Long
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou 510430, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
17
|
Liu Q, Li G, Zhang L, Liu J, Du J, Shao B, Li Z. Effects of household cooking with clean energy on the risk for hypertension among women in Beijing. CHEMOSPHERE 2022; 289:133151. [PMID: 34871615 DOI: 10.1016/j.chemosphere.2021.133151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/09/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Outdoor air pollution and indoor burning of biomass fuel can cause high blood pressure. However, little is known about the effects of cooking with clean energy on hypertension. We thus explored whether cooking with clean energy is associated with the risk for hypertension. The study used baseline data from 12,349 women from a large population-based cohort study in Beijing, China. Information on cooking habits, health status, and other characteristics was collected by questionnaire and physical examination. Fasting blood samples were collected to measure total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and homocysteine (HCY). An index of cooking exposure was constructed. Log-binomial regression models were used to estimate the association between cooking exposure and risk for hypertension. The prevalence of hypertension was 26.7%. Any cooking exposure at all was associated with an increased risk for hypertension with an adjusted prevalence ratio (aPR) of 2.27 (95% confidence interval [CI]: 2.01, 2.57). The risk for hypertension increased with increases in cooking frequency, time spent cooking, and the cooking index, all showing a dose-effect relationship (P < 0.001). An increased risk for hypertension was associated with both cooking using mainly electricity (aPR: 1.75, 95% CI: 1.41, 2.17) and cooking using mainly natural gas (aPR: 2.30, 95% CI: 2.03, 2.60). The cooking index was positively correlated with plasma concentrations of TC, TG, LDL-C, and HCY and negatively correlated with HDL-C. Abnormal levels of all these biomarkers were associated with an increased prevalence of hypertension after adjustment for confounding factors. Cooking with clean energy, mainly cooking habit, may contribute to an increased risk for hypertension among female residents of Beijing. Abnormal metabolism of lipids or HCY may be an important mechanism involved in the development of cooking-related hypertension.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Center for Disease Prevention and Control, Beijing, 100013, PR China.
| | - Gang Li
- Beijing Center for Disease Prevention and Control, Beijing, 100013, PR China.
| | - Le Zhang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China.
| | - Jufen Liu
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China.
| | - Jing Du
- Beijing Center for Disease Prevention and Control, Beijing, 100013, PR China.
| | - Bing Shao
- Beijing Center for Disease Prevention and Control, Beijing, 100013, PR China.
| | - Zhiwen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China; Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China.
| |
Collapse
|
18
|
Chen KC, Tsai SW, Shie RH, Zeng C, Yang HY. Indoor Air Pollution Increases the Risk of Lung Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031164. [PMID: 35162188 PMCID: PMC8834322 DOI: 10.3390/ijerph19031164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
(1) Background: Cooking and burning incense are important sources of indoor air pollutants. No studies have provided biological evidence of air pollutants in the lungs to support this association. Analysis of pleural fluid may be used to measure the internal exposure dose of air pollutants in the lung. The objective of this study was to provide biological evidence of indoor air pollutants and estimate their risk of lung cancer. (2) Methods: We analyzed 14 common air pollutants in the pleural fluid of 39 cases of lung adenocarcinoma and 40 nonmalignant controls by gas chromatography-mass spectrometry. (3) Results: When we excluded the current smokers and adjusted for age, the adjusted odds ratios (ORs) were 2.22 (95% confidence interval CI = 0.77-6.44) for habitual cooking at home and 3.05 (95% CI = 1.06-8.84) for indoor incense burning. In females, the adjusted ORs were 5.39 (95% CI = 1.11-26.20) for habitual cooking at home and 6.01 (95% CI = 1.14-31.66) for indoor incense burning. In pleural fluid, the most important exposure biomarkers for lung cancer were naphthalene, ethylbenzene, and o-xylene. (4) Conclusions: Habitual cooking and indoor incense burning increased the risk of lung adenocarcinoma.
Collapse
Affiliation(s)
- Ke-Cheng Chen
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
- Department of Surgery, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Shih-Wei Tsai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei 10055, Taiwan;
- Department of Public Health, National Taiwan University College of Public Health, Taipei 10055, Taiwan
| | - Ruei-Hao Shie
- Green Energy & Environmental Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan;
| | - Chian Zeng
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei 10055, Taiwan;
| | - Hsiao-Yu Yang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei 10055, Taiwan;
- Department of Public Health, National Taiwan University College of Public Health, Taipei 10055, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-3366-8102
| |
Collapse
|
19
|
Baek K, Kim M, Kwak K. Exposure to diesel engine exhausts and increase of urinary 8-hydroxy-2'-deoxyguanosine among Male tank maintenance workers in the Republic of Korea Army. INDUSTRIAL HEALTH 2021; 59:403-414. [PMID: 34588383 PMCID: PMC8655751 DOI: 10.2486/indhealth.2021-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/30/2021] [Indexed: 06/13/2023]
Abstract
This study was conducted to evaluate the exposure of diesel engine exhaust (DEE) and oxidative stress among tank maintenance workers in the Republic of Korea Army. Airborne concentrations of elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs), and metals were measured at two units. Urine analysis for 1-hydroxypyrene and 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed for tank maintenance workers from one unit (n=17). To compare the level of 8-OHdG, the analysis was performed in 17 unexposed controls. The airborne EC concentration was 8.6-24.3 μg/m3 in indoor unit. EC was not detected in the outdoor unit. As for the PAHs, trace -0.0004 mg/m3 of naphthalene was detected. ITWA for 26 metals was calculated to be 0.009-0.027. The geometric mean urinary 1-hydroxypyrene was 0.08 μg/g creatinine. The geometric mean of 8-OHdG was 1.04 μg/g for the maintenance workers, while 0.45 μg/g for controls. The level of urinary 8-OHdG was significantly higher among maintenance workers in multivariate analysis. In conclusion, tank maintenance workers are exposed to various by-products from diesel engine combustion during work, and their level of oxidative stress marker was increased. Countermeasures for reducing hazardous substances in the military workplace are necessary.
Collapse
Affiliation(s)
- Kiook Baek
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Republic of Korea
- Department of Work Environment Monitoring, Armed Forces Medical Research Institute, Republic of Korea
| | - Minho Kim
- Department of Work Environment Monitoring, Armed Forces Medical Research Institute, Republic of Korea
| | - Kyeongmin Kwak
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Republic of Korea
| |
Collapse
|
20
|
Deng L, Ma Y, Ma P, Wu Y, Yang X, Deng Q. Toxic effect of cooking oil fume (COF) on lungs: Evidence of endoplasmic reticulum stress in rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112463. [PMID: 34198188 DOI: 10.1016/j.ecoenv.2021.112463] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/07/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cooking oil fumes (COF) is one of the primary sources of indoor air pollution in China, which is associated with respiratory diseases such as acute lung injury and lung cancer. However, evidence of COF toxic effect was few. OBJECTIVES The research was aimed to investigate the toxic effect and the underlying mechanisms induced by COF. METHODS The female Wistar rats were randomly divided into several groups, including control group, COF exposure group and VE protection group, and instilled intratracheally with different COF suspensions (0.2, 2, 20 mg/kg) or saline once every 3 days for 30 days. After 24 h of final exposure, all rat were anesthetic euthanasia to draw materials. The alveolar lavage fluid (BALF) was for inflammatory cell count. The lung homogenate was to determine the biochemical indexes such as oxidative stress, apoptosis factors, carcinogenic toxicity and endoplasmic reticulum (ER) stress. The left lung was made for immunohistochemical and histopathological analysis. RESULTS The results showed that the levels of oxidative stress (ROS), apoptosis factors (NF-κB), carcinogenic toxicity (P53 and 8-OhdG), ER stress (IRE-1α and Caspase-12) in 2 mg/kg and 20 mg/kg COF exposure groups were significantly increased compared with the saline groups. The above pathological changes were improved after vitamin E (VE) supplementation. In addition, the immunohistochemical and histopathological analysis found the same trend. CONCLUSION The COF had health risk of heredity and potential carcinogenicity. Besides, COFs can not only induce oxidative stress, but also induce ER stress in lung and airway epithelial cells of female rats through the unfolded protein reaction (UPR) pathway. It revealed that the oxidative stress and ER stress interacted in aggravating lung injury. VE could effectively alleviate the lung injury causing by COF exposure.
Collapse
Affiliation(s)
- Linjing Deng
- school of tourism and ubran management, Jiangxi University of Finance and Economics, Nanchang 330000, China.
| | | | - Ping Ma
- School of Public Health, Hubei University of Science and Technology, Xianning 437100, China
| | - Yang Wu
- School of Public Health, Hubei University of Science and Technology, Xianning 437100, China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430070, China
| | - Qihong Deng
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
21
|
Singh A, Jha RR, Kamal R, Kesavachandran C, Patel DK. Dispersive liquid–liquid microextraction for the analysis of specific marker compounds in human exposed with Polyaromatic hydrocarbons (PAHs). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Hu P, Wang C, Ding P, He YH, Xie C, Tian FY, Yuan S, Jia D, Chen WQ. Placental weight mediates association between prenatal exposure to cooking oil fumes and preterm birth. J Matern Fetal Neonatal Med 2021; 35:7248-7258. [PMID: 34219591 DOI: 10.1080/14767058.2021.1946783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: There are some reports on association between maternal prenatal cooking oil fume (COF) exposure and preterm birth (PTB), but its mechanism remains poorly understood. Therefore, this study aims to assess whether placental weight mediates their associations.Method: We enrolled 619 pregnant women delivering PTB newborns as cases and 1701 delivering full-term appropriate for gestational age newborns as controls. They were inquired with a self-reported questionnaire about prenatal COF exposure, socio-demographics and obstetric characteristics at Women and Children's Hospitals of Shenzhen and Foshan. After controlling for the potential confounders, a series of logistic and linear regressions were conducted to assess associations among COF exposure, placental weight and PTB, and the mediation of placental weight in the association between COF exposure and PTB.Results: Maternal prenatal COF exposure was significantly associated with PTB and the frequency of prenatal COF exposure was negatively associated with placental weight. Compared with mother who never cooked, those cooking occasionally, sometimes or often increased the risk of PTB, and similarly, those cooking between half to an hour was also showed a higher risk of PTB. Typical Chinese cooking methods including stir-frying, pan-frying and deep-frying were also associated with PTB. Different oil types mainly used, including peanut oil, corn oil and animal oil were associated with PTB as well. Mediation analysis illustrated that placental weight partially mediated 13.60% (95% CI = 10.62-33.20%) of the effects on the association between the frequency of maternal prenatal COF exposure and PTB.Conclusion: Maternal cooking during pregnancy and the frequency of prenatal COF exposure might increase the risk of PTB, in which placenta might play mediation role.
Collapse
Affiliation(s)
- Pian Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Chanmin Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Peng Ding
- Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Hui He
- Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Chuanbo Xie
- Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Fu-Ying Tian
- Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Shixin Yuan
- Shenzhen Women's and Children's Hospital, Shenzhen, China
| | - Deqin Jia
- Foshan Women's and Children's Hospital, Foshan, China
| | - Wei-Qing Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Department of Information Management, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Geretto M, Ferrari M, De Angelis R, Crociata F, Sebastiani N, Pulliero A, Au W, Izzotti A. Occupational Exposures and Environmental Health Hazards of Military Personnel. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5395. [PMID: 34070145 PMCID: PMC8158372 DOI: 10.3390/ijerph18105395] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Military personnel are frequently exposed to environmental pollutants that can cause a variety of diseases. METHODS This review analyzed publications regarding epidemiological and biomonitoring studies on occupationally-exposed military personnel. RESULTS The exposures include sulfur mustard, organ chlorines, combustion products, fuel vapors, and ionizing and exciting radiations. Important factors to be considered are the lengths and intensities of exposures, its proximity to the sources of environmental pollutants, as well as confounding factors (cigarette smoke, diet, photo-type, healthy warrior effect, etc.). Assessment of environmental and individual exposures to pollutants is crucial, although often omitted, because soldiers have often been evaluated based on reported health problems rather than on excessive exposure to pollutants. Biomarkers of exposures and effects are tools to explore relationships between exposures and diseases in military personnel. Another observation from this review is a major problem from the lack of suitable control groups. CONCLUSIONS This review indicates that only studies which analyzed epidemiological and molecular biomarkers in both exposed and control groups would provide evidence-based conclusions on exposure and disease risk in military personnel.
Collapse
Affiliation(s)
- Marta Geretto
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Marco Ferrari
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Roberta De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Filippo Crociata
- General Inspectorate of Military Health, 00184 Rome, Italy; (F.C.); (N.S.)
| | - Nicola Sebastiani
- General Inspectorate of Military Health, 00184 Rome, Italy; (F.C.); (N.S.)
| | | | - William Au
- Faculty of Medicine, Pharmacy, Science and Technology University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
24
|
Grill Workers Exposure to Polycyclic Aromatic Hydrocarbons: Levels and Excretion Profiles of the Urinary Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010230. [PMID: 33396787 PMCID: PMC7796024 DOI: 10.3390/ijerph18010230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/05/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022]
Abstract
Grilling activities release large amounts of hazardous pollutants, but information on restaurant grill workers’ exposure to polycyclic aromatic hydrocarbons (PAHs) is almost inexistent. This study assessed the impact of grilling emissions on total workers’ exposure to PAHs by evaluating the concentrations of six urinary biomarkers of exposure (OHPAHs): naphthalene, acenaphthene, fluorene, phenanthrene, pyrene, and benzo(a)pyrene. Individual levels and excretion profiles of urinary OHPAHs were determined during working and nonworking periods. Urinary OHPAHs were quantified by high-performance liquid-chromatography with fluorescence detection. Levels of total OHPAHs (∑OHPAHs) were significantly increased (about nine times; p ≤ 0.001) during working comparatively with nonworking days. Urinary 1-hydroxynaphthalene + 1-hydroxyacenapthene and 2-hydroxyfluorene presented the highest increments (ca. 23- and 6-fold increase, respectively), followed by 1-hydroxyphenanthrene (ca. 2.3 times) and 1-hydroxypyrene (ca. 1.8 times). Additionally, 1-hydroxypyrene levels were higher than the benchmark, 0.5 µmol/mol creatinine, in 5% of exposed workers. Moreover, 3-hydroxybenzo(a)pyrene, biomarker of exposure to carcinogenic PAHs, was detected in 13% of exposed workers. Individual excretion profiles showed a cumulative increase in ∑OHPAHs during consecutive working days. A principal component analysis model partially discriminated workers’ exposure during working and nonworking periods showing the impact of grilling activities. Urinary OHPAHs were increased in grill workers during working days.
Collapse
|
25
|
Chung CJ, Hsu HT, Chang CH, Li SW, Liu CS, Chung MC, Wu GW, Jung WT, Kuo YJ, Lee HL. Relationships among cigarette smoking, urinary biomarkers, and urothelial carcinoma risk: a case-control study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43177-43185. [PMID: 32729033 DOI: 10.1007/s11356-020-10196-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Cigarette smoke is a known risk factor for urothelial carcinoma (UC). However, there is limited information about the distributions and effects of volatile organic compounds (VOCs) on smoking-related UC risk. With this hospital-based case-control study, we explored the associations between urinary levels of cotinine and VOC metabolites (acrylamide, 1,3-butadiene, and benzene) and the risk of UC. Urological examinations and pathological verifications were used to confirm the diagnoses of UC. All study participants provided smoking-related information via questionnaires and face-to-face interviews; they also provided urine samples for the measurement of VOC metabolites, cotinine, and 8-hydroxydeoxyguanosine (8-OHdG), which was used as an indicator of oxidative stress. We applied multiple logistic regression analysis to estimate the risk of UC, and we found that levels of urinary cotinine and 8-OHdG were higher in the UC group than in the control group. Furthermore, urinary levels of VOC metabolites, including N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine, N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine-3, trans,trans-muconic acid (t,t-MA), and S-phenylmercapturic acid (SPMA), increased with increasing levels of urinary cotinine. After adjusting for potential risk factors, dose-response relationships were observed between UC risk and urinary levels of AAMA, t,t-MA, SPMA, and 8-OHdG. Participants with high urinary levels of cotinine, AAMA, t,t-MA, SPMA, and 8-OHdG had risks of UC that were 3.5- to 6-fold higher than those of participants with lower levels. Future, large-scale investigations of the risks of UC should be explored, and repeated measurement of VOC metabolites should be assessed.
Collapse
Affiliation(s)
- Chi-Jung Chung
- Department of Public Health, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Hui-Tsung Hsu
- Department of Public Health, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Chao-Hsiang Chang
- Department of Urology, China Medical University Hospital, Taichung, Taiwan
| | - Sheng-Wei Li
- Department of Urology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Chiu-Shong Liu
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Mu-Chi Chung
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Guo-Wei Wu
- Department of Public Health, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Wei-Ting Jung
- Department of Chemistry, Fu Jen Catholic University, 510, Zhongzheng Road, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Yen-Jung Kuo
- Department of Chemistry, Fu Jen Catholic University, 510, Zhongzheng Road, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, 510, Zhongzheng Road, Xinzhuang District, New Taipei City, 24205, Taiwan.
| |
Collapse
|
26
|
Koppen G, Franken C, Den Hond E, Plusquin M, Reimann B, Leermakers M, Covaci A, Nawrot T, Van Larebeke N, Schoeters G, Bruckers L, Govarts E. Pooled analysis of genotoxicity markers in relation to exposure in the Flemish Environment and Health Studies (FLEHS) between 1999 and 2018. ENVIRONMENTAL RESEARCH 2020; 190:110002. [PMID: 32745535 DOI: 10.1016/j.envres.2020.110002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The Flemish Environment and Health Studies (FLEHS) are human biomonitoring surveys running in Flanders since 1999. Additionally to biomarkers of exposure, markers of genotoxicity and oxidative stress have been measured, including the alkaline comet and micronucleus assay in peripheral whole blood cells, and urinary concentrations of 8-oxo-2'-deoxyguanosine (8-oxodG). AIM Exposure-effect associations were explored in a pooled dataset of nine different cross-sectional FLEHS surveys. Data of adolescents collected in a time frame of about 20 years (1999-2018) were compiled. The aim of the study was to examine whether increased variation in exposure, lifestyle and environmental factors would lead to more powerful and robust exposure-effect associations. MATERIALS & METHODS The biomarkers were measured in 2283 adolescents in the age range of 14-18 years. Exposure to polycyclic aromatic hydrocarbons [1-hydroxypyrene (1-OHP)], benzene (tt'-muconic acid), metals (arsenic, cadmium, copper, nickel, thallium, lead, chromium), persistent organochlorines and phthalates were assessed in blood or urine. Furthermore, outdoor air levels of particulate matter (PM10 and PM2.5) at the residences of the youngsters were calculated. Pooled statistical analysis was done using mixed models. Study-specific differences in the genotoxicity markers and in the strength/direction of the association were accounted for. This was done by incorporating the random factor 'study' and a random study slope (if possible). The exposure markers were centered around the study-specific mean in order to correct for protocol changes over time. RESULTS A significant association was observed for the urinary oxidative stress marker 8-oxodG, which was positively associated with 1-OHP (5% increase for doubling of 1-OHP levels, p = 0.001), and with urinary copper (26% increase for doubling of copper levels, p = 0.001), a metal involved in the Fenton reaction in biological systems. 8-oxodG was also associated with the sum of the metabolites of the phthalate di(2-ethylhexyl) phthalate (DEHP) (3% increase for doubling of the DEHP levels, p = 0.02). For those associations, data pooling increased the statistical power. However, some of the associations in the individual surveys, were not confirmed in the pooled analysis (such as comet assay and 8-oxodG vs. atmospheric PM; and 8-oxodG vs. urinary nickel). This may be due to inconsistencies in exposure-effect relations and/or variations in the pollutant mix over time and regions. CONCLUSION Pooled analysis including a large population of 2283 Flemish adolescents showed that 8-oxodG, a marker of oxidative DNA damage is a valuable marker to assess impact of daily life pollutants, such as PAHs, Cu and the phthalate DEHP.
Collapse
Affiliation(s)
- G Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium.
| | - C Franken
- Provincial Institute of Hygiene (PIH), Antwerp, Belgium.
| | - E Den Hond
- Provincial Institute of Hygiene (PIH), Antwerp, Belgium.
| | - M Plusquin
- Center for Environment and Health, University Hasselt, Agoralaan, Diepenbeek, Belgium.
| | - B Reimann
- Center for Environment and Health, University Hasselt, Agoralaan, Diepenbeek, Belgium.
| | - M Leermakers
- Analytical, Environmental and Geo- Chemistry, Free University Brussels, Belgium.
| | - A Covaci
- Toxicological Center, University of Antwerp, Belgium.
| | - T Nawrot
- Center for Environment and Health, University Hasselt, Agoralaan, Diepenbeek, Belgium.
| | - N Van Larebeke
- Analytical, Environmental and Geo- Chemistry, Free University Brussels, Belgium.
| | - G Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium; University of Southern Denmark, Institute of Public Health/ Department of Environmental Medicine, Odense, Denmark.
| | - L Bruckers
- Center for Statistics, University Hasselt, Agoralaan, Diepenbeek, Belgium.
| | - E Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium.
| |
Collapse
|
27
|
Lai CH, Chou CC, Chuang HC, Lin GJ, Pan CH, Chen WL. Receptor for advanced glycation end products in relation to exposure to metal fumes and polycyclic aromatic hydrocarbon in shipyard welders. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110920. [PMID: 32800255 DOI: 10.1016/j.ecoenv.2020.110920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Advanced glycation end products (AGE) and the receptor for AGE (RAGE) have been found to be pivotal biomarkers to predict the risk of inflammation and oxidative stress. Limited evidence focuses on the influence of occupational exposure to polycyclic aromatic hydrocarbon (PAH) and metal fumes on AGE and RAGE in shipyard welders. Our aim was to determine the relationships among PAH, metal exposure, and inflammatory biomarkers. From September 1 to December 31, 2017, 53 welding workers (exposed group) and 29 office workers (control group) were enrolled in the study. Comprehensive workups included demographic characteristics, laboratory data, AGE, RAGE, Interleukin-6 (IL-6), tumor necrosis factor-α, PAH, and urinary metal concentrations. RAGE levels were measured by flow cytometric analysis. Urinary 1-hydroxypyrene (1-OHP) was used as a biomarker of exposure to PAH. Several metals were elevated in the personal fine particulate matter (PM2.5) samples, including Mn, Fe, V, Co, Zn, and Cu. The exposed group had significantly higher exposure to PM2.5 (p = 0.015), RAGE (p = 0.020), IL-6 (p = 0.008) than the control group. After adjusting for pertinent variables, there was still a significant and positive association between Ni level and AGE (β = 0.101; 95% CI, 0.031-0.172). Significant relationship between Cr and Cd levels and RAGE was observed (β = 0.173; 95% CI, 0.017-0.329; β = 0.084; 95% CI, 0.011-0.157, respectively). Participants with elevated 1-OHP level had higher odds of high RAGE level in the model 1 (OR = 3.466, 95% CI, 1.053-11.412) and model 2 (OR = 3.454, 95% CI, 1.034-11.536). The RAGE expression of participants was significantly associated with IL-6 levels in the fully adjusted model (β = 0.294; 95% CI, 0.083-0.732). Our findings highlighted that urinary metal levels and PAH were associated with increased AGE and RAGE formation in shipyard workers. Elevated serum RAGE might induce the production of proinflammatory cytokines and trigger ensuing inflammatory cascades.
Collapse
Affiliation(s)
- Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chi Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Gu-Jiun Lin
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan
| | - Wei-Liang Chen
- Division of Environmental Health & Occupational Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, And School of Medicine, National Defense Medical Center, Taipei, Taiwan; Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, And School of Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taiwan.
| |
Collapse
|
28
|
Abstract
Introduction: Air pollution is linked to mortality and morbidity. Since humans spend nearly all their time indoors, improving indoor air quality (IAQ) is a compelling approach to mitigate air pollutant exposure. To assess interventions, relying on clinical outcomes may require prolonged follow-up, which hinders feasibility. Thus, identifying biomarkers that respond to changes in IAQ may be useful to assess the effectiveness of interventions. Methods: We conducted a narrative review by searching several databases to identify studies published over the last decade that measured the response of blood, urine, and/or salivary biomarkers to variations (natural and intervention-induced) of changes in indoor air pollutant exposure. Results: Numerous studies reported on associations between IAQ exposures and biomarkers with heterogeneity across study designs and methods. This review summarizes the responses of 113 biomarkers described in 30 articles. The biomarkers which most frequently responded to variations in indoor air pollutant exposures were high sensitivity C-reactive protein (hsCRP), von Willebrand Factor (vWF), 8-hydroxy-2′-deoxyguanosine (8-OHdG), and 1-hydroxypyrene (1-OHP). Conclusions: This review will guide the selection of biomarkers for translational studies evaluating the impact of indoor air pollutants on human health.
Collapse
|
29
|
Yan C, Zhang L, Lu B, Lyu D, Chen H, Song F, Wang X, Chen Z, Fu Q, Yao K. Trans, trans-2,4-decadienal (tt-DDE), a composition of cooking oil fumes, induces oxidative stress and endoplasmic reticulum stress in human corneal epithelial cells. Toxicol In Vitro 2020; 68:104933. [PMID: 32652171 DOI: 10.1016/j.tiv.2020.104933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022]
Abstract
Indoor pollution with cooking oil fumes (COF) as one of the main components is closely related to ocular surface disorders. However, as the most abundant aldehyde in COF, the toxicity of trans, trans-2,4-decadienal (tt-DDE) on human cornea has not been explored before. In the present study, we observed a time- and dose-dependent cytotoxicity induced by tt-DDE in human corneal epithelial (HCE) cells, as evidenced by decreased cell viability, altered cell morphology, and increased proportion of apoptotic cells. Exposure to tt-DDE also led to an increase in reactive oxygen species (ROS) production, MMP loss, and a decrease in intracellular ATP levels. In addition, after exposure to tt-DDE, the expression of endoplasmic reticulum (ER) stress-related proteins (Bip, pIRE1, XBP1, pPERK, peIF2α, ATF4, and CHOP) increased, indicating that ER stress was activated. Moreover, pretreatment of HCE cells with two ER stress inhibitors (200 nM ISRIB or 1 mM 4-PBA) effectively attenuated oxidative stress induced by tt-DDE. These results suggested that tt-DDE could cause damage to HCE cells by triggering oxidative stress and ER stress. Furthermore, regulation of ER stress can be considered as a potential protective method for tt-DDE-induced ocular surface disorders.
Collapse
Affiliation(s)
- Chenxi Yan
- Eye Center of the 2(nd) Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Lifang Zhang
- Eye Center of the 2(nd) Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Bing Lu
- Eye Center of the 2(nd) Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Danni Lyu
- Eye Center of the 2(nd) Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Hui Chen
- Eye Center of the 2(nd) Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Fan Song
- Eye Center of the 2(nd) Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Xiaofeng Wang
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Zhijian Chen
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Qiuli Fu
- Eye Center of the 2(nd) Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China.
| | - Ke Yao
- Eye Center of the 2(nd) Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
30
|
Ding X, Yang L, Guan Q, Zeng H, Song C, Wu J, Song L. Fermented black barley ameliorates lung injury induced by cooking oil fumes via antioxidant activity and regulation of the intestinal microbiome in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110473. [PMID: 32199220 DOI: 10.1016/j.ecoenv.2020.110473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 05/06/2023]
Abstract
To investigate the effect of fermented black barley on cooking oil fume (COF)-induced lung injury, male ICR mice were randomized into five groups: normal control (NC), fermented black barley treatment (NF), COF exposure (O), COF + fermented black barley treatment (OF) and COF + Lactobacillus treatment (OL). The exposure of mice to COF was performed for 5 min per day and 4 days per week for a total of 9 weeks, and the mice in the OF, NF and OL groups were administered fermented black barley or Lactobacillus continuously for 9 weeks (1 mL/100 g). Our results showed that the gamma-aminobutyric acid (GABA), total phenolic, and flavonoid contents significantly increased after fermentation (P < 0.01). In addition, fermented black barley significantly increased SOD activity in the lung tissue, decreased the wet pulmonary coefficient, inhibited the reduction of microbial diversity and richness, and upregulated genes involved in cilium assembly and the cilium axoneme. These findings support the notion that fermented black barley can ameliorate COF-induced lung injury in mice.
Collapse
Affiliation(s)
- Xinwen Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Guan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Zeng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenwei Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayi Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Food Safety and Engineering Technology Research Center, China.
| |
Collapse
|
31
|
Chen TY, Fang YH, Chen HL, Chang CH, Huang H, Chen YS, Liao KM, Wu HY, Chang GC, Tsai YH, Wang CL, Chen YM, Huang MS, Su WC, Yang PC, Chen CJ, Hsiao CF, Hsiung CA. Impact of cooking oil fume exposure and fume extractor use on lung cancer risk in non-smoking Han Chinese women. Sci Rep 2020; 10:6774. [PMID: 32317677 PMCID: PMC7174336 DOI: 10.1038/s41598-020-63656-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/31/2020] [Indexed: 12/31/2022] Open
Abstract
Smoking tobacco is the major risk factor for developing lung cancer. However, most Han Chinese women with lung cancer are nonsmokers. Chinese cooking methods usually generate various carcinogens in fumes that may inevitably be inhaled by those who cook the food, most of whom are female. We investigated the associations of cooking habits and exposure to cooking fumes with lung cancer among non-smoking Han Chinese women. This study was conducted on 1,302 lung cancer cases and 1,302 matched healthy controls in Taiwan during 2002-2010. Two indices, "cooking time-years" and "fume extractor use ratio," were developed. The former was used to explore the relationship between cumulative exposure to cooking oil fumes and lung cancer; the latter was used to assess the impact of fume extractor use for different ratio-of-use groups. Using logistic models, we found a dose-response association between cooking fume exposure and lung cancer (odds ratios of 1, 1.63, 1.67, 2.14, and 3.17 across increasing levels of cooking time-years). However, long-term use of a fume extractor in cooking can reduce the risk of lung cancer by about 50%. Furthermore, we provide evidence that cooking habits, involving cooking methods and oil use, are associated with risk of lung cancer.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yao-Hwei Fang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Ling Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chin-Hao Chang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin Huang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- Department of Nursing, Fu Jen Catholic University, Taipei, Taiwan
| | - Yi-Song Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuo-Meng Liao
- Division of Endocrinology & Metabolism, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Hsiao-Yu Wu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Gee-Chen Chang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Huang Tsai
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Chiayi, Taiwan
| | - Chih-Liang Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuh-Min Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University and Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chin-Fu Hsiao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.
| | - Chao A Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
32
|
Effects of Trans, Trans-2,4-decadienal on the Ions Currents of Cardiomyocytes: Possible Mechanisms of Arrhythmogenesis Induced by Cooking-oil Fumes. Sci Rep 2020; 10:5771. [PMID: 32238829 PMCID: PMC7113283 DOI: 10.1038/s41598-020-62733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/17/2020] [Indexed: 12/03/2022] Open
Abstract
Household air pollution has adverse effects on cardiovascular health. One of the major sources of household air pollutants is the combustion of cooking oils during cooking. Trans, trans-2,4-decadienal (tt-DDE) is a type of dienaldehyde that is present in a wide range of food and food products. It is a byproduct of the peroxidation of linoleic acid following the heating of oil during cooking. The mechanisms of the associations between household air pollution and cardiac arrhythmias are currently unclear. The purpose of this study was to determine effects of tt-DDE on the ion currents in H9c2 cells. The IK and ICa,L in H9c2 cells treated with and without tt-DDE were measured using the whole-cell patch clamp method. Expressions of Kv2.1 and Cav1.2 in H9c2 cells treated with and without tt-DDE were measured by western blot analysis. After the H9c2 cells had been exposed to tt-DDE, the IK and ICa,L were significantly decreased. The expression of Kv2.1, unlike that of Cav1.2, was also significantly decreased in these cells. These changes in IK and ICa,L that were induced by tt-DDE may help to explain the association between cardiac arrhythmogenesis and cooking-oil fumes.
Collapse
|
33
|
Cao L, Wang D, Wen Y, He H, Chen A, Hu D, Tan A, Shi T, Zhu K, Ma J, Zhou Y, Chen W. Effects of environmental and lifestyle exposures on urinary levels of polycyclic aromatic hydrocarbon metabolites: A cross-sectional study of urban adults in China. CHEMOSPHERE 2020; 240:124898. [PMID: 31557644 DOI: 10.1016/j.chemosphere.2019.124898] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 05/08/2023]
Abstract
Urinary polycyclic aromatic hydrocarbon (PAH) metabolites, biomarkers of internal PAH exposure, are commonly used to explore the effects of PAH on human health. However, the correlation between environmental PAH exposure and the species or levels of urinary PAH metabolites remains unclear. We collected detailed information on PAH exposure sources, including cigarette smoking, cooking, traffic and diet habits via structured questionnaires, and determined 12 urinary monohydroxylated PAH metabolites (OH-PAHs) among 4092 participants from the Wuhan-Zhuhai cohort. Linear mixed models and generalized linear models were conducted to explore the associations of urinary metabolite levels with single or multiple PAH exposure sources. We also calculated the standardized regression coefficients to further compare the contributions of different sources to urinary OH-PAH levels. Our results showed that increasing levels of urinary 1-, 2-hydroxynaphthalene (1-, 2- OHNa) and 2-hydroxyfluorene (2-OHFlu) were significantly correlated with tobacco smoking (all P < 0.01). The concentrations of 1-, 2- OHNa and 9-hydroxyfluorene (9-OHFlu) were positively correlated with dietary intake (all P < 0.05). Individuals who spent a long time in traffic showed elevated levels of 9-OHFlu and 1-hydroxyphenanthrene (1-OHPh) compared with individuals who spent a short time in traffic (all P < 0.05). Self-cooking was associated only with elevated 1-hydroxypyrene (1-OHP) levels. Moreover, good kitchen ventilation resulted in significantly decreased urinary low-molecular-weight OH-PAH levels. These findings suggested that cigarette smoking, self-cooking, high dietary PAH intake and a long time spent in traffic were associated with increased levels of specific urinary PAH metabolites, and good kitchen ventilation effectively reduced the exposure to low-molecular-weight PAHs in self-cooking participants.
Collapse
Affiliation(s)
- Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuhan Wen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Heng He
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ailian Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dan Hu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Aijun Tan
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, 519060, China
| | - Tingming Shi
- Hubei Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Kejing Zhu
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, 519060, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
34
|
Ho YA, Wang SY, Chiang WH, Nguyen VH, Chiu JL, Wu JCS. Moderate-temperature catalytic incineration of cooking oil fumes using hydrophobic honeycomb supported Pt/CNT catalyst. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120750. [PMID: 31238220 DOI: 10.1016/j.jhazmat.2019.120750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/11/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Catalytic incineration is one of the cost-effective technologies to deal with odor cooking oil fumes (COFs). Hydrophobic carbon nanotubes (CNT) supported Pt catalysts were prepared by incipient wetness impregnation method. The 2.0 wt.%Pt/CNT catalyst gave the highest activity with the lowest light-off temperature near 200 °C. The catalyst was further coated on the carbonized honeycomb which offered low-pressure drop and high surface area per unit volume. Toward feasibility application, hydrophobic honeycomb supported Pt/CNT catalyst achieved an excellent catalytic performance with the conversion of 88.0-91.3 % in gas hourly space velocity (GHSV) ranging from 5,700 to 17,200 h-1 at 300 °C. Importantly, the honeycomb supported Pt/CNT catalyst could remove COFs substantially under simulated cooking conditions. Only a slight amount of heptane remained after catalytic incineration. In addition, the honeycomb support used much less Pt/CNT catalyst by maintaining the same performance, compared with powder catalyst. Our research outcome provides an excellent opportunity to apply the honeycomb supported Pt/CNT catalyst for moderate-temperature catalytic incineration of odor exhaust from kitchen hood.
Collapse
Affiliation(s)
- Yu-An Ho
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Shan-Yu Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan.
| | - Van-Huy Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Jun-Long Chiu
- R&D, Cashido Corporation, Zhunan Science Park, Zhunan Township, Miaoli County, 35053, Taiwan
| | - Jeffrey C S Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
35
|
Juntarawijit C. Peak expiratory flow rate and chronic respiratory symptoms among restaurant workers: a cross-sectional study from Thailand. F1000Res 2019; 8:1429. [PMID: 31857894 PMCID: PMC6904982 DOI: 10.12688/f1000research.20059.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Cooking smoke is a major source of indoor air pollution affecting millions of people worldwide. To date, there has been no epidemiological study to show the variation in health effects resulting from work at different kinds of restaurants in Thailand. This study determines lung function and chronic respiratory symptoms of workers in four types of eateries commonly found in Thailand. Methods: This is a cross-sectional study of 321 people working in four common types of restaurants in Thailand: 'tamsang' restaurants (from the Thai word ร้านอาหารตามสั่ง, a restaurant that makes a variety of foods to order) (170 people), papaya salad restaurants (51 people), noodle restaurants (50 people), and barbecue stalls (50 people). The restaurant workers' demographic data as well as information on their working conditions was collected using a questionnaire administered in a face to face interview. Each worker's peak expiratory flow rate was measured using a portable peak flow meter. Results: This study found that working in a 'tamsang' restaurant is associated with a higher risk of poor lung function (OR = 2.59, 95% CI 1.33-5.06) and a higher prevalence of moderate dyspnea symptoms (OR = 3.79, 95% CI 1.63-8.79) compared to working in a papaya salad restaurant. The study also found that each of the following were associated with poor lung function and/or chronic respiratory symptoms: cooking with palm oil, having irritated teary eyes while cooking, cooking without a ventilation hood, long past experience working at restaurants, and working in a small cooking area (1-6 m 2). Conclusions: Work in different kinds of restaurants with variations in cooking methods and work conditions produces diverse effects on airway and lung function. Regulatory organizations should pay careful attention to protecting the health of restaurant workers, especially those working in 'tamsang' restaurants.
Collapse
Affiliation(s)
- Chudchawal Juntarawijit
- Department of Natural Resources and Environment, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
36
|
Moon KA, Rule AM, Magid HS, Ferguson JM, Susan J, Sun Z, Torrey C, Abubaker S, Levshin V, Çarkoglu A, Radwan GN, El-Rabbat M, Cohen JE, Strickland P, Breysse PN, Navas-Acien A. Biomarkers of Secondhand Smoke Exposure in Waterpipe Tobacco Venue Employees in Istanbul, Moscow, and Cairo. Nicotine Tob Res 2019; 20:482-491. [PMID: 28582531 DOI: 10.1093/ntr/ntx125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 05/30/2017] [Indexed: 11/12/2022]
Abstract
Background Most smoke-free legislation to reduce secondhand smoke (SHS) exposure exempts waterpipe (hookah) smoking venues. Few studies have examined SHS exposure in waterpipe venues and their employees. Methods We surveyed 276 employees of 46 waterpipe tobacco venues in Istanbul, Moscow, and Cairo. We interviewed venue managers and employees and collected biological samples from employees to measure exhaled carbon monoxide (CO), hair nicotine, saliva cotinine, urine cotinine, urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and urine 1-hydroxypyrene glucuronide (1-OHPG). We estimated adjusted geometric mean ratios (GMR) of each SHS biomarker by employee characteristics and indoor air SHS measures. Results There were 73 nonsmoking employees and 203 current smokers of cigarettes or waterpipe. In nonsmokers, the median (interquartile) range concentrations of SHS biomarkers were 1.1 (0.2, 40.9) µg/g creatinine urine cotinine, 5.5 (2, 15) ng/mL saliva cotinine, 0.95 (0.36, 5.02) ng/mg hair nicotine, 1.48 (0.98, 3.97) pg/mg creatinine urine NNAL, 0.54 (0.25, 0.97) pmol/mg creatinine urine 1-OHPG, and 1.67 (1.33, 2.33) ppm exhaled CO. An 8-hour increase in work hours was associated with higher urine cotinine (GMR: 1.68, 95% CI: 1.20, 2.37) and hair nicotine (GMR: 1.22, 95% CI: 1.05, 1.43). Lighting waterpipes was associated with higher saliva cotinine (GMR: 2.83, 95% CI: 1.05, 7.62). Conclusions Nonsmoking employees of waterpipe tobacco venues were exposed to high levels of SHS, including measurable levels of carcinogenic biomarkers (tobacco-specific nitrosamines and PAHs). Implications Smoke-free regulation should be extended to waterpipe venues to protect nonsmoking employees and patrons from the adverse health effects of SHS.
Collapse
Affiliation(s)
- Katherine A Moon
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Hoda S Magid
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Jacqueline M Ferguson
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Jolie Susan
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Zhuolu Sun
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Christine Torrey
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Salahaddin Abubaker
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | | | - Asli Çarkoglu
- Department of Psychology, Kadir Has University, Istanbul, Turkey
| | - Ghada Nasr Radwan
- Department of Public Health, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha El-Rabbat
- Department of Psychology, Kadir Has University, Istanbul, Turkey
- Department of Public Health, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Joanna E Cohen
- Institute for Global Tobacco Control, Department of Health, Behavior, and Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Paul Strickland
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Patrick N Breysse
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Ana Navas-Acien
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| |
Collapse
|
37
|
Cao G, Ding C, Ruan D, Chen Z, Wu H, Hong Y, Cai Z. Gas chromatography-mass spectrometry based profiling reveals six monoglycerides as markers of used cooking oil. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Okonkwo FO, Njan AA, Ejike CE, Nwodo UU, Onwurah IN. Health Implications of Occupational Exposure of Butchers to Emissions from Burning Tyres. Ann Glob Health 2018; 84:387-396. [PMID: 30835379 PMCID: PMC6748265 DOI: 10.29024/aogh.2321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Flames from burning scrap tyres are used in de-furring animals for human consumption in most parts of Nigeria. Emissions from tyres are known to contain a myriad of toxic mixtures especially particulate matter (PM), volatile organic compounds, hazardous air pollutants, and inspirable metals, some of which are known human carcinogens. This cross-sectional study investigated the deleterious health effects of these emissions in occupationally-exposed workers at the Dei-Dei Abattoir, Abuja, Nigeria. METHODS A total of 156 respondents were divided into two groups. Group 1 (124 butchers) and group 2 [32 administrative staff (AS)]. Data from digital spirometry were used to determine the association between chronic exposure to tyre emissions and lung function. Urinary 1-Hydroxypyrene concentration, phenolic compounds levels and heavy metal concentrations were determined. Also ambient PM and polycyclic aromatic hydrocarbons (PAHs) concentrations at 3 delineated points in the abattoir were measured. FINDINGS Spirometry results showed significant deterioration of lung function in the butchers. The concentration of 1-Hydroxypyrene (μg/molCret) in the post-shift urine samples of the butchers was significantly higher (P < 0.05) in butchers relative to the AS (0.52 ± 0.13 Vs 0.20 ± 0.07, respectively). Similarly the concentrations of zinc and nickel (mg/l) were significantly higher in the butchers compared to the AS (zinc: 0.91 ± 0.19 Vs 0.31 ± 0.28, respectively; nickel: 0.11 ± 0.06 Vs 0.06 ± 0.02, respectively). Anthracene, fluoranthene, pyrene, benzo-a- pyrene, and PM concentrations were significantly higher at the de-furring point when compared to the wash bay and the administrative building, especially between 8.00 and 8.30 am. CONCLUSION Occupational exposure to scrap tyre emissions resulted in significant adverse health effects. The existing laws banning the use of burning tyres in meat processing should be enforced while the use of personal protective equipment should be encouraged in abattoirs.
Collapse
Affiliation(s)
- Francis O. Okonkwo
- Environmental and Occupational Toxicology Unit, Department of Biochemistry, Plateau State University, Bokkos, Plateau State, NG
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, NG
| | - Anoka A. Njan
- Department of Pharmacology and Therapeutics, Faculty of Basic Health Sciences, University of Ilorin, Ilorin, Kwara State, NG
| | - Chukwunonso E.C.C. Ejike
- Department of Medical Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, NG
| | - Uchechukwu U. Nwodo
- Department of Biochemistry and Microbiology, Forth Hare University, Private Bag X1314, Alice 5700, ZA
| | | |
Collapse
|
39
|
Pan JL, Gao J, Hou JH, Hu DZ, Li L. Interaction Between Environmental Risk Factors and Catechol-O-Methyltransferase (COMT) and X-Ray Repair Cross-Complementing Protein 1 (XRCC1) Gene Polymorphisms in Risk of Lung Cancer Among Non-Smoking Chinese Women: A Case-Control Study. Med Sci Monit 2018; 24:5689-5697. [PMID: 30109864 PMCID: PMC6106617 DOI: 10.12659/msm.908240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Backgrpound Various studies have highlighted the link between polymorphisms in the XRCC1 gene (encoding X-ray repair cross-complementing group 1) with the incidence of decreased DNA repair capacity and an increased predisposition to cancer. Catechol-O-methyltransferase (COMT) plays a crucial role in estrogen-induced cancers. In the present study was analyzed the potential influence of XRCC1 and COMT gene polymorphisms as predisposing factors from a lung cancer perspective, in addition to conducting an investigation into their interaction with environmental risk factors in relation to lung cancer among non-smoking Chinese women. Material/Methods The XRCC1 gene T-77C, Arg194Trp, Arg280His, Arg399Gln, COMT gene 186C>T, and Val158Met mutations were evaluated in peripheral blood collected from 261 non-smoking female patients diagnosed with primary lung cancer and 265 female patients with benign lung disease. Result The results obtained from this study demonstrated that XRCC1–77TC + CC, XRCC1 399Gln/Gln, COMT 186CT + TT, COMT 158Val/Met genotypes, type of occupation, cooking-oil fumes, and soot exposures were all independent risk factors involved with the occurrence of lung cancer among non-smoking women. Moreover, interactions between environmental exposure factors as well as XRCC1 and COMT gene polymorphisms were determined to play significant contributory roles regarding susceptibility of non-smoking females to lung cancer. Conclusions Taken together, T-77C and Arg399Gln polymorphisms of the XRCC1 gene, as well as the 186C>T and Val158Met polymorphisms of the COMT gene, increased the risk of lung cancer in non-smoking women, with the factors of occupation type, cooking-oil fumes, and soot exposures representing key contributing factors.
Collapse
Affiliation(s)
- Jian-Liang Pan
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Jin Gao
- Department of Basic Medicine, Heze Medical College, Heze, Shandong, China (mainland)
| | - Jian-Hua Hou
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - De-Zhong Hu
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Lin Li
- Department of Cardiothoracic Surgery, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China (mainland)
| |
Collapse
|
40
|
Yang D, Yang X, Deng F, Guo X. Ambient Air Pollution and Biomarkers of Health Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1017:59-102. [PMID: 29177959 DOI: 10.1007/978-981-10-5657-4_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.
Collapse
Affiliation(s)
- Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Xuan Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| |
Collapse
|
41
|
Cao G, Ruan D, Chen Z, Hong Y, Cai Z. Recent developments and applications of mass spectrometry for the quality and safety assessment of cooking oil. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Peters KO, Williams DAL, Abubaker S, Curtin-Brosnan J, McCormack MC, Peng R, Breysse PN, Matsui EC, Hansel NN, Diette GB, Strickland PT. Predictors of polycyclic aromatic hydrocarbon exposure and internal dose in inner city Baltimore children. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:290-298. [PMID: 27966668 PMCID: PMC5516642 DOI: 10.1038/jes.2016.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 09/23/2016] [Indexed: 05/29/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), the by-products of incomplete combustion of organic materials, are commonly found on particulate matter (PM) and have been associated with the development of asthma and asthma exacerbation in urban populations. We examined time spent in the home and outdoors as predictors of exposures to airborne PAHs and measured urinary 1-hydroxypyrene-glucuronide (1-OHPG) as internal dose of PAHs in 118 children aged 5-12 years from Baltimore, MD. During weeklong periods (Saturday-Saturday) in each of four seasons: daily activities were assessed using questionnaires, indoor air nicotine and PM concentrations were monitored, and urine specimens were collected on Tuesday (day 3) and Saturday (day 7) for measurement of 1-OHPG. Time spent in non-smoking homes was associated with significantly decreased 1-OHPG concentration in urine (β=-0.045, 95% CI (-0.076, -0.013)), and secondhand smoke (SHS) exposures modified these associations, with higher urinary 1-OHPG concentrations in children spending time in smoking homes than non-smoking homes (P-value for interaction=0.012). Time spent outdoors was associated with increased urinary 1-OHPG concentrations (β=0.097, 95% CI (0.037, 0.157)) in boys only. Our results suggest that SHS and ambient (outdoor) air pollution contribute to internal dose of PAHs in inner city children.
Collapse
Affiliation(s)
- Kamau O. Peters
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - D’ Ann L. Williams
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Salahadin Abubaker
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jean Curtin-Brosnan
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Meredith C. McCormack
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roger Peng
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Patrick N. Breysse
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elizabeth C. Matsui
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nadia N. Hansel
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gregory B. Diette
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Paul T. Strickland
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Juntarawijit C, Juntarawijit Y. Cooking smoke and respiratory symptoms of restaurant workers in Thailand. BMC Pulm Med 2017; 17:41. [PMID: 28212633 PMCID: PMC5316171 DOI: 10.1186/s12890-017-0385-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/15/2017] [Indexed: 11/21/2022] Open
Abstract
Background Restaurant workers are at risk from exposure to toxic compounds from burning of fuel and fumes from cooking. However, the literature is almost silent on the issue. What discussion that can be found in the literature focuses on the potential effects from biomass smoke exposure in the home kitchen, and does not address the problem as occurring in the workplace, particularly in restaurants. Methods This was a cross-sectional survey of 224 worker from 142 food restaurants in the Tha Pho sub-district of Phitsanulok, a province in Thailand. The standard questionnaire from the British Medical Research Council was used to collect data on chronic respiratory symptoms, including cough, phlegm, dyspnea, severe dyspnea, stuffy nose in the participating workers. Data on their health symptoms experienced in the past 30 days was also asked. A constructed questionnaire was used to collect exposure data, including type of job, time in the kitchen, the frequency of frying food, tears while cooking (TWC), the type of restaurant, fuel used for cooking, the size and location of the kitchen, and the exhaust system and ventilation. The prevalence of the symptoms was compared with those obtained from 395 controls, who were neighbors of the participants who do not work in a restaurant. Results In comparison to the control group, the restaurant workers had twice or more the prevalence on most of the chronic health symptoms. Men had a higher risk for “dyspnea”, “stuffy nose” and “wheeze” while women had higher risk of “cough”. A Rate Ratio (RR) of susceptibility was established, which ranged from 1.4 up to 9.9. The minimum RR was for women with “severe dyspnea” (RR of 1.4, 95%CI 0.8, 2.5) while the men showed the maximum RR of 9.9 (95%CI 4.5–22.0) for “wheeze”. Possible risk factors identified were job description, job period, size of restaurant, kitchen location, type of cooking oil, hours of stay in the kitchen area, number of fry dishes prepared, frequency of occurrence of TWC, and additional cooking at home. Working for 6–10 year increased the risk of “cough” with an Odd Ratio (OR) of 3.19 (P < 0.01) while working for more than 10 years increased the risk of “cough” (OR = 3.27, P < 0.01), “phlegm” (OR = 3.87, P = 0.01) and “wheeze” (OR = 2.38, P = 0.05). Working as a chef had a higher risk of “cough” by 2.33 (P = 0.01) as comparing to other jobs. Workers in a relatively large restaurant using 4 or more stoves had increased risk of “wheeze” with OR of 3.81 (P < 0.01) and “stuffy nose” with OR of 3.56 (P < 0.01). Using vegetable oil increased the risk of “stuffy nose” by 2.94 (P < 0.01). Every 10 h of stay in the kitchen area was associated with a minimal increase in the risk of “cough”, “wheeze” and “symptoms in the past 30 days” by 1.15 (P = 0.02), 1.16 (P = 0.01) and 1.16 (P = 0.02), respectively. Conclusions Restaurant workers are at risk of respiratory symptoms caused by exposure to toxic compounds from cooking fumes. Job description, job period, size of restaurant, kitchen location, type of cooking oil, hours of stay in the kitchen area, number of fry dishes prepared, frequency of occurrence of TWC, and additional cooking at home were the predictive factors. Workplace Health and Safety protection of restaurant worker is urgently needed and the issue should receive more public attention.
Collapse
Affiliation(s)
- Chudchawal Juntarawijit
- Department of Natural Resource and Environment, Faculty of Agriculture, Natural Resource and Environment, Naresuan University, 99 Moo 9, Thaphao sub-district, Amphur Muang, Phitsanulok, 65000, Thailand.
| | | |
Collapse
|
44
|
Franken C, Koppen G, Lambrechts N, Govarts E, Bruckers L, Den Hond E, Loots I, Nelen V, Sioen I, Nawrot TS, Baeyens W, Van Larebeke N, Boonen F, Ooms D, Wevers M, Jacobs G, Covaci A, Schettgen T, Schoeters G. Environmental exposure to human carcinogens in teenagers and the association with DNA damage. ENVIRONMENTAL RESEARCH 2017; 152:165-174. [PMID: 27771571 DOI: 10.1016/j.envres.2016.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND We investigated whether human environmental exposure to chemicals that are labeled as (potential) carcinogens leads to increased (oxidative) damage to DNA in adolescents. MATERIAL AND METHODS Six hundred 14-15-year-old youngsters were recruited all over Flanders (Belgium) and in two areas with important industrial activities. DNA damage was assessed by alkaline and formamidopyrimidine DNA glycosylase (Fpg) modified comet assays in peripheral blood cells and analysis of urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Personal exposure to potentially carcinogenic compounds was measured in urine, namely: chromium, cadmium, nickel, 1-hydroxypyrene as a proxy for exposure to other carcinogenic polycyclic aromatic hydrocarbons (PAHs), t,t-muconic acid as a metabolite of benzene, 2,5-dichlorophenol (2,5-DCP), organophosphate pesticide metabolites, and di(2-ethylhexyl) phthalate (DEHP) metabolites. In blood, arsenic, polychlorinated biphenyl (PCB) congeners 118 and 156, hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT) and perfluorooctanoic acid (PFOA) were analyzed. Levels of methylmercury (MeHg) were measured in hair. Multiple linear regression models were used to establish exposure-response relationships. RESULTS Biomarkers of exposure to PAHs and urinary chromium were associated with higher levels of both 8-OHdG in urine and DNA damage detected by the alkaline comet assay. Concentrations of 8-OHdG in urine increased in relation with increasing concentrations of urinary t,t-muconic acid, cadmium, nickel, 2,5-DCP, and DEHP metabolites. Increased concentrations of PFOA in blood were associated with higher levels of DNA damage measured by the alkaline comet assay, whereas DDT was associated in the same direction with the Fpg-modified comet assay. Inverse associations were observed between blood arsenic, hair MeHg, PCB 156 and HCB, and urinary 8-OHdG. The latter exposure biomarkers were also associated with higher fish intake. Urinary nickel and t,t-muconic acid were inversely associated with the alkaline comet assay. CONCLUSION This cross-sectional study found associations between current environmental exposure to (potential) human carcinogens in 14-15-year-old Flemish adolescents and short-term (oxidative) damage to DNA. Prospective follow-up will be required to investigate whether long-term effects may occur due to complex environmental exposures.
Collapse
Affiliation(s)
- Carmen Franken
- Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Gudrun Koppen
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Eva Govarts
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Elly Den Hond
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Ilse Loots
- Political and Social Sciences, University of Antwerp, Antwerp, Belgium
| | - Vera Nelen
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - Isabelle Sioen
- Department of Public Health, Ghent University, Ghent, Belgium; Department of Food Safety and Food Quality, Ghent University, Ghent, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nicolas Van Larebeke
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels, Belgium; Department of Radiotherapy and Experimental Cancerology, Ghent University, Ghent, Belgium
| | - Francis Boonen
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Daniëlla Ooms
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Mai Wevers
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Griet Jacobs
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Thomas Schettgen
- Department of Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; University of Southern Denmark, Institute of Public Health, Department of Environmental Medicine, Odense, Denmark
| |
Collapse
|
45
|
Chen YY, Sung FC, Chen ML, Mao IF, Lu CY. Indoor Air Quality in the Metro System in North Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13121200. [PMID: 27918460 PMCID: PMC5201341 DOI: 10.3390/ijerph13121200] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O3), airborne particulate matter (PM10 and PM2.5), bacteria and fungi. Results showed that the CO2, CO and HCHO levels met the stipulated standards as regulated by Taiwan’s Indoor Air Quality Management Act (TIAQMA). However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan’s Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations.
Collapse
Affiliation(s)
- Ying-Yi Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei 11221, Taiwan.
| | - Fung-Chang Sung
- Management Office for Health Data, China Medical University Hospital, Taichung 40402, Taiwan.
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung 40402, Taiwan.
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei 11221, Taiwan.
| | - I-Fang Mao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Chung-Yen Lu
- Department of Sport and Health Management, Da-Yeh University, No.168, University Rd., Dacun, Changhua 51591, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
46
|
He B, Chen F, Yan L, Huang J, Liu F, Qiu Y, Lin L, Zhang Z, Cai L. Independent and joint exposure to passive smoking and cooking oil fumes on oral cancer in Chinese women: a hospital-based case-control study. Acta Otolaryngol 2016; 136:1074-8. [PMID: 27224835 DOI: 10.1080/00016489.2016.1185539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONCLUSIONS Passive smoking and COF exposure are independent risk factors for oral cancer in Chinese women, with the multiplicative interactions from combined exposures. Avoiding exposure to environmental tobacco smoke and COF may contribute to the prevention of oral cancer in Chinese women. OBJECTIVE To evaluate the independent and joint effects of passive smoking and cooking oil fumes (COF) on oral cancer in Chinese women. METHODS A case-control study was performed including 238 female patients with pathologically confirmed oral cancer and 470 controls as age-matched controls. Face-to-face interviews were conducted based on a structured questionnaire. The effects of passive smoking and COF exposure were analyzed using non-conditional logistic regression models. RESULTS Passive smoking significantly increased the risk of oral cancer in Chinese women: adjusted ORs were 2.12 (95% CI = 1.11-4.07) for those only exposed before age 18, 1.52 (95% CI = 1.01-2.31) for those only exposed after age 18, and 2.38 (95% CI = 1.47-3.85) for those both exposed before and after age 18. In addition, COF exposure was significantly associated with a risk of oral cancer (adjusted ORs were 1.69 (95% CI = 1.03-2.78) for light exposure and 2.06 (95% CI = 1.21-3.50) for heavy exposure). Furthermore, there was a significantly multiplicative interaction between passive smoking and COF for oral cancer.
Collapse
Affiliation(s)
- Baochang He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian, PR China
| | - Fa Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian, PR China
| | - Lingjun Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian, PR China
| | - Jiangfeng Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian, PR China
| | - Fangping Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian, PR China
| | - Yu Qiu
- Department of Stomatology, First Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Lisong Lin
- Department of Stomatology, First Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Zuofeng Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Lin Cai
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian, PR China
| |
Collapse
|
47
|
Vitamin D-Related Gene Polymorphisms, Plasma 25-Hydroxy-Vitamin D, Cigarette Smoke and Non-Small Cell Lung Cancer (NSCLC) Risk. Int J Mol Sci 2016; 17:ijms17101597. [PMID: 27669215 PMCID: PMC5085630 DOI: 10.3390/ijms17101597] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/22/2016] [Accepted: 09/13/2016] [Indexed: 01/08/2023] Open
Abstract
Epidemiological studies regarding the relationship between vitamin D, genetic polymorphisms in the vitamin D metabolism, cigarette smoke and non-small cell lung cancer (NSCLC) risk have not been investigated comprehensively. To search for additional evidence, the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique and radioimmunoassay method were utilized to evaluate 5 single-nucleotide polymorphisms (SNPs) in vitamin D receptor (VDR), 6 SNPs in 24-hydroxylase (CYP24A1), 2 SNPs in 1α-hydroxylase (CYP27B1) and 2 SNPs in vitamin D-binding protein (group-specific component, GC) and plasma vitamin D levels in 426 NSCLC cases and 445 controls from China. Exposure to cigarette smoke was ascertained through questionnaire information. Multivariable linear regressions and mixed effects models were used in statistical analysis. The results showed that Reference SNP rs6068816 in CYP24A1, rs1544410 and rs731236 in VDR and rs7041 in GC were statistically significant in relation to reduction in NSCLC risk (p < 0.001-0.05). No significant connection was seen between NSCLC risk and overall plasma 25-hydroxyvitamin D [25(OH)D] concentrations, regardless of smoking status. However, the mutation genotype of CYP24A1 rs6068816 and VDR rs1544410 were also significantly associated with increased 25(OH)D levels only in both the smoker and non-smoker cases (p < 0.01-0.05). Meanwhile, smokers and non-smokers with mutated homozygous rs2181874 in CYP24A1 had significantly increased NSCLC risk (odds ratio (OR) = 2.14, 95% confidence interval (CI) 1.47-3.43; p = 0.031; OR = 3.57, 95% CI 2.66-4.74; p = 0.019, respectively). Smokers with mutated homozygous rs10735810 in VDR had significantly increased NSCLC risk (OR = 1.93, 95% CI 1.41-2.76; p = 0.015). However, smokers with mutated homozygous rs6068816 in CYP24A1 had significantly decreased NSCLC risk (OR = 0.43, 95% CI 0.27-1.02; p = 0.006); and smokers and non-smokers with mutated homozygous rs1544410 in VDR had significantly decreased NSCLC risk (OR = 0.51, 95% CI 0.34-1.17; p = 0.002; OR = 0.26, 95% CI 0.20-0.69; p = 0.001, respectively). There are significant joint effects between smoking and CYP24A1 rs2181874, CYP24A1 rs6068816, VDR rs10735810, and VDR rs1544410 (p < 0.01-0.05). Smokers with mutated homozygous rs10735810 in VDR had significantly increased NSCLC risk (OR = 1.93, 95% CI 1.41-2.76; p = 0.015). In summary, the results suggested that the lower the distribution of vitamin D concentration, the more the genetic variations in CYP24A1, VDR and GC genes may be associated with NSCLC risk. In addition, there are significant joint associations of cigarette smoking and vitamin D deficiency on NSCLC risk.
Collapse
|
48
|
Xue Y, Jiang Y, Jin S, Li Y. Association between cooking oil fume exposure and lung cancer among Chinese nonsmoking women: a meta-analysis. Onco Targets Ther 2016; 9:2987-92. [PMID: 27284248 PMCID: PMC4881732 DOI: 10.2147/ott.s100949] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lung cancer has been the main cause of cancer death around the world. Cigarette smoking has been identified as a risk factor for lung cancer in males. However, the etiological factors in nonsmoking women remain elusive. A meta-analysis was conducted to evaluate the relationship between cooking oil fume exposure and lung cancer among Chinese nonsmoking women. Thirteen articles containing three population-based case-control and ten hospital-based case-control studies were included in this meta-analysis. These studies with a total of 3,596 lung cancer women and 6,082 healthy controls were analyzed by RevMan 5.3. Fixed effects model or random effects model was used to obtain pooled estimates of risk ratio. The risk ratios with a 95% CI were 1.74 (95% CI =1.57-1.94) and 2.11 (95% CI =1.54-2.89), respectively. Cooking oil fume exposure as well as not using a kitchen ventilator when cooking was significantly associated with lung cancer among nonsmoking women (Z=10.07, P<0.00001; Z=4.65, P<0.00001). Cooking oil fume exposure, especially lacking a fume extractor, may increase the risk of lung cancer among Chinese nonsmoking women.
Collapse
Affiliation(s)
- Yingbo Xue
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Ying Jiang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Shan Jin
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| |
Collapse
|
49
|
Comparative study of oxidative stress biomarkers in urine of cooks exposed to three types of cooking-related particles. Toxicol Lett 2016; 255:36-42. [PMID: 27208482 DOI: 10.1016/j.toxlet.2016.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To evaluate how exposure to deep-frying oils, repeated frying oil (RFO) and restaurant waste oil (RWO) affects emission of polycyclic aromatic hydrocarbons (PAHs) and oxidative stress in male restaurant workers. METHODS The study participants included 236 male restaurant workers in 12 restaurants in Shenzhen. Airborne particulate PAHs were measured over 12h on each of two consecutive work days. Urinary 1-hydroxypyrene (1-OHP) measurements were used to indicate cooking oil fumes (COF) exposure, and urinary malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were adopted as oxidative stress markers. RESULTS The production and emission rates of ultrafine particles (UFPs) and PM2.5 were higher in the exposed groups than in the control group. The concentrations of summed PAHs were in the order of RFO-frying group>RWO-frying group>deep-frying group>unexposed control group. Urinary 1-OHP was found to be a significant predictor of elevated urinary MDA and 8-OHdG concentrations (all, P<0.05). UFPs were a significant predictor of elevated urinary 8-OHdG for restaurant workers (P<0.05). The RFO- and RWO-frying groups had higher mean urinary concentrations of 1-OHP, MDA and 8-OHdG than the control group (P<0.05). RFO exposure was found to be a significant risk factor for elevated urinary 8-OHdG and RWO exposure was found to be a significant risk factor for elevated urinary MDA (both, P<0.001). CONCLUSIONS Concentrations of urinary 1-OHP, MDA and 8-OHdG reflect occupational exposure to PAHs from COFs and oxidative stress in restaurants workers. Exposure to RFO may cause increased oxidative DNA damage, and exposure to RWO might cause increased lipid peroxidation.
Collapse
|
50
|
Krishnan VG, Ebert PJ, Ting JC, Lim E, Wong SS, Teo ASM, Yue YG, Chua HH, Ma X, Loh GSL, Lin Y, Tan JHJ, Yu K, Zhang S, Reinhard C, Tan DSW, Peters BA, Lincoln SE, Ballinger DG, Laramie JM, Nilsen GB, Barber TD, Tan P, Hillmer AM, Ng PC. Whole-genome sequencing of asian lung cancers: second-hand smoke unlikely to be responsible for higher incidence of lung cancer among Asian never-smokers. Cancer Res 2014; 74:6071-81. [PMID: 25189529 DOI: 10.1158/0008-5472.can-13-3195] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Asian nonsmoking populations have a higher incidence of lung cancer compared with their European counterparts. There is a long-standing hypothesis that the increase of lung cancer in Asian never-smokers is due to environmental factors such as second-hand smoke. We analyzed whole-genome sequencing of 30 Asian lung cancers. Unsupervised clustering of mutational signatures separated the patients into two categories of either all the never-smokers or all the smokers or ex-smokers. In addition, nearly one third of the ex-smokers and smokers classified with the never-smoker-like cluster. The somatic variant profiles of Asian lung cancers were similar to that of European origin with G.C>T.A being predominant in smokers. We found EGFR and TP53 to be the most frequently mutated genes with mutations in 50% and 27% of individuals, respectively. Among the 16 never-smokers, 69% had an EGFR mutation compared with 29% of 14 smokers/ex-smokers. Asian never-smokers had lung cancer signatures distinct from the smoker signature and their mutation profiles were similar to European never-smokers. The profiles of Asian and European smokers are also similar. Taken together, these results suggested that the same mutational mechanisms underlie the etiology for both ethnic groups. Thus, the high incidence of lung cancer in Asian never-smokers seems unlikely to be due to second-hand smoke or other carcinogens that cause oxidative DNA damage, implying that routine EGFR testing is warranted in the Asian population regardless of smoking status.
Collapse
Affiliation(s)
- Vidhya G Krishnan
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | | | | | - Elaine Lim
- Medical Oncology, Mount Elizabeth Medical Centre, Mount Elizabeth, Singapore. Medical Oncology, Tan Tock Seng Hospital, Singapore, Singapore; Medical Oncology, National University Hospital, Singapore, Singapore
| | | | - Audrey S M Teo
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Yong G Yue
- Lilly Corporate Center, Indianapolis, Indiana
| | - Hui-Hoon Chua
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Xiwen Ma
- Lilly Corporate Center, Indianapolis, Indiana
| | - Gary S L Loh
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Yuhao Lin
- Lilly Corporate Center, Indianapolis, Indiana
| | - Joanna H J Tan
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore.
| | - Kun Yu
- Lilly Corporate Center, Indianapolis, Indiana
| | - Shenli Zhang
- Genomic Oncology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Daniel S W Tan
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | | | | | | | | | | | - Patrick Tan
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore. Genomic Oncology, Duke-NUS Graduate Medical School, Singapore, Singapore. Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Axel M Hillmer
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore.
| | - Pauline C Ng
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore.
| |
Collapse
|