1
|
Ünal Demir F, Turan T, Akalın H, Özsoy S, Dündar M. Oxytocin receptor gene single nucleotide polymorphisms in patients with bipolar disorder. Int J Psychiatry Clin Pract 2025; 29:18-24. [PMID: 40047313 DOI: 10.1080/13651501.2025.2472693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/23/2025] [Accepted: 02/21/2025] [Indexed: 04/17/2025]
Abstract
INTRODUCTION Many studies have reported that psychiatric disorders may be associated with oxytocin receptor (OXTR) gene polymorphisms. The aim of this study was to investigate whether there is a relationship between OXTR gene polymorphisms and bipolar disorder (BPD). METHODS The study included 100 patients diagnosed with BPD type 1 (BPD I) and 96 healthy controls. Single nucleotide polymorphisms (SNPs) of the OXTR gene, including rs53576, rs2254298 and rs2268494, were examined via polymerase chain reaction in blood samples taken from the study participants. Based on the BPD determinants, the patients were divided into 4 subgroups, as those with psychotic features, seasonal patterns, rapid cycling and peripartum onset. RESULTS The frequency of the rs2268494 A allele was lower in the patients than in the healthy controls (p = .048), that frequency of psychotic mania was higher in patients with the rs53576 GG genotype compared to the A allele carriers (p = .003), and that of the seasonal pattern was higher in those carrying the rs2268494 A allele compared to those carrying the rs2268494 TT genotype (p < .001). CONCLUSION OXTR gene polymorphisms may be associated with several clinical determinants of BPD. Multicentre studies involving more subjects are required to verify these findings.
Collapse
Affiliation(s)
- Figen Ünal Demir
- Department of Psychiatry, School of Medicine, Tokat Gaziosmanpaşa University, Tokat, Türkiye
| | - Tayfun Turan
- Department of Psychiatry, School of Medicine, Erciyes University, Kayseri, Türkiye
| | - Hilal Akalın
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Türkiye
| | - Saliha Özsoy
- Department of Psychiatry, School of Medicine, Erciyes University, Kayseri, Türkiye
| | - Munis Dündar
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
2
|
Liu X, Cherepanov S, Abouzari M, Zuko A, Yang S, Sayadi J, Jia X, Terao C, Sasaki T, Yokoyama S. R150S mutation in the human oxytocin receptor: Gain-of-function effects and implication in autism spectrum disorder. Peptides 2024; 182:171301. [PMID: 39395443 DOI: 10.1016/j.peptides.2024.171301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
This study investigates the rs547238576 (R150S) missense variant in the oxytocin receptor (OXTR) gene, previously observed through screening of rare variants in Japanese individuals with autism spectrum disorders (ASD). Contrary to the anticipated loss-of-function, R150S exhibits gain-of-function effects, enhancing oxytocin (OXT) sensitivity, ligand-binding affinity, and OXT-induced Ca2+ mobilization in vitro. This suggests R150S may alter OXT signaling, potentially contributing to the excitatory/inhibitory imbalance seen in ASD and other psychiatric disorders. Our findings underscore the significance of genetic variations in OXTR on functional activity and highlight the necessity for population-specific genetic study and in vitro analysis to elucidate genetic susceptibilities to neuropsychiatric conditions.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Stanislav Cherepanov
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, Japan; Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan; Institute for Functional Genomics, French National Centre for Scientific Research, Montpellier, Occitanie, France
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, USA
| | - Jamasb Sayadi
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Xiaoyuan Jia
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan; The Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, Japan; Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan.
| |
Collapse
|
3
|
Goto H, Yamamoto Y, Tsujiguchi H, Sato T, Yamamoto R, Takeshita Y, Nakano Y, Kannon T, Hosomichi K, Suzuki K, Nakamura M, Kambayashi Y, Zhao J, Asai A, Katano K, Ogawa A, Fukushima S, Shibata A, Suzuki F, Tsuboi H, Hara A, Kometani M, Karashima S, Yoneda T, Tajima A, Nakamura H, Takamura T. Oxytocin Receptor Polymorphism Is Associated With Sleep Apnea Symptoms. J Endocr Soc 2024; 9:bvae198. [PMID: 39606181 PMCID: PMC11590662 DOI: 10.1210/jendso/bvae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 11/29/2024] Open
Abstract
Context Oxytocin supplementation improves obstructive sleep apnea (OSA), and animal studies suggest involvement of oxytocin in respiratory control. However, the relationship between endogenous oxytocin signaling and human sleep status remains undetermined. Objective In this study, we approached the contribution of the intrinsic oxytocin-oxytocin receptor (OXTR) system to OSA by genetic association analysis. Methods We analyzed the relationship between OXTR gene polymorphisms and sleep parameters using questionnaire data and sleep measurements in 305 Japanese participants. OSA symptoms were assessed in 225 of these individuals. Results The OXTR rs2254298 A allele was more frequent in those with OSA symptoms than in those without (P = .0087). Although total scores on the Pittsburgh Sleep Quality Index questionnaire did not differ between the genotypes, breathlessness and snoring symptoms associated with OSA were significantly more frequent in individuals with rs2254298 A genotype (P = .00045 and P = .0089 for recessive models, respectively) than the G genotype. A multivariable analysis confirmed these genotype-phenotype associations even after adjusting for age, sex, and body mass index in a sensitivity analysis. Furthermore, objective sleep efficiency measured by actigraph was not significantly different between genotypes; however, subjective sleep efficiency was significantly lower in the rs2254298 A genotype (P = .013) compared with the G genotype. The frequency of the A allele is higher in East Asians, which may contribute to their lean OSA phenotype. Conclusion The OXTR gene may contribute to OSA symptoms via the respiratory control system, although it could be in linkage disequilibrium with a true causal gene.
Collapse
Affiliation(s)
- Hisanori Goto
- Department of Endocrinology and Metabolism, Kanazawa
University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
- Department of Biochemistry and Molecular Vascular Biology,
Kanazawa University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology,
Kanazawa University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa
University, Kanazawa, Ishikawa
920-8640, Japan
| | - Takehiro Sato
- Department of Human Biology and Anatomy, Graduate School of
Medicine, University of the Ryukyus, Nishihara,
Okinawa 903-0215, Japan
| | - Reina Yamamoto
- Department of Endocrinology and Metabolism, Kanazawa
University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa
University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
| | - Yujiro Nakano
- Department of Endocrinology and Metabolism, Kanazawa
University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
| | - Takayuki Kannon
- Department of Biomedical Data Science, School of Medicine,
Fujita Health University, Toyoake, Aichi
470-1192, Japan
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science,
Tokyo University of Pharmacy and Life Sciences,
Hachioji, Tokyo 192-0392, Japan
| | - Keita Suzuki
- Advanced Preventive Medical Sciences Research Center, Kanazawa
University, Kanazawa, Ishikawa
920-8640, Japan
| | - Masaharu Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
| | - Yasuhiro Kambayashi
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
- Department of Public Health, Faculty of Veterinary Medicine,
Okayama University of Science, Imabari, Ehime
794-8555, Japan
| | - Jiaye Zhao
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
| | - Atsushi Asai
- Advanced Preventive Medical Sciences Research Center, Kanazawa
University, Kanazawa, Ishikawa
920-8640, Japan
| | - Koji Katano
- Advanced Preventive Medical Sciences Research Center, Kanazawa
University, Kanazawa, Ishikawa
920-8640, Japan
| | - Aya Ogawa
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
| | - Shinobu Fukushima
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
| | - Aki Shibata
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
| | - Fumihiko Suzuki
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
- Department of Geriatric Dentistry, Ohu University School of
Dentistry, Koriyama, Fukushima
963-8611, Japan
| | - Hirohito Tsuboi
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
- Graduate School of Human Sciences, The University of Shiga
Prefecture, Hikone, Shiga 522-8533,
Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa
University, Kanazawa, Ishikawa
920-8640, Japan
| | - Mitsuhiro Kometani
- Department of Health Promotion and Medicine of the Future,
Kanazawa University Graduate School of Medical Sciences,
Kanazawa 920-8640, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa
University, Kanazawa 920-1192,
Japan
| | - Takashi Yoneda
- Department of Health Promotion and Medicine of the Future,
Kanazawa University Graduate School of Medical Sciences,
Kanazawa 920-8640, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of
Advanced Preventive Medical Sciences, Kanazawa University,
Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa
University, Kanazawa, Ishikawa
920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa
University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
4
|
Skiba SA, Hansen A, McCall R, Byers A, Waldron S, Epping AJ, Taglialatela JP, Hudson ML. Linked OXTR Variants Are Associated with Social Behavior Differences in Bonobos ( Pan paniscus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573122. [PMID: 38187727 PMCID: PMC10769379 DOI: 10.1101/2023.12.22.573122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) in forkhead box protein P2 (FOXP2) and oxytocin receptor (OXTR) genes have been associated with linguistic and social development in humans, as well as to symptom severity in autism spectrum disorder (ASD). Studying biobehavioral mechanisms in the species most closely related to humans can provide insights into the origins of human communication, and the impact of genetic variation on complex behavioral phenotypes. Here, we aimed to determine if bonobos (Pan paniscus) exhibit individual variation in FOXP2 and OXTR loci that have been associated with human social development and behavior. Although the ASD-related variants were reported in 13-41% of the human population, we did not find variation at these loci in our sample of 13 bonobos. However, we did identify a novel variant in bonobo FOXP2, as well as four novel variants in bonobo OXTR that were 17-184 base pairs from the human ASD variants. We also found the same linked, homozygous allelic combination across the 4 novel OXTR SNPs (homozygous TGTC) in 6 of the 13 bonobos, indicating that this combination may be under positive selection. When comparing the combined OXTR genotypes, we found significant group differences in social behavior; bonobos with zero copies of the TGTC combination were less social than bonobos with one copy of the TGTC combination. Taken together, our findings suggest that these OXTR variants may influence individual-level social behavior in bonobos and support the notion that linked genetic variants are promising risk factors for social communication deficits in humans.
Collapse
Affiliation(s)
- Sara A. Skiba
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
| | - Alek Hansen
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Ryan McCall
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Azeeza Byers
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
- Kennesaw State University, Department of Ecology, Evolution, and Organismal Biology, Kennesaw, GA
| | - Sarah Waldron
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Amanda J. Epping
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
| | - Jared P. Taglialatela
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
- Kennesaw State University, Department of Ecology, Evolution, and Organismal Biology, Kennesaw, GA
| | - Martin L. Hudson
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| |
Collapse
|
5
|
Delikishkina E, Cohen-Zimerman S, Kachian ZR, Krueger F, Gordon B, Grafman J. Understanding altruistic behavior: The joint role of prefrontal damage and OXTR genotype. Neuropsychologia 2023; 190:108686. [PMID: 37741549 DOI: 10.1016/j.neuropsychologia.2023.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Altruism is a type of prosocial behavior that is carried out in the absence of personal benefit or even at an expense to self. Trait altruism varies greatly across individuals, and the reasons for this variability are still not fully understood. Growing evidence suggests that altruism may be partly determined by the oxytocin receptor (OXTR) gene, which regulates the emotions underlying altruistic attitudes, such as empathy and trust. Neuroimaging and lesion studies have also implied several higher-order brain regions, including the prefrontal cortex, in altruistic behaviors. Yet the existing reports are contradictory and suggest that the top-down control exercised by the prefrontal cortex may promote both altruistic and self-interested behaviors and, thus, could obscure one's natural proclivity towards altruism encoded by OXTR. Here, we hypothesized that extensive prefrontal damage would result in an increased influence of the OXTR genotype on one's altruistic attitudes and actions. To test this hypothesis, we recruited 115 male combat veterans with penetrating traumatic brain injury to the prefrontal cortex and other brain regions, as well as 35 demographically matched control subjects without brain injury. Participants completed a self-report altruism questionnaire and were genotyped for four OXTR single nucleotide polymorphisms implicated in prosocial behavior, including rs53576, rs1042778, rs2254298 and rs7632287. Consistent with the previous studies, we found that individuals homozygotic for the G allele of rs53576 and rs7632287 were significantly more altruistic than carriers of at least one "vulnerable" A allele. Remarkably, in patients with prefrontal cortex damage, greater lesion extent was associated with significantly lower altruism scores in carriers of the A allele of rs7632287, but not in G-homozygotes, suggesting that significant disruption of the prefrontal cortex increased the influence of genetic polymorphisms on prosocial behavior. This study presents the first account of an interaction effect between the OXTR genotype and the location and extent of brain damage.
Collapse
Affiliation(s)
- Ekaterina Delikishkina
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Shira Cohen-Zimerman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary R Kachian
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA; Department of Psychology, University of Mannheim, Mannheim, 68161, Germany
| | - Barry Gordon
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Departments of Neurology, Psychiatry, and Cognitive Neurology & Alzheimer's Disease Center, Feinberg School of Medicine, Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
6
|
McGeoghan F, Camera E, Maiellaro M, Menon M, Huang M, Dewan P, Ziaj S, Caley MP, Donaldson M, Enright AJ, O’Toole EA. RNA sequencing and lipidomics uncovers novel pathomechanisms in recessive X-linked ichthyosis. Front Mol Biosci 2023; 10:1176802. [PMID: 37363400 PMCID: PMC10285781 DOI: 10.3389/fmolb.2023.1176802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Recessive X-linked ichthyosis (RXLI), a genetic disorder caused by deletion or point mutations of the steroid sulfatase (STS) gene, is the second most common form of ichthyosis. It is a disorder of keratinocyte cholesterol sulfate retention and the mechanism of extracutaneous phenotypes such as corneal opacities and attention deficit hyperactivity disorder are poorly understood. To understand the pathomechanisms of RXLI, the transcriptome of differentiated primary keratinocytes with STS knockdown was sequenced. The results were validated in a stable knockdown model of STS, to confirm STS specificity, and in RXLI skin. The results show that there was significantly reduced expression of genes related to epidermal differentiation and lipid metabolism, including ceramide and sphingolipid synthesis. In addition, there was significant downregulation of aldehyde dehydrogenase family members and the oxytocin receptor which have been linked to corneal transparency and behavioural disorders respectively, both of which are extracutaneous phenotypes of RXLI. These data provide a greater understanding of the causative mechanisms of RXLI's cutaneous phenotype, and show that the keratinocyte transcriptome and lipidomics can give novel insights into the phenotype of patients with RXLI.
Collapse
Affiliation(s)
- Farrell McGeoghan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Manasi Menon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mei Huang
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Priya Dewan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stela Ziaj
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Matthew P. Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edel A. O’Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
7
|
Wilczyński KM, Stasik A, Cichoń L, Auguściak-Duma A, Janas-Kozik M. Polymorphisms in Oxytocin and Vasopressin Receptor Genes as a Factor Shaping the Clinical Picture and the Risk of ASD in Males. Brain Sci 2023; 13:brainsci13040689. [PMID: 37190654 DOI: 10.3390/brainsci13040689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of disorders affecting virtually every population, regardless of their ethnic or socioeconomic background. Their pathogenesis is multifactorial, based on interactions between genetic and environmental factors. The key symptom of ASD are deficits in social communication, which are the basis of many difficulties in everyday functioning. The aim of the presented study was to analyze the clinical picture of social cognition deficits in boys with autism spectrum disorders and to relate its elements with the frequency of alleles of selected polymorphisms within the oxytocin receptor (OXTR) and vasopressin receptor 1A (AVPR1A) genes. The study included 58 boys with IQ > 90, who were divided into two groups based on a confirmed or excluded ASD diagnosis based on the DSM-5 and ICD-10 criteria and then using the ADOS-2 protocol. The results indicated that polymorphism rs10877969 (T) within the AVPR1a gene was the only one to show a statistically significant association with a higher risk of autism spectrum disorders and has an impact on clinical presentation in the ADOS-2 study, primarily in terms of the social affect subscale. Polymorphisms in the OXTR gene showed no significant association with ASD risk and severity of autistic traits in the ADOS-2 study. In the group of people with ASD and those who are neurotypical, the rs53572 (A) genotype in the OXTR gene significantly increased the severity of the clinical picture of social cognition disorders in reading mind in the eyes test (RMiE) and empathy quotient (EQ) studies.
Collapse
Affiliation(s)
- Krzysztof M Wilczyński
- Department of Developmental Age Psychiatry and Psychotherapy SUM, 40-055 Katowice, Poland
- John Paul II Children's and Family Health Center, sp. z o.o, 41-218 Sosnowiec, Poland
| | - Aleksandra Stasik
- John Paul II Children's and Family Health Center, sp. z o.o, 41-218 Sosnowiec, Poland
| | - Lena Cichoń
- Department of Developmental Age Psychiatry and Psychotherapy SUM, 40-055 Katowice, Poland
- John Paul II Children's and Family Health Center, sp. z o.o, 41-218 Sosnowiec, Poland
| | | | - Małgorzata Janas-Kozik
- Department of Developmental Age Psychiatry and Psychotherapy SUM, 40-055 Katowice, Poland
- John Paul II Children's and Family Health Center, sp. z o.o, 41-218 Sosnowiec, Poland
| |
Collapse
|
8
|
Higuchi Y, Tachigori SI, Arakawa H. Faded neural projection from the posterior bed nucleus of the stria terminalis to the lateral habenula contributes to social signaling deficit in male BTBR mice as a mouse model of autism. Psychoneuroendocrinology 2023; 149:106004. [PMID: 36543023 DOI: 10.1016/j.psyneuen.2022.106004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
BTBR T+ Itpr3tf/J (BTBR) mice display several behavioral characteristics, including social deficits resembling the core symptoms of human autism. Atypical social behaviors include sequential processes of assembled cognitive-behavior components, such as recognition, investigatory assessment, and signaling response. This study aimed to elucidate the neural circuits responsible for the regulation of the social signaling response, as shown by scent marking behavior in male mice. We first assessed the recognition and investigatory patterns of male BTBR mice compared to those of C57BL/6 J (B6) mice. Next, we examined their scent-marking behavior as innate social signaling responses adjusted to a confronted feature of social stimuli and situations, along with the expression of c-Fos as a marker of neuronal activity in selected brain areas involved in the regulation of social behavior. The function of the targeted brain area was confirmed by chemogenetic manipulation. We also examined the social peptides, oxytocin and vasopressin neurons of the major brain regions that are associated with the regulation of social behavior. Our data indicate that male BTBR mice are less responsive to the presentation of social stimuli and the expression of social signaling responses, which is paralleled by blunted c-Fos responsivity and vasopressin neurons morphological changes in selected brain areas, including the posterior bed nucleus of the stria terminalis (pBnST) and lateral habenula (LHb) in BTBR mice. Further investigation of LHb function revealed that chemogenetic inhibition and activation of LHb activity can induce a change in scent marking responses in both B6 and BTBR mice. Our elucidation of the downstream LHb circuits controlling scent marking behavior indicates intact function in BTBR mice. The altered morphological characteristics of oxytocin neurons in the paraventricular nucleus of the hypothalamus and vasopressin-positive neurons and axonal projections in the pBnST and LHb appear to underlie the dysfunction of scent marking responses in BTBR mice. (300/300 words).
Collapse
Affiliation(s)
- Yuki Higuchi
- Department of Systems Physiology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Shun-Ichi Tachigori
- Department of Systems Physiology, University of the Ryukyus, Faculty of Medicine, Okinawa, Japan
| | - Hiroyuki Arakawa
- Department of Systems Physiology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan.
| |
Collapse
|
9
|
Boksha IS, Prokhorova TA, Tereshkina EB, Savushkina OK, Burbaeva GS. Differentiated Approach to Pharmacotherapy of Autism Spectrum Disorders: Biochemical Aspects. BIOCHEMISTRY (MOSCOW) 2023; 88:303-318. [PMID: 37076279 DOI: 10.1134/s0006297923030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Autism Spectrum Disorders (ASD) are highly heterogeneous neurodevelopmental disorders caused by a complex interaction of numerous genetic and environmental factors and leading to deviations in the nervous system formation at the very early developmental stages. Currently, there are no accepted pharmacological treatments for the so-called core symptoms of ASD, such as social communication disorders and restricted and repetitive behavior patterns. Lack of knowledge about biological basis of ASD, absence of the clinically significant biochemical parameters reflecting abnormalities in the signaling cascades controlling the nervous system development and functioning, and lack of methods for selection of clinically and biologically homogeneous subgroups are considered as causes for the failure of clinical trials of ASD pharmacotherapy. This review considers the possibilities of applying differentiated clinical and biological approaches to the targeted search for ASD pharmacotherapy with emphasis on biochemical markers associated with ASD and attempts to stratify patients by biochemical parameters. The use of such approach as "the target-oriented therapy and assessment of the target status before and during the treatment to identify patients with a positive response to treatment" is discussed using the published results of clinical trials as examples. It is concluded that identification of biochemical parameters for selection of the distinct subgroups among the ASD patients requires research on large samples reflecting clinical and biological diversity of the patients with ASD, and use of unified approaches for such studies. An integrated approach, including clinical observation, clinical-psychological assessment of the patient behavior, study of medical history and description of individual molecular profiles should become a new strategy for stratifying patients with ASD for clinical pharmacotherapeutic trials, as well as for evaluating their efficiency.
Collapse
|
10
|
Pierzynowska K, Gaffke L, Żabińska M, Cyske Z, Rintz E, Wiśniewska K, Podlacha M, Węgrzyn G. Roles of the Oxytocin Receptor (OXTR) in Human Diseases. Int J Mol Sci 2023; 24:ijms24043887. [PMID: 36835321 PMCID: PMC9966686 DOI: 10.3390/ijms24043887] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The oxytocin receptor (OXTR), encoded by the OXTR gene, is responsible for the signal transduction after binding its ligand, oxytocin. Although this signaling is primarily involved in controlling maternal behavior, it was demonstrated that OXTR also plays a role in the development of the nervous system. Therefore, it is not a surprise that both the ligand and the receptor are involved in the modulation of behaviors, especially those related to sexual, social, and stress-induced activities. As in the case of every regulatory system, any disturbances in the structures or functions of oxytocin and OXTR may lead to the development or modulation of various diseases related to the regulated functions, which in this case include either mental problems (autism, depression, schizophrenia, obsessive-compulsive disorders) or those related to the functioning of reproductive organs (endometriosis, uterine adenomyosis, premature birth). Nevertheless, OXTR abnormalities are also connected to other diseases, including cancer, cardiac disorders, osteoporosis, and obesity. Recent reports indicated that the changes in the levels of OXTR and the formation of its aggregates may influence the course of some inherited metabolic diseases, such as mucopolysaccharidoses. In this review, the involvement of OXTR dysfunctions and OXTR polymorphisms in the development of different diseases is summarized and discussed. The analysis of published results led us to suggest that changes in OXTR expression and OXTR abundance and activity are not specific to individual diseases, but rather they influence processes (mostly related to behavioral changes) that might modulate the course of various disorders. Moreover, a possible explanation of the discrepancies in the published results of effects of the OXTR gene polymorphisms and methylation on different diseases is proposed.
Collapse
|
11
|
Wang J, Wei S, Zhang J, Wang H. Association between RIT2 rs16976358 Polymorphism and Autism Spectrum Disorder in Asian Populations: A Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8886927. [PMID: 36820223 PMCID: PMC9938773 DOI: 10.1155/2023/8886927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Recent studies have shown that Ras-like without CAAX2 (RIT2) polymorphism is a susceptible factor for Parkinson's disease (PD) and autism spectrum disorder (ASD). SNP rs12456492 and rs16976358 show the emerging evidence of increased risk of PD and ASD, respectively. A meta-analysis examining the relationship between rs12456492 and PD was reported, but the association between rs16976358 and ASD has not been investigated. METHODS We searched literature from the databases PubMed, Embase, Google Scholar, ScienceDirect, EBSCOhost, OVID, Web of Science, and Wiley up to February 2021. Three studies including 1160 ASD cases and 1367 controls were eventually enrolled in the meta-analysis based on strict inclusion and exclusion criteria. RESULTS All genetics models indicate a significant association between rs16976358 polymorphism and ASD susceptibility (C vs. T: p = 0.001; CC vs. TT: p = 0.001; CT vs. TT: p = 0.009; CC+CT vs. TT: p = 0.001; CC vs. CT+TT: p = 0.001; TT+CC vs. CT: p = 0.013). The results of sensitivity analysis and publication bias of Begg's and Egger's tests were stable in the models of allele (C vs. T), codominant (CC vs. TT), dominant (CC+CT vs. TT), and recessive (CC vs. CT+TT). CONCLUSIONS Our meta-analysis exhibits that the allele C, CC, and CT genotyping of rs16976358 suggest the risk for ASD, but additional studies using a large sample size and ethnically diverse populations need to be included in the future.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shoupeng Wei
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20807, USA
| | - Jin Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hu Wang
- Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore 21215, USA
| |
Collapse
|
12
|
Chaudhary R, Steinson E. Genes and their Involvement in the Pathogenesis of Autism Spectrum Disorder: Insights from Earlier Genetic Studies. NEUROBIOLOGY OF AUTISM SPECTRUM DISORDERS 2023:375-415. [DOI: 10.1007/978-3-031-42383-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Hwang IS, Hong SB. Association between body mass index and subcortical volume in pre-adolescent children with autism spectrum disorder: An exploratory study. Autism Res 2022; 15:2238-2249. [PMID: 36256577 DOI: 10.1002/aur.2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
Conflicting associations exist between autism spectrum disorder (ASD) and subcortical brain volumes. This study assessed whether obesity might have a confounding influence on associations between ASD and brain subcortical volumes. A comprehensive investigation evaluating the relationship between ASD, obesity, and subcortical structure volumes was conducted. Data obtained included body mass index (BMI) and T1-weighted structural magnetic resonance images for children with and without ASD diagnoses from the Autism Brain Imaging Data Exchange database. Brain subcortical volumes were calculated using vol2Brain software. Hierarchical linear regression analyses were performed to explore the subcortical volumes similarly or differentially associated with BMI in children with or without ASD and examine association and interaction effects regarding ASD and subcortical volume impact on the Social Responsiveness Scale and Vineland Adaptive Behavior Scale (VABS) scores. Bilateral caudate nuclei were smaller in children with ASD than in control participants. Significant interactions were observed between ASD diagnosis and BMI regarding the left caudate, right and left putamen, and right and left ventral diencephalon (DC) volumes (β = -0.384, p = 0.010; β = -0.336, p = 0.030; β = -0.317, p = 0.040; β = 0.322, p = 0.010; β = 0.295, p = 0.021, respectively) and between ASD diagnosis and right and left ventral DC volumes regarding the VABS scores (β = 0.434, p = 0.014; β = 0.495, p = 0.007, respectively). However, each subcortical structure volume included in the ventral DC area could not be measured separately. The results identified subcortical volumes differentially associated with obesity in children with ASD compared with typically developing peers. BMI may need to be considered an important confounder in future research examining brain subcortical volumes within ASD.
Collapse
Affiliation(s)
- In-Seong Hwang
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon-Beom Hong
- Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
14
|
Neuroimaging genetics of oxytocin: A transcriptomics-informed systematic review. Neurosci Biobehav Rev 2022; 142:104912. [DOI: 10.1016/j.neubiorev.2022.104912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022]
|
15
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
16
|
Rung JM, Kidder QA, Horta M, Nazarloo HP, Carter CS, Berry MS, Ebner NC. Associations between alcohol use and peripheral, genetic, and epigenetic markers of oxytocin in a general sample of young and older adults. Brain Behav 2022; 12:e2425. [PMID: 35146961 PMCID: PMC8933764 DOI: 10.1002/brb3.2425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Human and nonhuman animal research suggests that greater oxytocin (OT) activity is protective against harmful substance use. Most research on this topic is preclinical, with few studies evaluating the association between substance use and individual differences in the human OT system. The present study sought to fill this gap by evaluating the relationship between alcohol use and multiple biological measures of OT activity in an overall low to moderate-drinking sample. METHOD As part of a larger study, generally healthy young (n = 51) and older (n = 53) adults self-reported whether they regularly used alcohol and how much alcohol they consumed per week. Participants also provided blood samples from which peripheral OT, and in an age-heterogeneous subset of participants (n = 56) variation in the oxytocin receptor gene (the OXTR rs53576 polymorphism) and OXTR DNA methylation levels (at cytosine-guanine dinucleotide sites -860, -924, -934), were obtained. RESULTS A-allele carriers of the OXTR rs53579 polymorphism were less likely to regularly consume alcohol. Among regular alcohol consumers, number of alcoholic drinks per week was positively associated with peripheral OT in regression models excluding observations of high influence (postdiagnostic models). Number of alcoholic drinks per week was consistently negatively associated with OXTR DNA methylation at site -860; and with OXTR DNA methylation at site -924 in postdiagnostic models. CONCLUSIONS The significant associations between alcohol use and individual differences in OT activity support the involvement of the OT system in alcohol use, which most likely reflect the role of OT when alcohol use is under control of its rewarding properties and/or the acute impacts of alcohol on the OT system. Additional research with markers of OT activity and alcohol use, particularly longitudinal, is needed to clarify the bidirectional effects of OT and alcohol use in moderate to harmful drinking and dependence.
Collapse
Affiliation(s)
- Jillian M Rung
- Department of Psychology, University of Florida, Gainesville, Florida, USA.,Department of Epidemiology, University of Florida, Gainesville, Florida, USA.,Department of Health Education and Behavior, University of Florida, Gainesville, Florida, USA
| | - Quintin A Kidder
- Department of Psychology, University of Florida, Gainesville, Florida, USA
| | - Marilyn Horta
- Department of Psychology, University of Florida, Gainesville, Florida, USA.,Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - H P Nazarloo
- Kinsey Institute, Indiana University, Bloomington, Indiana, USA.,Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, Indiana, USA.,Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Meredith S Berry
- Department of Psychology, University of Florida, Gainesville, Florida, USA.,Department of Health Education and Behavior, University of Florida, Gainesville, Florida, USA.,Pain Research and Intervention Center of Excellence (PRICE), College of Medicine, Clinical and Translational Science Institute (CTSI), University of Florida, Gainesville, Florida, USA
| | - Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, Florida, USA.,Pain Research and Intervention Center of Excellence (PRICE), College of Medicine, Clinical and Translational Science Institute (CTSI), University of Florida, Gainesville, Florida, USA.,Department of Aging & Geriatric Research, Institute on Aging, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
17
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Czarzasta K, Żera T. Multiple Aspects of Inappropriate Action of Renin-Angiotensin, Vasopressin, and Oxytocin Systems in Neuropsychiatric and Neurodegenerative Diseases. J Clin Med 2022; 11:908. [PMID: 35207180 PMCID: PMC8877782 DOI: 10.3390/jcm11040908] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiovascular system and the central nervous system (CNS) closely cooperate in the regulation of primary vital functions. The autonomic nervous system and several compounds known as cardiovascular factors, especially those targeting the renin-angiotensin system (RAS), the vasopressin system (VPS), and the oxytocin system (OTS), are also efficient modulators of several other processes in the CNS. The components of the RAS, VPS, and OTS, regulating pain, emotions, learning, memory, and other cognitive processes, are present in the neurons, glial cells, and blood vessels of the CNS. Increasing evidence shows that the combined function of the RAS, VPS, and OTS is altered in neuropsychiatric/neurodegenerative diseases, and in particular in patients with depression, Alzheimer's disease, Parkinson's disease, autism, and schizophrenia. The altered function of the RAS may also contribute to CNS disorders in COVID-19. In this review, we present evidence that there are multiple causes for altered combined function of the RAS, VPS, and OTS in psychiatric and neurodegenerative disorders, such as genetic predispositions and the engagement of the RAS, VAS, and OTS in the processes underlying emotions, memory, and cognition. The neuroactive pharmaceuticals interfering with the synthesis or the action of angiotensins, vasopressin, and oxytocin can improve or worsen the effectiveness of treatment for neuropsychiatric/neurodegenerative diseases. Better knowledge of the multiple actions of the RAS, VPS, and OTS may facilitate programming the most efficient treatment for patients suffering from the comorbidity of neuropsychiatric/neurodegenerative and cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.W.); (A.C.-J.); (K.C.); (T.Ż.)
| | | | | | | | | |
Collapse
|
18
|
Ogi A, Naef V, Santorelli FM, Mariti C, Gazzano A. Oxytocin Receptor Gene Polymorphism in Lactating Dogs. Animals (Basel) 2021; 11:ani11113099. [PMID: 34827831 PMCID: PMC8614403 DOI: 10.3390/ani11113099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Oxytocin is commonly known for its role in mammalian bonding. Several studies have proved that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans, but studies on the possible correlation between canine social behavior and oxytocin are mainly focused on the human–dog bond, and there are no data on the possible correlation between oxytocin receptor gene polymorphism and the maternal behavior of this species. Since mother–litter interactions could have a severe impact in determining later behavior in domestic dogs, the aim of this work was to investigate the possible correlation between salivary oxytocin, maternal care and the one known single-nucleotide polymorphism (rs8679684) located in the untranslated regulatory region of the oxytocin receptor gene in 19 lactating Labrador Retriever dogs. A significant correlation between oxytocin receptor gene polymorphism, peripheral oxytocin and maternal behavior in dogs was found. This implies that a more functional oxytocinergic system would lead to better mothering in dogs. Abstract Genetic variations in the oxytocinergic system, known to regulate social behavior throughout the evolution of mammals, are believed to account for differences in mammalian social behavior. Particularly, polymorphic variants of the oxytocin receptor (OXTR) gene have been associated with behavioral variations in both humans and dogs. In this study, we offered evidence of the correlation between levels of salivary oxytocin (sOXT), maternal behavior and a single-nucleotide gene variant in OXTR (rs8679684) in nineteen lactating Labrador Retriever dogs. Carriers of at least one copy of the minor A allele showed higher levels of sOXT and maternal care in comparison with the homozygous T allele carriers. Considering the relevance of mother care in newborn development, these findings could help us to better understand the possible impact of variants in the OXTR gene in selecting dams.
Collapse
Affiliation(s)
- Asahi Ogi
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (C.M.); (A.G.)
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, 56128 Calambrone, Italy; (V.N.); (F.M.S.)
- Correspondence:
| | - Valentina Naef
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, 56128 Calambrone, Italy; (V.N.); (F.M.S.)
| | - Filippo Maria Santorelli
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, 56128 Calambrone, Italy; (V.N.); (F.M.S.)
| | - Chiara Mariti
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (C.M.); (A.G.)
| | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (C.M.); (A.G.)
| |
Collapse
|
19
|
Staes N, Guevara EE, Helsen P, Eens M, Stevens JMG. The Pan social brain: An evolutionary history of neurochemical receptor genes and their potential impact on sociocognitive differences. J Hum Evol 2021; 152:102949. [PMID: 33578304 DOI: 10.1016/j.jhevol.2021.102949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Humans have unique cognitive capacities that, compared with apes, are not only simply expressed as a higher level of general intelligence, but also as a quantitative difference in sociocognitive skills. Humans' closest living relatives, bonobos (Pan paniscus), and chimpanzees (Pan troglodytes), show key between-species differences in social cognition despite their close phylogenetic relatedness, with bonobos arguably showing greater similarities to humans. To better understand the evolution of these traits, we investigate the neurochemical mechanisms underlying sociocognitive skills by focusing on variation in genes encoding proteins with well-documented roles in mammalian social cognition: the receptors for vasopressin (AVPR1A), oxytocin (OXTR), serotonin (HTR1A), and dopamine (DRD2). Although these genes have been well studied in humans, little is known about variation in these genes that may underlie differences in social behavior and cognition in apes. We comparatively analyzed sequence data for 33 bonobos and 57 chimpanzees, together with orthologous sequence data for other apes. In all four genes, we describe genetic variants that alter the amino acid sequence of the respective receptors, raising the possibility that ligand binding or signal transduction may be impacted. Overall, bonobos show 57% more fixed substitutions than chimpanzees compared with the ancestral Pan lineage. Chimpanzees, show 31% more polymorphic coding variation, in line with their larger historical effective population size estimates and current wider distribution. An extensive literature review comparing allelic changes in Pan with known human behavioral variants revealed evidence of homologous evolution in bonobos and humans (OXTR rs4686301(T) and rs237897(A)), while humans and chimpanzees shared OXTR rs2228485(A), DRD2 rs6277(A), and DRD2 rs11214613(A) to the exclusion of bonobos. Our results offer the first in-depth comparison of neurochemical receptor gene variation in Pan and put forward new variants for future behavior-genotype association studies in apes, which can increase our understanding of the evolution of social cognition in modern humans.
Collapse
Affiliation(s)
- Nicky Staes
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018, Antwerp, Belgium.
| | - Elaine E Guevara
- Evolutionary Anthropology, Duke University, 130 Science Dr, Durham, NC, 27708, USA
| | - Philippe Helsen
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018, Antwerp, Belgium
| | - Marcel Eens
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jeroen M G Stevens
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
20
|
Sanathara N, Alhassen L, Marmouzi I, Khoudari M, Phan J, Alhassen W, Civelli O, Alachkar A. Oxytocin-MCH circuit regulates monosynaptic inputs to MCH neurons and modulates social recognition memory. Neuropharmacology 2020; 184:108423. [PMID: 33290754 DOI: 10.1016/j.neuropharm.2020.108423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 01/05/2023]
Abstract
Oxytocin regulates social behaviors and has been linked to the etiology of autism and schizophrenia. Oxytocin and another hypothalamic neuropeptide, melanin concentrating hormone (MCH), share several physiological actions such as emotion, social behavior and recognition, maternal care, sexual behavior and stress, which suggests that these two systems may interact, however, how they would do it is not known. Here, we study the interactions between the oxytocin and MCH systems in behaviors related to autism and schizophrenia. Specifically, we examined the synaptic inputs of the oxytocin-to the MCH neurons. We selectively deleted oxytocin receptors (OXTR) from MCH neurons (OXTR-cKO mice) using a Cre/loxP recombinase-technology, and used rabies-mediated circuit mapping technique to reveal the changes in the direct monosynaptic inputs to MCH neurons. We examined the behavioral responses of OXTR-cKO mice. Deletion of OXTR from MCH neurons induced a significant decrease in the primary inputs received by MCH neurons from the paraventricular nucleus and the lateral hypothalamus, and from the nucleus accumbens and ventral tegmental area. While OXTR-cKO mice exhibited similar social interactions as control mice, they displayed significantly impaired social recognition memory and increased stereotypic behavior. Our study identifies a selective role for the oxytocin-MCH pathway in social recognition memory and stereotyped behavior that are relevant to psychiatric disorders such as schizophrenia and autism, and warrant further investigation of this circuit to uncover potential benefit of targeting the oxytocin-MCH circuit as a novel therapeutic target for treatment of social recognition deficits in these two disorders.
Collapse
Affiliation(s)
- Nayna Sanathara
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA, 92697, USA
| | - Lamees Alhassen
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA, 92697, USA
| | - Ilias Marmouzi
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA, 92697, USA
| | - Mohammad Khoudari
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA, 92697, USA
| | - Joseph Phan
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA, 92697, USA
| | - Wedad Alhassen
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA, 92697, USA
| | - Olivier Civelli
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA, 92697, USA; Department of Developmental and Cell Biology, School of Biological Sciences, University of California-Irvine, CA, 92697, USA
| | - Amal Alachkar
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA, 92697, USA; Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, CA, 92697, USA.
| |
Collapse
|
21
|
Reichova A, Bacova Z, Bukatova S, Kokavcova M, Meliskova V, Frimmel K, Ostatnikova D, Bakos J. Abnormal neuronal morphology and altered synaptic proteins are restored by oxytocin in autism-related SHANK3 deficient model. Mol Cell Endocrinol 2020; 518:110924. [PMID: 32619581 DOI: 10.1016/j.mce.2020.110924] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Oxytocin has been suggested as a potential therapeutic agent in autism and other neuropsychiatric conditions. Although, the link between the deficit in "SH3 domain and ankyrin repeat containing protein 3" (SHANK3) and autism spectrum disorders is highly studied topic, developmental mechanisms are still poorly understood. In this study, we clearly confirm that SHANK3 deficiency is accompanied with abnormalities in neurite number and length, which are reversed by oxytocin treatment (1 μM, 48h) in primary hippocampal neurons. Transient silencing for the SHANK3 gene (siSHANK3) in neuron-like cell line (SH-SY5Y) revealed a significant decrease in the expression levels of Neurexins 1α, 1β, 2α and 2β. Oxytocin treatment compensated reduced levels of Synapsin I, PSD95 and Neuroligin 3 in siSHANK3 cells suggesting a marked potential of oxytocin to ameliorate defects present in conditions of SHANK3 deficiency. Further analysis of hippocampal tissue revealed that oxytocin application (0.1 μg/μl, s.c. at P2 and P3 day) affects levels of synaptic proteins and GTPases in both WT and SHANK3 deficient mice on day P5. Oxytocin stimulated the mRNA expression of RhoB and Rac1 in both WT and SHANK3 deficient mice. Our data suggest that autism relevant synaptic pathologies could be reversed by oxytocin treatment.
Collapse
Affiliation(s)
- Alexandra Reichova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislava Bukatova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Kokavcova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Meliskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karel Frimmel
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniela Ostatnikova
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
22
|
Spanos M, Chandrasekhar T, Kim SJ, Hamer RM, King BH, McDougle CJ, Sanders KB, Gregory SG, Kolevzon A, Veenstra-VanderWeele J, Sikich L. Rationale, design, and methods of the Autism Centers of Excellence (ACE) network Study of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B). Contemp Clin Trials 2020; 98:106103. [PMID: 32777383 DOI: 10.1016/j.cct.2020.106103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To describe the rationale, design, and methods of the Autism Centers of Excellence (ACE) network Study of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B). METHOD This phase 2 clinical trial was designed to evaluate the use of intranasal oxytocin treatment to improve social difficulties in individuals with autism spectrum disorder (ASD). In total, 290 participants ages 3 to 17 years with a DSM-5 diagnosis of ASD were enrolled to receive 24 weeks of treatment with either oxytocin or a matched placebo at one of seven collaborating sites. Participants were subsequently treated with open-label oxytocin for 24 additional weeks. Post-treatment assessments were done approximately 4 weeks after treatment discontinuation. Plasma oxytocin and oxytocin receptor gene (OXTR) methylation level were measured at baseline, and week 8, 24 and 36 to explore potential relationships between these biomarkers and treatment response. RESULTS This report describes the rationale, design, and methods of the SOARS-B clinical trial. CONCLUSIONS There is a tremendous unmet need for safe and effective pharmacological treatment options that target the core symptoms of ASD. Several studies support the hypothesis that intranasal oxytocin could improve social orienting and the salience of social rewards in ASD, thereby enhancing reciprocal social behaviors. However, due to conflicting results from a number of pilot studies on the prosocial effects of exogenous oxytocin, this hypothesis remains controversial and inconclusive. SOARS-B is the best powered study to date to address this hypothesis and promises to improve our understanding of the safety and efficacy of intranasal oxytocin in the treatment of social deficits in children with ASD.
Collapse
Affiliation(s)
- Marina Spanos
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America.
| | - Tara Chandrasekhar
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America
| | - Soo-Jeong Kim
- Seattle Children's Autism Center, Department of Psychiatry and Behavioral Sciences, University of Washington; Seattle, WA, United States of America
| | - Robert M Hamer
- Departments of Psychiatry and Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Bryan H King
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, UCSF Benioff Children's Hospitals, San Francisco, CA, United States of America
| | - Christopher J McDougle
- Lurie Center for Autism, Massachusetts General Hospital; Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - Kevin B Sanders
- Neuroscience Product Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States of America; Department of Neurology, Duke University School of Medicine, Durham, NC, United States of America
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute; Center for Autism and the Developing Brain, New York-Presbyterian Hospital, United States of America
| | - Linmarie Sikich
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America
| |
Collapse
|
23
|
Antonucci LA, Pergola G, Passiatore R, Taurisano P, Quarto T, Dispoto E, Rampino A, Bertolino A, Cassibba R, Blasi G. The interaction between OXTR rs2268493 and perceived maternal care is associated with amygdala-dorsolateral prefrontal effective connectivity during explicit emotion processing. Eur Arch Psychiatry Clin Neurosci 2020; 270:553-565. [PMID: 31471679 DOI: 10.1007/s00406-019-01062-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Abstract
Previous studies have indicated a link between socio-emotional processing and the oxytocin receptor. In this regard, a single nucleotide polymorphism in the oxytocin receptor coding gene (OXTR rs2268493) has been linked with lower social functioning, increased risk for autism spectrum disorders (ASDs) and with post-mortem OXTR mRNA expression levels. Indeed, the levels of expression of OXTR in brain regions involved in emotion processing are also associated with maternal care. Furthermore, maternal care has been associated with emotional correlates. Taken together, these previous findings suggest a possible combined effect of rs2268493 and maternal care on emotion-related brain phenotypes. A crucial biological mechanism subtending emotional processing is the amygdala-dorsolateral prefrontal cortex (DLPFC) functional connection. On this basis, our aim was to investigate the interaction between rs2268493 and maternal care on amygdala-DLPFC effective connectivity during emotional evaluation. We characterized through dynamic causal modeling (DCM) patterns of amygdala-DLPFC effective connectivity during explicit emotion processing in healthy controls (HC), profiled based on maternal care and rs2268493 genotype. In the whole sample, right top-down DLPFC-to-amygdala pattern was the most likely directional model of effective connectivity. This pattern of connectivity was the most likely for all rs2268493/maternal care subgroups, except for thymine homozygous (TT)/low maternal care individuals. Here, a right bottom-up amygdala-to-DLPFC was the most likely directional model. These results suggest a gene by environment interaction mediated by the oxytocin receptor on biological phenotypes relevant to emotion processing.
Collapse
Affiliation(s)
- Linda A Antonucci
- Section for Neurodiagnostic Applications, Department of Psychiatry and Psychotherapy, Ludwig-Maximilians Universität, 80336, Munich, Germany.,Department of Educational Science, Psychology and Communication Science, University of Bari "Aldo Moro", 70121, Bari, Italy.,Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Roberta Passiatore
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy.,IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, 71013, Foggia, Italy
| | - Tiziana Quarto
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Eleonora Dispoto
- Department of Educational Science, Psychology and Communication Science, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - Antonio Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy.,Psychiatry Unit, Bari University Hospital, 70124, Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy.,Psychiatry Unit, Bari University Hospital, 70124, Bari, Italy
| | - Rosalinda Cassibba
- Department of Educational Science, Psychology and Communication Science, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy. .,Psychiatry Unit, Bari University Hospital, 70124, Bari, Italy.
| |
Collapse
|
24
|
Wang J, Zhang P, Li W, Wen Q, Liu F, Xu J, Xu Q, Zhu D, Ye Z, Yu C. Right Posterior Insula and Putamen Volume Mediate the Effect of Oxytocin Receptor Polygenic Risk for Autism Spectrum Disorders on Reward Dependence in Healthy Adults. Cereb Cortex 2020; 31:746-756. [PMID: 32710107 DOI: 10.1093/cercor/bhaa198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Much evidence indicates the influence of the oxytocin receptor (OXTR) gene on autism spectrum disorders (ASDs), a set of disorders characterized by a range of deficits in prosocial behaviors, which are closely related to the personality trait of reward dependence (RD). However, we do not know the effect of the OXTR polygenic risk score for ASDs (OXTR-PRSASDs) on RD and its underlying neuroanatomical substrate. Here, we aimed to investigate associations among the OXTR-PRSASDs, gray matter volume (GMV), and RD in two independent datasets of healthy young adults (n = 450 and 540). We found that the individuals with higher OXTR-PRSASDs had lower RD and significantly smaller GMV in the right posterior insula and putamen. The GMV of this region showed a positive correlation with RD and a mediation effect on the association between OXTR-PRSASDs and RD. Moreover, the correlation map between OXTR-PRSASDs and GMV showed spatial correlation with OXTR gene expression. All results were highly consistent between the two datasets. These findings highlight a possible neural pathway by which the common variants in the OXTR gene associated with ASDs may jointly impact the GMV of the right posterior insula and putamen and further affect the personality trait of RD.
Collapse
Affiliation(s)
- Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Qin Wen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
25
|
Morphofunctional Alterations of the Hypothalamus and Social Behavior in Autism Spectrum Disorders. Brain Sci 2020; 10:brainsci10070435. [PMID: 32650534 PMCID: PMC7408098 DOI: 10.3390/brainsci10070435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
An accumulating body of evidence indicates a tight relationship between the endocrine system and abnormal social behavior. Two evolutionarily conserved hypothalamic peptides, oxytocin and arginine-vasopressin, because of their extensively documented function in supporting and regulating affiliative and socio-emotional responses, have attracted great interest for their critical implications for autism spectrum disorders (ASD). A large number of controlled trials demonstrated that exogenous oxytocin or arginine-vasopressin administration can mitigate social behavior impairment in ASD. Furthermore, there exists long-standing evidence of severe socioemotional dysfunctions after hypothalamic lesions in animals and humans. However, despite the major role of the hypothalamus for the synthesis and release of oxytocin and vasopressin, and the evident hypothalamic implication in affiliative behavior in animals and humans, a rather small number of neuroimaging studies showed an association between this region and socioemotional responses in ASD. This review aims to provide a critical synthesis of evidences linking alterations of the hypothalamus with impaired social cognition and behavior in ASD by integrating results of both anatomical and functional studies in individuals with ASD as well as in healthy carriers of oxytocin receptor (OXTR) genetic risk variant for ASD. Current findings, although limited, indicate that morphofunctional anomalies are implicated in the pathophysiology of ASD and call for further investigations aiming to elucidate anatomical and functional properties of hypothalamic nuclei underlying atypical socioemotional behavior in ASD.
Collapse
|
26
|
López-Tobón A, Trattaro S, Testa G. The sociability spectrum: evidence from reciprocal genetic copy number variations. Mol Autism 2020; 11:50. [PMID: 32546261 PMCID: PMC7298749 DOI: 10.1186/s13229-020-00347-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/11/2020] [Indexed: 02/14/2023] Open
Abstract
Sociability entails some of the most complex behaviors processed by the central nervous system. It includes the detection, integration, and interpretation of social cues and elaboration of context-specific responses that are quintessentially species-specific. There is an ever-growing accumulation of molecular associations to autism spectrum disorders (ASD), from causative genes to endophenotypes across multiple functional layers; these however, have rarely been put in context with the opposite manifestation featured in hypersociability syndromes. Genetic copy number variations (CNVs) allow to investigate the relationships between gene dosage and its corresponding phenotypes. In particular, CNVs of the 7q11.23 locus, which manifest diametrically opposite social behaviors, offer a privileged window to look into the molecular substrates underlying the developmental trajectories of the social brain. As by definition sociability is studied in humans postnatally, the developmental fluctuations causing social impairments have thus far remained a black box. Here, we review key evidence of molecular players involved at both ends of the sociability spectrum, focusing on genetic and functional associations of neuroendocrine regulators and synaptic transmission pathways. We then proceed to propose the existence of a molecular axis centered around the paradigmatic dosage imbalances at the 7q11.23 locus, regulating networks responsible for the development of social behavior in humans and highlight the key role that neurodevelopmental models from reprogrammed pluripotent cells will play for its understanding.
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
| | - Sebastiano Trattaro
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| |
Collapse
|
27
|
Yamasaki M, Makino T, Khor SS, Toyoda H, Miyagawa T, Liu X, Kuwabara H, Kano Y, Shimada T, Sugiyama T, Nishida H, Sugaya N, Tochigi M, Otowa T, Okazaki Y, Kaiya H, Kawamura Y, Miyashita A, Kuwano R, Kasai K, Tanii H, Sasaki T, Honda M, Tokunaga K. Sensitivity to gene dosage and gene expression affects genes with copy number variants observed among neuropsychiatric diseases. BMC Med Genomics 2020; 13:55. [PMID: 32223758 PMCID: PMC7104509 DOI: 10.1186/s12920-020-0699-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Copy number variants (CNVs) have been reported to be associated with diseases, traits, and evolution. However, it is hard to determine which gene should have priority as a target for further functional experiments if a CNV is rare or a singleton. In this study, we attempted to overcome this issue by using two approaches: by assessing the influences of gene dosage sensitivity and gene expression sensitivity. Dosage sensitive genes derived from two-round whole-genome duplication in previous studies. In addition, we proposed a cross-sectional omics approach that utilizes open data from GTEx to assess the effect of whole-genome CNVs on gene expression. METHODS Affymetrix Genome-Wide SNP Array 6.0 was used to detect CNVs by PennCNV and CNV Workshop. After quality controls for population stratification, family relationship and CNV detection, 287 patients with narcolepsy, 133 patients with essential hypersomnia, 380 patients with panic disorders, 164 patients with autism, 784 patients with Alzheimer disease and 1280 healthy individuals remained for the enrichment analysis. RESULTS Overall, significant enrichment of dosage sensitive genes was found across patients with narcolepsy, panic disorders and autism. Particularly, significant enrichment of dosage-sensitive genes in duplications was observed across all diseases except for Alzheimer disease. For deletions, less or no enrichment of dosage-sensitive genes with deletions was seen in the patients when compared to the healthy individuals. Interestingly, significant enrichments of genes with expression sensitivity in brain were observed in patients with panic disorder and autism. While duplications presented a higher burden, deletions did not cause significant differences when compared to the healthy individuals. When we assess the effect of sensitivity to genome dosage and gene expression at the same time, the highest ratio of enrichment was observed in the group including dosage-sensitive genes and genes with expression sensitivity only in brain. In addition, shared CNV regions among the five neuropsychiatric diseases were also investigated. CONCLUSIONS This study contributed the evidence that dosage-sensitive genes are associated with CNVs among neuropsychiatric diseases. In addition, we utilized open data from GTEx to assess the effect of whole-genome CNVs on gene expression. We also investigated shared CNV region among neuropsychiatric diseases.
Collapse
Affiliation(s)
- Maria Yamasaki
- Department of Health Data Science Research, Healthy Aging Innovation Center, Tokyo Metropolitan Geriatric Medical Center, Tokyo, Japan
| | - Takashi Makino
- Laboratory of Evolutionary Genomics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project (Toyama), National Center for for Global Health and Medicine, Tokyo, Japan
| | - Hiromi Toyoda
- Genome Medical Science Project (Toyama), National Center for for Global Health and Medicine, Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Miyagawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoxi Liu
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukiko Kano
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Shizuoka, Japan
- Department of Child Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takafumi Shimada
- Division for Counseling and Support, The University of Tokyo, Tokyo, Japan
| | - Toshiro Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hisami Nishida
- Asunaro Hospital for Child and Adolescent Psychiatry, Mie, Japan
| | - Nagisa Sugaya
- Unit of Public Health and Preventive Medicine, School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Mamoru Tochigi
- Department of Neuropsychiatry, Teikyo University Hospital, Tokyo, Japan
| | - Takeshi Otowa
- Department of Neuropsychiatry, NTT Medical Center Tokyo, Tokyo, Japan
| | - Yuji Okazaki
- Department of Psychiatry, Koseikai Michinoo Hospital, Nagasaki, Japan
| | - Hisanobu Kaiya
- Panic Disorder Research Center, Warakukai Med Corp, Tokyo, Japan
| | - Yoshiya Kawamura
- Department of Psychiatry, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Bioresource Science Branch, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ryozo Kuwano
- Department of Molecular Genetics, Bioresource Science Branch, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
- Asahigawaso Research Institute, Asahigawaso Medical-Welfare Center, Okayama, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisashi Tanii
- Center for Physical and Mental Health, Mie University, Tsu, Mie Japan
| | - Tsukasa Sasaki
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Makoto Honda
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for for Global Health and Medicine, Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Kalyoncu T, Özbaran B, Köse S, Onay H. Variation in the Oxytocin Receptor Gene Is Associated With Social Cognition and ADHD. J Atten Disord 2019; 23:702-711. [PMID: 28478728 DOI: 10.1177/1087054717706757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Children with ADHD show substantial deficits in social cognitive abilities. Oxytocin, mediated through its specific receptor (OXTR), is involved in the regulation of social behavior and social cognition. METHOD The entire coding sequence of the human OXT and OXTR genes were sequenced to identify mutations and single nucleotide polymorphisms (SNPs) in 151 children with ADHD (ADHD-combined, n = 51; inattentive subtype, n = 50; ADHD-C plus conduct disorder [CD], n = 50; 11-18 years) and 100 healthy controls. RESULTS We examined the association of three detected SNPs of OXTR with social cognition deficits. A significant association was shown between the children with ADHD and children with CT/TT genotypes of rs4686302 (χ2 = 3.695; p = .037). ADHD children with CT/TT genotype for the OXTR rs4686302 performed significantly lower on the facial emotion recognition task than those with CC genotype. CONCLUSION OXTR rs4686302 polymorphism was shown to be a genetic marker in social cognition deficits in ADHD children.
Collapse
|
29
|
Uzefovsky F, Bethlehem RAI, Shamay-Tsoory S, Ruigrok A, Holt R, Spencer M, Chura L, Warrier V, Chakrabarti B, Bullmore E, Suckling J, Floris D, Baron-Cohen S. The oxytocin receptor gene predicts brain activity during an emotion recognition task in autism. Mol Autism 2019; 10:12. [PMID: 30918622 PMCID: PMC6419364 DOI: 10.1186/s13229-019-0258-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 02/04/2019] [Indexed: 01/21/2023] Open
Abstract
Background Autism is a highly varied and heritable neurodevelopmental condition, and common variants explain approximately 50% of the genetic variance of autism. One of the genes implicated in autism is the oxytocin receptor (OXTR). The current study combined genetic and brain imaging (fMRI) data to examine the moderating effect of genotype on the association between diagnosis and brain activity in response to a test of cognitive empathy. Methods Participants were adolescents (mean age = 14.7 ± 1.7) who were genotyped for single nucleotide polymorphisms (SNPs) within the OXTR and underwent functional brain imaging while completing the adolescent version of the 'Reading the Mind in the Eyes' Test (Eyes Test). Results Two (rs2254298, rs53576) of the five OXTR SNPs examined were significantly associated with brain activity during the Eyes Test, and three of the SNPs (rs2254298, rs53576, rs2268491) interacted with diagnostic status to predict brain activity. All of the effects localized to the right supramarginal gyrus (rSMG) and an overlap analysis revealed a large overlap of the effects. An exploratory analysis showed that activity within an anatomically defined rSMG and genotype can predict diagnostic status with reasonable accuracy. Conclusions This is one of the first studies to investigate OXTR and brain function in autism. The findings suggest a neurogenetic mechanism by which OXTR-dependent activity within the rSMG is related to the aetiology of autism.
Collapse
Affiliation(s)
- Florina Uzefovsky
- 1Department of Psychology and Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, 84105 Be'er Sheva, Israel
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Richard A I Bethlehem
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Amber Ruigrok
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Rosemary Holt
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Michael Spencer
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Lindsay Chura
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Varun Warrier
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Bhismadev Chakrabarti
- 4School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Ed Bullmore
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - John Suckling
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Dorothea Floris
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- 5Department of Child and Adolescent Psychiatry, New York University, New York, USA
| | - Simon Baron-Cohen
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- CLASS Clinic, Cambridgeshire and Peterborough NHS Trust, Peterborough, UK
| |
Collapse
|
30
|
Tops S, Habel U, Radke S. Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior. Horm Behav 2019; 108:84-93. [PMID: 29505762 DOI: 10.1016/j.yhbeh.2018.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 11/23/2022]
Abstract
Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles.
Collapse
Affiliation(s)
- Sanne Tops
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany.
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany; Jülich Aachen Research Alliance (JARA) - BRAIN Institute I, Jülich/Aachen, Germany
| | - Sina Radke
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany; Jülich Aachen Research Alliance (JARA) - BRAIN Institute I, Jülich/Aachen, Germany
| |
Collapse
|
31
|
Interactive effects of OXTR and GAD1 on envy-associated behaviors and neural responses. PLoS One 2019; 14:e0210493. [PMID: 30633779 PMCID: PMC6329522 DOI: 10.1371/journal.pone.0210493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/23/2018] [Indexed: 12/26/2022] Open
Abstract
Inequity aversion (negative feelings induced by outcome differences between the self and other) plays a key role in human social behaviors. The neurotransmitters oxytocin and GABA have been implicated in neural responses to inequity. However, it remains poorly understood not only how individual genetic factors related to oxytocin and GABA affect the neural mechanisms behind inequity aversion, but also how these genes interact. To address these issues, we examined relationships between genotypes, behavioral decisions and brain activities during the ultimatum game. We identified interactive effects between the polymorphisms of the oxytocin receptor gene (OXTR) and glutamate decarboxylase 1 gene for GABA synthesis (GAD1) on envy aversion (i.e., disadvantageous inequity aversion) and on envy-induced activity in the dorsal ACC (dACC). Thus, our integrated approach suggested interactive genetic effects between OXTR and GAD1 on envy aversion and the underlying neural substrates.
Collapse
|
32
|
Kraaijenvanger EJ, He Y, Spencer H, Smith AK, Bos PA, Boks MP. Epigenetic variability in the human oxytocin receptor (OXTR) gene: A possible pathway from early life experiences to psychopathologies. Neurosci Biobehav Rev 2019; 96:127-142. [DOI: 10.1016/j.neubiorev.2018.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 02/09/2023]
|
33
|
Wilczyński KM, Siwiec A, Janas-Kozik M. Systematic Review of Literature on Single-Nucleotide Polymorphisms Within the Oxytocin and Vasopressin Receptor Genes in the Development of Social Cognition Dysfunctions in Individuals Suffering From Autism Spectrum Disorder. Front Psychiatry 2019; 10:380. [PMID: 31214061 PMCID: PMC6554290 DOI: 10.3389/fpsyt.2019.00380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is found in virtually all population groups regardless of ethnic or socioeconomic backgrounds. Among others, dominant symptoms of autism persistent throughout its course of development include, inter alia, qualitative disorders of social communication and social interactions. Numerous studies have been performed on animal models as well as groups of healthy individuals to assess the potential role of oxytocinergic and vasopresynergic systems in normal social functioning. These studies have also discussed their potential participation in the development of social cognition dysfunctions in the course of ASD. This literature review aimed to identify studies examining single-nucleotide polymorphisms of the oxytocin (OXT) and arginine vasopressin (AVP) receptor genes and their differential effects on social cognitive dysfunction in the development of ASD. Methods: A systematic review of literature published within the last 10 years and accessible in PubMed, Google Scholar, Cochrane Library, and APA PsycNET databases was conducted by each author separately. Inclusion criteria required that articles should 1) be published between January 2008 and August 2018; 2) be published in English or Polish; 3) be located in periodical publications; 4) focus on the role of polymorphisms within oxytocin and vasopressin receptor genes in autistic population; 5) provide a clear presentation of the applied methodology; and 6) apply proper methodology. Results: From the 491 studies qualified to the initial abstract analysis, 15 met the six inclusion criteria and were included in the full-text review. Conclusions: The analysis of available literature seems to indicate that there is an association between social cognition dysfunctions in the course of autism and selected alleles of polymorphisms within the OXT receptor AVP 1A receptor genes. However, previous studies neither specify the nature of this association in an unequivocal way nor select genotypes that are the basis for this association.
Collapse
Affiliation(s)
- Krzysztof Maria Wilczyński
- Pediatric Centre of John Paul II in Sosnowiec Sp. z o.o., Sosnowiec, Poland.,Department of Psychiatry and Psychotherapy of Developmental Age, Medical University of Silesia, Katowice, Poland
| | - Andrzej Siwiec
- Pediatric Centre of John Paul II in Sosnowiec Sp. z o.o., Sosnowiec, Poland
| | - Małgorzata Janas-Kozik
- Pediatric Centre of John Paul II in Sosnowiec Sp. z o.o., Sosnowiec, Poland.,Department of Psychiatry and Psychotherapy of Developmental Age, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
34
|
Freeman SM, Palumbo MC, Lawrence RH, Smith AL, Goodman MM, Bales KL. Effect of age and autism spectrum disorder on oxytocin receptor density in the human basal forebrain and midbrain. Transl Psychiatry 2018; 8:257. [PMID: 30514927 PMCID: PMC6279786 DOI: 10.1038/s41398-018-0315-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
The prosocial hormone oxytocin (OXT) has become a new target for research on the etiology and treatment of autism spectrum disorder (ASD), a condition characterized by deficits in social function. However, it remains unknown whether there are alterations in OXT receptor (OXTR) levels in the ASD brain. This study quantified the density of OXTR and of the structurally related vasopressin 1a receptor (AVPR1a) in postmortem brain tissue from individuals with ASD and typically developing individuals. We analyzed two regions known to contain OXTR across all primates studied to date: the nucleus basalis of Meynert (NBM), which mediates visual attention, and the superior colliculus, which controls gaze direction. In the NBM specimens, we also analyzed the neighboring ventral pallidum (VP) and the external segment of the globus pallidus. In the superior colliculus specimens, we also analyzed the adjacent periaqueductal gray. We detected dense OXTR binding in the human NBM and VP and moderate to low OXTR binding in the human globus pallidus, superior colliculus, and periaqueductal gray. AVPR1a binding was negligible across all five regions in all specimens. Compared to controls, ASD specimens exhibited significantly higher OXTR binding in the NBM and significantly lower OXTR binding in the VP, an area in the mesolimbic reward pathway. There was no effect of ASD on OXTR binding in the globus pallidus, superior colliculus, or periaqueductal gray. We also found a significant negative correlation between age and OXTR binding in the VP across all specimens. Further analysis revealed a peak in OXTR binding in the VP in early childhood of typically developing individuals, which was absent in ASD. This pattern suggests a possible early life critical period, which is lacking in ASD, where this important reward area becomes maximally sensitive to OXT binding. These results provide unique neurobiological insight into human social development and the social symptoms of ASD.
Collapse
Affiliation(s)
- Sara M. Freeman
- 0000 0004 1936 9684grid.27860.3bDepartment of Psychology, California National Primate Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Michelle C. Palumbo
- 0000 0004 1936 9684grid.27860.3bDepartment of Psychology, California National Primate Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Rebecca H. Lawrence
- 0000 0004 1936 9684grid.27860.3bDepartment of Psychology, California National Primate Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Aaron L. Smith
- 0000 0001 0941 6502grid.189967.8Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - Mark M. Goodman
- 0000 0001 0941 6502grid.189967.8Department of Radiology and Imaging Sciences, Emory University, 1841 Clifton Road, Atlanta, GA 30322 USA
| | - Karen L. Bales
- 0000 0004 1936 9684grid.27860.3bDepartment of Psychology, California National Primate Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
35
|
Bozdogan ST, Kutuk MO, Tufan E, Altıntaş Z, Temel GO, Toros F. No Association between Polymorphisms of Vitamin D and Oxytocin Receptor Genes and Autistic Spectrum Disorder in a Sample of Turkish Children. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2018; 16:415-421. [PMID: 30466214 PMCID: PMC6245295 DOI: 10.9758/cpn.2018.16.4.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 12/16/2022]
Abstract
Objective Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in social skills and communication with repetitive behaviors. Etiology is still unclear although it is thought to develop with interaction of genes and environmental factors. Oxytocin has extensive effects on intrauterine brain development. Vitamin D, affects neural development and differentiation and contributes to the regulation of around 900 genes including oxytocin receptor gene. In the present study, the contribution of D vitamin receptor and oxytocin receptor gene polymorphisms in the development of ASD in Turkish community was investigated. To our knowledge, this is the first study examining these two associated genes together in the literature. Methods Eighty-five patients diagnosed with ASD according to DSM-5 who were referred to outpatient clinics of Child and Adolescent Psychiatry of Başkent University and Mersin University and 52 healthy, age and gender-matched controls were included in the present study. Vitamin D receptor gene rs731236 (Taq1), rs2228570 (Fok1), rs1544410 (Bsm1), rs7975232 (Apa1) polymorphisms and oxytocin receptor gene rs1042778 and rs2268493 polymorphisms were investigated using real time polymerase chain reaction method. Results No significant difference between groups in terms of distribution of genotype and alleles in each of polymorphisms for these genes could be found. Conclusion Knowledge of genes and polymorphisms associated with the development of ASD may be beneficial for early diagnosis and future treatment. Further studies with larger populations are required to demonstrate molecular pathways which may play part in the development of ASD in Turkey.
Collapse
Affiliation(s)
- Sevcan Tug Bozdogan
- Department of Medical Genetics, School of Medicine, Çukurova University, Adana, Turkey
| | - Meryem Ozlem Kutuk
- Department of Child and Adolescent Psychiatry, School of Medicine, Başkent University, Adana, Turkey
| | - Evren Tufan
- Department of Child and Adolescent Psychiatry, School of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Zuhal Altıntaş
- Department of Medical Genetics, School of Medicine, Mersin University, Mersin, Turkey
| | - Gülhan Orekici Temel
- Department of Biostatistics and Medical Informatics, School of Medicine, Mersin University, Mersin, Turkey
| | - Fevziye Toros
- Department of Child and Adolescent Psychiatry, School of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
36
|
Cataldo I, Azhari A, Lepri B, Esposito G. Oxytocin receptors (OXTR) and early parental care: An interaction that modulates psychiatric disorders. RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 82:27-38. [PMID: 29033100 DOI: 10.1016/j.ridd.2017.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/21/2017] [Accepted: 10/05/2017] [Indexed: 05/12/2023]
Abstract
Oxytocin plays an important role in the modulation of social behavior in both typical and atypical contexts. Also, the quality of early parental care sets the foundation for long-term psychosocial development. Here, we review studies that investigated how oxytocin receptor (OXTR) interacts with early parental care experiences to influence the development of psychiatric disorders. Using Pubmed, Scopus and PsycInfo databases, we utilized the keyword "OXTR" before subsequently searching for specific OXTR single nucleotide polymorphisms (SNPs), generating a list of 598 studies in total. The papers were catalogued in a database and filtered for gene-environment interaction, psychiatric disorders and involvement of parental care. In particular, rs53576 and rs2254298 were found to be significantly involved in gene-environment interactions that modulated risk for psychopathology and the following psychiatric disorders: disruptive behavior, depression, anxiety, eating disorder and borderline personality disorder. These results illustrate the importance of OXTR in mediating the impact of parental care on the emergence of psychopathology.
Collapse
Affiliation(s)
- Ilaria Cataldo
- Department of Psychology and Cognitive Science, University of Trento, Italy; Mobile and Social Computing Lab, Fondazione Bruno Kessler, Trento, Italy
| | - Atiqah Azhari
- Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore
| | - Bruno Lepri
- Mobile and Social Computing Lab, Fondazione Bruno Kessler, Trento, Italy
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Italy; Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
37
|
Hwang MT, Wang Z, Ping J, Ban DK, Shiah ZC, Antonschmidt L, Lee J, Liu Y, Karkisaval AG, Johnson ATC, Fan C, Glinsky G, Lal R. DNA Nanotweezers and Graphene Transistor Enable Label-Free Genotyping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802440. [PMID: 29984525 PMCID: PMC6326894 DOI: 10.1002/adma.201802440] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/16/2018] [Indexed: 05/04/2023]
Abstract
Electronic DNA-biosensor with a single nucleotide resolution capability is highly desirable for personalized medicine. However, existing DNA-biosensors, especially single nucleotide polymorphism (SNP) detection systems, have poor sensitivity and specificity and lack real-time wireless data transmission. DNA-tweezers with graphene field effect transistor (FET) are used for SNP detection and data are transmitted wirelessly for analysis. Picomolar sensitivity of quantitative SNP detection is achieved by observing changes in Dirac point shift and resistance change. The use of DNA-tweezers probe with high-quality graphene FET significantly improves analytical characteristics of SNP detection by enhancing the sensitivity more than 1000-fold in comparison to previous work. The electrical signal resulting from resistance changes triggered by DNA strand-displacement and related changes in the DNA geometry is recorded and transmitted remotely to personal electronics. Practical implementation of this enabling technology will provide cheaper, faster, and portable point-of-care molecular health status monitoring and diagnostic devices.
Collapse
Affiliation(s)
- Michael T Hwang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zejun Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jinglei Ping
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deependra Kumar Ban
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zi Chao Shiah
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Leif Antonschmidt
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Joon Lee
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yushuang Liu
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, 010018, China
| | - Abhijith G Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alan T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201800, China
| | - Gennadi Glinsky
- Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ratnesh Lal
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
38
|
Cataldo I, Azhari A, Esposito G. A Review of Oxytocin and Arginine-Vasopressin Receptors and Their Modulation of Autism Spectrum Disorder. Front Mol Neurosci 2018; 11:27. [PMID: 29487501 PMCID: PMC5816822 DOI: 10.3389/fnmol.2018.00027] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/18/2018] [Indexed: 12/24/2022] Open
Abstract
Oxytocin (OXT) and arginine-vasopressin (AVP) play a key regulatory part in social and affiliative behaviors; two aspects highly compromised in Autism Spectrum Disorder (ASD). Furthermore, variants in the adjacent oxytocin-vasopressin gene regions have been found to be associated with ASD diagnosis and endophenotypes. This review focuses mainly on common OXTr single nucleotide polymorphisms (SNPs), AVPR1a microsatellites and AVPR1b polymorphisms in relation to the development of autism. Although these genes did not surface in genome-wide association studies, evidence supports the hypothesis that these receptors and their polymorphisms are widely involved in the regulation of social behavior, and in modulating neural and physiological pathways contributing to the etiology of ASD. With a specific focus on variants considered to be among the most prevalent in the development of ASD, these issues will be discussed in-depth and suggestions to approach inconsistencies in the present literature will be provided. Translational implications and future directions are deliberated from a short-term and a forward-looking perspective. While the scientific community has made significant progress in enhancing our understanding of ASD, more research is required for the ontology of this disorder to be fully elucidated. By supplementing information related to genetics, highlighting the differences across male and female sexes, this review provides a wider view of the current state of knowledge of OXTr and AVPr mechanisms of functioning, eventually addressing future research in the identification of further risk factors, to build new strategies for early interventions.
Collapse
Affiliation(s)
- Ilaria Cataldo
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,Mobile and Social Computing Lab, Fondazione Bruno Kessler, Trento, Italy
| | - Atiqah Azhari
- Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
39
|
Ebner NC, Lin T, Muradoglu M, Weir DH, Plasencia GM, Lillard TS, Pournajafi-Nazarloo H, Cohen RA, Sue Carter C, Connelly JJ. Associations between oxytocin receptor gene (OXTR) methylation, plasma oxytocin, and attachment across adulthood. Int J Psychophysiol 2018; 136:22-32. [PMID: 29410310 DOI: 10.1016/j.ijpsycho.2018.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/23/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
The neuropeptide oxytocin (OT) has been implicated in a wide range of affiliative processes. OT exerts its functions via OT receptors, which are encoded by the oxytocin receptor gene (OXTR). Epigenetic modification of OXTR through the process of DNA methylation has been associated with individual differences in behavioral phenotypes. Specifically, lower levels of OXTR methylation have been linked to better social and affective functioning. However, research on epigenetic mechanisms of OXTR is scarce in non-clinical populations, and even less is known about epigenetic variability across adulthood. The present study assessed methylation levels at OXTR CpG site -934 and plasma OT levels in 22 young (20-31 years, M = 23.6) and 34 older (63-80 years, M = 71.4) participants. Lower levels of OXTR methylation and higher plasma OT levels were associated with less self-reported attachment anxiety in young but not older participants, with largely independent contributions of OXTR methylation and plasma OT levels. In contrast, in the overall sample, lower levels of OXTR methylation were associated with higher self-reported attachment avoidance. Age analysis suggested that these results were largely driven by young adults. Plasma OT levels were unrelated to attachment avoidance. Taken together, these findings support the emerging notion in the literature that epigenetic properties of OXTR, in addition to endogenous OT levels, are related to adult attachment. Further, the age effects observed in the associations between OXTR methylation, plasma OT, and adult attachment emphasize the importance of adopting a developmental perspective when studying properties of the OT system and their relation to affiliative processes. Findings contribute to growing evidence suggesting that epigenetic modification of genes regulating OT pathways and endogenous OT levels are associated with the way people form and maintain intimate social relationships.
Collapse
Affiliation(s)
- Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA; Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
| | - Tian Lin
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Melis Muradoglu
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Devon H Weir
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Gabriela M Plasencia
- Stritch School of Medicine, Loyola University of Chicago, 2160 S 1st Ave, Maywood, IL 60153, USA
| | - Travis S Lillard
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | | | - Ronald A Cohen
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
40
|
Transient receptor potential melastatin-2 and temperature participate in the process of CD38-regulated oxytocin secretion. Neuroreport 2018; 27:935-9. [PMID: 27348016 DOI: 10.1097/wnr.0000000000000634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In recent studies, oxytocin showed potential for the treatment of mental diseases. CD38 is essential for oxytocin release, and hence plays a critical role in social behavior. CD38 catalyzes β-NAD into cyclic ADP ribose (cADPR), which could elevate the intracellular Ca by Ca-permeable channels for oxytocin secretion. The temperature-sensitive cation channel, transient receptor potential melastatin-2 (TRPM2), is a cation-nonselective cation and has been shown to affect oxytocin indirectly. The aim of the present study was to verify the participation of temperature and TRPM2 in CD38-regulated oxytocin release. The crude membranes were prepared to isolate the nerve terminals from the posterior pituitary. At 34°C, 37°C, and 39°C, agonists (β-NAD, ADPR, cADPR) and antagonists (8-Br-cADPR, 2-APB) were used to stimulate the nerve terminals. Oxytocin releases were investigated by enzyme-linked immunosorbent assay. In addition, the expression of TRPM2 and CD38 in the hypothalamus and pituitary was detected by western blotting and quantitative PCR. CD38 agonists (β-NAD, cADPR) and antagonist (8-Br-cADPR) could increase or reduce the oxytocin release, respectively. TRPM2 agonist (ADPR) and antagonist (2-APB) alone could also regulate oxytocin release. Furthermore, temperature could increase agonist stimulation and attenuate the antagonist inhibition on oxytocin release. In addition, CD38 and TRPM2 were expressed in the hypothalamus and pituitary at both the mRNA and the protein level. TRPM2 in pituitary nerve terminals plays a role in oxytocin release. Temperature- enhanced oxytocin release by CD38 and TRPM2. TRPM2 might be involved in the process of CD38-regulated oxytocin release.
Collapse
|
41
|
Thye MD, Bednarz HM, Herringshaw AJ, Sartin EB, Kana RK. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev Cogn Neurosci 2018; 29:151-167. [PMID: 28545994 PMCID: PMC6987885 DOI: 10.1016/j.dcn.2017.04.010] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/25/2017] [Accepted: 04/18/2017] [Indexed: 02/03/2023] Open
Abstract
Altered sensory processing has been an important feature of the clinical descriptions of autism spectrum disorder (ASD). There is evidence that sensory dysregulation arises early in the progression of ASD and impacts social functioning. This paper reviews behavioral and neurobiological evidence that describes how sensory deficits across multiple modalities (vision, hearing, touch, olfaction, gustation, and multisensory integration) could impact social functions in ASD. Theoretical models of ASD and their implications for the relationship between sensory and social functioning are discussed. Furthermore, neural differences in anatomy, function, and connectivity of different regions underlying sensory and social processing are also discussed. We conclude that there are multiple mechanisms through which early sensory dysregulation in ASD could cascade into social deficits across development. Future research is needed to clarify these mechanisms, and specific focus should be given to distinguish between deficits in primary sensory processing and altered top-down attentional and cognitive processes.
Collapse
Affiliation(s)
- Melissa D Thye
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Haley M Bednarz
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Abbey J Herringshaw
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Emma B Sartin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| |
Collapse
|
42
|
Ocakoğlu FT, Köse S, Özbaran B, Onay H. The oxytocin receptor gene polymorphism -rs237902- is associated with the severity of autism spectrum disorder: A pilot study. Asian J Psychiatr 2018; 31:142-149. [PMID: 29428512 DOI: 10.1016/j.ajp.2018.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/09/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Previous studies showed the association of Autism Spectrum Disorder (ASD) and oxytocin receptor (OXTR) gene. We aimed to explore the OXTR gene single nucleotide polymorphisms (SNPs) across the ASD severity categories based on DSM-5. METHOD The whole encoding regions of the human OXTR gene were sequenced to identify the SNPs in 100 Turkish children with ASD. Genotypes of detected SNPs were also compared with the Childhood Autism Rating Scale (CARS) scores. RESULTS Disease severity of the patients carrying GA and AA genotypes (GA/AA) of rs237902 were found more severe compared to those carrying GG genotype (χ2 = 6.456, df = 2, p = .040). This finding was more powerful in boys (χ2 = 9.288, df = 2, p = .010). Similarly, GA/AA genotypes of rs237902 were found associated with higher CARS scores in boys (U = 650.5, r = 0.24, p = .021). CONCLUSION Significant relationship between the ASD severity categories of DSM-5 and rs237902 was shown for the first time.
Collapse
Affiliation(s)
- Fevzi Tuna Ocakoğlu
- Batman District State Hospital, Child Psychiatry Outpatient Clinic, MA: 72070, Batman, Turkey.
| | - Sezen Köse
- Department of Child and Adolescent Psychiatry, Ege University School of Medicine, Bornova, Izmir, Turkey.
| | - Burcu Özbaran
- Department of Child and Adolescent Psychiatry, Ege University School of Medicine, Bornova, Izmir, Turkey.
| | - Hüseyin Onay
- Department of Medical Genetic, Ege University School of Medicine, Bornova, Izmir, Turkey.
| |
Collapse
|
43
|
Hara Y, Ago Y, Higuchi M, Hasebe S, Nakazawa T, Hashimoto H, Matsuda T, Takuma K. Oxytocin attenuates deficits in social interaction but not recognition memory in a prenatal valproic acid-induced mouse model of autism. Horm Behav 2017; 96:130-136. [PMID: 28942000 DOI: 10.1016/j.yhbeh.2017.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/26/2017] [Accepted: 09/09/2017] [Indexed: 01/20/2023]
Abstract
Recent studies have reported that oxytocin ameliorates behavioral abnormalities in both animal models and individuals with autism spectrum disorders (ASD). However, the mechanisms underlying the ameliorating effects of oxytocin remain unclear. In this study, we examined the effects of intranasal oxytocin on impairments in social interaction and recognition memory in an ASD mouse model in which animals are prenatally exposed to valproic acid (VPA). We found that a single intranasal administration of oxytocin restored social interaction deficits for up to 2h in mice prenatally exposed to VPA, but there was no effect on recognition memory impairments. Additionally, administration of oxytocin across 2weeks improved prenatal VPA-induced social interaction deficits for at least 24h. In contrast, there were no effects on the time spent sniffing in control mice. Immunohistochemical analysis revealed that intranasal administration of oxytocin increased c-Fos expression in the paraventricular nuclei (PVN), prefrontal cortex, and somatosensory cortex, but not the hippocampal CA1 and CA3 regions of VPA-exposed mice, suggesting the former regions may underlie the effects of oxytocin. These findings suggest that oxytocin attenuates social interaction deficits through the activation of higher cortical areas and the PVN in an ASD mouse model.
Collapse
Affiliation(s)
- Yuta Hara
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Momoko Higuchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeru Hasebe
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Takuma
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
44
|
Watanabe T, Otowa T, Abe O, Kuwabara H, Aoki Y, Natsubori T, Takao H, Kakiuchi C, Kondo K, Ikeda M, Iwata N, Kasai K, Sasaki T, Yamasue H. Oxytocin receptor gene variations predict neural and behavioral response to oxytocin in autism. Soc Cogn Affect Neurosci 2017; 12:496-506. [PMID: 27798253 PMCID: PMC5390696 DOI: 10.1093/scan/nsw150] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022] Open
Abstract
Oxytocin appears beneficial for autism spectrum disorder (ASD), and more than 20 single-nucleotide polymorphisms (SNPs) in oxytocin receptor (OXTR) are relevant to ASD. However, neither biological functions of OXTR SNPs in ASD nor critical OXTR SNPs that determine oxytocin’s effects on ASD remains known. Here, using a machine-learning algorithm that was designed to evaluate collective effects of multiple SNPs and automatically identify most informative SNPs, we examined relationships between 27 representative OXTR SNPs and six types of behavioral/neural response to oxytocin in ASD individuals. The oxytocin effects were extracted from our previous placebo-controlled within-participant clinical trial administering single-dose intranasal oxytocin to 38 high-functioning adult Japanese ASD males. Consequently, we identified six different SNP sets that could accurately predict the six different oxytocin efficacies, and confirmed the robustness of these SNP selections against variations of the datasets and analysis parameters. Moreover, major alleles of several prominent OXTR SNPs—including rs53576 and rs2254298—were found to have dissociable effects on the oxytocin efficacies. These findings suggest biological functions of the OXTR SNP variants on autistic oxytocin responses, and implied that clinical oxytocin efficacy may be genetically predicted before its actual administration, which would contribute to establishment of future precision medicines for ASD.
Collapse
Affiliation(s)
- Takamitsu Watanabe
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Takeshi Otowa
- Department of Neuropsychiatry Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo 173-8610, Japan
| | | | - Yuta Aoki
- Department of Neuropsychiatry Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tatsunobu Natsubori
- Department of Neuropsychiatry Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hidemasa Takao
- Department of Radiology Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Chihiro Kakiuchi
- Department of Neuropsychiatry Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kenji Kondo
- Department of Psychiatry Fujita Health University School of Medicine, Aichi 470-1192, Japan
| | - Masashi Ikeda
- Department of Psychiatry Fujita Health University School of Medicine, Aichi 470-1192, Japan
| | - Nakao Iwata
- Department of Psychiatry Fujita Health University School of Medicine, Aichi 470-1192, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.,Department of Psychiatry Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City 431-3192, Japan
| |
Collapse
|
45
|
Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet 2017; 174:485-537. [PMID: 29984470 PMCID: PMC7170264 DOI: 10.1002/ajmg.b.32542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
Abstract
Neurodevelopmental disorders are defined by highly heritable problems during development and brain growth. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and intellectual disability (ID) are frequent neurodevelopmental disorders, with common comorbidity among them. Imaging genetics studies on the role of disease-linked genetic variants on brain structure and function have been performed to unravel the etiology of these disorders. Here, we reviewed imaging genetics literature on these disorders attempting to understand the mechanisms of individual disorders and their clinical overlap. For ADHD and ASD, we selected replicated candidate genes implicated through common genetic variants. For ID, which is mainly caused by rare variants, we included genes for relatively frequent forms of ID occurring comorbid with ADHD or ASD. We reviewed case-control studies and studies of risk variants in healthy individuals. Imaging genetics studies for ADHD were retrieved for SLC6A3/DAT1, DRD2, DRD4, NOS1, and SLC6A4/5HTT. For ASD, studies on CNTNAP2, MET, OXTR, and SLC6A4/5HTT were found. For ID, we reviewed the genes FMR1, TSC1 and TSC2, NF1, and MECP2. Alterations in brain volume, activity, and connectivity were observed. Several findings were consistent across studies, implicating, for example, SLC6A4/5HTT in brain activation and functional connectivity related to emotion regulation. However, many studies had small sample sizes, and hypothesis-based, brain region-specific studies were common. Results from available studies confirm that imaging genetics can provide insight into the link between genes, disease-related behavior, and the brain. However, the field is still in its early stages, and conclusions about shared mechanisms cannot yet be drawn.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
46
|
The Role of the Oxytocin/Arginine Vasopressin System in Animal Models of Autism Spectrum Disorder. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2017; 224:135-158. [DOI: 10.1007/978-3-319-52498-6_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Yang S, Dong X, Guo X, Han Y, Song H, Gao L, Dai W, Su Y, Zhang X. Serum Oxytocin Levels and an Oxytocin Receptor Gene Polymorphism (rs2254298) Indicate Social Deficits in Children and Adolescents with Autism Spectrum Disorders. Front Neurosci 2017; 11:221. [PMID: 28484366 PMCID: PMC5399030 DOI: 10.3389/fnins.2017.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
The neuropeptide oxytocin (OT) and its receptor (OXTR) have been predicted to be involved in the regulation of social functioning in autism spectrum disorders (ASD). Objective of the study was to investigate serum OT levels and the OXTR rs2254298 polymorphism in Chinese Han children and adolescents with ASD as well as to identify their social deficits relevant to the oxytocinergic system. We tested serum OT levels using ELISA in 55 ASD subjects and 110 typically developing (TD) controls as well as genotyped the OXTR rs2254298 polymorphism using PCR-RFLP in 100 ASD subjects and 232 TD controls. Autistic symptoms were assessed by the Autism Behavior Checklist (ABC) and the Childhood Autism Rating Scale (CARS). There were no significant associations between OXTR rs2254298 polymorphism and ASD, serum OT levels and age, as well as serum OT levels and intelligent quotient (IQ) in both ASD and TD groups. However, ASD subjects exhibited elevated serum OT levels compared to TD controls and positive correlations between serum OT levels and “adaptation to change score” in the CARS and CARS total scores. Moreover, in the ASD group, significant relationships were revealed between the single-nucleotide polymorphism (SNP) rs2254298 and serum OT levels, the category “stereotypes and object use” in the ABC and the category “adaptation to change” in the CARS. These findings indicated that individuals with ASD may exhibit a dysregulation in OT on the basis of changes in OXTR gene expression as well as environmentally induced alterations of the oxytocinergic system to determine their social deficits.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Xiaopeng Dong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Xuan Guo
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Hanbing Song
- Department of Applied Science, The College of William and MaryWilliamsburg, VA, USA
| | - Lei Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Wei Dai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Yuanyuan Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| |
Collapse
|
48
|
Shang S, Wu N, Su Y. How Oxytocin Receptor (OXTR) Single Nucleotide Polymorphisms Act on Prosociality: The Mediation Role of Moral Evaluation. Front Psychol 2017; 8:396. [PMID: 28377734 PMCID: PMC5359230 DOI: 10.3389/fpsyg.2017.00396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/02/2017] [Indexed: 11/13/2022] Open
Abstract
Prosociality is related to numerous positive outcomes, and mechanisms underlying individual differences in prosociality have been widely discussed. Recently, research has found converging evidence on the influence of the oxytocin receptor (OXTR) gene on prosociality. Meanwhile, moral reasoning, a key precursor for social behavior, has also been associated with variability in OXTR gene, thus the relationship between OXTR and prosociality is assumed to be mediated by moral evaluation. The current study examines the relationship in question, and includes gender as a potential moderator. Self-reported prosociality on Prosocial Tendencies Measure and evaluation on the moral acceptability of behaviors in stories from 790 Chinese adolescents (32.4% boys) were analyzed for the influence of their OXTR single nucleotide polymorphisms (SNPs). Results showed that SNP at site rs2254298 was indirectly associated with prosocial behaviors via moral evaluation of behaviors, and this effect was moderated by gender. Our findings suggest an indirect association between genetic variations in OXTR and prosociality through moral evaluation, indicating the potential pathway from genetic variability to prosociality through level of moral development. We also provide some evidence that the role of oxytocin system may to some extent depend on gender. These findings may promote our understanding of the genetic and biological roots of prosociality and morality.
Collapse
Affiliation(s)
- Siyuan Shang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing China
| | - Nan Wu
- Teachers' College of Beijing Union University, Beijing China
| | - Yanjie Su
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing China
| |
Collapse
|
49
|
Genes Related to Oxytocin and Arginine-Vasopressin Pathways: Associations with Autism Spectrum Disorders. Neurosci Bull 2017; 33:238-246. [PMID: 28283809 PMCID: PMC5360847 DOI: 10.1007/s12264-017-0120-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/17/2017] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorders characterized by impaired social interactions, communication deficits, and repetitive behavior. Although the mechanisms underlying its etiology and manifestations are poorly understood, several lines of evidence from rodent and human studies suggest involvement of the evolutionarily highly-conserved oxytocin (OXT) and arginine-vasopressin (AVP), as these neuropeptides modulate various aspects of mammalian social behavior. As far as we know, there is no comprehensive review of the roles of the OXT and AVP systems in the development of ASD from the genetic aspect. In this review, we summarize the current knowledge regarding associations between ASD and single-nucleotide variants of the human OXT-AVP pathway genes OXT, AVP, AVP receptor 1a (AVPR1a), OXT receptor (OXTR), the oxytocinase/vasopressinase (LNPEP), and ADP-ribosyl cyclase (CD38).
Collapse
|
50
|
Anderson MR, Miller L, Wickramaratne P, Svob C, Odgerel Z, Zhao R, Weissman MM. Genetic Correlates of Spirituality/Religion and Depression: A Study in Offspring and Grandchildren at High and Low Familial Risk for Depression. ACTA ACUST UNITED AC 2017; 4:43-63. [PMID: 29057276 DOI: 10.1037/scp0000125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RATIONALE Possible genetic correlates of spirituality and depression have been identified in community samples. We investigate some of the previously identified candidates in a sample of families at both high and low-risk for depression. METHOD Offspring and grandchildren of individuals at high and low-risk for depression, participating in a multi-wave thirty-year longitudinal study, were assessed for seven SNPS drawn from four single gene candidates associated with systems implicated in both depression and spirituality: Serotonin (5-HT1B and 5-HT2A), Dopamine (DRD2), Oxytocin (OT) and Monoamine Vesicular Transporter (VMAT1). RESULTS Dopamine (DRD2) Serotonin (5-HT1B), their Transporter (VMAT1) and Oxytocin (OXTR) were positively associated with a high level of importance of spirituality or religion (S/R) in the group at low familial risk for depression. DRD2 minor allele was associated with both lifetime major depressive disorder (MDD) and spirituality in the low-risk group for depression. No SNPs were related to S/R in the group at high familial risk for depression. OXTR was associated with lifetime MDD in the full sample. CONCLUSION Genes for dopamine, serotonin, their vesicular transporter, and oxytocin may be associated with S/R in people at low familial risk for depression. Genes for dopamine may be associated both with S/R and increased risk for depression in people at low-risk for depression, suggesting a common pathway or physiology to mild to moderate depression. MDD is associated with oxytocin across risk groups. In the high-risk group, phenotypic expression of S/R may be suppressed. IMPLICATIONS The shared association of DRD2 by S/R and depression, generally found to be inversely related, calls for further research on their common physiological pathways, and the phenotypic expression of these pathways based upon use and environment. Prevention for offspring at high familial risk for depression might include support for the development of child spirituality.
Collapse
Affiliation(s)
| | - Lisa Miller
- Teachers College, Columbia University, New York, NY
| | - Priya Wickramaratne
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA.,Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Connie Svob
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Zagaa Odgerel
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Ruixin Zhao
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Myrna M Weissman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA.,Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|