1
|
Campbell C, Mayatra JM, Neve AJ, Fletcher JM, Johnston DGW. Inflammasomes: emerging therapeutic targets in hidradenitis suppurativa? Br J Dermatol 2024; 191:670-679. [PMID: 38913409 DOI: 10.1093/bjd/ljae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by recurrent inflammatory lesions, which affect skin and hair follicles in intertriginous areas. HS has a multifactorial aetiology resulting in barrier dysfunction associated with aberrant immune activation. There is increased evidence for the role of inflammasomes in the pathophysiology of inflammatory skin diseases, including HS. Inflammasomes are multiprotein complexes activated following exposure to danger signals, including microbial ligands and components of damaged host cells. Inflammasome activation induces many signalling cascades and subsequent cleavage of proinflammatory cytokines - most notably interleukin (IL)-1β - which have a role in HS pathogenesis. Limited immunotherapies are approved for treating moderate-to-severe HS, with variable response rates influenced by disease heterogeneity. Inflammasomes represent attractive targets to suppress multiple inflammatory pathways in HS, including IL-1β and IL-17. This review aims to summarize the role of inflammasomes in HS and to evaluate evidence for inflammasomes as therapeutic targets for HS treatment.
Collapse
Affiliation(s)
- Ciara Campbell
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin
| | - Jay M Mayatra
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
| | - Ashish J Neve
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin
| | - Daniel G W Johnston
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Alsabbagh MM. Cytokines in psoriasis: From pathogenesis to targeted therapy. Hum Immunol 2024; 85:110814. [PMID: 38768527 DOI: 10.1016/j.humimm.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Psoriasis is a multifactorial disease that affects 0.84% of the global population and it can be associated with disabling comorbidities. As patients present with thick scaly lesions, psoriasis was long believed to be a disorder of keratinocytes. Psoriasis is now understood to be the outcome of the interaction between immunological and environmental factors in individuals with genetic predisposition. While it was initially thought to be solely mediated by cytokines of type-1 immunity, namely interferon-γ, interleukin-2, and interleukin-12 because it responds very well to cyclosporine, a reversible IL-2 inhibitor; the discovery of Th-17 cells advanced the understanding of the disease and helped the development of biological therapy. This article aims to provide a comprehensive review of the role of cytokines in psoriasis, highlighting areas of controversy and identifying the connection between cytokine imbalance and disease manifestations. It also presents the approved targeted treatments for psoriasis and those currently under investigation.
Collapse
Affiliation(s)
- Manahel Mahmood Alsabbagh
- Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders and Department of Molecular Medicine, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
3
|
Rooney M, Duduskar SN, Ghait M, Reißing J, Stengel S, Reuken PA, Quickert S, Zipprich A, Bauer M, Russo AJ, Rathinam VA, Stallmach A, Rubio I, Bruns T. Type-I interferon shapes peritoneal immunity in cirrhosis and drives caspase-5-mediated progranulin release upon infection. J Hepatol 2024:S0168-8278(24)02325-0. [PMID: 38936554 DOI: 10.1016/j.jhep.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND & AIMS Gut bacterial translocation contributes to immune dysfunction and spontaneous bacterial peritonitis (SBP) in cirrhosis. We hypothesized that exposure of peritoneal macrophages (PMs) to bacterial DNA results in type-I interferon (IFN) production, shaping subsequent immune responses, inflammasome activation, and the release of damage-associated molecular patterns (DAMPs). METHODS PMs from patients with cirrhosis were stimulated with E. coli single-stranded DNA (ssDNA), lipopolysaccharide and IFN, or infected with E. coli, S. aureus, and Group B streptococcus in vitro. Cytokine release, inflammasome activation, and DAMP release were quantified by quantitative-PCR, ELISA, western blots, and reporter cells employing primary PMs, monocytes, and caspase-deficient THP-1 macrophages. Serum progranulin concentration was correlated with transplant-free survival in 77 patients with SBP. RESULTS E. coli ssDNA induced strong type-I IFN activity in PMs and monocytes, priming them for enhanced lipopolysaccharide-mediated tumor necrosis factor production without inducing toll-like receptor 4 tolerance. During in vitro macrophage bacterial infection, type-I IFN release aligned with upregulated expression of IFN-regulatory factors (IRF)1/2 and guanylate binding proteins (GBP)2/5. PMs upregulated inflammasome-associated proteins and type-I IFN upon E. coli ssDNA exposure and released interleukin-1β upon bacterial infection. Proteomic screening in mouse macrophages revealed progranulin release as being caspase-11-dependent during E. coli infection. PMs and THP-1 macrophages released significant amounts of progranulin when infected with S. aureus or E. coli via gasdermin D in a type-I IFN- and caspase-5-dependent manner. During SBP, PMs upregulated IRF1, GBP2/5 and caspase-5 and higher serum progranulin concentrations were indicative of lower 90-day transplant-free survival after SBP. CONCLUSIONS Type-I IFN shapes peritoneal immune responses and regulates caspase-5-mediated progranulin release during SBP. IMPACT AND IMPLICATIONS Patients with cirrhosis exhibit impaired immune responses and increased susceptibility to bacterial infections. This study reveals that type-I interferon responses, triggered by pathogen-associated molecular patterns, are crucial in regulating macrophage activation and priming them for inflammatory responses. Additionally, we elucidate the mechanisms by which type-I interferons promote the release of progranulin from macrophages during spontaneous bacterial peritonitis. Our findings enhance understanding of how bacterial translocation affects immune responses, identify novel biomarkers for inflammasome activation during infections, and point to potential therapeutic targets.
Collapse
Affiliation(s)
- Michael Rooney
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Shivalee N Duduskar
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Mohamed Ghait
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Johanna Reißing
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sven Stengel
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany; Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefanie Quickert
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Michael Bauer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ashley J Russo
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ignacio Rubio
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
4
|
Eckhart L, Fischer H. Caspase-5: Structure, Pro-Inflammatory Activity and Evolution. Biomolecules 2024; 14:520. [PMID: 38785927 PMCID: PMC11117641 DOI: 10.3390/biom14050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Caspase-5 is a protease that induces inflammation in response to lipopolysaccharide (LPS), a component of the cell envelope of Gram-negative bacteria. The expression level of the CASP5 gene is very low in the basal state, but strongly increases in the presence of LPS. Intracellular LPS binds to the caspase activation and recruitment domain (CARD) of caspase-5, leading to the formation of a non-canonical inflammasome. Subsequently, the catalytic domain of caspase-5 cleaves gasdermin D and thereby facilitates the formation of cell membrane pores through which pro-inflammatory cytokines of the interleukin-1 family are released. Caspase-4 is also able to form a non-canonical inflammasome upon binding to LPS, but its expression is less dependent on LPS than the expression of caspase-5. Caspase-4 and caspase-5 have evolved via the duplication of a single ancestral gene in a subclade of primates, including humans. Notably, the main biomedical model species, the mouse, has only one ortholog, namely caspase-11. Here, we review the structural features and the mechanisms of regulation that are important for the pro-inflammatory roles of caspase-5. We summarize the interspecies differences and the evolution of pro-inflammatory caspases in mammals and discuss the potential roles of caspase-5 in the defense against Gram-negative bacteria and in sepsis.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinz Fischer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
5
|
Calabrese L, Fiocco Z, Mellett M, Aoki R, Rubegni P, French LE, Satoh TK. Role of the NLRP1 inflammasome in skin cancer and inflammatory skin diseases. Br J Dermatol 2024; 190:305-315. [PMID: 37889986 DOI: 10.1093/bjd/ljad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Inflammasomes are cytoplasmic protein complexes that play a crucial role in protecting the host against pathogenic and sterile stressors by initiating inflammation. Upon activation, these complexes directly regulate the proteolytic processing and activation of proinflammatory cytokines interleukin (IL)-1β and IL-18 to induce a potent inflammatory response, and induce a programmed form of cell death called pyroptosis to expose intracellular pathogens to the surveillance of the immune system, thus perpetuating inflammation. There are various types of inflammasome complexes, with the NLRP1 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-1) inflammasome being the first one identified and currently recognized as the predominant inflammasome sensor protein in human keratinocytes. Human NLRP1 exhibits a unique domain structure, containing both an N-terminal pyrin (PYD) domain and an effector C-terminal caspase recruitment domain (CARD). It can be activated by diverse stimuli, such as viruses, ultraviolet B radiation and ribotoxic stress responses. Specific mutations in NLRP1 or related genes have been associated with rare monogenic skin disorders, such as multiple self-healing palmoplantar carcinoma; familial keratosis lichenoides chronica; autoinflammation with arthritis and dyskeratosis; and dipeptidyl peptidase 9 deficiency. Recent research breakthroughs have also highlighted the involvement of dysfunctions in the NLRP1 pathway in a handful of seemingly unrelated dermatological conditions. These range from monogenic autoinflammatory diseases to polygenic autoimmune diseases such as vitiligo, psoriasis, atopic dermatitis and skin cancer, including squamous cell carcinoma, melanoma and Kaposi sarcoma. Additionally, emerging evidence implicates NLRP1 in systemic lupus erythematosus, pemphigus vulgaris, Addison disease, Papillon-Lefèvre syndrome and leprosy. The aim of this review is to shed light on the implications of pathological dysregulation of the NLRP1 inflammasome in skin diseases and investigate the potential rationale for targeting this pathway as a future therapeutic approach.
Collapse
Affiliation(s)
- Laura Calabrese
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
- Institute of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Zeno Fiocco
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Rui Aoki
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Pietro Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| |
Collapse
|
6
|
Krajewski PK, Tsoukas M, Szepietowski JC. Pathological and Therapeutical Implications of Pyroptosis in Psoriasis and Hidradenitis Suppurativa: A Narrative Review. Curr Issues Mol Biol 2024; 46:663-676. [PMID: 38248345 PMCID: PMC10814322 DOI: 10.3390/cimb46010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
This manuscript explores the role of pyroptosis, an inflammatory programmed cell death, in the pathogenesis of two chronic dermatoses, psoriasis and hidradenitis suppurativa (HS). The diseases, though clinically diverse, share common pathogenetic pathways involving the unbalanced interaction between the adaptive and innate immune systems. This review focuses on the molecular changes in psoriatic and HS skin, emphasizing the activation of dendritic cells, secretion of interleukins (IL-17, IL-22, and TNF-α), and the involvement of inflammasomes, particularly NLRP3. This manuscript discusses the role of caspases, especially caspase-1, in driving pyroptosis and highlights the family of gasdermins (GSDMs) as key players in the formation of pores leading to cell rupture and the release of proinflammatory signals. This study delves into the potential therapeutic implications of targeting pyroptosis in psoriasis and HS, examining existing medications like biologics and Janus kinase inhibitors. It also reviews the current limitations and challenges in developing therapies that selectively target pyroptosis. Additionally, the manuscript explores the role of pyroptosis in various inflammatory disorders associated with psoriasis and HS, such as inflammatory bowel disease, diabetes mellitus, and cardiovascular disorders. The review concludes by emphasizing the need for further research to fully elucidate the pathomechanisms of these dermatoses and develop effective, targeted therapies.
Collapse
Affiliation(s)
- Piotr K. Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland;
| | - Maria Tsoukas
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland;
| |
Collapse
|
7
|
Kuczyńska M, Moskot M, Gabig-Cimińska M. Insights into Autophagic Machinery and Lysosomal Function in Cells Involved in the Psoriatic Immune-Mediated Inflammatory Cascade. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0005. [PMID: 38409665 DOI: 10.2478/aite-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 02/28/2024]
Abstract
Impaired autophagy, due to the dysfunction of lysosomal organelles, contributes to maladaptive responses by pathways central to the immune system. Deciphering the immune-inflammatory ecosystem is essential, but remains a major challenge in terms of understanding the mechanisms responsible for autoimmune diseases. Accumulating evidence implicates a role that is played by a dysfunctional autophagy-lysosomal pathway (ALP) and an immune niche in psoriasis (Ps), one of the most common chronic skin diseases, characterized by the co-existence of autoimmune and autoinflammatory responses. The dysregulated autophagy associated with the defective lysosomal system is only one aspect of Ps pathogenesis. It probably cannot fully explain the pathomechanism involved in Ps, but it is likely important and should be seriously considered in Ps research. This review provides a recent update on discoveries in the field. Also, it sheds light on how the dysregulation of intracellular pathways, coming from modulated autophagy and endolysosomal trafficking, characteristic of key players of the disease, i.e., skin-resident cells, as well as circulating immune cells, may be responsible for immune impairment and the development of Ps.
Collapse
Affiliation(s)
- Martyna Kuczyńska
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
8
|
Shahi A, Afzali S, Amirzargar A, Mohaghegh P, Salehi S, Mansoori Y. Potential roles of inflammasomes in the pathophysiology of Psoriasis: A comprehensive review. Mol Immunol 2023; 161:44-60. [PMID: 37481828 DOI: 10.1016/j.molimm.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/20/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
Psoriasis is an inflammatory skin disease whose pathophysiology is attributed to both innate and adaptive immune cells and molecules. Despite the crucial roles of the immune system in psoriasis, it cannot be categorized as an autoimmune disease because of the lack of main signs of autoimmunity, such as specific antibodies, well-defined antigens, and autoimmune genetic risk factors. The presence of some cellular and molecular properties, such as the presence of neutrophils in skin lesions and the activation of the innate immune system, attributes psoriasis to a group of diseases called autoinflammatory disorders. Autoinflammatory diseases refer to a group of inherited disorders whose main manifestations are recurrent fever, a high level of acute-phase reactant, and a tendency for inflammation of the skin, joints, and other organs like the nervous system. In most autoinflammatory disorders, it has been seen that complexes of the high-molecular-weight protein named inflammasomes have significant roles. The inflammasome complex usually is formed and activated in the stimulated immune cell cytoplasm, and its activation consequently leads to inflammatory events such as producing of active caspase-1, mature interleukin-1β (IL-1β), and IL-18 and can cause an inflammatory programmed cell death called pyroptosis. Since the identification of inflammasomes, it has been shown that there are close links between them and hereditary and acquired autoinflammatory diseases like psoriasis. In this review, we aim to focus on well-defined inflammasome and their role in the pathophysiology of psoriasis.
Collapse
Affiliation(s)
- Abbas Shahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Poopak Mohaghegh
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
9
|
Bulté D, Rigamonti C, Romano A, Mortellaro A. Inflammasomes: Mechanisms of Action and Involvement in Human Diseases. Cells 2023; 12:1766. [PMID: 37443800 PMCID: PMC10340308 DOI: 10.3390/cells12131766] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammasome complexes and their integral receptor proteins have essential roles in regulating the innate immune response and inflammation at the post-translational level. Yet despite their protective role, aberrant activation of inflammasome proteins and gain of function mutations in inflammasome component genes seem to contribute to the development and progression of human autoimmune and autoinflammatory diseases. In the past decade, our understanding of inflammasome biology and activation mechanisms has greatly progressed. We therefore provide an up-to-date overview of the various inflammasomes and their known mechanisms of action. In addition, we highlight the involvement of various inflammasomes and their pathogenic mechanisms in common autoinflammatory, autoimmune and neurodegenerative diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We conclude by speculating on the future avenues of research needed to better understand the roles of inflammasomes in health and disease.
Collapse
Affiliation(s)
- Dimitri Bulté
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Chiara Rigamonti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessandro Romano
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| |
Collapse
|
10
|
Fetter T, de Graaf DM, Claus I, Wenzel J. Aberrant inflammasome activation as a driving force of human autoimmune skin disease. Front Immunol 2023; 14:1190388. [PMID: 37325658 PMCID: PMC10266227 DOI: 10.3389/fimmu.2023.1190388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Autoimmune skin diseases are understood as conditions in which the adaptive immune system with autoantigen-specific T cells and autoantibody-producing B cells reacting against self-tissues plays a crucial pathogenic role. However, there is increasing evidence that inflammasomes, which are large multiprotein complexes that were first described 20 years ago, contribute to autoimmune disease progression. The inflammasome and its contribution to the bioactivation of interleukins IL-1β and IL-18 play an essential role in combating foreign pathogens or tissue damage, but may also act as a pathogenic driver of myriad chronic inflammatory diseases when dysfunctionally regulated. Inflammasomes containing the NOD-like receptor family members NLRP1 and NLRP3 as well as the AIM2-like receptor family member AIM2 have been increasingly investigated in inflammatory skin conditions. In addition to autoinflammatory diseases, which are often associated with skin involvement, the aberrant activation of the inflammasome has also been implied in autoimmune diseases that can either affect the skin besides other organs such as systemic lupus erythematosus and systemic sclerosis or are isolated to the skin in humans. The latter include, among others, the T-cell mediated disorders vitiligo, alopecia areata, lichen planus and cutaneous lupus erythematosus as well as the autoantibody-driven blistering skin disease bullous pemphigoid. Some diseases are characterized by both autoinflammatory and autoimmune responses such as the chronic inflammatory skin disease psoriasis. Further insights into inflammasome dysregulation and associated pathways as well as their role in forming adaptive immune responses in human autoimmune skin pathology could potentially offer a new field of therapeutic options in the future.
Collapse
Affiliation(s)
- Tanja Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | | | - Isabelle Claus
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
11
|
Smith AP, Creagh EM. Caspase-4 and -5 Biology in the Pathogenesis of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:919567. [PMID: 35712726 PMCID: PMC9194562 DOI: 10.3389/fphar.2022.919567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the gastrointestinal tract, associated with high levels of inflammatory cytokine production. Human caspases-4 and -5, and their murine ortholog caspase-11, are essential components of the innate immune pathway, capable of sensing and responding to intracellular lipopolysaccharide (LPS), a component of Gram-negative bacteria. Following their activation by LPS, these caspases initiate potent inflammation by causing pyroptosis, a lytic form of cell death. While this pathway is essential for host defence against bacterial infection, it is also negatively associated with inflammatory pathologies. Caspases-4/-5/-11 display increased intestinal expression during IBD and have been implicated in chronic IBD inflammation. This review discusses the current literature in this area, identifying links between inflammatory caspase activity and IBD in both human and murine models. Differences in the expression and functions of caspases-4, -5 and -11 are discussed, in addition to mechanisms of their activation, function and regulation, and how these mechanisms may contribute to the pathogenesis of IBD.
Collapse
Affiliation(s)
| | - Emma M. Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Ferrari D, Casciano F, Secchiero P, Reali E. Purinergic Signaling and Inflammasome Activation in Psoriasis Pathogenesis. Int J Mol Sci 2021; 22:ijms22179449. [PMID: 34502368 PMCID: PMC8430580 DOI: 10.3390/ijms22179449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory disease of the skin associated with systemic and joint manifestations and accompanied by comorbidities, such as metabolic syndrome and increased risk of cardiovascular disease. Psoriasis has a strong genetic basis, but exacerbation requires additional signals that are still largely unknown. The clinical manifestations involve the interplay between dendritic and T cells in the dermis to generate a self-sustaining inflammatory loop around the TNFα/IL-23/IL-17 axis that forms the psoriatic plaque. In addition, in recent years, a critical role of keratinocytes in establishing the interplay that leads to psoriatic plaques’ formation has re-emerged. In this review, we analyze the most recent evidence of the role of keratinocytes and danger associates molecular patterns, such as extracellular ATP in the generation of psoriatic skin lesions. Particular attention will be given to purinergic signaling in inflammasome activation and in the initiation of psoriasis. In this phase, keratinocytes’ inflammasome may trigger early inflammatory pathways involving IL-1β production, to elicit the subsequent cascade of events that leads to dendritic and T cell activation. Since psoriasis is likely triggered by skin-damaging events and trauma, we can envisage that intracellular ATP, released by damaged cells, may play a role in triggering the inflammatory response underlying the pathogenesis of the disease by activating the inflammasome. Therefore, purinergic signaling in the skin could represent a new and early step of psoriasis; thus, opening the possibility to target single molecular actors of the purinome to develop new psoriasis treatments.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
| | - Eva Reali
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
13
|
Dinshaw IJ, Ahmad N, Salim N, Leo BF. Nanoemulsions: A Review on the Conceptualization of Treatment for Psoriasis Using a 'Green' Surfactant with Low-Energy Emulsification Method. Pharmaceutics 2021; 13:1024. [PMID: 34371716 PMCID: PMC8309190 DOI: 10.3390/pharmaceutics13071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a skin disease that is not lethal and does not spread through bodily contact. However, this seemingly harmless condition can lead to a loss of confidence and social stigmatization due to a persons' flawed appearance. The conventional methods of psoriasis treatment include taking in systemic drugs to inhibit immunoresponses within the body or applying topical drugs onto the surface of the skin to inhibit cell proliferation. Topical methods are favored as they pose lesser side effects compared to the systemic methods. However, the side effects from systemic drugs and low bioavailability of topical drugs are the limitations to the treatment. The use of nanotechnology in this field has enhanced drug loading capacity and reduced dosage size. In this review, biosurfactants were introduced as a 'greener' alternative to their synthetic counterparts. Glycolipid biosurfactants are specifically suited for anti-psoriatic application due to their characteristic skin-enhancing qualities. The selection of a suitable oil phase can also contribute to the anti-psoriatic effect as some oils have skin-healing properties. The review covers the pathogenic pathway of psoriasis, conventional treatments, and prospective ingredients to be used as components in the nanoemulsion formulation. Furthermore, an insight into the state-of-the-art methods used in formulating nanoemulsions and their progression to low-energy methods are also elaborated in detail.
Collapse
Affiliation(s)
- Ignatius Julian Dinshaw
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Norazlinaliza Salim
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Bey Fen Leo
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
14
|
Abstract
SUMMARY Exposure to air pollutants has been now associated with detrimental effects on a variety of organs, including the heart, lungs, GI tract, and brain. However, recently it has become clear that pollutant exposure can also promote the development/exacerbation of a variety of skin conditions, including premature aging, psoriasis, acne, and atopic dermatitis. Although the molecular mechanisms by which pollutant exposure results in these cutaneous pathological manifestations, it has been noticed that an inflammatory status is a common denominator of all those skin conditions. For this reason, recently, the activation of a cytosolic multiprotein complex involved in inflammatory responses (the inflammasome) that could promote the maturation of proinflammatory cytokines interleukin-1β and interleukin-18 has been hypothesized to play a key role in pollution-induced skin damage. In this review, we summarize and propose the cutaneous inflammasome as a novel target of pollutant exposure and the eventual usage of inflammasome inhibitor as new technologies to counteract pollution-induced skin damage. Possibly, the ability to inhibit the inflammasome activation could prevent cutaneous inflammaging and ameliorate the health and appearance of the skin.
Collapse
|
15
|
Transcriptional Regulation of Inflammasomes. Int J Mol Sci 2020; 21:ijms21218087. [PMID: 33138274 PMCID: PMC7663688 DOI: 10.3390/ijms21218087] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are multimolecular complexes with potent inflammatory activity. As such, their activity is tightly regulated at the transcriptional and post-transcriptional levels. In this review, we present the transcriptional regulation of inflammasome genes from sensors (e.g., NLRP3) to substrates (e.g., IL-1β). Lineage-determining transcription factors shape inflammasome responses in different cell types with profound consequences on the responsiveness to inflammasome-activating stimuli. Pro-inflammatory signals (sterile or microbial) have a key transcriptional impact on inflammasome genes, which is largely mediated by NF-κB and that translates into higher antimicrobial immune responses. Furthermore, diverse intrinsic (e.g., circadian clock, metabolites) or extrinsic (e.g., xenobiotics) signals are integrated by signal-dependent transcription factors and chromatin structure changes to modulate transcriptionally inflammasome responses. Finally, anti-inflammatory signals (e.g., IL-10) counterbalance inflammasome genes induction to limit deleterious inflammation. Transcriptional regulations thus appear as the first line of inflammasome regulation to raise the defense level in front of stress and infections but also to limit excessive or chronic inflammation.
Collapse
|
16
|
Verma D, Fekri SZ, Sigurdardottir G, Bivik Eding C, Sandin C, Enerbäck C. Enhanced Inflammasome Activity in Patients with Psoriasis Promotes Systemic Inflammation. J Invest Dermatol 2020; 141:586-595.e5. [PMID: 32896537 DOI: 10.1016/j.jid.2020.07.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
Abstract
Psoriasis is linked to systemic inflammation and cardiovascular comorbidities, but studies of the underlying cellular mechanisms are lacking. The NLRP3 inflammasome is genetically associated with psoriasis, and its activation is increasingly linked with cardiovascular disease. In this study, we show that patients with psoriasis exhibited higher plasma levels of inflammasome-generated IL-1β and IL-18, without any correlation to skin lesion severity. Increased constitutive expression of the inflammasome sensors NLRP3, NLRP1, and AIM2 was found in peripheral blood cells of the patients and also of those with mild disease, and this was accompanied by an increased caspase-1 reactivity in the myeloid blood subsets. TNF-α was found to activate selectively the NLRP3 inflammasome without the requirement for a priming signal. TNF-α was found to signal through the TNFR‒caspase-8‒caspase-1 alternative inflammasome pathway, which proceeds independently of pyroptosis. Patients who received anti-TNF therapy had normalized plasma IL-1β and IL-18 levels as well as normalized caspase-1 reactivity. This was in contrast to the patients treated with methotrexate who exhibited persistent, increased caspase-1 reactivity. Thus, we show that the TNF-α-mediated activation of NLRP3 inflammasomes in patients with psoriasis may contribute to systemic inflammation. Anti-TNF therapy normalized inflammasome function, suggesting a mechanism for the cardiovascular risk‒reducing effect.
Collapse
Affiliation(s)
- Deepti Verma
- Ingrid Asp Psoriasis Research Centre, Division of Dermatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Shora Zamani Fekri
- Ingrid Asp Psoriasis Research Centre, Division of Dermatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Gunnthorunn Sigurdardottir
- Ingrid Asp Psoriasis Research Centre, Division of Dermatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Bivik Eding
- Ingrid Asp Psoriasis Research Centre, Division of Dermatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Sandin
- Ingrid Asp Psoriasis Research Centre, Division of Dermatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Enerbäck
- Ingrid Asp Psoriasis Research Centre, Division of Dermatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
17
|
Forouzandeh M, Besen J, Keane RW, de Rivero Vaccari JP. The Inflammasome Signaling Proteins ASC and IL-18 as Biomarkers of Psoriasis. Front Pharmacol 2020; 11:1238. [PMID: 32903782 PMCID: PMC7438850 DOI: 10.3389/fphar.2020.01238] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammasome activation in the innate immune response plays a role in the pathogenesis of psoriasis largely due to the increased levels of pro-inflammatory cytokines. However, the precise role of inflammasomes in psoriasis (Ps) and psoriatic arthritis (PsA) is largely undefined. To establish the reliability of inflammasome signaling proteins as diagnostics and predictive biomarkers of clinical severity in this disease population, serum from healthy donors and patients with Ps/PsA were analyzed for the protein expression of caspase-1, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), interleukin (IL)-1β and IL-18 levels to determine cut-off points, positive and negative predictive values, and receiver operator characteristic (ROC) curves. Our data revealed that ASC and IL-18 proteins were significantly higher in the Ps group when compared to healthy controls. The area under the curve (AUC) for ASC was 0.9224 with a cut-off point of 321.8 pg/ml, while IL-18 had an AUC of 0.7818 and a cut-off point of 232.1 pg/ml. In addition, levels of IL-18 had a statistically significant linear correlation with that of ASC with an adjusted R squared of 0.2566, indicating that approximately 25% of IL-18 levels could be explained by ASC levels in serum. Our findings indicate that ASC and IL-18 play a significant role in the inflammatory response associated with the pathology of Ps. These inflammasome proteins appear to be key biomarkers in determining diagnoses in this patient population.
Collapse
Affiliation(s)
- Mahtab Forouzandeh
- The Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jaren Besen
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
18
|
Tupik JD, Nagai-Singer MA, Allen IC. To protect or adversely affect? The dichotomous role of the NLRP1 inflammasome in human disease. Mol Aspects Med 2020; 76:100858. [PMID: 32359693 DOI: 10.1016/j.mam.2020.100858] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 01/06/2023]
Abstract
NLRP1 is an inflammasome forming pattern recognition receptor (PRR). When activated by pathogen- and damage- associated molecular patterns (PAMPS/DAMPS), NLRP1 inflammasome formation leads to inflammation through the production of proinflammatory cytokines IL-18 and IL-1β. As with other inflammasome forming NLR family members, NLRP1 also regulates cell death processes, termed pyroptosis. The domain structure of NLRP1 differs between mice and humans, making it possible for the function of the inflammasome to differ between species and adds complexity to the study of this NLR family member. In humans, mutations in both coding and non-coding regions of the NLRP1 gene are linked to a variety of diseases. Likewise, interruption of NLRP1 inhibitors or changes in the prevalence of NLRP1 activators can also impact disease pathobiology. Adding to its complexity, the NLRP1 inflammasome plays a dichotomous role in human diseases, functioning to either attenuate or augment miscellaneous biological processes in a tissue specific manner. For example, NLRP1 plays a protective role in the gastrointestinal tract by modulating the microbiome composition; however, it augments neurological disorders, cardio-pulmonary diseases, and cancer through promoting inflammation. Thus, it is critical that the role of NLRP1 in each of these disease processes be robustly defined. In this review, we summarize the current research landscape to provide a better understanding of the mechanisms associated with NLRP1 function and dysfunction in human disease pathobiology. We propose that a better understanding of these mechanisms will ultimately result in improved insight into immune system dysfunction and therapeutic strategies targeting inflammasome function in multiple human diseases.
Collapse
Affiliation(s)
- Juselyn D Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
19
|
Christgen S, Place DE, Kanneganti TD. Toward targeting inflammasomes: insights into their regulation and activation. Cell Res 2020; 30:315-327. [PMID: 32152420 PMCID: PMC7118104 DOI: 10.1038/s41422-020-0295-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/20/2020] [Indexed: 11/27/2022] Open
Abstract
Inflammasomes are multi-component signaling complexes critical to the initiation of pyroptotic cell death in response to invading pathogens and cellular damage. A number of innate immune receptors have been reported to serve as inflammasome sensors. Activation of these sensors leads to the proteolytic activation of caspase-1, a proinflammatory caspase responsible for the cleavage of proinflammatory cytokines interleukin-1β and interleukin-18 and the effector of pyroptotic cell death, gasdermin D. Though crucial to the innate immune response to infection, dysregulation of inflammasome activation can lead to the development of inflammatory diseases, neurodegeneration, and cancer. Therefore, clinical interest in the modulation of inflammasome activation is swiftly growing. As such, it is imperative to develop a mechanistic understanding of the regulation of these complexes. In this review, we divide the regulation of inflammasome activation into three parts. We discuss the transcriptional regulation of inflammasome components and related proteins, the post-translational mechanisms of inflammasome activation, and advances in the understanding of the structural basis of inflammasome activation.
Collapse
Affiliation(s)
- Shelbi Christgen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David E Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
20
|
Kenealy S, Manils J, Raverdeau M, Munoz-Wolf N, Barber G, Liddicoat A, Lavelle EC, Creagh EM. Caspase-11-Mediated Cell Death Contributes to the Pathogenesis of Imiquimod-Induced Psoriasis. J Invest Dermatol 2019; 139:2389-2393.e3. [PMID: 31173764 DOI: 10.1016/j.jid.2019.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sinéad Kenealy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Joan Manils
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mathilde Raverdeau
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Natalia Munoz-Wolf
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gillian Barber
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Alex Liddicoat
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ed C Lavelle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
21
|
Bocheńska K, Moskot M, Malinowska M, Jakóbkiewicz-Banecka J, Szczerkowska-Dobosz A, Purzycka-Bohdan D, Pleńkowska J, Słomiński B, Gabig-Cimińska M. Lysosome Alterations in the Human Epithelial Cell Line HaCaT and Skin Specimens: Relevance to Psoriasis. Int J Mol Sci 2019; 20:E2255. [PMID: 31067781 PMCID: PMC6539968 DOI: 10.3390/ijms20092255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023] Open
Abstract
Despite the constantly updated knowledge regarding the alterations occurring in the cells of patients with psoriasis, the status and the role of the lysosome, a control center of cell metabolism, remain to be elucidated. The architecture of the epidermis is largely regulated by the action of lysosomes, possibly activating signaling pathways in the cellular crosstalk of keratinocytes-epidermal cells-with infiltrating immune cells. Thus, in the present study, lysosome alterations were examined in vitro and in situ using a two-dimensional (2D) keratinocyte model of HaCaT cells with "psoriasis-like" inflammation and skin specimens, respectively. Specific fluorescence and immunohistochemical staining showed an augmented level of acidic organelles in response to keratinocyte activation (mimicking a psoriatic condition while maintaining the membrane integrity of these structures) as compared with the control, similar to that seen in skin samples taken from patients. Interestingly, patients with the most pronounced PASI (Psoriasis Area and Severity Index), BSA (Body Surface Area), and DLQI (Dermatology Life Quality Index) scores suffered a high incidence of positive lysosomal-associated membrane protein 1 (LAMP1) expression. Moreover, it was found that the gene deregulation pattern was comparable in lesioned (PP) and non-lesioned (PN) patient-derived skin tissue, which may indicate that these alterations occur prior to the onset of the characteristic phenotype of the disease. Changes in the activity of genes encoding the microphthalmia family (MiT family) of transcription factors and mammalian target of rapamycin complex 1 (MTORC1) were also observed in the in vitro psoriasis model, indicating that the biogenesis pathway of this arm is inhibited. Interestingly, in contrast to the keratinocytes of HaCaT with "psoriasis-like" inflammation, LAMP1 was up-regulated in both PP and PN skin, which can be a potential sign of an alternative mechanism of lysosome formation. Defining the molecular profile of psoriasis in the context of "the awesome lysosome" is not only interesting, but also desired; therefore, it is believed that this paper will serve to encourage other researchers to conduct further studies on this subject.
Collapse
Affiliation(s)
- Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80-822 Gdańsk, Poland.
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | | | - Aneta Szczerkowska-Dobosz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Mariana Smoluchowskiego 17, 80-214 Gdańsk, Poland.
| | - Dorota Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Mariana Smoluchowskiego 17, 80-214 Gdańsk, Poland.
| | - Joanna Pleńkowska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Bartosz Słomiński
- Department of Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80-822 Gdańsk, Poland.
| |
Collapse
|
22
|
Garshick MS, Barrett T, Wechter T, Azarchi S, Scher J, Neimann A, Katz S, Fuentes-Duculan J, Cannizzaro MV, Jelic S, Fisher EA, Krueger JG, Berger JS. Inflammasome Signaling and Impaired Vascular Health in Psoriasis. Arterioscler Thromb Vasc Biol 2019; 39:787-798. [PMID: 30760013 PMCID: PMC6436998 DOI: 10.1161/atvbaha.118.312246] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective- Psoriasis is an inflammatory skin disease which heightens the risk of cardiovascular disease. This study directly investigated vascular endothelial health and systemically altered pathways in psoriasis and matched controls. Approach and Results- Twenty patients (mean age, 40 years; 50% male) with active psoriasis and 10 age-, sex-matched controls were recruited. To investigate systemically alerted pathways, a deep sequencing omics approach was applied, including unbiased blood transcriptomic and targeted proteomic analysis. Vascular endothelial health was assessed by transcriptomic profiling of endothelial cells obtained from the brachial veins of recruited participants. Blood transcriptomic profiling identified inflammasome signaling as the highest differentially expressed canonical pathway ( Z score 1.6; P=1×10-7) including upregulation of CASP5 and interleukin ( IL) -1β. Proteomic panels revealed IL-6 as a top differentially expressed cytokine in psoriasis with pathway analysis highlighting IL-1β ( Z score 3.7; P=1.02×10-23) as an upstream activator of the observed upregulated proteins. Direct profiling of harvested brachial vein endothelial cells demonstrated inflammatory transcript (eg, IL-1β, CXCL10, VCAM-1, IL-8, CXCL1, Lymphotoxin beta, ICAM-1, COX-2, and CCL3) upregulation between psoriasis versus controls. A linear relationship was seen between differentially expressed endothelial inflammatory transcripts and psoriasis disease severity. IL-6 levels correlated with inflammatory endothelial cell transcripts and whole blood inflammasome-associated transcripts, including CASP5 and IL-1β. Conclusions- An unbiased sequencing approach demonstrated the inflammasome as the most differentially altered pathway in psoriasis versus controls. Inflammasome signaling correlated with psoriasis disease severity, circulating IL-6, and proinflammatory endothelial transcripts. These findings help better explain the heightened risk of cardiovascular disease in psoriasis. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT03228017.
Collapse
Affiliation(s)
- Michael S. Garshick
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine;,Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine
| | - Tessa Barrett
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine
| | | | - Sarah Azarchi
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine
| | - Jose Scher
- Psoriatic Arthritis Center, Division of Rheumatology, Department of Medicine, New York University School of Medicine
| | - Andrea Neimann
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine
| | - Stuart Katz
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine
| | | | | | - Sanja Jelic
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center
| | - Edward A. Fisher
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine;,Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine
| | - James G. Krueger
- Laboratory for Investigative Dermatology, Rockefeller University
| | - Jeffrey S. Berger
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine;,Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine;,Division of Vascular Surgery, Department of Surgery, New York University School of Medicine
| |
Collapse
|
23
|
Skirecki T, Cavaillon JM. Inner sensors of endotoxin – implications for sepsis research and therapy. FEMS Microbiol Rev 2019; 43:239-256. [DOI: 10.1093/femsre/fuz004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry and Department of Anesthesiology and Intensive Care Medicine, Centre of Postgraduate Medical Education, Marymoncka 99/103 Street, 01–813 Warsaw, Poland
| | - Jean-Marc Cavaillon
- Experimental Neuropathology Unit, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France
| |
Collapse
|
24
|
Yen H, Chi CC. Association Between Psoriasis and Vitiligo: A Systematic Review and Meta-Analysis. Am J Clin Dermatol 2019; 20:31-40. [PMID: 30317450 DOI: 10.1007/s40257-018-0394-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The relationship between psoriasis and vitiligo has not been previously confirmed, and we therefore aimed to investigate this association. METHODS We conducted a search of the MEDLINE and EMBASE electronic databases on 22 January 2018 for case-control, cross-sectional, and cohort studies examining the association between psoriasis and vitiligo. A customized Newcastle-Ottawa Scale was used to assess the risk of bias of the included studies. We performed a random effects meta-analysis to calculate pooled odds ratios (ORs) with 95% confidence intervals (CIs) for case-control and cross-sectional studies. RESULTS Of 2453 citations identified from the literature search, 10 case-control/cross-sectional studies with a total of 120,866 psoriasis cases and 79,907 vitiligo cases were included in our study. Four of these studies were rated as high risk of bias. We found a significantly increased odds for vitiligo in psoriasis patients (summary OR 2.29, 95% CI 1.56-3.37, studies = 7), as well as a significantly elevated odds for psoriasis in vitiligo patients (summary OR 3.43, 95% CI 1.86-6.33, studies = 4). CONCLUSIONS Our meta-analysis showed that psoriasis and vitiligo are associated with each other. Several studies had a high risk of bias, and further investigation is needed to confirm this association and amplify treatment options.
Collapse
Affiliation(s)
- Hsi Yen
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, 5, Fuxing St, Guishan District, Taoyuan, 33305, Taiwan
| | - Ching-Chi Chi
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, 5, Fuxing St, Guishan District, Taoyuan, 33305, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
25
|
Aira LE, Gonçalves D, Bossowski JP, Rubio-Patiño C, Chiche J, Paul-Bellon R, Mondragón L, Gesson M, Lecucq-Ottavi P, Obba S, Colosetti P, Luciano F, Bailly-Maitre B, Boyer L, Jacquel A, Robert G, Ricci JE, Ortonne JP, Passeron T, Lacour JP, Auberger P, Marchetti S. Caspase 1/11 Deficiency or Pharmacological Inhibition Mitigates Psoriasis-Like Phenotype in Mice. J Invest Dermatol 2018; 139:1306-1317. [PMID: 30571969 DOI: 10.1016/j.jid.2018.11.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory caspases, activated within the inflammasome, are responsible for the maturation and secretion of IL-1β/IL-18. Although their expression in psoriasis was shown several years ago, little is known about the role of inflammatory caspases in the context of psoriasis. Here, we confirmed that caspases 1, 4, and 5 are activated in lesional skin from psoriasis patients. We showed in three psoriasis-like models that inflammatory caspases are activated, and accordingly, caspase 1/11 invalidation or pharmacological inhibition by Ac-YVAD-CMK (i.e., Ac-Tyr-Val-Ala-Asp-chloromethylketone) injection induced a decrease in ear thickness, erythema, scaling, inflammatory cytokine expression, and immune cell infiltration in mice. We observed that keratinocytes were primed to secrete IL-1β when cultured in conditions mimicking psoriasis. Generation of chimeric mice by bone marrow transplantation was carried out to decipher the respective contribution of keratinocytes and/or immune cells in the activation of inflammatory caspases during psoriasis-like inflammatory response. Our data showed that the presence of caspase 1/11 in the immune system is sufficient for a fully inflammatory response, whereas the absence of caspase 1/11 in keratinocytes/fibroblasts had no impact. In summary, our study indicates that inflammatory caspases activated in immune cells are implicated in psoriasis pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maéva Gesson
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | | | | | | | | | | | | | | | | | | | - Jean-Paul Ortonne
- Centre Hospitalier Universitaire de Nice, Service de Dermatologie, Hôpital Archet II, Nice, France
| | - Thierry Passeron
- Université Côte d'Azur, INSERM, C3M, Nice, France; Centre Hospitalier Universitaire de Nice, Service de Dermatologie, Hôpital Archet II, Nice, France
| | - Jean-Philippe Lacour
- Centre Hospitalier Universitaire de Nice, Service de Dermatologie, Hôpital Archet II, Nice, France
| | | | | |
Collapse
|
26
|
Association of NLRP1 and NLRP3 Polymorphisms with Psoriasis Vulgaris Risk in the Chinese Han Population. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4714836. [PMID: 29850521 PMCID: PMC5903344 DOI: 10.1155/2018/4714836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 01/22/2023]
Abstract
Aim To clarify the association between the single nucleotide polymorphisms (SNPs) in the NLRP1 and NLRP3 and Psoriasis Vulgaris (PsV) in the Chinese Han population. Methods We genotyped eight SNPs, four from NLRP1 (rs8079034, rs11651270, rs11657747, and rs878329) and NLRP3 (rs7512998, rs3806265, rs10754557, and rs10733113) each in 540 patients with PsV and 612 healthy controls in the Chinese Han population using an improved multiplexed ligation detection reaction (iMLDR) method. The genotype and haplotype frequencies were analyzed using a case-control study design. Results We identified two SNPs, rs3806265 and rs10754557, in NLRP3 that were significantly associated with PsV. The genotype distribution of the rs3806265 SNP was significantly different between cases and controls (p = 0.0451; OR = 0.791; 95% CI = 0.627–0.998). In the recessive model, the genotype distribution of the rs10754557 SNP was significantly different between cases and controls (p = 0.0344; OR = 1.277; 95% CI = 0.987–1.652). The haplotype analysis of rs3806265 and rs10754557 also presented a significant association of TA haplotype with PsV (χ2 = 4.529; p = 0.033). Conclusion NLRP3 may play a role in PsV susceptibility in the Chinese Han population.
Collapse
|
27
|
Awad F, Assrawi E, Louvrier C, Jumeau C, Georgin-Lavialle S, Grateau G, Amselem S, Giurgea I, Karabina SA. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther 2018; 187:133-149. [PMID: 29466702 DOI: 10.1016/j.pharmthera.2018.02.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammasomes are intracellular multiprotein signaling complexes, mainly present in myeloid cells. They commonly assemble around a cytoplasmic receptor of the nucleotide-binding leucine-rich repeat containing receptor (NLR) family, although other cytoplasmic receptors like pyrin have been shown to form inflammasomes. The nucleation of the multiprotein scaffolding platform occurs upon detection of a microbial, a danger or a homeostasis pattern by the receptor that will, most commonly, associate with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) through homotypic domain interactions resulting in recruitment of procaspase-1. This will lead to the autoproteolytic activation of caspase-1, which regulates the secretion of proinflammatory IL1β and IL18 cytokines and pyroptosis, a caspase-1-mediated form of cell death. Pyroptosis occurs through cleavage of Gasdermin D, a membrane pore forming protein. Recently, non-canonical inflammasomes have been described, which directly sense intracellular pathogens through caspase-4 and -5 in humans, leading to pyroptosis. Inflammasomes are important in host defense; however, a deregulated activity is associated with a number of inflammatory, immune and metabolic disorders. Furthermore, mutations in inflammasome receptor coding genes are causal for an increasing number of rare autoinflammatory diseases. Biotherapies targeting the products of inflammasome activation as well as molecules that directly or indirectly inhibit inflammasome nucleation and activation are promising therapeutic areas. This review discusses recent advances in inflammasome biology, the molecular pathology of several inflammasomes, and current therapeutic approaches in autoinflammatory diseases and in selected common multifactorial inflammasome-mediated disorders.
Collapse
Affiliation(s)
- Fawaz Awad
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Eman Assrawi
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Camille Louvrier
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Claire Jumeau
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Sophie Georgin-Lavialle
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Tenon, Service de Médecine interne, Paris, F-75012, France
| | - Gilles Grateau
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Tenon, Service de Médecine interne, Paris, F-75012, France
| | - Serge Amselem
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France.
| | - Irina Giurgea
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France.
| | - Sonia-Athina Karabina
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France.
| |
Collapse
|
28
|
Bebars SMM, Al-Sharaky DR, Gaber MA, Afify DR. Immunohistochemical Expression of Caspase-3 in Psoriasis. J Clin Diagn Res 2017; 11:EC01-EC05. [PMID: 28892900 DOI: 10.7860/jcdr/2017/25609.10145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/13/2017] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Psoriasis is a persistent chronic immune-mediated, relapsing, inflammatory and hyper proliferative skin disorder with genetic predisposition. Psoriasis can be considered as a T-cell mediated disease, with a complex role for a variety of cytokine interaction between keratinocytes and T-lymphocytes. Caspase-3 is an enzyme that plays a key role in apoptosis; it is a member of the family of cysteinyle aspartate specific proteases. AIM To evaluate the expression of caspase-3 in Egyptian psoriasis patients and its role in apoptosis of keratinocytes. Also, to correlate this expression with the clinicopathological parameters in order to identify the possible hypothesized role of caspase-3 in the pathogenesis of psoriasis. MATERIALS AND METHODS This was a case-control study conducted on patients suffering from chronic plaque psoriasis. A total of 20 psoriasis patients and 10 controls were selected from outpatient clinic of Dermatology, Menoufia University Hospital, between the period of October 2014 and January 2016. From each patient and control, a punch biopsy was taken. Evaluation of H&E stained sections and caspase-3 expression was done using standard immunohi-stochemical techniques. Non-parametric chi-square test, Mann-Whitney U test, Kruskal Wallis test and Spearman's coefficient test were the statistical tests used. RESULTS High caspase-3 H score was significantly in favour of psoriatic group in comparison with the control group. On the contrary, in the dermis, caspase-3 was significantly higher in skin adnexa while completely absent in the psoriatic group. Strong caspase-3 expression was significantly in favour of high PASI score, early onset lesions and lesions in the extremities. Significant positive correlation was found between caspase-3 percent and PASI score (r= +0.53, p-value=0.03). CONCLUSION Caspase-3 over expression in the psoriatic lesion proposes a potential role in the pathogenesis of psoriasis. Positive correlation between the caspase-3 expression and the early onset psoriatic lesion located in the extremities implies a possible poor prognostic impact of caspase-3 over expression.
Collapse
Affiliation(s)
- Shaimaa M M Bebars
- Lecturer, Department of Pathology, Aswan University, Aswan City, Aswan Governorate, Egypt
| | - Dalia Rifaat Al-Sharaky
- Assistant Professor, Department of Pathology, Menoufia University, Shebien Elkom, Menoufia, Egypt
| | - Mohammed A Gaber
- Professor, Department of Dermatology, Andrology and S.T, Menoufia University, Menoufia, Egypt
| | - Dina Ragab Afify
- Resident, Department of Dermatology, Andrology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
29
|
Abstract
Inflammasomes are intracellular multiprotein complexes that comprise part of the
innate immune response. Since their definition, inflammasome disorders have been
linked to an increasing number of diseases. Autoinflammatory diseases refer to
disorders in which local factors lead to the activation of innate immune cells,
causing tissue damage when in the absence of autoantigens and autoantibodies.
Skin symptoms include the main features of monogenic inflammasomopathies, such
as Cryopyrin-Associated Periodic Syndromes (CAPS), Familial Mediterranean Fever
(FMF), Schnitzler Syndrome, Hyper-IgD Syndrome (HIDS), PAPA Syndrome, and
Deficiency of IL-1 Receptor Antagonist (DIRA). Concepts from other pathologies
have also been reviewed in recent years, such as psoriasis, after the
recognition of a combined contribution of innate and adaptive immunity in its
pathogenesis. Inflammasomes are also involved in the response to various
infections, malignancies, such as melanoma, autoimmune diseases, including
vitiligo and lupus erythematosus, atopic and contact dermatitis, acne,
hidradenitis suppurativa, among others. Inhibition of the inflammasome pathway
may be a target for future therapies, as already occurs in the handling of CAPS,
through the introduction of IL-1 inhibitors. This study presents a literature
review focusing on the participation of inflammasomes in skin diseases.
Collapse
Affiliation(s)
| | - Cyro Festa
- Universidade de São Paulo (USP) - São Paulo (SP), Brazil
| |
Collapse
|
30
|
Dai X, Tohyama M, Murakami M, Sayama K. Epidermal keratinocytes sense dsRNA via the NLRP3 inflammasome, mediating interleukin (IL)-1β and IL-18 release. Exp Dermatol 2017; 26:904-911. [PMID: 28266737 DOI: 10.1111/exd.13334] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2017] [Indexed: 12/22/2022]
Abstract
Skin epidermis, in addition to its barrier function, is able to actively sense harmful pathogens using pattern recognition receptors. In immune cells, the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome can mediate innate immunity against viral infection via a mechanism involving viral dsRNA recognition. Epidermal keratinocytes express NLRP3 inflammasome, which can sense contact sensitizers and mite allergens, leading to pro-interleukin (IL)-1β and pro-IL-18 cleavage into their active forms. Skin often faces viral infection. However, it is unknown whether viral dsRNA can be detected by the keratinocyte NLRP3 inflammasome. We transfected polyinosinic:polycytidylic acid (poly I:C), a synthetic viral dsRNA analogue, into cultured primary human keratinocytes at the aid of Lipofectamine 2000, and found that transfected poly I:C activated caspase-1 and induced caspase-1-dependent release of IL-1β and IL-18, which were suppressed on transfection with NLRP3 siRNA. The activation of keratinocyte NLRP3 inflammasome by transfected poly I:C was dependent on dsRNA-induced protein kinase (PKR) activation, and priming with type I interferons upregulated NLRP3 inflammasome activation through promoting PKR activation in poly I:C-transfected keratinocytes. In conclusion, the NLRP3 inflammasome can act as a sensor of dsRNA in epidermal keratinocytes, which may be important in both skin innate immune defense against viral infection and skin inflammation.
Collapse
Affiliation(s)
- Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Mikiko Tohyama
- Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
31
|
Zwicker S, Hattinger E, Bureik D, Batycka-Baran A, Schmidt A, Gerber PA, Rothenfusser S, Gilliet M, Ruzicka T, Wolf R. Th17 micro-milieu regulates NLRP1-dependent caspase-5 activity in skin autoinflammation. PLoS One 2017; 12:e0175153. [PMID: 28422993 PMCID: PMC5396864 DOI: 10.1371/journal.pone.0175153] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
IL-1β is a potent player in cutaneous inflammation and central for the development of a Th17 micro-milieu in autoinflammatory diseases including psoriasis. Its production is controlled at the transcriptional level and by subsequent posttranslational processing via inflammatory caspases. In this study, we detected inflammatory caspase-5 active in epidermal keratinocytes and in psoriatic skin lesions. Further, interferon-γ and interleukin-17A synergistically induced caspase-5 expression in cultured keratinocytes, which was dependent on the antimicrobial peptide psoriasin (S100A7). However, diseases-relevant triggers for caspase-5 activity and IL-1β production remain unknown. Recently, extranuclear DNA has been identified as danger-signals abundant in the psoriatic epidermis. Here, we could demonstrate that cytosolic double-stranded (ds) DNA transfected into keratinocytes triggered the activation of caspase-5 and the release of IL-1β. Further, interleukin-17A promoted caspase-5 function via facilitation of the NLRP1-inflammasome. Anti-inflammatory vitamin D interfered with the IL-1β release and suppressed caspase-5 in keratinocytes and in psoriatic skin lesions. Our data link the disease-intrinsic danger signals psoriasin (S100A7) and dsDNA for NLPR1-dependent caspase-5 activity in psoriasis providing potential therapeutic targets in Th17-mediated skin autoinflammation.
Collapse
Affiliation(s)
- Stephanie Zwicker
- Department of Dermatology and Allergology, Ludwig-Maximilian University Munich, Frauenlobstr. 9-11, Munich, Germany.,Department of Dental Medicine, Karolinska Institute, Alfred Nobels Allé 8, Huddinge, Sweden
| | - Eva Hattinger
- Department of Dermatology and Allergology, Ludwig-Maximilian University Munich, Frauenlobstr. 9-11, Munich, Germany
| | - Daniela Bureik
- Department of Dermatology and Allergology, Ludwig-Maximilian University Munich, Frauenlobstr. 9-11, Munich, Germany
| | - Aleksandra Batycka-Baran
- Department of Dermatology and Allergology, Ludwig-Maximilian University Munich, Frauenlobstr. 9-11, Munich, Germany.,Department of Dermatology, Venereology and Allergy, Wroclaw Medical University, Chalubinskiego 1, Wroclaw, Poland
| | - Andreas Schmidt
- Division of Clinical Pharmacology, Medizinische Klinik IV, Ludwig-Maximilian University Munich, Ziemssenstr. 1, Munich, Germany
| | - Peter-Arne Gerber
- Department of Dermatology, University Hospital Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, Medizinische Klinik IV, Ludwig-Maximilian University Munich, Ziemssenstr. 1, Munich, Germany
| | - Michel Gilliet
- Department of Dermatology, University Hospital of Lausanne, CHUV University Hospital, Rue du Bugnon 46, Lausanne, Switzerland
| | - Thomas Ruzicka
- Department of Dermatology and Allergology, Ludwig-Maximilian University Munich, Frauenlobstr. 9-11, Munich, Germany
| | - Ronald Wolf
- Department of Dermatology and Allergology, Ludwig-Maximilian University Munich, Frauenlobstr. 9-11, Munich, Germany.,Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
32
|
Park JH, Park YJ, Kim SK, Kwon JE, Kang HY, Lee ES, Choi JH, Kim YC. Histopathological Differential Diagnosis of Psoriasis and Seborrheic Dermatitis of the Scalp. Ann Dermatol 2016; 28:427-32. [PMID: 27489423 PMCID: PMC4969470 DOI: 10.5021/ad.2016.28.4.427] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/25/2015] [Accepted: 09/04/2015] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The differential diagnosis of psoriasis and seborrheic dermatitis can be difficult when both conditions are localized to the scalp without the involvement of other skin sites. OBJECTIVE We aimed to evaluate the histopathological differences between psoriasis and seborrheic dermatitis on the scalp and identify favorable criteria for their differential diagnosis. METHODS We evaluated 15 cases of psoriasis and 20 cases of seborrheic dermatitis of the scalp that had been clinicopathologically diagnosed. Skin biopsy sections stained with H&E were examined. Additional immunohistochemistry was performed, including Ki-67, keratin 10, caspase-5, and GLUT-1. RESULTS On histopathological examination, mounds of parakeratosis with neutrophils, spongiform micropustules of Kogoj, and clubbed and evenly elongated rete ridges were significantly more frequently observed in psoriasis. Follicular plugging, shoulder parakeratosis and prominent lymphocytic exocytosis were significantly more common in seborrheic dermatitis. Moreover, significantly higher mitotic figures were observed in psoriatic lesions than in seborrheic dermatitis. Immunohistochemistry did not show any difference between psoriasis and seborrheic dermatitis. CONCLUSION Histopathological features favoring psoriasis include mounds of parakeratosis with neutrophils, spongiform micropustules of Kogoj, clubbed and evenly elongated rete ridges, and increased mitotic figures (≥6/high-powered field). Features indicating seborrheic dermatitis are follicular plugging, shoulder parakeratosis and prominent lymphocytic exocytosis. Immunohistochemistry was not helpful in differentiating psoriasis from seborrheic dermatitis.
Collapse
Affiliation(s)
- Ji-Hye Park
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Young Joon Park
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Sue Kyoung Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Ji Eun Kwon
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Eun-So Lee
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Jee Ho Choi
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Chan Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
33
|
Rerknimitr P, Nitinawarat J, Weschawalit S, Wititsuwannakul J, Wongtrakul P, Jutiviboonsuk A, Dhorranintra B, Asawanonda P. The Efficacy of Gynura pseudochina DC. var. hispida Thv. Ointment in Treating Chronic Plaque Psoriasis: A Randomized Controlled Trial. J Altern Complement Med 2016; 22:669-75. [PMID: 27391857 DOI: 10.1089/acm.2016.0100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A recent study showed that Gynura pseudochina DC. var. hispida Thv. leaf extract (GP) can reduce the activation of the nuclear factor κB (NF-κB) pathway and suppress the release of interleukin (IL)-1β, IL-6, and tumor necrosis factor -α, which play an important role in the pathogenesis of psoriasis. METHODS Twenty-five patients with mild to moderate plaque psoriasis completed a 4-week trial. Twice daily, they applied the GP ointment on psoriatic lesions on one side of the body, and they applied 0.1% triamcinolone (TA) cream on the other side. The Targeted Area Score (TAS), Psoriasis Severity Index (PSI) scores, and Physician's Global Assessment (PGA) scores were assessed at baseline and at weeks 1, 2, 3, and 4. Pre- and post-treatment skin samples were taken. Phosphorylation of NF-κB p65, Ki-67, and epidermal thickness were analyzed through immunohistochemistry. RESULTS The TAS for erythema, scaling, and induration and PSI scores decreased on both treated sides. A statistically significant difference was observed beginning at the first week of treatment. The GP ointment significantly decreased scaling scores. However, no significant differences were observed between the TAS for erythema and induration or the PSI and PGA scores. Immunohistochemical staining revealed diminution of phosphorylated NF-κB p65, Ki-67, and epidermal thickness in the lesions treated with the GP ointment. The ointment was well tolerated, with minimal side effects. No laboratory abnormalities were detected. CONCLUSIONS The GP ointment demonstrated efficacy similar to that of 0.1% TA cream for mild to moderate chronic plaque psoriasis. In addition, its short-term side effects were minimal.
Collapse
Affiliation(s)
- Pawinee Rerknimitr
- 1 Dermatology Unit, Department of Medicine, King Chulalongkorn Memorial Hospital , Thai Red Cross Society, Bangkok, Thailand .,2 Division of Dermatology, Department of Medicine, Faculty of Medicine, Allergy and Clinical Immunology Research Group, Chulalongkorn University , Bangkok, Thailand
| | - Jantakan Nitinawarat
- 2 Division of Dermatology, Department of Medicine, Faculty of Medicine, Allergy and Clinical Immunology Research Group, Chulalongkorn University , Bangkok, Thailand
| | - Sinee Weschawalit
- 2 Division of Dermatology, Department of Medicine, Faculty of Medicine, Allergy and Clinical Immunology Research Group, Chulalongkorn University , Bangkok, Thailand
| | - Jade Wititsuwannakul
- 2 Division of Dermatology, Department of Medicine, Faculty of Medicine, Allergy and Clinical Immunology Research Group, Chulalongkorn University , Bangkok, Thailand
| | - Paveena Wongtrakul
- 3 Division of Pharmaceutical Technology, Faculty of Pharmaceutical Science, Huachiew Chalermprakiet University , Samutprakarn, Thailand
| | - Aranya Jutiviboonsuk
- 4 Division of Pharmacognosy, Faculty of Pharmaceutical Science, Huachiew Chalermprakiet University , Samutprakarn, Thailand
| | - Boonjeur Dhorranintra
- 5 Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Pravit Asawanonda
- 2 Division of Dermatology, Department of Medicine, Faculty of Medicine, Allergy and Clinical Immunology Research Group, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
34
|
Fuchs T, Kelly JA, Simon E, Sivils KL, Hermel E. The anti-inflammatory CASPASE-12 gene does not influence SLE phenotype in African-Americans. Immunol Lett 2016; 173:21-5. [DOI: 10.1016/j.imlet.2016.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 01/27/2023]
|
35
|
Göblös A, Danis J, Vas K, Bata-Csörgő Z, Kemény L, Széll M. Keratinocytes express functional CARD18, a negative regulator of inflammasome activation, and its altered expression in psoriasis may contribute to disease pathogenesis. Mol Immunol 2016; 73:10-8. [PMID: 27023378 DOI: 10.1016/j.molimm.2016.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/10/2016] [Accepted: 03/22/2016] [Indexed: 01/08/2023]
Abstract
Caspase recruitment domain family member 18 (CARD18, Iceberg) is known as a negative regulatory molecule that inhibits inflammatory events by terminating inflammasome activation due to a direct interaction with pro-caspase-1. During the investigation of molecular mechanisms in keratinocytes that contribute to the pathogenesis of psoriasis, we found that CARD18 expression differs in healthy and psoriatic skin; moreover, CARD18 demonstrated altered response under inflammatory conditions in healthy and psoriatic skin. In healthy skin, low basal CARD18 expression was detected, which showed significant elevation in response to inflammatory stimuli (lymphokine treatment or mechanical injury). In contrast, higher basal expression was observed in psoriatic non-involved skin, but no further induction could be detected. We demonstrated that keratinocytes express CARD18 both at mRNA and protein levels and the expression increased in parallel with differentiation. The investigation of cellular inflammatory processes revealed that psoriasis-associated danger signals triggered the expression of inflammasome components (AIM2, Caspase-1) and CARD18 as well as IL-1β production of keratinocytes. Furthermore, gene-specific silencing of CARD18 in cells treated with cytosolic DNA (poly(dA:dT)) resulted in increased IL-1β secretion, suggesting a negative regulatory role for CARD18 in keratinocyte inflammatory signaling. The differential regulation of CARD18 in healthy and psoriatic uninvolved epidermis may contribute to the susceptibility of psoriasis. Furthermore, our in vitro results indicate that CARD18 may contribute to the fine tuning of keratinocyte innate immune processes.
Collapse
Affiliation(s)
- Anikó Göblös
- Department of Dermatology and Allergology, University of Szeged, Korányifasor 6, H-6720 Szeged, Hungary.
| | - Judit Danis
- Department of Dermatology and Allergology, University of Szeged, Korányifasor 6, H-6720 Szeged, Hungary.
| | - Krisztina Vas
- Department of Dermatology and Allergology, University of Szeged, Korányifasor 6, H-6720 Szeged, Hungary.
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, University of Szeged, Korányifasor 6, H-6720 Szeged, Hungary; MTA-SZTE Dermatological Research Group, University of Szeged, Korányifasor 6, H-6720 Szeged, Hungary.
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Korányifasor 6, H-6720 Szeged, Hungary; MTA-SZTE Dermatological Research Group, University of Szeged, Korányifasor 6, H-6720 Szeged, Hungary.
| | - Márta Széll
- MTA-SZTE Dermatological Research Group, University of Szeged, Korányifasor 6, H-6720 Szeged, Hungary; Department of Medical Genetics, University of Szeged, Somogyi u. 4, H-6720 Szeged, Hungary.
| |
Collapse
|
36
|
Thirupathi A, Elango T, Subramanian S, Gnanaraj P. Methotrexate regulates Th-1 response by suppressing caspase-1 and cytokines in psoriasis patients. Clin Chim Acta 2016; 453:164-9. [DOI: 10.1016/j.cca.2015.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
|
37
|
Tang YJ, Zhang RZ, Liu XM, Xu CX, Cheng S, Liu QI. Effect of the topical application of calcipotriol on the expression levels of zinc finger protein A20 and nuclear factor-κB in the skin lesions of patients with psoriasis vulgaris. Exp Ther Med 2015; 11:247-250. [PMID: 26889249 DOI: 10.3892/etm.2015.2887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 03/16/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to explore the effect of the topical application of calcipotriol on the expression levels of zinc finger protein A20 and nuclear factor-κB (NF-κB) in the skin lesions of patients with psoriasis vulgaris. The calcipotriol ointment was topically applied twice a day for 6 weeks by 26 patients with psoriasis vulgaris. At the end of weeks 2, 4 and 6 after the first application of calcipotriol ointment, the clinical efficacy and Psoriasis Area and Severity Index (PASI) score were compared with those prior to treatment. The expression of zinc finger protein A20 and NF-κB in the skin lesions prior to and following treatment with calcipotriol was measured by immunohistochemical staining and western blotting. At the end of week 6, the clinical effectiveness rate of calcipotriol was higher compared with that at the end of weeks 2 and 4 (χ2=8.12 and 9.06, respectively; P<0.05). The PASI score declined significantly at the end of weeks 2, 4 and 6 (t=9.37, 10.54 and 12.43; P<0.05, 0.05 and 0.001, respectively). At the end of week 6, the expression levels of zinc finger protein A20 and NF-κB were significantly lower compared with those prior to treatment (χ2=3.65 and 4.17, respectively; P<0.01). The expression levels of the two proteins were higher in the skin lesions of patients with psoriasis vulgaris prior to the initiation of treatment than in the skin of a normal control group. Following the 6-week treatment with calcipotriol, the expression levels of the two proteins in the psoriasis skin lesions were significantly lower than they were prior to treatment (P<0.01). Thus, the present study found that in addition to the typical pathway of NF-κB being targeted in the treatment of psoriasis with calcipotriol, the zinc finger protein A20 may also modulate the inflammatory response of psoriasis.
Collapse
Affiliation(s)
- Ya-Juan Tang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Ru-Zhi Zhang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiao-Ming Liu
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Chun-Xing Xu
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Sai Cheng
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Q I Liu
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
38
|
Viganò E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun 2015; 6:8761. [PMID: 26508369 PMCID: PMC4640152 DOI: 10.1038/ncomms9761] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/28/2015] [Indexed: 02/08/2023] Open
Abstract
Monocytes promote the early host response to infection releasing key pro-inflammatory cytokines, such as IL-1β. The biologically inactive IL-1β precursor is processed to active form by inflammasomes, multi-protein complexes activating caspase-1. Human monocytes exhibit an unconventional one-step pathway of inflammasome activation in response to lipopolysaccharide (LPS) alone. Although this lineage-restricted mechanism is likely to contribute to the pathology of endotoxin shock, signalling pathways regulating this mechanism are currently unknown. Here we report that caspase-4 and caspase-5 mediate IL-1α and IL-1β release from human monocytes after LPS stimulation. Although caspase-4 remains uncleaved, caspase-5 undergoes rapid processing upon LPS treatment. We also identify an additional caspase-5 cleavage product in LPS-stimulated monocytes, which correlates with IL-1 secretion. This one-step pathway requires Syk activity and Ca2+ flux instigated by CD14/TLR4-mediated LPS internalization. Identification of caspase-4/5 as the key determinants of one-step inflammasome activation in human monocytes provides potential targets for therapeutic intervention in endotoxin shock. Human monocytes exhibit an unconventional one-step pathway of inflammasome activation and IL-1 release in response to LPS. Here the authors show that it is mediated by caspases 4 and 5, and characterize caspase 5 cleavage, Syk and calcium signalling as key mediators of this pathway.
Collapse
Affiliation(s)
- Elena Viganò
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore.,University of Milano-Bicocca, PhD program in Translational and Molecular Medicine (DIMET), Ospedale San Gerardo, Via Pergolesi 33, Monza (MB) 20900, Italy
| | - Catherine Emma Diamond
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore.,Faculty of Life Sciences, The University of Manchester, Carys Bannister Building, Dover Street, Manchester M13 9PT, UK
| | - Roberto Spreafico
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore
| | - Radoslaw M Sobota
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore
| |
Collapse
|
39
|
He L, Dang L, Zhou J, Bai J, Li YZ. Association of angiopoietin-1, angiopoietin-2 and caspase-5 polymorphisms with psoriasis vulgaris. Clin Exp Dermatol 2015; 40:556-63. [PMID: 25753570 DOI: 10.1111/ced.12550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2014] [Indexed: 11/30/2022]
Affiliation(s)
- L. He
- Department of Dermatology; Second Affiliated Hospital of Harbin Medical University; Harbin China
| | - L. Dang
- Department of Dermatology; Second Affiliated Hospital of Harbin Medical University; Harbin China
| | - J. Zhou
- Department of Dermatology; Second Affiliated Hospital of Harbin Medical University; Harbin China
| | - J. Bai
- Laboratory of Medical Genetics; Harbin Medical University; Harbin China
| | - Y.-Z. Li
- Department of Dermatology; Second Affiliated Hospital of Harbin Medical University; Harbin China
| |
Collapse
|
40
|
Ekman AK, Verma D, Fredrikson M, Bivik C, Enerbäck C. Genetic variations of NLRP1: susceptibility in psoriasis. Br J Dermatol 2014; 171:1517-20. [PMID: 24909542 DOI: 10.1111/bjd.13178] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND NACHT, LRR and PYD domain-containing protein (NLRP)1 is part of the inflammasome multiprotein complex involved in the production of interleukin (IL)-1β and IL-18, two cytokines strongly implicated in psoriasis pathogenesis. Genetic variations in NLRP1 are associated with a predisposition for chronic inflammatory conditions. OBJECTIVES The aim of the study was to investigate the role of genetic variation in the NLRP1 inflammasome in psoriasis susceptibility. MATERIAL AND METHODS Four haplotype-tagging single-nucleotide polymorphisms (SNPs) (rs6502867, rs8079034, rs878329 and rs12150220) were investigated by TaqMan allelic discrimination in a patient sample comprising 1847 individuals from 478 families and 802 healthy controls. RESULTS Using the transmission disequilibrium test, a significant increase in the transmission of the NLRP1 rs8079034C and rs878329C alleles to patients with psoriasis was demonstrated (P = 0·006 and P = 0·033, respectively). Furthermore, homozygosity for the rs878329C allele correlated with a younger age of onset. We also observed an increase in the expression of NLRP1 mRNA in the peripheral blood cells of patients with psoriasis. This was accompanied by a higher level of circulating IL-18 and appeared to be associated with the rs878329C allele. CONCLUSIONS Our data support the involvement of NLRP1 and the NLRP1 inflammasome in psoriasis susceptibility and further support the role of innate immunity in psoriasis.
Collapse
Affiliation(s)
- A-K Ekman
- Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | | | | | | | | |
Collapse
|
41
|
Bakry OA, Samaka RM, Shoeib MAM, Abdel Aal SM. Nuclear Factor Kappa B and Cyclo-Oxygenase-2: Two Concordant Players in Psoriasis Pathogenesis. Ultrastruct Pathol 2014; 39:49-61. [DOI: 10.3109/01913123.2014.952470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Dihlmann S, Erhart P, Mehrabi A, Nickkholgh A, Lasitschka F, Böckler D, Hakimi M. Increased expression and activation of absent in melanoma 2 inflammasome components in lymphocytic infiltrates of abdominal aortic aneurysms. Mol Med 2014; 20:230-7. [PMID: 24618883 DOI: 10.2119/molmed.2013.00162] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/04/2014] [Indexed: 11/06/2022] Open
Abstract
Chronic vascular inflammation is a key hallmark in the pathogenesis of abdominal aortic aneurysm (AAA). Recent investigations have suggested that the inflammasome, a cytosolic multiprotein complex that recognizes pathogen-associated molecular patterns, plays a role in atherosclerosis. However, its role in AAA inflammation has not yet been investigated. This pilot study analyzed inflammasome activation and its intramural localization in 24 biopsy samples from 11 patients with asymptomatic AAA versus 12 aortic samples from apparently healthy controls. Using a histological inflammation scale, we identified grade 2/3 inflammatory changes with lymphoid aggregates/tertiary lymphoid organs in 21 out of 24 AAA samples, whereas only 7 of the 12 control samples exhibited local grade 1 inflammatory changes. Strong expression levels of "apoptosis-associated speck-like protein with a caspase recruitment domain" (ASC), caspase-1, caspase-5 and "absent in melanoma 2" (AIM2) were detected by immunohistochemistry in both sporadic infiltrating lymphoid cells and lymphoid aggregates located in the outer media and adventitia of AAA samples. In contrast, inflammasome-positive cells were restricted to cholesterol plaque-associated areas and to single infiltrating cells in control aortas. Analysis of gene expression using real-time polymerase chain reaction (PCR) revealed significantly increased median mRNA levels of the inflammasome core components PYCARD (ASC), CASP1 (Caspase-1) and IL1B (IL-1β) in AAA tissue compared with normal aorta. Moreover, significantly increased median amounts of AIM2 protein and mature caspase-5 (p20) were found in samples associated with high rupture risk compared with paired low rupture risk samples of the same AAA patient. We conclude from our data that AAA-associated lymphoid cells are capable of inflammasome signaling, suggesting that inflammasome activation is involved in the chronic inflammatory process driving AAA progression.
Collapse
Affiliation(s)
- Susanne Dihlmann
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Philipp Erhart
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Arash Nickkholgh
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Maani Hakimi
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
43
|
Chrysophanol inhibits NALP3 inflammasome activation and ameliorates cerebral ischemia/reperfusion in mice. Mediators Inflamm 2014; 2014:370530. [PMID: 24876671 PMCID: PMC4020303 DOI: 10.1155/2014/370530] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/15/2014] [Accepted: 04/03/2014] [Indexed: 12/18/2022] Open
Abstract
The most effective way to contain cerebral ischemic injury is reperfusion; however, reperfusion itself may result in tissue injury, for which inflammatory damage is one of the main causative factors. NALP3 inflammasome is a multiprotein complex. It consists of NALP3, ASC, and caspase-1, whose function is to switch on the inflammatory process. Chrysophanol is an extract from plants of Rheum genus and it possesses many pharmacological effects including its anti-inflammation activity. In this study, the effects of chrysophanol in cerebral ischemia/reperfusion and the potential mechanisms were investigated. Male CD1 mice were subject to transient middle cerebral artery occlusion (tMCAO). The NALP3 inflammasome activation status and its dynamic expression during the natural inflammatory response induced by tMCAO were first profiled. The neuroprotective effects of chrysophanol were then assessed and the potential mechanisms mediating the observed neuroprotection were then explored. Physical parameters including neurological deficit, infarct size, brain edema, and BBB permeability were measured at 24 h after tMCAO. Confocal microscopy, Western blotting, immunohistochemistry, and qRT-PCR techniques were utilized to analyze the expression of NALP3 inflammasome and IL-1β. Our results indicated that the brain tissue damage during cerebral ischemia/reperfusion is accompanied by NALP3 inflammasome activation. Chrysophanol could inhibit the activation of NALP3 inflammasome and protect cerebral ischemic stroke.
Collapse
|
44
|
Christophers E. Psoriasis: heterogeneity, innate immunity and comorbidities. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.12.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Fann DYW, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 2013; 12:941-66. [PMID: 24103368 DOI: 10.1016/j.arr.2013.09.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/20/2022]
Abstract
Inflammation is an innate immune response to infection or tissue damage that is designed to limit harm to the host, but contributes significantly to ischemic brain injury following stroke. The inflammatory response is initiated by the detection of acute damage via extracellular and intracellular pattern recognition receptors, which respond to conserved microbial structures, termed pathogen-associated molecular patterns or host-derived danger signals termed damage-associated molecular patterns. Multi-protein complexes known as inflammasomes (e.g. containing NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4, AIM2 and/or Pyrin), then process these signals to trigger an effector response. Briefly, signaling through NLRP1 and NLRP3 inflammasomes produces cleaved caspase-1, which cleaves both pro-IL-1β and pro-IL-18 into their biologically active mature pro-inflammatory cytokines that are released into the extracellular environment. This review will describe the molecular structure, cellular signaling pathways and current evidence for inflammasome activation following cerebral ischemia, and the potential for future treatments for stroke that may involve targeting inflammasome formation or its products in the ischemic brain.
Collapse
|
46
|
Stojadinovic O, Minkiewicz J, Sawaya A, Bourne JW, Torzilli P, de Rivero Vaccari JP, Dietrich WD, Keane RW, Tomic-Canic M. Deep tissue injury in development of pressure ulcers: a decrease of inflammasome activation and changes in human skin morphology in response to aging and mechanical load. PLoS One 2013; 8:e69223. [PMID: 23967056 PMCID: PMC3743891 DOI: 10.1371/journal.pone.0069223] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/05/2013] [Indexed: 11/18/2022] Open
Abstract
Molecular mechanisms leading to pressure ulcer development are scarce in spite of high mortality of patients. Development of pressure ulcers that is initially observed as deep tissue injury is multifactorial. We postulate that biomechanical forces and inflammasome activation, together with ischemia and aging, may play a role in pressure ulcer development. To test this we used a newly-developed bio-mechanical model in which ischemic young and aged human skin was subjected to a constant physiological compressive stress (load) of 300 kPa (determined by pressure plate analyses of a person in a reclining position) for 0.5–4 hours. Collagen orientation was assessed using polarized light, whereas inflammasome proteins were quantified by immunoblotting. Loaded skin showed marked changes in morphology and NLRP3 inflammasome protein expression. Sub-epidermal separations and altered orientation of collagen fibers were observed in aged skin at earlier time points. Aged skin showed significant decreases in the levels of NLRP3 inflammasome proteins. Loading did not alter NLRP3 inflammasome proteins expression in aged skin, whereas it significantly increased their levels in young skin. We conclude that aging contributes to rapid morphological changes and decrease in inflammasome proteins in response to tissue damage, suggesting that a decline in the innate inflammatory response in elderly skin could contribute to pressure ulcer pathogenesis. Observed morphological changes suggest that tissue damage upon loading may not be entirely preventable. Furthermore, newly developed model described here may be very useful in understanding the mechanisms of deep tissue injury that may lead towards development of pressure ulcers.
Collapse
Affiliation(s)
- Olivera Stojadinovic
- Department of Dermatology & Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller Medical School, Miami, Florida, United States of America
| | - Julia Minkiewicz
- Department of Physiology & Biophysics, University of Miami Miller Medical School, Miami, Florida, United States of America
| | - Andrew Sawaya
- Department of Dermatology & Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller Medical School, Miami, Florida, United States of America
| | - Jonathan W. Bourne
- Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, New York, United States of America
| | - Peter Torzilli
- Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, New York, United States of America
| | - Juan Pablo de Rivero Vaccari
- Departments of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - W. Dalton Dietrich
- Departments of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Robert W. Keane
- Department of Physiology & Biophysics, University of Miami Miller Medical School, Miami, Florida, United States of America
| | - Marjana Tomic-Canic
- Department of Dermatology & Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller Medical School, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
47
|
|
48
|
Carlström M, Ekman AK, Petersson S, Söderkvist P, Enerbäck C. Genetic support for the role of the NLRP3 inflammasome in psoriasis susceptibility. Exp Dermatol 2013; 21:932-7. [PMID: 23171454 DOI: 10.1111/exd.12049] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2012] [Indexed: 12/15/2022]
Abstract
NACHT leucine-rich repeat- and PYD-containing (NLRP)3 protein controls the inflammasome by regulating caspase-1 activity and interleukin (IL)-1β processing. The contribution of IL-1β in the pathogenesis of psoriasis is well recognized. Polymorphisms in NLRP3 and caspase recruitment domain-containing protein (CARD)8, a negative regulator of caspase-1 activity, have been associated with susceptibility to common inflammatory diseases, such as Crohn's disease and rheumatoid arthritis. To investigate the role for genetic variants in the NLRP3 inflammasome in psoriasis susceptibility. In a patient sample comprising 1988 individuals from 491 families and 1002 healthy controls, genotypes for four selected single-nucleotide polymorphisms (SNPs) in NLRP3 (three SNPs) and CARD8 (one SNP) were determined by TaqMan(®) Allelic Discrimination. Using the transmission disequilibrium test (TDT), a significant increase in the transmission of the NLRP3 rs10733113G genotype to a subgroup of patients with more widespread psoriasis was demonstrated (P = 0.015). Using logistic regression analysis in 741 patients with psoriasis and 1002 controls, the CARD8 rs2043211 genotype was significantly different in cases and controls in overall terms [OR 1.3 (1.1-1.5), P = 0.004] and for both genders. Our data support the hypothesis that the inflammasome plays a role in psoriasis susceptibility.
Collapse
Affiliation(s)
- Maria Carlström
- Division of Cell Biology and Dermatology, Department of Clinical and Experimental Medicine, Ingrid Asp Psoriasis Research Center, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | |
Collapse
|
49
|
Artlett CM. Inflammasomes in wound healing and fibrosis. J Pathol 2012; 229:157-67. [DOI: 10.1002/path.4116] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Carol M Artlett
- Department of Microbiology and Immunology; Drexel University College of Medicine; Philadelphia PA USA
| |
Collapse
|
50
|
Goldminz AM, Au SC, Kim N, Gottlieb AB, Lizzul PF. NF-κB: an essential transcription factor in psoriasis. J Dermatol Sci 2012; 69:89-94. [PMID: 23219896 DOI: 10.1016/j.jdermsci.2012.11.002] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 11/01/2012] [Accepted: 11/03/2012] [Indexed: 01/15/2023]
Abstract
Nuclear factor kappa B (NF-κB) is a protein transcription factor that orchestrates inflammation and other complex biological processes. It is a key regulatory element in a variety of immune and inflammatory pathways, in cellular proliferation and differentiation and in apoptosis. Therefore NF-κB is a crucial mediator involved in the pathogenesis of psoriasis. Psoriasis, an inflammatory dermatosis, is marked by elevated levels of active, phosphorylated NF-κB. Genomic studies have also linked psoriasis with mediators in the NF-κB pathway. NF-κB has been hypothesized to connect the altered keratinocyte and immune cell behavior that characterizes the psoriatic milieu. Several anti-psoriatic therapies, including tumor necrosis factor-α blockers and glucocorticoids, reduce active NF-κB levels and related down-stream elements, and other biologics currently in development, including interleukin-17 blockers, may also target this pathway. Compounds that specifically target NF-κB signaling may be developed as novel therapeutics for chronic inflammatory disorders including psoriasis. However, chronic NF-κB inhibition could also result in immunodeficiencies. Therefore, a delicate balance must be found that maximizes therapeutic potential while limiting harmful effects, and may be achieved through several possible approaches, including localized therapy, selective inhibition of NF-κB signaling in pathologic cells, incomplete pathway inhibition or short treatment durations.
Collapse
Affiliation(s)
- A M Goldminz
- Department of Dermatology, Tufts Medical Center, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|