1
|
Huang Y, Liu Z, Li M, Wang D, Ye J, Hu Q, Zhang Q, Lin Y, Chen R, Liang X, Li X, Lin X. Deciphering the impact of aging on splenic endothelial cell heterogeneity and immunosenescence through single-cell RNA sequencing analysis. Immun Ageing 2024; 21:48. [PMID: 39026350 PMCID: PMC11256597 DOI: 10.1186/s12979-024-00452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Aging is associated with significant structural and functional changes in the spleen, leading to immunosenescence, yet the detailed effects on splenic vascular endothelial cells (ECs) and their immunomodulatory roles are not fully understood. In this study, a single-cell RNA (scRNA) atlas of EC transcriptomes from young and aged mouse spleens was constructed to reveal age-related molecular changes, including increased inflammation and reduced vascular development and also the potential interaction between splenic endothelial cells and immune cells. RESULTS Ten clusters of splenic endothelial cells were identified. DEGs analysis across different EC clusters revealed the molecular changes with aging, showing the increase in the overall inflammatory microenvironment and the loss in vascular development function of aged ECs. Notably, four EC clusters with immunological functions were identified, suggesting an Endothelial-to-Immune-like Cell Transition (EndICLT) potentially driven by aging. Pseudotime analysis of the Immunology4 cluster further indicated a possible aging-induced transitional state, potentially initiated by Ctss gene activation. Finally, the effects of aging on cell signaling communication between different EC clusters and immune cells were analyzed. CONCLUSIONS This comprehensive atlas elucidates the complex interplay between ECs and immune cells in the aging spleen, offering new insights into endothelial heterogeneity, reprogramming, and the mechanisms of immunosenescence.
Collapse
Affiliation(s)
- Yanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Mengke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qiuling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rongxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xuanwei Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Lin S, Liu X, Jiang J, Ge W, Zhang Y, Li F, Tao Q, Liu S, Li M, Chen H. The involvement of keratinocytes in pruritus of chronic inflammatory dermatosis. Exp Dermatol 2024; 33:e15142. [PMID: 39032085 DOI: 10.1111/exd.15142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Frequent itching and incessant scratching are commonly observed in various chronic inflammatory skin conditions, including atopic dermatitis and psoriasis. The persistent and prolonged nature of pruritus can worsen one's quality of life. Keratinocytes (KCs), the predominant cells of the epidermis, have been confirmed to interact with sensory neurons and immune cells and be involved in chronic skin inflammatory diseases associated with pruritus. Initially, KCs and sensory neurons form a unique synapse-like connection within the epidermis, serving as the structural foundation for their interaction. Additionally, several receptors, including toll-like receptors and protease-activated receptor 2, expressed on KCs, become activated in an inflammatory milieu. On the one hand, activated KCs are sources of pro-inflammatory cytokines and neurotrophic factors, such as adenosine triphosphate, thymic stromal lymphopoietin, and nerve growth factor, which directly or indirectly participate in stimulating sensory neurons, thereby contributing to the itch sensations. On the other hand, KCs also function as primary transducers alongside intraepidermal nerve endings, directly initiating pruritic responses. This review summarizes the current literature and highlights the critical role of KCs in the development and persistence of chronic itch in inflammatory skin disorders.
Collapse
Affiliation(s)
- Shiying Lin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Ge
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinlian Zhang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Li
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qingxiao Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
3
|
Li L, Li ZE, Mo YL, Li WY, Li HJ, Yan GH, Qin XZ, Piao LH. Molecular and cellular pruritus mechanisms in the host skin. Exp Mol Pathol 2024; 136:104889. [PMID: 38316203 DOI: 10.1016/j.yexmp.2024.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Pruritus, also known as itching, is a complex sensation that involves the activation of specific physiological and cellular receptors. The skin is innervated with sensory nerves as well as some receptors for various sensations, and its immune system has prominent neurological connections. Sensory neurons have a considerable impact on the sensation of itching. However, immune cells also play a role in this process, as they release pruritogens. Disruption of the dermal barrier activates an immune response, initiating a series of chemical, physical, and cellular reactions. These reactions involve various cell types, including keratinocytes, as well as immune cells involved in innate and adaptive immunity. Collective activation of these immune responses confers protection against potential pathogens. Thus, understanding the molecular and cellular mechanisms that contribute to pruritus in host skin is crucial for the advancement of effective treatment approaches. This review provides a comprehensive analysis of the present knowledge concerning the molecular and cellular mechanisms underlying itching signaling in the skin. Additionally, this review explored the integration of these mechanisms with the broader context of itch mediators and the expression of their receptors in the skin.
Collapse
Affiliation(s)
- Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Zhi-En Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Yun-Li Mo
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Wan-Yao Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Hui-Jing Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Guang-Hai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Xiang-Zheng Qin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| | - Li-Hua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|
4
|
Del Duca E, He H, Liu Y, Pagan AD, David E, Cheng J, Carroll B, Renert-Yuval Y, Bar J, Estrada YD, Maari C, Proulx ESC, Krueger JG, Bissonnette R, Guttman-Yassky E. Intrapatient comparison of atopic dermatitis skin transcriptome shows differences between tape-strips and biopsies. Allergy 2024; 79:80-92. [PMID: 37577841 DOI: 10.1111/all.15845] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Our knowledge of etiopathogenesis of atopic dermatitis (AD) is largely derived from skin biopsies, which are associated with pain, scarring and infection. In contrast, tape-stripping is a minimally invasive, nonscarring technique to collect skin samples. METHODS To construct a global AD skin transcriptomic profile comparing tape-strips to whole-skin biopsies, we performed RNA-seq on tape-strips and biopsies taken from the lesional skin of 20 moderate-to-severe AD patients and the skin of 20 controls. Differentially expressed genes (DEGs) were defined by fold-change (FCH) ≥2.0 and false discovery rate <0.05. RESULTS We detected 4104 (2513 Up; 1591 Down) and 1273 (546 Up; 727 Down) DEGs in AD versus controls, in tape-strips and biopsies, respectively. Although both techniques captured dysregulation of key immune genes, tape-strips showed higher FCHs for innate immunity (IL-1B, IL-8), dendritic cell (ITGAX/CD11C, FCER1A), Th2 (IL-13, CCL17, TNFRSF4/OX40), and Th17 (CCL20, CXCL1) products, while biopsies showed higher upregulation of Th22 associated genes (IL-22, S100As) and dermal cytokines (IFN-γ, CCL26). Itch-related genes (IL-31, TRPV3) were preferentially captured by tape-strips. Epidermal barrier abnormalities were detected in both techniques, with terminal differentiation defects (FLG2, PSORS1C2) better represented by tape-strips and epidermal hyperplasia changes (KRT16, MKI67) better detected by biopsies. CONCLUSIONS Tape-strips and biopsies capture overlapping but distinct features of the AD molecular signature, suggesting their respective utility for monitoring specific AD-related immune, itch, and barrier abnormalities in clinical trials and longitudinal studies.
Collapse
Affiliation(s)
- Ester Del Duca
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Dermatology, University of Magna Graecia, Catanzaro, Italy
| | - Helen He
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Ying Liu
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Angel D Pagan
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Eden David
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Julia Cheng
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Britta Carroll
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Yael Renert-Yuval
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, USA
| | - Jonathan Bar
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Yeriel D Estrada
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | | | | | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, USA
| | | | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
5
|
Riaz B, Sohn S. Neutrophils in Inflammatory Diseases: Unraveling the Impact of Their Derived Molecules and Heterogeneity. Cells 2023; 12:2621. [PMID: 37998356 PMCID: PMC10670008 DOI: 10.3390/cells12222621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Inflammatory diseases involve numerous disorders and medical conditions defined by an insufficient level of self-tolerance. These diseases evolve over the course of a multi-step process through which environmental variables play a crucial role in the emergence of aberrant innate and adaptive immunological responses. According to experimental data accumulated over the past decade, neutrophils play a significant role as effector cells in innate immunity. However, neutrophils are also involved in the progression of numerous diseases through participation in the onset and maintenance of immune-mediated dysregulation by releasing neutrophil-derived molecules and forming neutrophil extracellular traps, ultimately causing destruction of tissues. Additionally, neutrophils have a wide variety of functional heterogeneity with adverse effects on inflammatory diseases. However, the complicated role of neutrophil biology and its heterogeneity in inflammatory diseases remains unclear. Moreover, neutrophils are considered an intriguing target of interventional therapies due to their multifaceted role in a number of diseases. Several approaches have been developed to therapeutically target neutrophils, involving strategies to improve neutrophil function, with various compounds and inhibitors currently undergoing clinical trials, although challenges and contradictions in the field persist. This review outlines the current literature on roles of neutrophils, neutrophil-derived molecules, and neutrophil heterogeneity in the pathogenesis of autoimmune and inflammatory diseases with potential future therapeutic strategies.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Wang H, Wei R, Deng T, Zhang J, Shen Z. Identifying immuno-related diagnostic genes and immune infiltration signatures for periodontitis and alopecia areata. Int Immunopharmacol 2023; 124:110880. [PMID: 37717318 DOI: 10.1016/j.intimp.2023.110880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Although there have been indications that periodontitis (PD) may be susceptible to alopecia areata (AA), the underlying mechanism of its pathogenesis remains poorly understood. The objective of our study is to conduct further research into the occurrence of this complication. METHODS The gene expression omnibus (GEO) database was the source of acquisition for both PD and AA datasets. Various methods, including the differentially expressed genes (DEGs) analysis, functional enrichment analysis, protein-protein interaction (PPI) network construction, Cytohubba algorithms, and RandomForest algorithms, were utilized to identify candidate hub immuno-related genes (IRGs) for diagnosing AA with PD. The diagnostic efficacy was assessed by constructing receiver operating characteristic (ROC) curves. To further deepen our understanding, immune cell infiltration, flow cytometry assay, and immunofluorescence techniques were employed to uncover immune cell dysregulation in PD and AA. RESULTS 899 and 803 DEGs were detected in AA and PD, respectively, with an intersection of 150 common DEGs enriched in immune regulation. Further analysis of the junction of shared DEGs and IRGs was analyzed using the PPI network, Mcode, and Cytohubba algorithms. Three hub genes (CTSS, IL2RG, and ITGAL) were subsequently selected by Cytohubba and RandomForest algorithms and were found to be promising candidate hub genes with high diagnostic values (AUC ranging from 0.776 to 0.909) for diagnosing AA with PD. Additionally, various dysregulated immune cells were observed, with mast cells potentially serving as markers for AA and plasma for PD. CONCLUSION Three candidate hub IRGs (CTSS, IL2RG, and ITGAL) were identified with considerable diagnostic values. Besides, mast cells could serve as markers for AA, while plasma may indicate PD. Our research has the potential to identify shared diagnostic candidate genes and immune cells for AA and PD patients.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Dermatology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Dermatology, Xinhua Hospital, and Institute of Dermatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruoqu Wei
- Department of Dermatology, Xinhua Hospital, and Institute of Dermatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tanjun Deng
- Department of Dermatology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhengyu Shen
- Department of Dermatology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Shang L, Zhao S, Shi H, Xing X, Zhang J, He Y. Nerve growth factor mediates activation of transient receptor potential vanilloid 1 in neurogenic pruritus of psoriasis. Int Immunopharmacol 2023; 118:110063. [PMID: 37004343 DOI: 10.1016/j.intimp.2023.110063] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/04/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Pruritus is a common and painful symptom in psoriasis with profoundly negative impacts on quality of life. The underlying mechanisms of pruritus are complex and multifactorial, and accumulating evidence suggests that pruritus induced by neurogenic inflammation predominates in psoriasis. Nerve growth factor (NGF) -mediated transient receptor potential vanilloid receptor 1(TRPV1) pathway has emerged as a crucial node in the regulation of neurogenic pruritus. TRPV1 appears coupled to most pruritus-specific molecules via the neuro-immune axis. While the modes of regulation differ for each axis, TRPV1 is involved in substantial biochemical crosstalk-causing feedback loops with significant effects on neurogenic pruritus. Therefore, TRPV1 has emerged as a target molecular in drug development for pruritus in psoriasis. However, no significant clinical progress occurred in the development of systemic TRPV1 antagonists due to elevated core temperature. Thus, topical application of TRPV1 antagonists and interference with mediators linked to the TRPV1 activation pathway may be promising therapeutic options to ameliorate pruritus. This Review focuses on recent advances in complicated regulation of NGF-mediated TRPV1 pathway in psoriatic neurogenic pruritus, as well as the therapeutic options that arise from the dissection of the pathway.
Collapse
|
8
|
Cathepsin S Knockdown Suppresses Endothelial Inflammation, Angiogenesis, and Complement Protein Activity under Hyperglycemic Conditions In Vitro by Inhibiting NF-κB Signaling. Int J Mol Sci 2023; 24:ijms24065428. [PMID: 36982499 PMCID: PMC10049538 DOI: 10.3390/ijms24065428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Hyperglycemia plays a key role in the development of microvascular complications, endothelial dysfunction (ED), and inflammation. It has been demonstrated that cathepsin S (CTSS) is activated in hyperglycemia and is involved in inducing the release of inflammatory cytokines. We hypothesized that blocking CTSS might alleviate the inflammatory responses and reduce the microvascular complications and angiogenesis in hyperglycemic conditions. In this study, we treated human umbilical vein endothelial cells (HUVECs) with high glucose (HG; 30 mM) to induce hyperglycemia and measured the expression of inflammatory cytokines. When treated with glucose, hyperosmolarity could be linked to cathepsin S expression; however, many have mentioned the high expression of CTSS. Thus, we made an effort to concentrate on the immunomodulatory role of the CTSS knockdown in high glucose conditions. We validated that the HG treatment upregulated the expression of inflammatory cytokines and CTSS in HUVEC. Further, siRNA treatment significantly downregulated CTSS expression along with inflammatory marker levels by inhibiting the nuclear factor-kappa B (NF-κB) mediated signaling pathway. In addition, CTSS silencing led to the decreased expression of vascular endothelial markers and downregulated angiogenic activity in HUVECs, which was confirmed by a tube formation experiment. Concurrently, siRNA treatment reduced the activation of complement proteins C3a and C5a in HUVECs under hyperglycemic conditions. These findings show that CTSS silencing significantly reduces hyperglycemia-induced vascular inflammation. Hence, CTSS may be a novel target for preventing diabetes-induced microvascular complications.
Collapse
|
9
|
Sanjel B, Shim WS. The contribution of mouse models to understanding atopic dermatitis. Biochem Pharmacol 2022; 203:115177. [PMID: 35843300 DOI: 10.1016/j.bcp.2022.115177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/28/2022]
Abstract
Atopic dermatitis (AD) is a dermatological disease accompanied by dry and cracked skin with severe pruritus. Although various therapeutic strategies have been introduced to alleviate AD, it remains challenging to cure the disorder. To achieve such a goal, understanding the pathophysiological mechanisms of AD is a prerequisite, requiring mouse models that properly reflect the AD phenotypes. Currently, numerous AD mouse models have been established, but each model has its own advantages and weaknesses. In this review, we categorized and summarized mouse models of AD and described their characteristics from a researcher's perspective.
Collapse
Affiliation(s)
- Babina Sanjel
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
10
|
Biochemistry of human tear film: A review. Exp Eye Res 2022; 220:109101. [DOI: 10.1016/j.exer.2022.109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
|
11
|
Sage J, Renault J, Domain R, Bojarski K, Chazeirat T, Saidi A, Leblanc E, Nizard C, Samsonov S, Kurfurst R, Lalmanach G, Lecaille F. Modulation of the expression and activity of cathepsin S in reconstructed human skin by neohesperidin dihydrochalcone. Matrix Biol 2022; 107:97-112. [DOI: 10.1016/j.matbio.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023]
|
12
|
Li J, Dong R, Zeng Y. Characteristics, mechanism, and management of pain in atopic dermatitis: A literature review. Clin Transl Allergy 2021; 11:e12079. [PMID: 34962720 PMCID: PMC8805692 DOI: 10.1002/clt2.12079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic, pruritic, immune-mediated inflammatory disease. Developments in basic science and clinical research have increased our understanding of AD. Although pain as a symptom of AD is underemphasized in previous studies, multiple researchers address pain as a frequent burden of AD. However, the exact role of pain in AD is not fully understood. AIMS Our review aimed to summarize the current evidence focusing on characteristics, mechanism, and management of pain in AD. MATERIALS & METHODS We conducted a thorough literature review in the PubMed database to figure out different aspects discussing pain in AD, including pain symptoms, burden, the relationship between pain and itch, mechanism, and pain management in AD. RESULTS AND CONCLUSION AD patients affected by skin pain vary from 42.7%-92.2% with remarkable intensity and heavy burden. Skin pain and itch interacted both in symptoms and mechanisms. Atopic skin with the impaired barrier, neurogenic inflammation mediators, peripheral and central sensitization of pain may possibly explain pain mechanism in AD. Future research is needed to clarify the commonality and disparity of pain and itch in AD in order to seek efficacious medications and treatment.
Collapse
Affiliation(s)
- Jia‐Xin Li
- Department of DermatologyState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic DiseasesBeijingChina
- Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Rui‐Jia Dong
- Department of Plastic Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Yue‐Ping Zeng
- Department of DermatologyState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic DiseasesBeijingChina
| |
Collapse
|
13
|
Yoo Y, Choi E, Kim Y, Cha Y, Um E, Kim Y, Kim Y, Lee YS. Therapeutic potential of targeting cathepsin S in pulmonary fibrosis. Biomed Pharmacother 2021; 145:112245. [PMID: 34772578 DOI: 10.1016/j.biopha.2021.112245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Cathepsin S (CTSS), a lysosomal protease, belongs to a family of cysteine cathepsin proteases that promote degradation of damaged proteins in the endolysosomal pathway. Aberrant CTSS expression and regulation are associated with the pathogenesis of several diseases, including lung diseases. CTSS overexpression causes a variety of pathological processes, including pulmonary fibrosis, with increased CTSS secretion and accelerated extracellular matrix remodeling. Compared to many other cysteine cathepsin family members, CTSS has unique features that it presents limited tissue expression and retains its enzymatic activity at a neutral pH, suggesting its decisive involvement in disease microenvironments. In this review, we investigated the role of CTSS in lung disease, exploring recent studies that have indicated that CTSS mediates fibrosis in unique ways, along with its structure, substrates, and distinct regulation. We also outlined examples of CTSS inhibitors in clinical and preclinical development and proposed CTSS as a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- YoungJo Yoo
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Eun Choi
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yejin Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yunyoung Cha
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Eunhye Um
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Younghwa Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yunji Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea.
| |
Collapse
|
14
|
Lee J, Jang S, Choi M, Kang M, Lim SG, Kim SY, Jang S, Ko J, Kim E, Yi J, Choo Y, Kim MO, Ryoo ZY. Overexpression of cathepsin S exacerbates lupus pathogenesis through upregulation TLR7 and IFN-α in transgenic mice. Sci Rep 2021; 11:16348. [PMID: 34381063 PMCID: PMC8357804 DOI: 10.1038/s41598-021-94855-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organs. Recent studies suggest relevance between cysteine protease cathepsin S (CTSS) expression and SLE. To investigate the mechanism of CTSS in SLE, CTSS-overexpressing transgenic (TG) mice were generated, and induced lupus-like symptoms. Eight months later, the TG mice spontaneously developed typical SLE symptoms regardless of the inducement. Furthermore, we observed increased toll-like receptor 7 (TLR7) expression with increased monocyte and neutrophil populations in the TG mice. In conclusion, overexpression of CTSS in mice influences TLR7 expression, autoantibodies and IFN-α, which leads to an autoimmune reaction and exacerbates lupus-like symptoms.
Collapse
Affiliation(s)
- Jinhee Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea
| | - Minjee Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Mincheol Kang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, 89557, USA
| | - Su-Geun Lim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea
| | - Si-Yong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea
| | - Soyeon Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea
| | - Jiwon Ko
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Junkoo Yi
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Yeonsik Choo
- Department of Biology, Kyungpook National University, Daegu, South Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, 37224, Republic of Korea.
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
15
|
Skullcapflavone II Suppresses TNF-α/IFN-γ-Induced TARC, MDC, and CTSS Production in HaCaT Cells. Int J Mol Sci 2021; 22:ijms22126428. [PMID: 34208434 PMCID: PMC8233710 DOI: 10.3390/ijms22126428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, has been reported to have anti-inflammatory properties. However, its therapeutic potential for skin inflammatory diseases and its mechanism are unknown. Therefore, this study aimed to investigate the effect of SFII on TNF-α/IFN-γ-induced atopic dermatitis (AD)-associated cytokines, such as thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC). Co-stimulation with TNF-α/IFN-γ in HaCaT cells is a well-established model for induction of pro-inflammatory cytokines. We treated cells with SFII prior to TNF-α/IFN-γ-stimulation and confirmed that it significantly inhibited TARC and MDC expression at the mRNA and protein levels. Additionally, SFII also inhibited the expression of cathepsin S (CTSS), which is associated with itching in patients with AD. Using specific inhibitors, we demonstrated that STAT1, NF-κB, and p38 MAPK mediate TNF-α/IFN-γ-induced TARC and MDC, as well as CTSS expression. Finally, we confirmed that SFII significantly suppressed TNF-α/IFN-γ-induced phosphorylation of STAT1, NF-κB, and p38 MAPK. Taken together, our study indicates that SFII inhibits TNF-α/IFN-γ-induced TARC, MDC, and CTSS expression by regulating STAT1, NF-κB, and p38 MAPK signaling pathways.
Collapse
|
16
|
Unlocking the Non-IgE-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2). Cells 2021; 10:cells10051033. [PMID: 33925682 PMCID: PMC8146469 DOI: 10.3390/cells10051033] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022] Open
Abstract
Mas-related G-protein coupled receptor member X2 (MRGPRX2) is a class A GPCR expressed on mast cells. Mast cells are granulated tissue-resident cells known for host cell response, allergic response, and vascular homeostasis. Immunoglobulin E receptor (FcεRI)-mediated mast cell activation is a well-studied and recognized mechanism of allergy and hypersensitivity reactions. However, non-IgE-mediated mast cell activation is less explored and is not well recognized. After decades of uncertainty, MRGPRX2 was discovered as the receptor responsible for non-IgE-mediated mast cells activation. The puzzle of non-IgE-mediated pseudo-allergic reaction is unlocked by MRGPRX2, evidenced by a plethora of reported endogenous and exogenous MRGPRX2 agonists. MRGPRX2 is exclusively expressed on mast cells and exhibits varying affinity for many molecules such as antimicrobial host defense peptides, neuropeptides, and even US Food and Drug Administration-approved drugs. The discovery of MRGPRX2 has changed our understanding of mast cell biology and filled the missing link of the underlying mechanism of drug-induced MC degranulation and pseudo-allergic reactions. These non-canonical characteristics render MRGPRX2 an intriguing player in allergic diseases. In the present article, we reviewed the emerging role of MRGPRX2 as a non-IgE-mediated mechanism of mast cell activation in pseudo-allergic reactions. We have presented an overview of mast cells, their receptors, structural insight into MRGPRX2, MRGPRX2 agonists and antagonists, the crucial role of MRGPRX2 in pseudo-allergic reactions, current challenges, and the future research direction.
Collapse
|
17
|
Nattkemper LA, Fourzali K, Yosipovitch G. Cutaneous Gene Expression in Primates with Itch. J Invest Dermatol 2020; 141:1586-1588. [PMID: 33345969 DOI: 10.1016/j.jid.2020.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Leigh A Nattkemper
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, USA
| | - Kayla Fourzali
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, USA
| | - Gil Yosipovitch
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, USA.
| |
Collapse
|
18
|
Kühn H, Kolkhir P, Babina M, Düll M, Frischbutter S, Fok JS, Jiao Q, Metz M, Scheffel J, Wolf K, Kremer AE, Maurer M. Mas-related G protein-coupled receptor X2 and its activators in dermatologic allergies. J Allergy Clin Immunol 2020; 147:456-469. [PMID: 33071069 DOI: 10.1016/j.jaci.2020.08.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The Mas-related G protein-coupled receptor X2 (MRGPRX2) is a multiligand receptor responding to various exogenous and endogenous stimuli. Being highly expressed on skin mast cells, MRGPRX2 triggers their degranulation and release of proinflammatory mediators, and it promotes multicellular signaling cascades, such as itch induction and transmission in sensory neurons. The expression of MRGPRX2 by skin mast cells and the levels of the MRGPRX2 agonists (eg, substance P, major basic protein, eosinophil peroxidase) are upregulated in the serum and/or skin of patients with inflammatory and pruritic skin diseases, such as chronic spontaneous urticaria or atopic dermatitis. Therefore, MRGPRX2 and its agonists might be potential biomarkers for the progression of cutaneous inflammatory diseases and the response to treatment. In addition, they may represent promising targets for prevention and treatment of signs and symptoms in patients with skin diseases or drug reactions. To assess this possibility, this review explores the role and relevance of MRGPRX2 and its activators in cutaneous inflammatory disorders and chronic pruritus.
Collapse
Affiliation(s)
- Helen Kühn
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pavel Kolkhir
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; I.M. Sechenov First Moscow State Medical University (Sechenov University), Division of Immune-mediated Skin Diseases, Moscow, Russia
| | - Magda Babina
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Miriam Düll
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jie Shen Fok
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Respiratory Medicine, Box Hill Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Qingqing Jiao
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Martin Metz
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Wolf
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
19
|
Tay ASL, Li C, Nandi T, Chng KR, Andiappan AK, Mettu VS, de Cevins C, Ravikrishnan A, Dutertre CA, Wong XFCC, Ng AHQ, Matta SA, Ginhoux F, Rötzschke O, Chew FT, Tang MBY, Yew YW, Nagarajan N, Common JEA. Atopic dermatitis microbiomes stratify into ecologic dermotypes enabling microbial virulence and disease severity. J Allergy Clin Immunol 2020; 147:1329-1340. [PMID: 33039480 DOI: 10.1016/j.jaci.2020.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/27/2020] [Accepted: 09/09/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common skin disease affecting up to 20% of the global population, with significant clinical heterogeneity and limited information about molecular subtypes and actionable biomarkers. Although alterations in the skin microbiome have been described in subjects with AD during progression to flare state, the prognostic value of baseline microbiome configurations has not been explored. OBJECTIVE Our aim was to identify microbial signatures on AD skin that are predictive of disease fate. METHODS Nonlesional skin of patients with AD and healthy control subjects were sampled at 2 time points separated by at least 4 weeks. Using whole metagenome analysis of skin microbiomes of patients with AD and control subjects (n = 49 and 189 samples), we identified distinct microbiome configurations (dermotypes A and B). Blood was collected for immunophenotyping, and skin surface samples were analyzed for correlations with natural moisturizing factors and antimicrobial peptides. RESULTS Dermotypes were robust and validated across 2 additional cohorts (63 individuals), with strong enrichment of subjects with AD in dermotype B. Dermotype B was characterized by reduced microbial richness, depletion of Cutibacterium acnes, Dermacoccus and Methylobacterium species, individual-specific outlier abundance of Staphylococcus species (eg, S epidermidis, S capitis, S aureus), and enrichment in metabolic pathways (eg, branched chain amino acids and arginine biosynthesis) and virulence genes (eg, β-toxin, δ-toxin) that defined a pathogenic ecology. Skin surface and circulating host biomarkers exhibited a distinct microbial-associated signature that was further reflected in more severe itching, frequent flares, and increased disease severity in patients harboring the dermotype B microbiome. CONCLUSION We report distinct clusters of microbial profiles that delineate the role of microbiome configurations in AD heterogeneity, highlight a mechanism for ongoing inflammation, and provide prognostic utility toward microbiome-based disease stratification.
Collapse
Affiliation(s)
- Angeline S L Tay
- Skin Research Institute of Singapore, Agency of Science Technology and Research Research Institutes, Singapore
| | - Chenhao Li
- Genome Institute of Singapore, Agency of Science Technology and Research Research Institutes, Singapore
| | - Tannistha Nandi
- Genome Institute of Singapore, Agency of Science Technology and Research Research Institutes, Singapore
| | - Kern Rei Chng
- Genome Institute of Singapore, Agency of Science Technology and Research Research Institutes, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network, Agency of Science Technology and Research Research Institutes, Singapore
| | - Vijaya Saradhi Mettu
- Biological Resource Centre, Agency of Science Technology and Research Research Institutes, Singapore
| | - Camille de Cevins
- Genome Institute of Singapore, Agency of Science Technology and Research Research Institutes, Singapore
| | - Aarthi Ravikrishnan
- Genome Institute of Singapore, Agency of Science Technology and Research Research Institutes, Singapore
| | - Charles-Antoine Dutertre
- Singapore Immunology Network, Agency of Science Technology and Research Research Institutes, Singapore
| | - X F Colin C Wong
- Skin Research Institute of Singapore, Agency of Science Technology and Research Research Institutes, Singapore
| | - Amanda Hui Qi Ng
- Genome Institute of Singapore, Agency of Science Technology and Research Research Institutes, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Florent Ginhoux
- Skin Research Institute of Singapore, Agency of Science Technology and Research Research Institutes, Singapore; Singapore Immunology Network, Agency of Science Technology and Research Research Institutes, Singapore
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency of Science Technology and Research Research Institutes, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Mark B Y Tang
- National Skin Centre, National Healthcare Group, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yik Weng Yew
- National Skin Centre, National Healthcare Group, Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore, Agency of Science Technology and Research Research Institutes, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - John E A Common
- Skin Research Institute of Singapore, Agency of Science Technology and Research Research Institutes, Singapore.
| |
Collapse
|
20
|
Liu Y, Cook C, Sedgewick AJ, Zhang S, Fassett MS, Ricardo-Gonzalez RR, Harirchian P, Kashem SW, Hanakawa S, Leistico JR, North JP, Taylor MA, Zhang W, Man MQ, Charruyer A, Beliakova-Bethell N, Benz SC, Ghadially R, Mauro TM, Kaplan DH, Kabashima K, Choi J, Song JS, Cho RJ, Cheng JB. Single-Cell Profiling Reveals Divergent, Globally Patterned Immune Responses in Murine Skin Inflammation. iScience 2020; 23:101582. [PMID: 33205009 PMCID: PMC7648132 DOI: 10.1016/j.isci.2020.101582] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023] Open
Abstract
Inflammatory response heterogeneity has impeded high-resolution dissection of diverse immune cell populations during activation. We characterize mouse cutaneous immune cells by single-cell RNA sequencing, after inducing inflammation using imiquimod and oxazolone dermatitis models. We identify 13 CD45+ subpopulations, which broadly represent most functionally characterized immune cell types. Oxazolone pervasively upregulates Jak2/Stat3 expression across T cells and antigen-presenting cells (APCs). Oxazolone also induces Il4/Il13 expression in newly infiltrating basophils, and Il4ra and Ccl24, most prominently in APCs. In contrast, imiquimod broadly upregulates Il17/Il22 and Ccl4/Ccl5. A comparative analysis of single-cell inflammatory transcriptional responses reveals that APC response to oxazolone is tightly restricted by cell identity, whereas imiquimod enforces shared programs on multiple APC populations in parallel. These global molecular patterns not only contrast immune responses on a systems level but also suggest that the mechanisms of new sources of inflammation can eventually be deduced by comparison to known signatures. Oxazolone pervasively upregulates Jak2/Stat3 expression across T cells and APCs Il4/Il13 induction in skin by oxazolone is dominated by infiltrating basophils Imiquimod broadly increases Il17/Il22 and Ccl4/Ccl5, extending to non-T cells Oxazolone induces more highly compartmentalized immune cell responses than imiquimod
Collapse
Affiliation(s)
- Yale Liu
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, ShaanXi, China
| | - Christopher Cook
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | | | - Shuyi Zhang
- Department of Physics, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Marlys S. Fassett
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA, USA
| | - Roberto R. Ricardo-Gonzalez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA, USA
| | - Paymann Harirchian
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Sakeen W. Kashem
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Sho Hanakawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jacob R. Leistico
- Department of Physics, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jeffrey P. North
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Mark A. Taylor
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Zhang
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Mao-Qiang Man
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Alexandra Charruyer
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Nadejda Beliakova-Bethell
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0679, USA
- Veterans Affairs Medical Center, San Diego, CA, USA
| | | | - Ruby Ghadially
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Theodora M. Mauro
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Daniel H. Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern School of Medicine, Chicago, IL, USA
| | - Jun S. Song
- Department of Physics, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Raymond J. Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Corresponding author
| | - Jeffrey B. Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
- Corresponding author
| |
Collapse
|
21
|
Kahremany S, Hofmann L, Gruzman A, Cohen G. Advances in Understanding the Initial Steps of Pruritoceptive Itch: How the Itch Hits the Switch. Int J Mol Sci 2020; 21:ijms21144883. [PMID: 32664385 PMCID: PMC7402353 DOI: 10.3390/ijms21144883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pruritoceptive (dermal) itch was long considered an accompanying symptom of diseases, a side effect of drug applications, or a temporary sensation induced by invading pruritogens, as produced by the stinging nettle. Due to extensive research in recent years, it was possible to provide detailed insights into the mechanism of itch mediation and modulation. Hence, it became apparent that pruritus is a complex symptom or disease in itself, which requires particular attention to improve patients’ health. Here, we summarize recent findings in pruritoceptive itch, including how this sensation is triggered and modulated by diverse endogenous and exogenous pruritogens and their receptors. A differentiation between mediating pruritogen and modulating pruritogen seems to be of great advantage to understand and decipher the molecular mechanism of itch perception. Only a comprehensive view on itch sensation will provide a solid basis for targeting this long-neglected adverse sensation accompanying numerous diseases and many drug side effects. Finally, we identify critical aspects of itch perception that require future investigation.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Correspondence:
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel
| |
Collapse
|
22
|
Brown R, Nath S, Lora A, Samaha G, Elgamal Z, Kaiser R, Taggart C, Weldon S, Geraghty P. Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respir Res 2020; 21:111. [PMID: 32398133 PMCID: PMC7216426 DOI: 10.1186/s12931-020-01381-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Dysregulated expression and activity of cathepsin S (CTSS), a lysosomal protease and a member of the cysteine cathepsin protease family, is linked to the pathogenesis of multiple diseases, including a number of conditions affecting the lungs. Extracellular CTSS has potent elastase activity and by processing cytokines and host defense proteins, it also plays a role in the regulation of inflammation. CTSS has also been linked to G-coupled protein receptor activation and possesses an important intracellular role in major histocompatibility complex class II antigen presentation. Modulated CTSS activity is also associated with pulmonary disease comorbidities, such as cancer, cardiovascular disease, and diabetes. CTSS is expressed in a wide variety of immune cells and is biologically active at neutral pH. Herein, we review the significance of CTSS signaling in pulmonary diseases and associated comorbidities. We also discuss CTSS as a plausible therapeutic target and describe recent and current clinical trials examining CTSS inhibition as a means for treatment.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sridesh Nath
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Alnardo Lora
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ghassan Samaha
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ziyad Elgamal
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ryan Kaiser
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Clifford Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
| |
Collapse
|
23
|
Expression of elastolytic cathepsins in human skin and their involvement in age-dependent elastin degradation. Biochim Biophys Acta Gen Subj 2020; 1864:129544. [PMID: 32007579 DOI: 10.1016/j.bbagen.2020.129544] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Skin ageing is associated with structure-functional changes in the extracellular matrix, which is in part caused by proteolytic degradation. Since cysteine cathepsins are major matrix protein-degrading proteases, we investigated the age-dependent expression of elastolytic cathepsins K, S, and V in human skin, their in vitro impact on the integrity of the elastic fibre network, their cleavage specificities, and the release of bioactive peptides. METHODS Cathepsin-mediated degradation of human skin elastin samples was assessed from young to very old human donors using immunohistochemical and biochemical assays, scanning electron microscopy, and mass spectrometry. RESULTS Elastin samples derived from patients between 10 and 86 years of age were analysed and showed an age-dependent deterioration of the fibre structure from a dense network of thinner fibrils into a beaded and porous mesh. Reduced levels of cathepsins K, S, and V were observed in aged skin with a predominant epidermal expression. Cathepsin V was the most potent elastase followed by cathepsin K and S. Biomechanical analysis of degraded elastin fibres corroborated the destructive activity of cathepsins. Mass spectrometric determination of the cleavage sites in elastin revealed that all three cathepsins predominantly cleaved in hydrophobic domains. The degradation of elastin was efficiently inhibited by an ectosteric inhibitor. Furthermore, the degradation of elastin fibres resulted in the release of bioactive peptides, which have previously been associated with various pathologies. CONCLUSION Cathepsins are powerful elastin-degrading enzymes and capable of generating a multitude of elastokines. They may represent a viable target for intervention strategies to reduce skin ageing.
Collapse
|
24
|
Smith L, Gatault S, Casals-Diaz L, Kelly PA, Camerer E, Métais C, Knaus UG, Eissner G, Steinhoff M. House dust mite-treated PAR2 over-expressor mouse: A novel model of atopic dermatitis. Exp Dermatol 2019; 28:1298-1308. [PMID: 31487753 DOI: 10.1111/exd.14030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/14/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a complex skin disease involving causative effects from both intrinsic and extrinsic sources. Murine models of the disease often fall short in one of these components and, as a result, do not fully encapsulate these disease mechanisms. OBJECTIVE We aimed to determine whether the protease-activated receptor 2 over-expressor mouse (PAR2OE) with topical house dust mite (HDM) application is a more comprehensive and clinically representative AD model. METHODS Following HDM extract application to PAR2OE mice and controls, AD clinical scoring, itching behaviour, skin morphology and structure, barrier function, immune cell infiltration and inflammatory markers were assessed. Skin morphology was analysed using haematoxylin and eosin staining, and barrier function was assessed by transepidermal water loss measurements. Immune infiltrate was characterised by histological and immunofluorescence staining. Finally, an assessment of AD-related gene expression was performed using quantitative RT-PCR. RESULTS PAR2OE mice treated with HDM displays all the characteristic clinical symptoms including erythema, dryness and oedema, skin morphology, itch and inflammation typically seen in patients with AD. There is a significant influx of mast cells (P < .01) and eosinophils (P < .0001) into the dermis of these mice. Furthermore, the PAR2OE + HDM mice exhibit similar expression patterns of key differentially expressed genes as seen in human AD. CONCLUSION The PAR2OE + HDM mouse presents with a classic AD pathophysiology and is a valuable model in terms of reproducibility and overall disease representation to study the condition and potential therapeutic approaches.
Collapse
Affiliation(s)
- Leila Smith
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Solene Gatault
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Laura Casals-Diaz
- Skin Biology and Pharmacology, Almirall R&D Centre, Sant Feliu de Llobregat, Barcelona, Spain
| | - Pamela A Kelly
- Department of Veterinary Pathology, School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France
| | - Charles Métais
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Günther Eissner
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Martin Steinhoff
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.,Department of Dermatology, Hamad Medical Corporation and Qatar University, Doha, Qatar
| |
Collapse
|
25
|
Chung K, Pitcher T, Grant AD, Hewitt E, Lindstrom E, Malcangio M. Cathepsin S acts via protease-activated receptor 2 to activate sensory neurons and induce itch-like behaviour. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2019; 6:100032. [PMID: 31223140 PMCID: PMC6565756 DOI: 10.1016/j.ynpai.2019.100032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/19/2023]
Abstract
Chronic itch is a debilitating condition characterised by excessive scratching and is a symptom frequently reported in skin diseases such as atopic dermatitis. It has been proposed that release of the cysteine protease Cathepsin S (CatS) from skin keratinocytes or immune cells resident in or infiltrating the skin could act as a pruritogen in chronic itch conditions. CatS is known to activate protease-activated receptor 2 (PAR2). We therefore hypothesised that enzymatic activation of neuronally expressed PAR2 by CatS was responsible for activation of sensory neurons and transmission of itch signals. Intradermally-injected human recombinant (hr)-CatS or the PAR2 agonist, SLIGRL-NH2 behaved as pruritogens by causing scratching behaviour in mice. Hr-CatS-induced scratching behaviour was prevented by CatS inhibitors and PAR2 antagonists and reduced by 50% in TRPV1-/- mice compared with wild-type mice, whilst no significant reduction in scratching behaviour was observed in TRPA1-/- mice. Cultured dorsal root ganglion (DRG) cells showed an increase in [Ca2+]i following incubation with hr-CatS, and the percentage of neurons that responded to hr-CatS decreased in the presence of a PAR2 antagonist or in cultures of neurons from TRPV1-/- mice. Taken together, our results indicate CatS acts as a pruritogen via PAR2 activation in TRPV1-expressing sensory neurons.
Collapse
Affiliation(s)
- Keshi Chung
- Wolfson Centre for Age-Related Diseases, King’s College London, UK
| | - Thomas Pitcher
- Wolfson Centre for Age-Related Diseases, King’s College London, UK
| | - Andrew D. Grant
- Wolfson Centre for Age-Related Diseases, King’s College London, UK
| | | | | | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King’s College London, UK
| |
Collapse
|
26
|
Klinngam W, Janga SR, Lee C, Ju Y, Yarber F, Shah M, Guo H, Wang D, MacKay JA, Edman MC, Hamm-Alvarez SF. Inhibition of Cathepsin S Reduces Lacrimal Gland Inflammation and Increases Tear Flow in a Mouse Model of Sjögren's Syndrome. Sci Rep 2019; 9:9559. [PMID: 31267034 PMCID: PMC6606642 DOI: 10.1038/s41598-019-45966-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Abstract
Cathepsin S (CTSS) is highly increased in Sjögren's syndrome (SS) patients tears and in tears and lacrimal glands (LG) of male non-obese diabetic (NOD) mice, a murine model of SS. To explore CTSS's utility as a therapeutic target for mitigating ocular manifestations of SS in sites where CTSS is increased in disease, the tears and the LG (systemically), the peptide-based inhibitor, Z-FL-COCHO (Z-FL), was administered to 14-15 week male NOD mice. Systemic intraperitoneal (i.p.) injection for 2 weeks significantly reduced CTSS activity in tears, LG and spleen, significantly reduced total lymphocytic infiltration into LG, reduced CD3+ and CD68+ cell abundance within lymphocytic infiltrates, and significantly increased stimulated tear secretion. Topical administration of Z-FL to a different cohort of 14-15 week male NOD mice for 6 weeks significantly reduced only tear CTSS while not affecting LG and spleen CTSS and attenuated the disease-progression related reduction of basal tear secretion, while not significantly impacting lymphocytic infiltration of the LG. These findings suggest that CTSS inhibitors administered either topically or systemically can mitigate aspects of the ocular manifestations of SS.
Collapse
Affiliation(s)
- Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Srikanth R Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Changrim Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Frances Yarber
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mihir Shah
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Dandan Wang
- Anatomic and Clinical Pathology, Los Angeles County + University of Southern California Medical Center, Los Angeles, CA, 90033, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
27
|
Bossowska-Nowicka M, Mielcarska MB, Struzik J, Jackowska-Tracz A, Tracz M, Gregorczyk-Zboroch KP, Gieryńska M, Toka FN, Szulc-Dąbrowska L. Deficiency of Selected Cathepsins Does Not Affect the Inhibitory Action of ECTV on Immune Properties of Dendritic Cells. Immunol Invest 2019; 49:232-248. [PMID: 31240969 DOI: 10.1080/08820139.2019.1631843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ectromelia virus (ECTV), an orthopoxvirus, undergoes productive replication in conventional dendritic cells (cDCs), resulting in the inhibition of their innate and adaptive immune functions. ECTV replication rate in cDCs is increased due to downregulation of the expression of cathepsins - cystein proteases that orchestrate several steps during DC maturation. Therefore, this study was aimed to determine if downregulation of cathepsins, such as B, L or S, disrupts cDC capacity to induce activating signals in T cells or whether infection of cDCs with ECTV further weakens their functions as antigen-presenting cells. Our results showed that cDCs treated with siRNA against cathepsin B, L and S synthesize similar amounts of pro-inflammatory cytokines and exhibit comparable ability to mature and stimulate alloreactive CD4+ T cells, as untreated wild type (WT) cells. Moreover, ECTV inhibitory effect on cDC innate and adaptive immune functions, observed especially after LPS treatment, was comparable in both cathepsin-silenced and WT cells. Taken together, the absence of cathepsins B, L and S has minimal, if any, impact on the inhibitory effect of ECTV on cDC immune functions. We assume that the virus-mediated inhibition of cathepsin expression in cDCs represents more a survival mechanism than an immune evasion strategy.
Collapse
Affiliation(s)
- Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Agnieszka Jackowska-Tracz
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Michał Tracz
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, St. Kitts & Nevis, West Indies
| | - Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
28
|
Small DM, Brown RR, Doherty DF, Abladey A, Zhou-Suckow Z, Delaney RJ, Kerrigan L, Dougan CM, Borensztajn KS, Holsinger L, Booth R, Scott CJ, López-Campos G, Elborn JS, Mall MA, Weldon S, Taggart CC. Targeting of cathepsin S reduces cystic fibrosis-like lung disease. Eur Respir J 2019; 53:13993003.01523-2018. [PMID: 30655278 DOI: 10.1183/13993003.01523-2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/27/2018] [Indexed: 11/05/2022]
Abstract
Cathepsin S (CatS) is upregulated in the lungs of patients with cystic fibrosis (CF). However, its role in CF lung disease pathogenesis remains unclear.In this study, β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice, a model of CF-like lung disease, were crossed with CatS null (CatS-/-) mice or treated with the CatS inhibitor VBY-999.Levels of active CatS were elevated in the lungs of βENaC-Tg mice compared with wild-type (WT) littermates. CatS-/-βENaC-Tg mice exhibited decreased pulmonary inflammation, mucus obstruction and structural lung damage compared with βENaC-Tg mice. Pharmacological inhibition of CatS resulted in a significant decrease in pulmonary inflammation, lung damage and mucus plugging in the lungs of βENaC-Tg mice. In addition, instillation of CatS into the lungs of WT mice resulted in inflammation, lung remodelling and upregulation of mucin expression. Inhibition of the CatS target, protease-activated receptor 2 (PAR2), in βENaC-Tg mice resulted in a reduction in airway inflammation and mucin expression, indicating a role for this receptor in CatS-induced lung pathology.Our data indicate an important role for CatS in the pathogenesis of CF-like lung disease mediated in part by PAR2 and highlight CatS as a therapeutic target.
Collapse
Affiliation(s)
- Donna M Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These two authors contributed equally to this work
| | - Ryan R Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These two authors contributed equally to this work
| | - Declan F Doherty
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Anthony Abladey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Zhe Zhou-Suckow
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Rebecca J Delaney
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Lauren Kerrigan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Caoifa M Dougan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Keren S Borensztajn
- INSERM UMRS_933, Université Pierre et Marie Curie, Hôpital Trousseau, Paris, France
| | | | | | - Christopher J Scott
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Guillermo López-Campos
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Marcus A Mall
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Dept of Pediatric Pulmonology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
29
|
Mack MR, Kim BS. The Itch–Scratch Cycle: A Neuroimmune Perspective. Trends Immunol 2018; 39:980-991. [DOI: 10.1016/j.it.2018.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
30
|
Klinngam W, Fu R, Janga SR, Edman MC, Hamm-Alvarez SF. Cathepsin S Alters the Expression of Pro-Inflammatory Cytokines and MMP-9, Partially through Protease-Activated Receptor-2, in Human Corneal Epithelial Cells. Int J Mol Sci 2018; 19:E3530. [PMID: 30423938 PMCID: PMC6274678 DOI: 10.3390/ijms19113530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Cathepsin S (CTSS) activity is increased in tears of Sjögren's syndrome (SS) patients. This elevated CTSS may contribute to ocular surface inflammation. Human corneal epithelial cells (HCE-T cells) were treated with recombinant human CTSS at activity comparable to that in SS patient tears for 2, 4, 8, and 24 h. Acute CTSS significantly increased HCE-T cell gene and protein expression of interleukin 6 (IL-6), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) from 2 to 4 h, while matrix metalloproteinase 9 (MMP-9), CTSS, and protease-activated receptor-2 (PAR-2) were increased by chronic CTSS (24 h). To investigate whether the increased pro-inflammatory cytokines and proteases were induced by CTSS activation of PAR-2, HCE-T cells were transfected with PAR-2 siRNA, reducing cellular PAR-2 by 45%. Cells with reduced PAR-2 expression showed significantly reduced release of IL-6, TNF-α, IL-1β, and MMP-9 into culture medium in response to acute CTSS, while IL-6, TNF-α, and MMP-9 were reduced in culture medium, and IL-6 and MMP-9 in cell lysates, after chronic CTSS. Moreover, cells with reduced PAR-2 expression showed reduced ability of chronic CTSS to induce gene expression of pro-inflammatory cytokines and proteases. CTSS activation of PAR-2 may represent a potential therapeutic target for amelioration of ocular surface inflammation in SS patients.
Collapse
Affiliation(s)
- Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA.
| | - Runzhong Fu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA.
| | - Srikanth R Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA.
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA.
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA.
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA.
| |
Collapse
|
31
|
Edman MC, Janga SR, Meng Z, Bechtold M, Chen AF, Kim C, Naman L, Sarma A, Teekappanavar N, Kim AY, Madrigal S, Singh S, Ortiz E, Christianakis S, Arkfeld DG, Mack WJ, Heur M, Stohl W, Hamm-Alvarez SF. Increased Cathepsin S activity associated with decreased protease inhibitory capacity contributes to altered tear proteins in Sjögren's Syndrome patients. Sci Rep 2018; 8:11044. [PMID: 30038391 PMCID: PMC6056496 DOI: 10.1038/s41598-018-29411-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
Cathepsin S (CTSS) activity is elevated in Sjögren's Syndrome (SS) patient tears. Here we tested whether protease inhibition and cystatin C (Cys C) levels are reduced in SS tears, which could lead to enhanced CTSS-driven degradation of tear proteins. CTSS activity against Cys C, LF and sIgA was tested in SS or healthy control tears. Tears from 156 female subjects (33, SS; 33, rheumatoid arthritis; 31, other autoimmune diseases; 35, non-autoimmune dry eye (DE); 24, healthy controls) were analyzed for CTSS activity and Cys C, LF, and sIgA levels. Cys C and LF showed enhanced degradation in SS tears supplemented with recombinant CTSS, but not supplemented healthy control tears. CTSS activity was significantly increased, while Cys C, LF and sIgA levels were significantly decreased, in SS tears compared to other groups. While tear CTSS activity remained the strongest discriminator of SS in autoimmune populations, combining LF and CTSS improved discrimination of SS beyond CTSS in DE patients. Reductions in Cys C and other endogenous proteases may enhance CTSS activity in SS tears. Tear CTSS activity is reconfirmed as a putative biomarker of SS in an independent patient cohort while combined LF and CTSS measurements may distinguish SS from DE patients.
Collapse
Affiliation(s)
- Maria C Edman
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Srikanth R Janga
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Mercy Bechtold
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander F Chen
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chongiin Kim
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luke Naman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arunava Sarma
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neha Teekappanavar
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alice Y Kim
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sara Madrigal
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Simranjit Singh
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Ortiz
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stratos Christianakis
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel G Arkfeld
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin Heur
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Rheumatology, Department of Medicine, Los Angeles County + University of Southern California Medical Center, Los Angeles, CA, USA
| | - Sarah F Hamm-Alvarez
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Los Angeles, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Li GY, Fu M, Qin M, Xue LM. High Expression of Human Cathepsin S by Recombinant Pichia pastoris with Cod Skin as an Organic Co-Nitrogen Source. J Mol Microbiol Biotechnol 2018; 27:363-370. [PMID: 29408812 DOI: 10.1159/000486395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022] Open
Abstract
Human cathepsin S production by recombinant Pichia pastoris using cod skin as the co-nitrogen source was investigated in this study. The addition of carbon sources of glycerol in the fed-batch phase and of methanol in the induction stage was also investigated. A new approach to the highly expression of human cathepsin S was developed using 90 g/L of cod skin (wet weight). After 24 h of the initial fermentation, 4% glycerol (v/v, glycerol/culture) was added once to enhance the cell density (OD600) in the cultivation. Then, adding and maintaining methanol at 0.5% (v/v, methanol/cultivation) after about 48 h of fermentation achieved a high expression of human cathepsin S in a 5-L bioreactor. The results demonstrate that the maximum activity of human cathepsin S in the fermentation supernatant reached 7,152 U/L after 96 h of methanol induction. The methylotrophic yeast P. pastoris grown in the medium containing cod skin (90 g/L) as the co-nitrogen source provided a 21% higher cell density (OD600) and 18.3% higher human cathepsin S yield than P. pastoris grown in BMGY medium. For the first time, human cathepsin S was successfully expressed by P. pastoris with cod skin as the co-nitrogen source. The glycerol fed-batch controlling strategy and method of maintaining methanol at a constant concentration of 0.5% (v/v, methanol/cultivation) in the induction stage was efficient for P. pastoris growth and the expression of human cathepsin S.
Collapse
Affiliation(s)
- Guiying Y Li
- Key Laboratory of Development and High-Value Utilization of Beibugulf Seafood Resources for Guangxi Colleges, School of Food Engineering, Qinzhou University, Qinzhou, China
| | - Man Fu
- Key Laboratory of Development and High-Value Utilization of Beibugulf Seafood Resources for Guangxi Colleges, School of Food Engineering, Qinzhou University, Qinzhou, China
| | - Mei Qin
- Key Laboratory of Development and High-Value Utilization of Beibugulf Seafood Resources for Guangxi Colleges, School of Food Engineering, Qinzhou University, Qinzhou, China
| | - Liming M Xue
- Institute of Chemical Toxicity, Shanghai Municipal Center of Disease Control and Prevention, Shanghai, China
| |
Collapse
|
33
|
Reddy VB, Azimi E, Chu L, Lerner EA. Mas-Related G-Protein Coupled Receptors and Cowhage-Induced Itch. J Invest Dermatol 2018; 138:461-464. [DOI: 10.1016/j.jid.2017.05.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 02/02/2023]
|
34
|
Abstract
Introduction Chronic itch has been drawing much attention due to its clinical significance and the complexity of its mechanisms. To facilitate the development of anti-itch strategies, it is necessary to investigate the key players in itch sensation under chronic itch conditions. Several members of the Mrgpr family were identified as itch receptors that detect cutaneous pruritogens in primary sensory neurons. However, the role of Mrgprs in chronic itch conditions has not been well described. Methods Scratching behaviors of WT and Mrgpr-clusterΔ-/- mice were examined in dry skin model and contact dermatitis model to examine the role of Mrgpr genes in mediating chronic itch sensation. Scratching behaviors of the mice were also examined in allergic itch model. Real-time PCR were performed to examine the expression level of MrgprA3 and MrgprC11 under naïve and dry skin conditions. The MrgprA3+ itch-sensing fibers were labeled by tdTomato fluorescence in Mrgpra3GFP-Cre; ROSA26tdTomato mice, and the morphology and density of those fibers in the epidermis were analyzed under dry skin condition. Results We showed that deleting a cluster of Mrgpr genes in mice reduced scratching behavior severely under two chronic itch conditions, namely dry skin and contact dermatitis, and the allergic itch condition. Moreover, the gene expressions of itch receptors MrgprA3 and MrgprC11 in dorsal root ganglia (DRG) were upregulated significantly under dry skin condition. Consistently, the percentage of MrgprA3+ itch-sensing neurons was increased as well. We also observed hyperinnervation of MrgprA3+ itch-sensing fibers in the epidermis of the skin under dry skin condition. Discussion We demonstrate that Mrgprs play important roles in mediating chronic itch and allergic itch. These findings enrich our knowledge of itch mechanism and may lead to the development of novel therapeutic approach to combat itch.
Collapse
|
35
|
Han RT, Kim S, Choi K, Jwa H, Lee J, Kim HY, Kim HJ, Kim HR, Back SK, Na HS. Asthma-like airway inflammation and responses in a rat model of atopic dermatitis induced by neonatal capsaicin treatment. J Asthma Allergy 2017; 10:181-189. [PMID: 28572736 PMCID: PMC5441677 DOI: 10.2147/jaa.s124902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recent studies have shown that approximately 70% of patients with severe atopic dermatitis (AD) develop asthma. Development of AD in infancy and subsequent other atopic diseases such as asthma in childhood is referred to as atopic march. However, a causal link between the diseases of atopic march has remained largely unaddressed, possibly due to lack of a proper animal model. Recently, we developed an AD rat model showing chronically relapsing dermatitis and scratching behaviors induced by neonatal capsaicin treatment. Here, we investigated whether our model also showed asthmatic changes, with the aim of expanding our AD model into an atopic march model. First, we confirmed that capsaicin treatment (50 mg/kg within 24 h after birth) induced dermatitis and scratching behaviors until 6 weeks of age. After that, the mRNA expression of Th1 and Th2 cytokines, such as IFN-γ and TNF-α, and IL-4, IL-5, and IL-13, respectively, was quantified with quantitative real-time polymerase chain reaction in the skin and the lungs. The number of total cells and eosinophils was counted in bronchoalveolar lavage (BAL) fluid. The levels of IgE in the serum and BAL fluid were determined with enzyme-linked immunosorbent assay. Paraffin-embedded sections (4 μm) were stained with hematoxylin/eosin to analyze the morphology of the lung and the airway. Airway responsiveness was measured in terms of airway resistance and compliance using the flexiVent system. In the capsaicin-treated rats, persistent dermatitis developed, and scratching behaviors increased over several weeks. The levels of IgE in the serum and BAL fluid as well as the mRNA expression of Th2 cytokines, including IL-4, IL-5, and IL-13, in both the skin and the lungs were elevated, and the number of eosinophils in the BAL fluid was also increased in the capsaicin-treated rats compared to control rats. Morphological analysis of the airway revealed smooth muscle hypertrophy and extensive mucus plug in the capsaicin-treated rats. Functional studies demonstrated an increment of the airway resistance and a decrement of lung compliance in the capsaicin-treated rats compared to control rats. Taken together, our findings suggested that neonatal capsaicin treatment induced asthma-like airway inflammation and responses in juvenile rats.
Collapse
Affiliation(s)
| | - Sewon Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul
| | - Kyungmin Choi
- Neuroscience Research Institute.,Department of Physiology
| | - Hyeonseok Jwa
- Neuroscience Research Institute.,Department of Physiology
| | - JaeHee Lee
- Neuroscience Research Institute.,Department of Physiology
| | - Hye Young Kim
- Neuroscience Research Institute.,Department of Physiology
| | - Hee Jin Kim
- Division of Biological Science and Technology, Science and Technology College, Yonsei University Wonju Campus, Wonju
| | - Hang-Rae Kim
- Department of Anatomy, College of Medicine, Seoul National University, Seoul
| | - Seung Keun Back
- Department of Pharmaceutics and Biotechnology, College of Medical Engineering, Konyang University, Chungnam, South Korea
| | - Heung Sik Na
- Neuroscience Research Institute.,Department of Physiology
| |
Collapse
|
36
|
Olivry T, Mayhew D, Paps JS, Linder KE, Peredo C, Rajpal D, Hofland H, Cote-Sierra J. Early Activation of Th2/Th22 Inflammatory and Pruritogenic Pathways in Acute Canine Atopic Dermatitis Skin Lesions. J Invest Dermatol 2016; 136:1961-1969. [PMID: 27342734 DOI: 10.1016/j.jid.2016.05.117] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
Abstract
Determining inflammation and itch pathway activation in patients with atopic dermatitis (AD) is fraught with the inability to precisely assess the age of skin lesions, thus affecting the analysis of time-dependent mediators. To characterize inflammatory events occurring during early experimental acute AD lesions, biopsy samples were collected 6, 24, and 48 hours after epicutaneous application of Dermatophagoides farinae house dust mites to sensitized atopic dogs. The skin transcriptome was assessed using a dog-specific microarray and quantitative PCR. Acute canine AD skin lesions had a significant up-regulation of genes encoding T helper (Th) 2 (e.g., IL4, IL5, IL13, IL31, and IL33), Th9 (IL9), and Th22 (IL22) cytokines as well as Th2-promoting chemokines such as CCL5 and CCL17. Proinflammatory (e.g., IL6, LTB, and IL18) cytokines were also up-regulated. Other known pruritogenic pathways were also activated: there was significant up-regulation of genes encoding proteases cathepsin S (CTSS), mast cell chymase (CMA1), tryptase (TPS1) and mastin, neuromedin-B (NMB), nerve growth factor (NGF), and leukotriene-synthesis enzymes (ALOX5, ALOX5AP, and LTA4H). Experimental acute canine house dust mite-induced AD lesions exhibit an activation of innate and adaptive immune responses and pruritogenic pathways similar to those seen in humans with acute AD, thereby validating this model to test innovative therapeutics modalities for this disease.
Collapse
Affiliation(s)
- Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - David Mayhew
- Computational Biology, Target Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Judy S Paps
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Keith E Linder
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA; Department of Population Health and Pathobiology, College of Veterinary Medicine, Research Triangle Park, North Carolina, USA
| | - Carlos Peredo
- Stiefel, GlaxoSmithKline, Research Triangle Park, North Carolina, USA.
| | - Deepak Rajpal
- Safety Assessment, Platform Technology and Science, GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Hans Hofland
- Stiefel, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | | |
Collapse
|
37
|
Abstract
Itch is a unique sensation associated with the scratch reflex. Although the scratch reflex plays a protective role in daily life by removing irritants, chronic itch remains a clinical challenge. Despite urgent clinical need, itch has received relatively little research attention and its mechanisms have remained poorly understood until recently. The goal of the present review is to summarize our current understanding of the mechanisms of acute as well as chronic itch and classifications of the primary itch populations in relationship to transient receptor potential (Trp) channels, which play pivotal roles in multiple somatosensations. The convergent involvement of Trp channels in diverse itch signaling pathways suggests that Trp channels may serve as promising targets for chronic itch treatments.
Collapse
Affiliation(s)
- Shuohao Sun
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
38
|
Stull C, Lavery MJ, Yosipovitch G. Advances in therapeutic strategies for the treatment of pruritus. Expert Opin Pharmacother 2015; 17:671-87. [DOI: 10.1517/14656566.2016.1127355] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Luo J, Feng J, Liu S, Walters ET, Hu H. Molecular and cellular mechanisms that initiate pain and itch. Cell Mol Life Sci 2015; 72:3201-23. [PMID: 25894692 PMCID: PMC4534341 DOI: 10.1007/s00018-015-1904-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022]
Abstract
Somatosensory neurons mediate our sense of touch. They are critically involved in transducing pain and itch sensations under physiological and pathological conditions, along with other skin-resident cells. Tissue damage and inflammation can produce a localized or systemic sensitization of our senses of pain and itch, which can facilitate our detection of threats in the environment. Although acute pain and itch protect us from further damage, persistent pain and itch are debilitating. Recent exciting discoveries have significantly advanced our knowledge of the roles of membrane-bound G protein-coupled receptors and ion channels in the encoding of information leading to pain and itch sensations. This review focuses on molecular and cellular events that are important in early stages of the biological processing that culminates in our senses of pain and itch.
Collapse
Affiliation(s)
- Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | | | | | | | | |
Collapse
|
40
|
Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs. Nat Commun 2015. [PMID: 26216096 PMCID: PMC4520244 DOI: 10.1038/ncomms8864] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sensory neurons expressing Mas-related G protein coupled receptors (Mrgprs) mediate histamine-independent itch. We show that the cysteine protease cathepsin S activates MrgprC11 and evokes receptor-dependent scratching in mice. In contrast to its activation of conventional protease-activated receptors, cathepsin S mediated activation of MrgprC11 did not involve the generation of a tethered ligand. We demonstrate further that different cysteine proteases selectively activate specific mouse and human Mrgpr family members. This expansion of our understanding by which proteases interact with GPCRs redefines the concept of what constitutes a protease-activated receptor. The findings also implicate proteases as ligands to members of this orphan receptor family while providing new insights into how cysteine proteases contribute to itch.
Collapse
|
41
|
Cottrez F, Boitel E, Auriault C, Aeby P, Groux H. Genes specifically modulated in sensitized skins allow the detection of sensitizers in a reconstructed human skin model. Development of the SENS-IS assay. Toxicol In Vitro 2015; 29:787-802. [PMID: 25724174 DOI: 10.1016/j.tiv.2015.02.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/14/2015] [Accepted: 02/17/2015] [Indexed: 11/18/2022]
Abstract
Analysis of genes modulated during the sensitization process either on mice (LLNA) or human (blisters) combined with data mining has allowed the definition of a comprehensive panel of sensitization biomarkers. This set of genes includes already identified markers such as the ARE family and others not yet associated with the sensitization process (the so-called SENS-IS gene subset). The expression of this set of genes has been measured on reconstituted human epidermis models (Episkin) exposed to various sensitizers and non-sensitizers. Fine analysis of their expression pattern indicates that it is the number of modulated genes rather than the intensity of up-regulation that correlates best with the sensitization potential of a chemical. Moreover, sensitizers that are weak inductors of ARE genes tend to be relevant modulators of the SENS-IS subset. By combining the expression data obtained with both gene subsets, it is now possible to identify a wide variety of sensitizers on a test system (in vitro reconstructed human epidermis) that is very similar to the in vivo situation and compatible with a large variety of test substance characteristics.
Collapse
Affiliation(s)
| | - Elodie Boitel
- ImmunoSearch, Les Cyclades, Chemin de Camperousse, Grasse, France
| | - Claude Auriault
- ImmunoSearch, Les Cyclades, Chemin de Camperousse, Grasse, France
| | - Pierre Aeby
- ImmunoSearch, Les Cyclades, Chemin de Camperousse, Grasse, France
| | - Hervé Groux
- ImmunoSearch, Les Cyclades, Chemin de Camperousse, Grasse, France.
| |
Collapse
|
42
|
Abstract
Protease-activated receptors (PARs) have been implicated in a variety of physiological functions, as well as somatosensation and particularly itch and pain. Considerable attention has focused on PARs following the finding they are upregulated in the skin of atopic dermatitis patients. The present review focuses on recent studies showing that PARs are critically involved in itch and sensitization of itch. PARs are expressed by diverse cell types including primary sensory neurons, keratinocytes, and immune cells and are activated by proteases that expose a tethered ligand. Endogenous proteases are also released from diverse cell types including keratinocytes and immune cells. Exogenous proteases released from certain plants and insects contacting the skin can also induce itch. Increased levels of proteases in the skin contribute to inflammation that is often accompanied by chronic itch which is not predominantly mediated by histamine. The neural pathway signaling itch induced by activation of PARs is distinct from that mediating histamine-induced itch. In addition, there is evidence that PARs play an important role in sensitization of itch signaling under conditions of chronic itch. These recent findings suggest that PARs and other molecules involved in the itch-signaling pathway are good targets to develop novel treatments for most types of chronic itch that are poorly treated with antihistamines.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Department of Dermatology, Anatomy and Cell Biology/Temple Itch Center, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | | | | |
Collapse
|
43
|
Schwendinger-Schreck J, Wilson SR, Bautista DM. Interactions between keratinocytes and somatosensory neurons in itch. Handb Exp Pharmacol 2015; 226:177-90. [PMID: 25861780 DOI: 10.1007/978-3-662-44605-8_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Keratinocytes are epithelial cells that make up the stratified epidermis of the skin. Recent studies suggest that keratinocytes promote chronic itch. Changes in skin morphology that accompany a variety of chronic itch disorders and the multitude of inflammatory mediators secreted by keratinocytes that target both sensory neurons and immune cells highlight the importance of investigating the connection between keratinocytes and chronic itch. This chapter addresses some of the most recent data and models for the role keratinocytes play in the development and maintenance of chronic itch.
Collapse
Affiliation(s)
- Jamie Schwendinger-Schreck
- Department of Molecular and Cellular Biology, University of California Berkeley, 355 LSA MC#3200, Berkeley, CA, 94720-3200, USA
| | | | | |
Collapse
|
44
|
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with complex etiology that is dependent upon interactions between the host and the environment. Acute skin lesions exhibit the features of a Th2-driven inflammatory disorder, and many patients are highly atopic. The skin barrier plays key roles in immune surveillance and homeostasis, and in preventing penetration of microbial products and allergens. Defects that compromise the structural integrity or else the immune function of the skin barrier play a pivotal role in the pathogenesis of AD. This article provides an overview of the array of molecular building blocks that are essential to maintaining healthy skin. The basis for structural defects in the skin is discussed in relation to AD, with an emphasis on filaggrin and its genetic underpinnings. Aspects of innate immunity, including the role of antimicrobial peptides and proteases, are also discussed.
Collapse
Affiliation(s)
- Rachana Agrawal
- Department of Medicine, University of Virginia Health System, Allergy Division, PO Box 801355, Charlottesville, VA, 22908-1355, USA,
| | | |
Collapse
|
45
|
Bautista DM, Wilson SR, Hoon MA. Why we scratch an itch: the molecules, cells and circuits of itch. Nat Neurosci 2014; 17:175-82. [PMID: 24473265 PMCID: PMC4364402 DOI: 10.1038/nn.3619] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/03/2013] [Indexed: 12/17/2022]
Abstract
Itch is described as an irritating sensation that triggers a desire to scratch. However, this definition hardly seems fitting for the millions of people who suffer from intractable itch. Indeed, the Buddhist philosopher Nāgārjuna more aptly stated, "There is pleasure when an itch is scratched. But to be without an itch is more pleasurable still." Chronic itch is widespread and very difficult to treat. In this review we focus on the molecules, cells and circuits in the peripheral and central nervous systems that drive acute and chronic itch transmission. Understanding the itch circuitry is critical to developing new therapies for this intractable disease.
Collapse
Affiliation(s)
- Diana M Bautista
- 1] Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA. [2] Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Sarah R Wilson
- 1] Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA. [2] Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Mark A Hoon
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Abstract
The itch-scratch reflex serves as a protective mechanism in everyday life. However, chronic persistent itching can be devastating. Despite the clinical importance of the itch sensation, its mechanism remains elusive. In the past decade, substantial progress has been made to uncover the mystery of itching. Here, we review the molecules, cells, and circuits known to mediate the itch sensation, which, coupled with advances in understanding the pathophysiology of chronic itching conditions, will hopefully contribute to the development of new anti-itch therapies.
Collapse
Affiliation(s)
- Liang Han
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
47
|
Sage J, De Quéral D, Leblanc-Noblesse E, Kurfurst R, Schnebert S, Perrier E, Nizard C, Lalmanach G, Lecaille F. Differential expression of cathepsins K, S and V between young and aged Caucasian women skin epidermis. Matrix Biol 2014; 33:41-6. [PMID: 23871919 DOI: 10.1016/j.matbio.2013.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
Cutaneous aging translates drastic structural and functional alterations in the extracellular matrix (ECM). Multiple mechanisms are involved, including changes in protease levels. We investigated the age-related protein expression and activity of cysteine cathepsins and the expression of two endogenous protein inhibitors in young and aged Caucasian women skin epidermis. Immunofluorescence studies indicate that the expression of cathepsins K, S and V, as well as cystatins A and M/E within keratinocytes is reduced in photoprotected skin of aged women. Furthermore, the overall endopeptidase activity of cysteine cathepsins in epidermis lysates decreased with age. Albeit dermal elastic fiber and laminin expression is reduced in aged skin, staining of nidogen-1, a key protein in BM assembly that is sensitive to proteolysis by cysteine, metallo- and serine proteases, has a similar pattern in both young and aged skin. Since cathepsins contribute to the hydrolysis and turnover of ECM/basement membrane components, the abnormal protein degradation and deposition during aging process may be related in part to a decline of lysosomal/endosomal cathepsin K, S and V activity.
Collapse
Affiliation(s)
- Juliette Sage
- INSERM, UMR 1100, Pathologies Respiratoires: protéolyse et aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, F-37032 Tours cedex, France; LVMH-Recherche, BP58, F-45800 Saint Jean de Braye, France
| | | | | | - Robin Kurfurst
- LVMH-Recherche, BP58, F-45800 Saint Jean de Braye, France
| | | | - Eric Perrier
- LVMH-Recherche, BP58, F-45800 Saint Jean de Braye, France
| | - Carine Nizard
- LVMH-Recherche, BP58, F-45800 Saint Jean de Braye, France
| | - Gilles Lalmanach
- INSERM, UMR 1100, Pathologies Respiratoires: protéolyse et aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, F-37032 Tours cedex, France
| | - Fabien Lecaille
- INSERM, UMR 1100, Pathologies Respiratoires: protéolyse et aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, F-37032 Tours cedex, France.
| |
Collapse
|
48
|
Qin Y, Cao X, Yang Y, Shi GP. Cysteine protease cathepsins and matrix metalloproteinases in the development of abdominal aortic aneurysms. Future Cardiol 2013; 9:89-103. [PMID: 23259477 DOI: 10.2217/fca.12.71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Both cysteine protease cathepsins and matrix metalloproteinases are implicated in the pathogenesis of abdominal aortic aneurysms (AAAs) in humans and animals. Blood and aortic tissues from humans or animals with AAAs contain much higher levels of these proteases, and often lower levels of their endogenous inhibitors, than do blood and aortic tissues from healthy subjects. Protease- and protease inhibitor-deficient mice and synthetic protease inhibitors have affirmed that cysteinyl cathepsins and matrix metalloproteinases both participate directly in AAA development in several experimental model systems. Here, we summarize our current understanding of how proteases contribute to the pathogenesis of AAA, and discuss whether proteases or their inhibitors may serve as diagnostic biomarkers or potential therapeutic targets for this common human arterial disease.
Collapse
Affiliation(s)
- Yanwen Qin
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, Beijing Institute of Heart, Lung & Blood Vessel Diseases, Beijing 100029, China
| | | | | | | |
Collapse
|
49
|
Liu T, Ji RR. New insights into the mechanisms of itch: are pain and itch controlled by distinct mechanisms? Pflugers Arch 2013; 465:1671-85. [PMID: 23636773 DOI: 10.1007/s00424-013-1284-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/13/2013] [Accepted: 04/14/2013] [Indexed: 12/30/2022]
Abstract
Itch and pain are closely related but distinct sensations. They share largely overlapping mediators and receptors, and itch-responding neurons are also sensitive to pain stimuli. Itch-mediating primary sensory neurons are equipped with distinct receptors and ion channels for itch transduction, including Mas-related G protein-coupled receptors (Mrgprs), protease-activated receptors, histamine receptors, bile acid receptor, toll-like receptors, and transient receptor potential subfamily V1/A1 (TRPV1/A1). Recent progress has indicated the existence of an itch-specific neuronal circuitry. The MrgprA3-expressing primary sensory neurons exclusively innervate the epidermis of skin, and their central axons connect with gastrin-releasing peptide receptor (GRPR)-expressing neurons in the superficial spinal cord. Notably, ablation of MrgprA3-expressing primary sensory neurons or GRPR-expressing spinal cord neurons results in selective reduction in itch but not pain. Chronic itch results from dysfunction of the immune and nervous system and can manifest as neural plasticity despite the fact that chronic itch is often treated by dermatologists. While differences between acute pain and acute itch are striking, chronic itch and chronic pain share many similar mechanisms, including peripheral sensitization (increased responses of primary sensory neurons to itch and pain mediators), central sensitization (hyperactivity of spinal projection neurons and excitatory interneurons), loss of inhibitory control in the spinal cord, and neuro-immune and neuro-glial interactions. Notably, painful stimuli can elicit itch in some chronic conditions (e.g., atopic dermatitis), and some drugs for treating chronic pain are also effective in chronic itch. Thus, itch and pain have more similarities in pathological and chronic conditions.
Collapse
Affiliation(s)
- Tong Liu
- Pain Signaling and Plasticity Laboratory, Department of Anesthesiology and Neurobiology, Duke University Medical Center, 595 LaSalle Street, GSRB-I, Room 1027A, DUMC 3094, Durham, NC, 27710, USA,
| | | |
Collapse
|
50
|
Kim M, Jeon J, Song J, Suh KH, Kim YH, Min KH, Lee KO. Synthesis of proline analogues as potent and selective cathepsin S inhibitors. Bioorg Med Chem Lett 2013; 23:3140-4. [PMID: 23639544 DOI: 10.1016/j.bmcl.2013.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 02/08/2023]
Abstract
Cathepsin S is a potential target of autoimmune disease. A series of proline derived compounds were synthesized and evaluated as cathepsin S inhibitors. We discovered potent cathepsin S inhibitors through structure-activity relationship studies of proline analogues. In particular, compound 19-(S) showed promising in vitro/vivo pharmacological activities and properties as a selective cathepsin S inhibitor.
Collapse
Affiliation(s)
- Mira Kim
- Department of Drug Discovery, Hanmi Research Center, 377-1 Yeongcheon-ri, Dongtan-myeon, Hwaseong, Gyeonggi-do 445-813, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|