1
|
Han F, Guo XY, Jiang MX, Xia NS, Gu Y, Li SW. Structural biology of the human papillomavirus. Structure 2024:S0969-2126(24)00380-0. [PMID: 39368462 DOI: 10.1016/j.str.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Human papillomavirus (HPV), known for its oncogenic properties, is the primary cause of cervical cancer and significantly contributes to mortality rates. It also plays a considerable role in the globally rising incidences of head and neck cancers. These cancers pose a substantial health burden worldwide. Current limitations in diagnostic and treatment strategies, along with inadequate coverage of preventive vaccines in low- and middle-income countries, hinder the progress toward the World Health Organization (WHO) HPV prevention and control targets set for 2030. In response to these challenges, extensive research in structural virology has explored the properties of HPV proteins, yielding crucial insights into the mechanisms of HPV infection that are important for the development of prevention and therapeutic strategies. This review highlights recent advances in understanding the structures of HPV proteins and discusses achievements and future opportunities for HPV vaccine development.
Collapse
Affiliation(s)
- Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xin-Ying Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ming-Xia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Shao-Wei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Han Z, Wang S, Mu T, Zhao P, Song L, Zhang Y, Zhao J, Yin W, Wu Y, Wang H, Gong B, Ji M, Roden RBS, Yang Y, Klein M, Wu K. Vaccination with a Human Papillomavirus L2 Multimer Provides Broad Protection against 17 Human Papillomavirus Types in the Mouse Cervicovaginal Challenge Model. Vaccines (Basel) 2024; 12:689. [PMID: 38932417 PMCID: PMC11209485 DOI: 10.3390/vaccines12060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Human papillomavirus (HPV) is a prevalent cause of mucosal and cutaneous infections and underlying conditions ranging from benign warts to anogenital and oropharyngeal cancers affecting both males and females, notably cervical cancer. Cervical cancer is the fourth leading cause of cancer deaths among women globally and is the most impactful in low- and middle-income countries (LMICs), where the costs of screening and licensed L1-based HPV vaccines pose significant barriers to comprehensive administration. Additionally, the licensed L1-based HPV vaccines fail to protect against all oncogenic HPV types. This study generated three independent lots of an L2-based target antigen (LBTA), which was engineered from conserved linear L2-protective epitopes (aa11-88) from five human alphapapillomavirus genotypes in E. coli under cGMP conditions and adjuvanted with aluminum phosphate. Vaccination of rabbits with LBTA generated high neutralizing antibody titers against all 17 HPV types tested, surpassing the nine types covered by Gardasil®9. Passive transfer of naïve mice with LBTA antiserum revealed its capacity to confer protection against vaginal challenge with all 17 αHPV types tested. LBTA shows stability at room temperature over >1 month. Standard in vitro and in vivo toxicology studies suggest a promising safety profile. These findings suggest LBTA's promise as a next-generation vaccine with comprehensive coverage aimed at reducing the economic and healthcare burden of cervical and other HPV+ cancers in LMICs, and it has received regulatory approval for a first-in-human clinical study (NCT05672966).
Collapse
Affiliation(s)
- Zhenwei Han
- Project Management Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Shen Wang
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.); (B.G.); (M.J.)
| | - Ting Mu
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (Y.Z.); (H.W.)
| | - Ping Zhao
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Lingli Song
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.); (B.G.); (M.J.)
| | - Ying Zhang
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (Y.Z.); (H.W.)
| | - Jin Zhao
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Wen Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Yue Wu
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Huan Wang
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (Y.Z.); (H.W.)
| | - Bo Gong
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.); (B.G.); (M.J.)
| | - Min Ji
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.); (B.G.); (M.J.)
| | - Richard B. S. Roden
- Departments of Pathology, Oncology and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yanping Yang
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| | - Michel Klein
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| | - Ke Wu
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| |
Collapse
|
3
|
Tu HF, Wong M, Tseng SH, Ingavat N, Olczak P, Notarte KI, Hung CF, Roden RBS. Virus-like particle vaccine displaying an external, membrane adjacent MUC16 epitope elicits ovarian cancer-reactive antibodies. J Ovarian Res 2024; 17:19. [PMID: 38225646 PMCID: PMC10790439 DOI: 10.1186/s13048-023-01325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND MUC16 is a heavily glycosylated cell surface mucin cleaved in the tumor microenvironment to shed CA125. CA125 is a serum biomarker expressed by > 95% of non-mucinous advanced stage epithelial ovarian cancers. MUC16/CA125 contributes to the evasion of anti-tumor immunity, peritoneal spread and promotes carcinogenesis; consequently, it has been targeted with antibody-based passive and active immunotherapy. However, vaccination against this self-antigen likely requires breaking B cell tolerance and may trigger autoimmune disease. Display of self-antigens on virus-like particles (VLPs), including those produced with human papillomavirus (HPV) L1, can efficiently break B cell tolerance. RESULTS A 20 aa juxta-membrane peptide of the murine MUC16 (mMUC16) or human MUC16 (hMUC16) ectodomain was displayed either via genetic insertion into an immunodominant loop of HPV16 L1-VLPs between residues 136/137, or by chemical coupling using malemide to cysteine sulfhydryl groups on their surface. Female mice were vaccinated intramuscularly three times with either DNA expressing L1-MUC16 fusions via electroporation, or with alum-formulated VLP chemically-coupled to MUC16 peptides. Both regimens were well tolerated, and elicited MUC16-specific serum IgG, although titers were higher in mice vaccinated with MUC16-coupled VLP on alum as compared to L1-MUC16 DNA vaccination. Antibody responses to mMUC16-targeted vaccination cross-reacted with hMUC16 peptide, and vice versa; both were reactive with the surface of CA125+ OVCAR3 cells, but not SKOV3 that lack detectable CA125 expression. Interestingly, vaccination of mice with mMUC16 peptide mixed with VLP and alum elicited mMUC16-specific IgG, implying VLPs provide robust T help and that coupling may not be required to break tolerance to this epitope. CONCLUSION Vaccination with VLP displaying the 20 aa juxta-membrane MUC16 ectodomain, which includes the membrane proximal cleavage site, is likely to be well tolerated and induce IgG targeting ovarian cancer cells, even after CA125 is shed.
Collapse
Affiliation(s)
- Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Margaret Wong
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Nattha Ingavat
- Downstream Processing (DSP), Bioprocessing Technology Institute (BTI), Agency for Science, Technology, and Research (A*STAR), Singapore, 138632, Singapore
| | - Pola Olczak
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Kin Israel Notarte
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
4
|
Ahmed K, Jha S. Oncoviruses: How do they hijack their host and current treatment regimes. Biochim Biophys Acta Rev Cancer 2023; 1878:188960. [PMID: 37507056 DOI: 10.1016/j.bbcan.2023.188960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Viruses have the ability to modulate the cellular machinery of their host to ensure their survival. While humans encounter numerous viruses daily, only a select few can lead to disease progression. Some of these viruses can amplify cancer-related traits, particularly when coupled with factors like immunosuppression and co-carcinogens. The global burden of cancer development resulting from viral infections is approximately 12%, and it arises as an unfortunate consequence of persistent infections that cause chronic inflammation, genomic instability from viral genome integration, and dysregulation of tumor suppressor genes and host oncogenes involved in normal cell growth. This review provides an in-depth discussion of oncoviruses and their strategies for hijacking the host's cellular machinery to induce cancer. It delves into how viral oncogenes drive tumorigenesis by targeting key cell signaling pathways. Additionally, the review discusses current therapeutic approaches that have been approved or are undergoing clinical trials to combat malignancies induced by oncoviruses. Understanding the intricate interactions between viruses and host cells can lead to the development of more effective treatments for virus-induced cancers.
Collapse
Affiliation(s)
- Kainat Ahmed
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sudhakar Jha
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
5
|
Sanders C, Matthews RL, Esfahani SHZ, Khan N, Patel NL, Kalen JD, Kirnbauer R, Roden RB, Difilippantonio S, Pinto LA, Shoemaker RH, Marshall JD. Cross-neutralizing protection of vaginal and oral mucosa from HPV challenge by vaccination in a mouse model. Vaccine 2023; 41:4480-4487. [PMID: 37270364 PMCID: PMC10527091 DOI: 10.1016/j.vaccine.2023.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
The species and tissue specificities of HPV (human papillomavirus) for human infection and disease complicates the process of prophylactic vaccine development in animal models. HPV pseudoviruses (PsV) that carry only a reporter plasmid have been utilized in vivo to demonstrate cell internalization in mouse mucosal epithelium. The current study sought to expand the application of this HPV PsV challenge model with both oral and vaginal inoculation and to demonstrate its utility for testing vaccine-mediated dual-site immune protection against several HPV PsV types. We observed that passive transfer of sera from mice vaccinated with the novel experimental HPV prophylactic vaccine RG1-VLPs (virus-like particles) conferred HPV16-neutralizing as well as cross-neutralizing Abs against HPV39 in naïve recipient mice. Moreover, active vaccination with RG1-VLPs also conferred protection to challenge with either HPV16 or HPV39 PsVs at both vaginal and oral sites of mucosal inoculation. These data support the use of the HPV PsV challenge model as suitable for testing against diverse HPV types at two sites of challenge (vaginal vault and oral cavity) associated with the origin of the most common HPV-associated cancers, cervical cancer and oropharyngeal cancer.
Collapse
Affiliation(s)
- Chelsea Sanders
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rebecca L Matthews
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Nazneen Khan
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nimit L Patel
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph D Kalen
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Department of Dermatology, Medical University of Vienna, Austria
| | - Richard B Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ligia A Pinto
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Bethesda, MD, USA
| | - Jason D Marshall
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
6
|
Kheirvari M, Liu H, Tumban E. Virus-like Particle Vaccines and Platforms for Vaccine Development. Viruses 2023; 15:1109. [PMID: 37243195 PMCID: PMC10223759 DOI: 10.3390/v15051109] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Virus-like particles (VLPs) have gained a lot of interest within the past two decades. The use of VLP-based vaccines to protect against three infectious agents-hepatitis B virus, human papillomavirus, and hepatitis E virus-has been approved; they are very efficacious and offer long-lasting immune responses. Besides these, VLPs from other viral infectious agents (that infect humans, animals, plants, and bacteria) are under development. These VLPs, especially those from human and animal viruses, serve as stand-alone vaccines to protect against viruses from which the VLPs were derived. Additionally, VLPs, including those derived from plant and bacterial viruses, serve as platforms upon which to display foreign peptide antigens from other infectious agents or metabolic diseases such as cancer, i.e., they can be used to develop chimeric VLPs. The goal of chimeric VLPs is to enhance the immunogenicity of foreign peptides displayed on VLPs and not necessarily the platforms. This review provides a summary of VLP vaccines for human and veterinary use that have been approved and those that are under development. Furthermore, this review summarizes chimeric VLP vaccines that have been developed and tested in pre-clinical studies. Finally, the review concludes with a snapshot of the advantages of VLP-based vaccines such as hybrid/mosaic VLPs over conventional vaccine approaches such as live-attenuated and inactivated vaccines.
Collapse
Affiliation(s)
| | | | - Ebenezer Tumban
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
7
|
Hasche D, Akgül B. Prevention and Treatment of HPV-Induced Skin Tumors. Cancers (Basel) 2023; 15:cancers15061709. [PMID: 36980594 PMCID: PMC10046090 DOI: 10.3390/cancers15061709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in humans with increasing incidence. Meanwhile, a growing body of evidence has provided a link between skin infections with HPV of the genus beta (betaHPV) and the development of cutaneous squamous cell carcinomas (cSCCs). Based on this association, the development of vaccines against betaHPV has become an important research topic. This review summarizes the current advances in prophylactic and therapeutic betaHPV vaccines, including progresses made in preclinical testing and clinical trials.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Baki Akgül
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
- Correspondence:
| |
Collapse
|
8
|
Tsakogiannis D, Nikolaidis M, Zagouri F, Zografos E, Kottaridi C, Kyriakopoulou Z, Tzioga L, Markoulatos P, Amoutzias GD, Bletsa G. Mutation Profile of HPV16 L1 and L2 Genes in Different Geographic Areas. Viruses 2022; 15:141. [PMID: 36680181 PMCID: PMC9867070 DOI: 10.3390/v15010141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
The causal relationship between HPV and cervical cancer in association with the high prevalence of high risk HPV genotypes led to the design of HPV vaccines based on the major capsid L1 protein. In recent years, capsid protein L2 has also become a focal point in the field of vaccine research. The present review focuses on the variability of HPV16 L1 and L2 genes, emphasizing the distribution of specific amino acid changes in the epitopes of capsid proteins. Moreover, a substantial bioinformatics analysis was conducted to describe the worldwide distribution of amino acid substitutions throughout HPV16 L1, L2 proteins. Five amino acid changes (T176N, N181T; EF loop), (T266A; FG loop), (T353P, T389S; HI loop) are frequently observed in the L1 hypervariable surface loops, while two amino acid substitutions (D43E, S122P) are adjacent to L2 specific epitopes. These changes have a high prevalence in certain geographic regions. The present review suggests that the extensive analysis of the amino acid substitutions in the HPV16 L1 immunodominant loops may provide insights concerning the ability of the virus in evading host immune response in certain populations. The genetic variability of the HPV16 L1 and L2 epitopes should be extensively analyzed in a given population.
Collapse
Affiliation(s)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, 11528 Athens, Greece
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, 11528 Athens, Greece
| | - Christine Kottaridi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Zaharoula Kyriakopoulou
- Department of Environment, School of Technology, University of Thessaly, Gaiopolis, 41500 Larissa, Greece
| | - Lamprini Tzioga
- Research Center, Hellenic Anticancer Institute, 10680 Athens, Greece
| | | | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Garyfalia Bletsa
- Research Center, Hellenic Anticancer Institute, 10680 Athens, Greece
| |
Collapse
|
9
|
Ahmels M, Mariz FC, Braspenning-Wesch I, Stephan S, Huber B, Schmidt G, Cao R, Müller M, Kirnbauer R, Rösl F, Hasche D. Next generation L2-based HPV vaccines cross-protect against cutaneous papillomavirus infection and tumor development. Front Immunol 2022; 13:1010790. [PMID: 36263027 PMCID: PMC9574214 DOI: 10.3389/fimmu.2022.1010790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Licensed L1-VLP-based immunizations against high-risk mucosal human papillomavirus (HPV) types have been a great success in reducing anogenital cancers, although they are limited in their cross-protection against HPV types not covered by the vaccine. Further, their utility in protection against cutaneous HPV types, of which some contribute to non-melanoma skin cancer (NMSC) development, is rather low. Next generation vaccines achieve broadly cross-protective immunity against highly conserved sequences of L2. In this exploratory study, we tested two novel HPV vaccine candidates, HPV16 RG1-VLP and CUT-PANHPVAX, in the preclinical natural infection model Mastomys coucha. After immunization with either vaccines, a mock control or MnPV L1-VLPs, the animals were experimentally infected and monitored. Besides vaccine-specific seroconversion against HPV L2 peptides, the animals also developed cross-reactive antibodies against the cutaneous Mastomys natalensis papillomavirus (MnPV) L2, which were cross-neutralizing MnPV pseudovirions in vitro. Further, both L2-based vaccines also conferred in vivo protection as the viral loads in plucked hair after experimental infection were lower compared to mock-vaccinated control animals. Importantly, the formation of neutralizing antibodies, whether directed against L1-VLPs or L2, was able to prevent skin tumor formation and even microscopical signs of MnPV infection in the skin. For the first time, our study shows the proof-of-principle of next generation L2-based vaccines even across different PV genera in an infection animal model with its genuine PV. It provides fundamental insights into the humoral immunity elicited by L2-based vaccines against PV-induced skin tumors, with important implications to the design of next generation HPV vaccines.
Collapse
Affiliation(s)
- Melinda Ahmels
- Division of Viral Transformation Mechanisms, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Filipe C. Mariz
- Research Group Tumorvirus-specific Vaccination Strategies, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilona Braspenning-Wesch
- Division of Viral Transformation Mechanisms, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Stephan
- Division of Viral Transformation Mechanisms, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bettina Huber
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schmidt
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rui Cao
- Division of Viral Transformation Mechanisms, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Müller
- Research Group Tumorvirus-specific Vaccination Strategies, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Olczak P, Matsui K, Wong M, Alvarez J, Lambert P, Christensen ND, Hu J, Huber B, Kirnbauer R, Wang JW, Roden RBS. RG2-VLP: a Vaccine Designed to Broadly Protect against Anogenital and Skin Human Papillomaviruses Causing Human Cancer. J Virol 2022; 96:e0056622. [PMID: 35703545 PMCID: PMC9278150 DOI: 10.1128/jvi.00566-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/20/2022] [Indexed: 12/20/2022] Open
Abstract
The family of human papillomaviruses (HPV) includes over 400 genotypes. Genus α genotypes generally infect the anogenital mucosa, and a subset of these HPV are a necessary, but not sufficient, cause of cervical cancer. Of the 13 high-risk (HR) and 11 intermediate-risk (IR) HPV associated with cervical cancer, genotypes 16 and 18 cause 50% and 20% of cases, respectively, whereas HPV16 dominates in other anogenital and oropharyngeal cancers. A plethora of βHPVs are associated with cutaneous squamous cell carcinoma (CSCC), especially in sun-exposed skin sites of epidermodysplasia verruciformis (EV), AIDS, and immunosuppressed patients. Licensed L1 virus-like particle (VLP) vaccines, such as Gardasil 9, target a subset of αHPV but no βHPV. To comprehensively target both α- and βHPVs, we developed a two-component VLP vaccine, RG2-VLP, in which L2 protective epitopes derived from a conserved αHPV epitope (amino acids 17 to 36 of HPV16 L2) and a consensus βHPV sequence in the same region are displayed within the DE loop of HPV16 and HPV18 L1 VLP, respectively. Unlike vaccination with Gardasil 9, vaccination of wild-type and EV model mice (Tmc6Δ/Δ or Tmc8Δ/Δ) with RG2-VLP induced robust L2-specific antibody titers and protected against β-type HPV5. RG2-VLP protected rabbits against 17 αHPV, including those not covered by Gardasil 9. HPV16- and HPV18-specific neutralizing antibody responses were similar between RG2-VLP- and Gardasil 9-vaccinated animals. However, only transfer of RG2-VLP antiserum effectively protected naive mice from challenge with all βHPVs tested. Taken together, these observations suggest RG2-VLP's potential as a broad-spectrum vaccine to prevent αHPV-driven anogenital, oropharyngeal, and βHPV-associated cutaneous cancers. IMPORTANCE Licensed preventive HPV vaccines are composed of VLPs derived by expression of major capsid protein L1. They confer protection generally restricted to infection by the αHPVs targeted by the up-to-9-valent vaccine, and their associated anogenital cancers and genital warts, but do not target βHPV that are associated with CSCC in EV and immunocompromised patients. We describe the development of a two-antigen vaccine protective in animal models against known oncogenic αHPVs as well as diverse βHPVs by incorporation into HPV16 and HPV18 L1 VLP of 20-amino-acid conserved protective epitopes derived from minor capsid protein L2.
Collapse
Affiliation(s)
- Pola Olczak
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Margaret Wong
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jade Alvarez
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Paul Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Neil D. Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
| | - Bettina Huber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
11
|
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front Microbiol 2022; 12:790121. [PMID: 35046918 PMCID: PMC8761975 DOI: 10.3389/fmicb.2021.790121] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are nanostructures that possess diverse applications in therapeutics, immunization, and diagnostics. With the recent advancements in biomedical engineering technologies, commercially available VLP-based vaccines are being extensively used to combat infectious diseases, whereas many more are in different stages of development in clinical studies. Because of their desired characteristics in terms of efficacy, safety, and diversity, VLP-based approaches might become more recurrent in the years to come. However, some production and fabrication challenges must be addressed before VLP-based approaches can be widely used in therapeutics. This review offers insight into the recent VLP-based vaccines development, with an emphasis on their characteristics, expression systems, and potential applicability as ideal candidates to combat emerging virulent pathogens. Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve as an effective alternative to conventional vaccine strategies in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | |
Collapse
|
12
|
Wang Z, Zhang T, Xu X. Combined truncations at both N- and C-terminus of human papillomavirus type 58 L1 enhanced the yield of virus-like particles produced in a baculovirus system. J Virol Methods 2021; 301:114403. [PMID: 34890711 DOI: 10.1016/j.jviromet.2021.114403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/26/2022]
Abstract
Human papillomavirus (HPV) major capsid protein L1 virus-like particles (VLPs) produced in baculovirus system are highly immunogenic, but the relatively high production cost limits its application in the development of broad-spectrum vaccines. Here we report a novel method for enhancing VLP production in this system. We incorporated respectively 4, 8 or 13 residues truncation mutations in the N-terminus of L1ΔC, a C-terminal 25-residue-deleted L1 of HPV58, to construct three mutants. After expression in Sf9 cells, L1ΔN4C exhibited 2.3-fold higher protein production, 2.0-fold mRNA expression and lower rate of mRNA decay, compared to L1ΔC. More importantly, L1ΔN4C protein was easily purified by two-step chromatography with a VLP yield of up to 60 mg/L (purity > 99 %), 5-fold that of L1ΔC, whereas L1ΔN8C and L1ΔN13C behaved similarly to L1ΔC either in protein or mRNA expression. Moreover, L1ΔN4C VLPs showed similar binding activities with six HPV58 neutralizing monoclonal antibodies and induced comparable level of neutralizing antibody in mice to that of L1ΔC VLPs. Our results demonstrate that certain N- and C-terminal truncations of HPV58 L1 can enhance VLP yield. This method may be used to reduce production costs of other L1VLPs or chimeric VLPs to developing pan-HPV vaccines using baculovirus system.
Collapse
Affiliation(s)
- Zhirong Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ting Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Non-Surgical Treatments for Keratinocyte Carcinomas. Adv Ther 2021; 38:5635-5648. [PMID: 34652721 DOI: 10.1007/s12325-021-01916-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Skin cancer is the most common malignancy worldwide, comprising approximately 30% of all human tumors. In recent decades, the incidence of keratinocyte carcinomas, which include basal cell carcinoma and cutaneous squamous cell carcinoma, has been steadily increasing globally (Rogers et al. in JAMA Dermatol 151(10):1081-1086. https://doi.org/10.1001/jamadermatol.2015.1187 , 2015; Nehal and Bichakjian in N Engl J Med 379(4):363-374. https://doi.org/10.1056/nejmra1708701 , 2018). Most tumors are cured with surgical excision; however, some tumors are best treated with non-surgical approaches. Superficial tumors can often be cured with non-surgical methods whereas more advanced stage tumors may not be amenable to surgery. Additionally, surgical treatment may not be available for all populations depending on geographic location and accessibility to care. This article reviews commonly utilized nonsurgical options such as cryotherapy, photodynamic therapy, topical treatments, and radiation as well as systemic treatments including immunotherapies and chemotherapies.
Collapse
|
14
|
Kamolratanakul S, Pitisuttithum P. Human Papillomavirus Vaccine Efficacy and Effectiveness against Cancer. Vaccines (Basel) 2021; 9:vaccines9121413. [PMID: 34960159 PMCID: PMC8706722 DOI: 10.3390/vaccines9121413] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection, with 15 HPV types related to cervical, anal, oropharyngeal, penile, vulvar, and vaginal cancers. However, cervical cancer remains one of the most common cancers in women, especially in developing countries. Three HPV vaccines have been licensed: bivalent (Cervarix, GSK, Rixensart, Belgium), quadrivalent (Merck, Sharp & Dome (Merck & Co, Whitehouse Station, NJ, USA)), and nonavalent (Merck, Sharp & Dome (Merck & Co, Whitehouse Station, NJ, USA)). The current HPV vaccine recommendations apply to 9 years old and above through the age of 26 years and adults aged 27–45 years who might be at risk of new HPV infection and benefit from vaccination. The primary target population for HPV vaccination recommended by the WHO is girls aged 9–14 years, prior to their becoming sexually active, to undergo a two-dose schedule and girls ≥ 15 years of age, to undergo a three-dose schedule. Safety data for HPV vaccines have indicated that they are safe. The most common adverse side-effect was local symptoms. HPV vaccines are highly immunogenic. The efficacy and effectiveness of vaccines has been remarkably high among young women who were HPV seronegative before vaccination. Vaccine efficacy was lower among women regardless of HPV DNA when vaccinated and among adult women. Comparisons of the efficacy of bivalent, quadrivalent, and nonavalent vaccines against HPV 16/18 showed that they are similar. However, the nonavalent vaccine can provide additional protection against HPV 31/33/45/52/58. In a real-world setting, the notable decrease of HPV 6/11/16/18 among vaccinated women compared with unvaccinated women shows the vaccine to be highly effective. Moreover, the direct effect of the nonavalent vaccine with the cross-protection of bivalent and quadrivalent vaccines results in the reduction of HPV 6/11/16/18/31/33/45/52/58. HPV vaccination has been shown to provide herd protection as well. Two-dose HPV vaccine schedules showed no difference in seroconversion from three-dose schedules. However, the use of a single-dose HPV vaccination schedule remains controversial. For males, the quadrivalent HPV vaccine possibly reduces the incidence of external genital lesions and persistent infection with HPV 6/11/16/18. Evidence regarding the efficacy and risk of HPV vaccination and HIV infection remains limited. HPV vaccination has been shown to be highly effective against oral HPV type 16/18 infection, with a significant percentage of participants developing IgG antibodies in the oral fluid post vaccination. However, the vaccines’ effectiveness in reducing the incidence of and mortality rates from HPV-related head and neck cancers should be observed in the long term. In anal infections and anal intraepithelial neoplasia, the vaccines demonstrate high efficacy. While HPV vaccines are very effective, screening for related cancers, as per guidelines, is still recommended.
Collapse
|
15
|
Bagheri A, Nezafat N, Eslami M, Ghasemi Y, Negahdaripour M. Designing a therapeutic and prophylactic candidate vaccine against human papillomavirus through vaccinomics approaches. INFECTION GENETICS AND EVOLUTION 2021; 95:105084. [PMID: 34547435 DOI: 10.1016/j.meegid.2021.105084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Human papillomavirus (HPV) is the main cause of cervical cancer, the 4th prominent cause of death in women globally. Previous vaccine development projects have led to several approved prophylactic vaccines available commercially, all of which are made using major capsid-based (L1). Administration of minor capsid protein (L2) gave rise to the second generation investigational prophylactic HPV vaccines, none of which are approved yet due to low immunogenicity provided by the L2 capsid protein. On the other hand, post-translation proteins, E6 and E7, have been utilized to develop experimental therapeutic vaccines. Here, in silico designing of a therapeutic and prophylactic vaccine against HPV16 is performed. METHODS In this study, several immunoinformatic and computational tools were administered to identify and design a vaccine construct with dual prophylactic and therapeutic applications consisting of several epitope regions on L2, E6, and E7 proteins of HPV16. RESULTS Immunodominant epitope regions (aa 12-23 and 78-78 of L2 protein, aa 11-27 of E6 protein, and aa 70-89 of E7 protein) were employed, which offered adequate immunogenicity to induce immune responses. Resuscitation-promoting factors (RpfB and RpfE) of Mycobacterium tuberculosis were integrated in two separate constructs as TLR4 agonists to act as vaccine adjuvants. Following physiochemical and structural evaluations carried out by various bioinformatics tools, the designed constructs were modeled and validated, resulting in two 3D structures. Molecular docking and molecular dynamic simulations suggested stable ligand-receptor interactions between the designed construct and TLR4. CONCLUSION Ultimately, this study led to suggest the designed construct as a potential vaccine candidate with both prophylactic and therapeutic applications against HPV by promoting Th1, Th2, CTL, and B cell immune responses, which should be further confirmed in experimental studies.
Collapse
Affiliation(s)
- Ashkan Bagheri
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Valencia SM, Zacharia A, Marin A, Matthews RL, Wu CK, Myers B, Sanders C, Difilippantonio S, Kirnbauer R, Roden RB, Pinto LA, Shoemaker RH, Andrianov AK, Marshall JD. Improvement of RG1-VLP vaccine performance in BALB/c mice by substitution of alhydrogel with the next generation polyphosphazene adjuvant PCEP. Hum Vaccin Immunother 2021; 17:2748-2761. [PMID: 33573433 PMCID: PMC8475605 DOI: 10.1080/21645515.2021.1875763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/09/2021] [Indexed: 10/22/2022] Open
Abstract
Current human papillomavirus (HPV) vaccines provide substantial protection against the most common HPV types responsible for oral and anogenital cancers, but many circulating cancer-causing types remain for which vaccine coverage is lacking. In addition, all current HPV vaccines rely on aluminum salt-based adjuvant formulations that function through unclear mechanisms with few substitutes available. In an effort to expand the toolbox of available adjuvants suitable for HPV vaccines, we compared the immunogenicity of the RG1-VLP (virus-like particle) vaccine in BALB/c mice when formulated with either the aluminum hydroxide adjuvant Alhydrogel or the novel polyphosphazene macromolecular adjuvant poly[di (carboxylatoethylphenoxy) phosphazene] (PCEP). PCEP-formulated RG1-VLPs routinely outperformed VLP/Alhydrogel in several measurements of VLP-specific humoral immunity, including consistent improvements in the magnitude of antibody (Ab) responses to both HPV16-L1 and the L2 RG1 epitope as well as neutralizing titers to HPV16 and cross-neutralization of pseudovirion (PsV) types HPV18 and HPV39. Dose-sparing studies indicated that RG1-VLPs could be reduced in dose by 75% and the presence of PCEP ensured activity comparable to a full VLP dose adjuvanted by Alhydrogel. In addition, levels of HPV16-L1 and -L2-specific Abs were achieved after two vaccinations with PCEP as adjuvant that were equivalent to or greater than levels achieved with three vaccinations with Alhydrogel alone, indicating that the presence of PCEP resulted in accelerated immune responses that could allow for a decreased dose schedule. Given the extensive clinical track record of polyphosphazenes, these data suggest that substitution of alum-based adjuvants with PCEP for the RG1-VLP vaccine could lead to rapid seropositivity requiring fewer boosts, the dose-sparing of commercial VLP-based vaccines, and the establishment of longer-lasting humoral responses to HPV.
Collapse
Affiliation(s)
- Sarah M. Valencia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Athina Zacharia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Rebecca L. Matthews
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chia-Kuei Wu
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Breana Myers
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chelsea Sanders
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Department of Dermatology, Medical University of Vienna, Austria, EU
| | - Richard B. Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Ligia A. Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Group, Division of Cancer Prevention, NCI, Bethesda, MD, USA
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Jason D. Marshall
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
17
|
Marin A, Chowdhury A, Valencia SM, Zacharia A, Kirnbauer R, Roden RBS, Pinto LA, Shoemaker RH, Marshall JD, Andrianov AK. Next generation polyphosphazene immunoadjuvant: Synthesis, self-assembly and in vivo potency with human papillomavirus VLPs-based vaccine. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 33:102359. [PMID: 33476764 PMCID: PMC8184581 DOI: 10.1016/j.nano.2021.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Poly[di(carboxylatomethylphenoxy)phosphazene] (PCMP), a new member of polyphosphazene immunoadjuvant family, is synthesized. In vitro assessment of a new macromolecule revealed hydrolytic degradation profile and immunostimulatory activity comparable to its clinical stage homologue PCPP; however, PCMP was characterized by a beneficial reduced sensitivity to the ionic environment. In vivo evaluation of PCMP potency was conducted with human papillomavirus (HPV) virus-like particles (VLPs) based RG1-VLPs vaccine. In contrast with previously reported self-assembly of polyphosphazene adjuvants with proteins, which typically results in the formation of complexes with multimeric display of antigens, PCMP surface modified VLPs in a composition dependent pattern, which at a high polymer-to VLPs ratio led to stabilization of antigenic particles. Immunization experiments in mice demonstrated that PCMP adjuvanted RG1-VLPs vaccine induced potent humoral immune responses, in particular, on the level of highly desirable protective cross-neutralizing antibodies, and outperformed PCPP and Alhydrogel adjuvanted formulations.
Collapse
Affiliation(s)
- Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Ananda Chowdhury
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Sarah M Valencia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Athina Zacharia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, , United States
| | - Ligia A Pinto
- HPV Immunology laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, United States
| | - Jason D Marshall
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.
| |
Collapse
|
18
|
Huber B, Wang JW, Roden RBS, Kirnbauer R. RG1-VLP and Other L2-Based, Broad-Spectrum HPV Vaccine Candidates. J Clin Med 2021; 10:jcm10051044. [PMID: 33802456 PMCID: PMC7959455 DOI: 10.3390/jcm10051044] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Licensed human papillomavirus (HPV) vaccines contain virus-like particles (VLPs) self-assembled from L1 major-capsid proteins that are remarkably effective prophylactic immunogens. However, the induced type-restricted immune response limits coverage to the included vaccine types, and costly multiplex formulations, restrictive storage and distribution conditions drive the need for next generation HPV vaccines. Vaccine candidates based upon the minor structural protein L2 are particularly promising because conserved N-terminal epitopes induce broadly cross-type neutralizing and protective antibodies. Several strategies to increase the immunological potency of such epitopes are being investigated, including concatemeric multimers, fusion to toll-like receptors ligands or T cell epitopes, as well as immunodominant presentation by different nanoparticle or VLP structures. Several promising L2-based vaccine candidates have reached or will soon enter first-in-man clinical studies. RG1-VLP present the HPV16L2 amino-acid 17–36 conserved neutralization epitope “RG1” repetitively and closely spaced on an immunodominant surface loop of HPV16 L1-VLP and small animal immunizations provide cross-protection against challenge with all medically-significant high-risk and several low-risk HPV types. With a successful current good manufacturing practice (cGMP) campaign and this promising breadth of activity, even encompassing cross-neutralization of several cutaneous HPV types, RG1-VLP are ready for a first-in-human clinical study. This review aims to provide a general overview of these candidates with a special focus on the RG1-VLP vaccine and its road to the clinic.
Collapse
Affiliation(s)
- Bettina Huber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Joshua Weiyuan Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21218, USA; (J.W.W.); (R.B.S.R.)
- PathoVax LLC, Baltimore, MD 21205, USA
| | - Richard B. S. Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21218, USA; (J.W.W.); (R.B.S.R.)
- Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-40400-77680
| |
Collapse
|
19
|
Zacharia A, Harberts E, Valencia SM, Myers B, Sanders C, Jain A, Larson NR, Middaugh CR, Picking WD, Difilippantonio S, Kirnbauer R, Roden RB, Pinto LA, Shoemaker RH, Ernst RK, Marshall JD. Optimization of RG1-VLP vaccine performance in mice with novel TLR4 agonists. Vaccine 2021; 39:292-302. [PMID: 33309485 PMCID: PMC7779753 DOI: 10.1016/j.vaccine.2020.11.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Current human papilloma virus (HPV) vaccines provide substantial protection against the most common HPV types responsible for oral and anogenital cancers, but many circulating cancer-causing types remain that lack vaccine coverage. The novel RG1-VLP (virus-like particle) vaccine candidate utilizes the HPV16-L1 subunit as a backbone to display an inserted HPV16-L2 17-36 a.a. "RG1" epitope; the L2 RG1 epitope is conserved across many HPV types and the generation of cross-neutralizing antibodies (Abs) against which has been demonstrated. In an effort to heighten the immunogenicity of the RG1-VLP vaccine, we compared in BALB/c mice adjuvant formulations consisting of novel bacterial enzymatic combinatorial chemistry (BECC)-derived toll-like receptor 4 (TLR4) agonists and the aluminum hydroxide adjuvant Alhydrogel. In the presence of BECC molecules, consistent improvements in the magnitude of Ab responses to both HPV16-L1 and the L2 RG1 epitope were observed compared to Alhydrogel alone. Furthermore, neutralizing titers to HPV16 as well as cross-neutralization of pseudovirion (PsV) types HPV18 and HPV39 were augmented in the presence of BECC agonists as well. Levels of L1 and L2-specific Abs were achieved after two vaccinations with BECC/Alhydrogel adjuvant that were equivalent to or greater than levels achieved with 3 vaccinations with Alhydrogel alone, indicating that the presence of BECC molecules resulted in accelerated immune responses that could allow for a decreased dose schedule for VLP-based HPV vaccines. In addition, dose-sparing studies indicated that adjuvantation with BECC/Alhydrogel allowed for a 75% reduction in antigen dose while still retaining equivalent magnitudes of responses to the full VLP dose with Alhydrogel. These data suggest that adjuvant optimization of HPV VLP-based vaccines can lead to rapid immunity requiring fewer boosts, dose-sparing of VLPs expensive to produce, and the establishment of a longer-lasting humoral immunity.
Collapse
Affiliation(s)
- Athina Zacharia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Erin Harberts
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Sarah M Valencia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Breana Myers
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chelsea Sanders
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Akshay Jain
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Nicholas R Larson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Department of Dermatology, Medical University of Vienna, Austria, EU
| | - Richard B Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Ligia A Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Group, Division of Cancer Prevention, NCI, Bethesda, MD, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jason D Marshall
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
20
|
Farmer E, Cheng MA, Hung CF, Wu TC. Vaccination Strategies for the Control and Treatment of HPV Infection and HPV-Associated Cancer. Recent Results Cancer Res 2021; 217:157-195. [PMID: 33200366 DOI: 10.1007/978-3-030-57362-1_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection, currently affecting close to 80 million Americans. Importantly, HPV infection is recognized as the etiologic factor for numerous cancers, including cervical, vulval, vaginal, penile, anal, and a subset of oropharyngeal cancers. The prevalence of HPV infection and its associated diseases are a significant problem, affecting millions of individuals worldwide. Likewise, the incidence of HPV infection poses a significant burden on individuals and the broader healthcare system. Between 2011 and 2015, there were an estimated 42,700 new cases of HPV-associated cancers each year in the United States alone. Similarly, the global burden of HPV is high, with around 630,000 new cases of HPV-associated cancer occurring each year. In the last decade, a total of three preventive major capsid protein (L1) virus-like particle-based HPV vaccines have been licensed and brought to market as a means to prevent the spread of HPV infection. These prophylactic vaccines have been demonstrated to be safe and efficacious in preventing HPV infection. The most recent iteration of the preventive HPV vaccine, a nanovalent, L1-VLP vaccine, protects against a total of nine HPV types (seven high-risk and two low-risk HPV types), including the high-risk types HPV16 and HPV18, which are responsible for causing the majority of HPV-associated cancers. Although current prophylactic HPV vaccines have demonstrated huge success in preventing infection, existing barriers to vaccine acquisition have limited their widespread use, especially in low- and middle-income countries, where the burden of HPV-associated diseases is highest. Prophylactic vaccines are unable to provide protection to individuals with existing HPV infections or HPV-associated diseases. Instead, therapeutic HPV vaccines capable of generating T cell-mediated immunity against HPV infection and associated diseases are needed to ameliorate the burden of disease in individuals with existing HPV infection. To generate a cell-mediated immune response against HPV, most therapeutic vaccines target HPV oncoproteins E6 and E7. Several types of therapeutic HPV vaccine candidates have been developed including live-vector, protein, peptide, dendritic cell, and DNA-based vaccines. This chapter will review the commercially available prophylactic HPV vaccines and discuss the recent progress in the development of therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Emily Farmer
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Max A Cheng
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - T-C Wu
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA. .,Department of Oncology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA. .,Department of Obstetrics and Gynecology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA. .,Department of Pathology, Oncology, Obstetrics and Gynecology, and Molecular Microbiology and Immunology, The Johns Hopkins Medical Institutions, Cancer Research Building II, Room 309, 1550 Orleans Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
21
|
Sias C, Guarrasi V, Minosse C, Lapa D, Nonno FD, Capobianchi MR, Garbuglia AR, Del Porto P, Paci P. Human Papillomavirus Infections in Cervical Samples From HIV-Positive Women: Evaluation of the Presence of the Nonavalent HPV Genotypes and Genetic Diversity. Front Microbiol 2020; 11:603657. [PMID: 33324386 PMCID: PMC7723855 DOI: 10.3389/fmicb.2020.603657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Non-nonavalent vaccine (9v) Human papillomavirus (HPV) types have been shown to have high prevalence among HIV-positive women. Here, 1444 cervical samples were tested for HPV DNA positivity. Co-infections of the 9v HPV types with other HPV types were evaluated. The HPV81 L1 and L2 genes were used to investigate the genetic variability of antigenic epitopes. HPV-positive samples were genotyped using the HPVCLART2 assay. The L1 and L2 protein sequences were analyzed using a self-optimized prediction method to predict their secondary structure. Co-occurrence probabilities of the 9v HPV types were calculated. Non9v types represented 49% of the HPV infections; 31.2% of the non9v HPV types were among the low-grade squamous intraepithelial lesion samples, and 27.3% among the high-grade squamous intraepithelial lesion samples, and several genotypes were low risk. The co-occurrence of 9v HPV types with the other genotypes was not correlated with the filogenetic distance. HPV81 showed an amino-acid substitution within the BC loop (N75Q) and the FGb loop (T315N). In the L2 protein, all of the mutations were located outside antigenic sites. The weak cross-protection of the 9v types suggests the relevance of a sustainable and effective screening program, which should be implemented by HPV DNA testing that does not include only high-risk types.
Collapse
Affiliation(s)
- Catia Sias
- Laboratory of Virology, Lazzaro Spallanzani National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Valerio Guarrasi
- Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”, Sapienza Università di Roma, Rome, Italy
| | - Claudia Minosse
- Laboratory of Virology, Lazzaro Spallanzani National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, Lazzaro Spallanzani National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Franca Del Nonno
- Laboratory of Pathology, Lazzaro Spallanzani National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, Lazzaro Spallanzani National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, Lazzaro Spallanzani National Institute for Infectious Diseases, IRCCS, Rome, Italy,*Correspondence: Anna Rosa Garbuglia,
| | - Paola Del Porto
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University, Rome, Italy
| | - Paola Paci
- Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
22
|
Progress in L2-Based Prophylactic Vaccine Development for Protection against Diverse Human Papillomavirus Genotypes and Associated Diseases. Vaccines (Basel) 2020; 8:vaccines8040568. [PMID: 33019516 PMCID: PMC7712070 DOI: 10.3390/vaccines8040568] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The human papillomaviruses (HPVs) are a family of small DNA tumor viruses including over 200 genotypes classified by phylogeny into several genera. Different genera of HPVs cause ano-genital and oropharyngeal cancers, skin cancers, as well as benign diseases including skin and genital warts. Licensed vaccines composed of L1 virus-like particles (VLPs) confer protection generally restricted to the ≤9 HPV types targeted. Here, we examine approaches aimed at broadening the protection against diverse HPV types by targeting conserved epitopes of the minor capsid protein, L2. Compared to L1 VLP, L2 is less immunogenic. However, with appropriate presentation to the immune system, L2 can elicit durable, broadly cross-neutralizing antibody responses and protection against skin and genital challenge with diverse HPV types. Such approaches to enhance the strength and breadth of the humoral response include the display of L2 peptides on VLPs or viral capsids, bacteria, thioredoxin and other platforms for multimerization. Neither L2 nor L1 vaccinations elicit a therapeutic response. However, fusion of L2 with early viral antigens has the potential to elicit both prophylactic and therapeutic immunity. This review of cross-protective HPV vaccines based on L2 is timely as several candidates have recently entered early-phase clinical trials.
Collapse
|
23
|
Wang D, Liu X, Wei M, Qian C, Song S, Chen J, Wang Z, Xu Q, Yang Y, He M, Chi X, Huang S, Li T, Kong Z, Zheng Q, Yu H, Wang Y, Zhao Q, Zhang J, Xia N, Gu Y, Li S. Rational design of a multi-valent human papillomavirus vaccine by capsomere-hybrid co-assembly of virus-like particles. Nat Commun 2020; 11:2841. [PMID: 32503989 PMCID: PMC7275066 DOI: 10.1038/s41467-020-16639-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/17/2020] [Indexed: 12/22/2022] Open
Abstract
The capsid of human papillomavirus (HPV) spontaneously arranges into a T = 7 icosahedral particle with 72 L1 pentameric capsomeres associating via disulfide bonds between Cys175 and Cys428. Here, we design a capsomere-hybrid virus-like particle (chVLP) to accommodate multiple types of L1 pentamers by the reciprocal assembly of single C175A and C428A L1 mutants, either of which alone encumbers L1 pentamer particle self-assembly. We show that co-assembly between any pair of C175A and C428A mutants across at least nine HPV genotypes occurs at a preferred equal molar stoichiometry, irrespective of the type or number of L1 sequences. A nine-valent chVLP vaccine-formed through the structural clustering of HPV epitopes-confers neutralization titers that are comparable with that of Gardasil 9 and elicits minor cross-neutralizing antibodies against some heterologous HPV types. These findings may pave the way for a new vaccine design that targets multiple pathogenic variants or cancer cells bearing diverse neoantigens.
Collapse
Affiliation(s)
- Daning Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Xinlin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Minxi Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Ciying Qian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Shuo Song
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Jie Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Zhiping Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Qin Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Yurou Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Xin Chi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Shiwen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China.
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
24
|
Development of a β-HPV vaccine: Updates on an emerging frontier of skin cancer prevention. J Clin Virol 2020; 126:104348. [PMID: 32334327 DOI: 10.1016/j.jcv.2020.104348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
Human papillomaviruses (HPVs) are small, non-enveloped, doublestranded DNA viruses. Over 200 subtypes of HPV have been identified, organized into five major genera. β-HPVs are a group of approximately 50 HPV subtypes that preferentially infect cutaneous sites. While α-HPVs are primarily responsible for genital lesions and mucosal cancers, growing evidence has established an association between β-HPVs and the development of cutaneous squamous cell carcinomas. Given this association, the development of a vaccine against β-HPVs has become an important topic of research; however, currently licensed vaccines only provide coverage for genital HPVs, leaving β-HPV infections and their associated skin cancers unaddressed. In this review, we summarize the current advances in β-HPV vaccine development, including progress made in preclinical testing and limited clinical data. We also discuss novel findings in the viral pathomechanisms involved in β-HPV cutaneous tumorigenesis that may play a large role in future vaccine development. We hope that synthesizing the available data and advances surrounding β- HPV vaccine development will not only lead to increased dedication to vaccine development, but also heightened awareness of a future vaccine among clinicians and the public.
Collapse
|
25
|
Lei X, Cai X, Yang Y. Genetic engineering strategies for construction of multivalent chimeric VLPs vaccines. Expert Rev Vaccines 2020; 19:235-246. [PMID: 32133886 DOI: 10.1080/14760584.2020.1738227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Over the past two decades, virus-like particles (VLPs) have been developed as a new generation of vaccines against viral infections. Based on VLPs, chimeric VLPs (chi-VLPs) have been generated through genetic modifications or chemical couplings. For construction of multivalent chi-VLPs vaccines, multiple genetic engineering strategies are continuously being developed. Thus, it is important to provide a summary as reference for researchers in this field.Areas covered: The representative studies on the genetic engineered multivalent chi-VLPs are summarized and mainly focused on chimeric capsid VLPs and chimeric enveloped VLPs. The advantages and limitations of each strategy are also discussed at last, as well as opinions on platform choice and future directions of eVLPs vaccines.Expert opinion: The design of multivalent chi-VLPs vaccines needs to meet the following specifications: 1) the incorporated antigens are suggested to display on the exposed surface of chi-VLPs and do not have excessive adverse effects on the stability of chi-VLPs; 2) the chi-VLPs should elicit protective antibodies against the incorporated antigen as well as the source virus of VLPs. However, there is no requirement of retaining the antigenicity of VLPs when using VLPs solely as carriers for antigens display or drug delivery.
Collapse
Affiliation(s)
- Xinnuo Lei
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), Hunan Agricultural University, Changsha, Hunan, China.,Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yi Yang
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), Hunan Agricultural University, Changsha, Hunan, China.,Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
26
|
Jahn R, Müller O, Nöst S, Bozorgmehr K. Public-private knowledge transfer and access to medicines: a systematic review and qualitative study of perceptions and roles of scientists involved in HPV vaccine research. Global Health 2020; 16:22. [PMID: 32138789 PMCID: PMC7059709 DOI: 10.1186/s12992-020-00552-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 02/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background Public research organizations and their interactions with industry partners play a crucial role for public health and access to medicines. The development and commercialization of the Human Papillomavirus (HPV) vaccines illustrate how licensing practices of public research organizations can contribute to high prices of the resulting product and affect accessibility to vulnerable populations. Efforts by the international community to improve access to medicines have recognised this issue and promote the public health-sensitive management of research conducted by public research organizations. This paper explores: how medical knowledge is exchanged between public and private actors; what role inventor scientists play in this process; and how they view the implementation of public health-sensitive knowledge exchange strategies. Methods We conducted a systematic qualitative literature review on medical knowledge exchange and qualitative interviews with a purposive sample of public sector scientists working on HPV vaccines. We explored the strategies by which knowledge is exchanged across institutional boundaries, how these strategies are negotiated, and the views of scientists regarding public health-sensitive knowledge exchange. Results We included 13 studies in the systematic review and conducted seven semi-structured interviews with high-ranking scientists. The main avenues of public-private medical knowledge exchange were publications, formal transfer of patented knowledge, problem-specific exchanges such as service agreements, informal exchanges and collaborative research. Scientists played a crucial role in these processes but appeared to be sceptical of public health-sensitive knowledge exchange strategies, as these were believed to deter corporate interest in the development of new medicines and thus risk the translation of the scientists’ research. Conclusion Medical scientists at public research institutions play a key role in the exchange of knowledge they generate and are concerned about the accessibility of medicines resulting from their research. Their scepticism towards implementing public health-sensitive knowledge management strategies appears to be based on a biased understanding of the costs and risks involved in drug development and a perceived lack of alternatives to private engagement. Scientists could be encouraged to exchange knowledge in a public health-sensitive manner through not-for-profit drug development mechanisms, education on industry engagement, and stronger institutional and legal backing.
Collapse
Affiliation(s)
- Rosa Jahn
- Department of General Practice and Health Services Research, University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.
| | - Olaf Müller
- Heidelberg Institute of Global Health, University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Stefan Nöst
- Department of General Practice and Health Services Research, University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Kayvan Bozorgmehr
- Department of General Practice and Health Services Research, University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.,Department of Population Medicine and Health Services Research, School of Public Health, Bielefeld University, P.o. Box 10 01 31, D- 33501, Bielefeld, Germany
| |
Collapse
|
27
|
Yadav R, Zhai L, Tumban E. Virus-like Particle-Based L2 Vaccines against HPVs: Where Are We Today? Viruses 2019; 12:v12010018. [PMID: 31877975 PMCID: PMC7019592 DOI: 10.3390/v12010018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Human papillomaviruses (HPVs) are the most common sexually transmitted infections worldwide. Ninety percent of infected individuals clear the infection within two years; however, in the remaining 10% of infected individuals, the infection(s) persists and ultimately leads to cancers (anogenital cancers and head and neck cancers) and genital warts. Fortunately, three prophylactic vaccines have been approved to protect against HPV infections. The most recent HPV vaccine, Gardasil-9 (a nonavalent vaccine), protects against seven HPV types associated with ~90% of cervical cancer and against two HPV types associated with ~90% genital warts with little cross-protection against non-vaccine HPV types. The current vaccines are based on virus-like particles (VLPs) derived from the major capsid protein, L1. The L1 protein is not conserved among HPV types. The minor capsid protein, L2, on the other hand, is highly conserved among HPV types and has been an alternative target antigen, for over two decades, to develop a broadly protective HPV vaccine. The L2 protein, unlike the L1, cannot form VLPs and as such, it is less immunogenic. This review summarizes current studies aimed at developing HPV L2 vaccines by multivalently displaying L2 peptides on VLPs derived from bacteriophages and eukaryotic viruses. Recent data show that a monovalent HPV L1 VLP as well as bivalent MS2 VLPs displaying HPV L2 peptides (representing amino acids 17–36 and/or consensus amino acids 69–86) elicit robust broadly protective antibodies against diverse HPV types (6/11/16/18/26/31/33/34/35/39/43/44/45/51/52/53/56/58/59/66/68/73) associated with cancers and genital warts. Thus, VLP-based L2 vaccines look promising and may be favorable, in the near future, over current L1-based HPV vaccines and should be explored further.
Collapse
Affiliation(s)
- Rashi Yadav
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
| | - Lukai Zhai
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
- Current address: Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ebenezer Tumban
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
- Correspondence: ; Tel.: +1-906-487-2256; Fax: +1-906-487-3167
| |
Collapse
|
28
|
Chabeda A, van Zyl AR, Rybicki EP, Hitzeroth II. Substitution of Human Papillomavirus Type 16 L2 Neutralizing Epitopes Into L1 Surface Loops: The Effect on Virus-Like Particle Assembly and Immunogenicity. FRONTIERS IN PLANT SCIENCE 2019; 10:779. [PMID: 31281327 PMCID: PMC6597877 DOI: 10.3389/fpls.2019.00779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/28/2019] [Indexed: 05/19/2023]
Abstract
Cervical cancer caused by infection with human papillomaviruses (HPVs) is the fourth most common cancer in women globally, with the burden mainly in developing countries due to limited healthcare resources. Current vaccines based on virus-like particles (VLPs) assembled from recombinant expression of the immunodominant L1 protein are highly effective in the prevention of cervical infection; however, these vaccines are expensive and type-specific. Therefore, there is a need for more broadly protective and affordable vaccines. The HPV-16 L2 peptide sequences 108-120, 65-81, 56-81, and 17-36 are highly conserved across several HPV types and have been shown to elicit cross-neutralizing antibodies. To increase L2 immunogenicity, L1:L2 chimeric VLPs (cVLP) vaccine candidates were developed. The four L2 peptides mentioned above were substituted into the DE loop of HPV-16 L1 at position 131 (SAC) or in the C-terminal region at position 431 (SAE) to generate HPV-16-derived L1:L2 chimeras. All eight chimeras were transiently expressed in Nicotiana benthamiana via Agrobacterium tumefaciens-mediated DNA transfer. SAC chimeras predominantly assembled into higher order structures (T = 1 and T = 7 VLPs), whereas SAE chimeras assembled into capsomeres or formed aggregates. Four SAC and one SAE chimeras were used in vaccination studies in mice, and their ability to generate cross-neutralizing antibodies was analyzed in HPV pseudovirion-based neutralization assays. Of the seven heterologous HPVs tested, cross-neutralization with antisera specific to chimeras was observed for HPV-11 (SAE 65-18), HPV-18 (SAC 108-120, SAC 65-81, SAC 56-81, SAE 65-81), and HPV-58 (SAC 108-120). Interestingly, only anti-SAE 65-81 antiserum showed neutralization of homologous HPV-16, suggesting that the position of the L2 epitope display is critical for maintaining L1-specific neutralizing epitopes.
Collapse
Affiliation(s)
- Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Albertha R. van Zyl
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
29
|
Zhang T, Chen X, Liu H, Bao Q, Wang Z, Liao G, Xu X. A rationally designed flagellin-L2 fusion protein induced serum and mucosal neutralizing antibodies against multiple HPV types. Vaccine 2019; 37:4022-4030. [PMID: 31213378 DOI: 10.1016/j.vaccine.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/12/2019] [Accepted: 06/03/2019] [Indexed: 12/27/2022]
Abstract
The amino terminus of human papillomavirus (HPV) minor capsid protein L2 harbors several conserved neutralizing epitopes, including aa.17-36 (RG-1 epitope) and aa.65-85 consensus epitope (cL2 epitope), which are considered to be promising for the construction of cost-effective pan-HPV vaccine candidates. However, the immunogenicity of L2 epitope/peptide is rather weak, and the neutralizing spectrum induced by single type of L2 antigen is suboptimal. In this study, we constructed L2 concatemer with HPV18/33/58/59 RG-1 epitopes and 16L2 aa.11-88 peptide, and fused it with flagellin, a strong systemic and mucosal adjuvant, by hypervariable region replacement. A copy of cL2 epitope was also introduced to the C-terminus of the recombinant protein. The resultant Fla-5PcL2 protein can be produced in E. coli expression system with high yield and good stability. We assessed the immunogenicity of Fla-5PcL2 in mouse model via systemic and mucosal route, and found that subcutaneous immunization with Fla-5PcL2 induced robust serum neutralizing antibodies against divergent HPV types, while intranasal immunization with Fla-5PcL2 induced remarkable L2-specific IgA and cross-neutralizing antibodies in mucosal secretions, and medium titers of cross-neutralizing antibodies in sera. Moreover, Fla-5PcL2 induced full protection against vaginal HPV challenges. As mucosal antibodies provide the first-line defense at infection sites, and needle-free immunizations may increase vaccine compliance and require less public health resources, our results demonstrate that Fla-5PcL2 is a promising vaccine candidate which possibly meet the need in low-resource regions.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xue Chen
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hongyang Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qifeng Bao
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhirong Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Guoyang Liao
- The Fifth Department of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Yunnan, China.
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
30
|
Schellenbacher C, Huber B, Skoll M, Shafti-Keramat S, Roden RBS, Kirnbauer R. Incorporation of RG1 epitope into HPV16L1-VLP does not compromise L1-specific immunity. Vaccine 2019; 37:3529-3534. [PMID: 31147274 DOI: 10.1016/j.vaccine.2019.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
The candidate pan-Human Papillomavirus (HPV) vaccine RG1-VLP are HPV16 major capsid protein L1 virus-like-particles (VLP) comprising a type-common epitope of HPV16 minor capsid protein L2 (RG1; aa17-36). Vaccinations have previously demonstrated efficacy against genital high-risk (hr), low-risk (lr) and cutaneous HPV. To compare RG1-VLP to licensed vaccines, rabbits (n = 3) were immunized thrice with 1 µg, 5 µg, 25 µg, or 125 µg of RG1-VLP or a 1/4 dose of Cervarix®. 5 µg of RG1-VLP or 16L1-VLP (Cervarix) induced comparable HPV16 capsid-reactive and neutralizing antibodies titers (62,500/12,500-62,500 or 1000/10,000). 25 µg RG1-VLP induced robust cross-neutralization titers (50-1000) against hrHPV18/31/33/45/52/58/26/70. To mimic reduced immunization schedules in adolescents, mice (n = 10) were immunized twice with RG1-VLP (5 µg) plus 18L1-VLP (5 µg). HPV16 neutralization (titers of 10,000) similar to Cervarix and Gardasil and cross-protection against hrHPV58 vaginal challenge was observed. RG1-VLP vaccination induces hrHPV16 neutralization comparable to similar doses of licensed vaccines, plus cross-neutralization to heterologous hrHPV even when combined with HPV18L1-VLP.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Epitopes/genetics
- Epitopes/immunology
- Immunization Schedule
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/genetics
- Papillomavirus Vaccines/immunology
- Rabbits
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Treatment Outcome
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- C Schellenbacher
- Department of Dermatology, Medical University Vienna (MUW), Austria.
| | - B Huber
- Department of Dermatology, Medical University Vienna (MUW), Austria
| | - M Skoll
- Department of Dermatology, Medical University Vienna (MUW), Austria
| | - S Shafti-Keramat
- Department of Dermatology, Medical University Vienna (MUW), Austria
| | - R B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - R Kirnbauer
- Department of Dermatology, Medical University Vienna (MUW), Austria
| |
Collapse
|
31
|
Huber B. ÖGDV Preisträger stellen sich vor: Der MEDA Non Melanoma Skin Cancer Forschungspreis 2017 ging an Mag. rer. nat. Bettina Huber, PhD, aus Wien. J Dtsch Dermatol Ges 2018. [DOI: 10.1111/ddg.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Wang A, Li N, Zhou J, Chen Y, Jiang M, Qi Y, Liu H, Liu Y, Liu D, Zhao J, Wang Y, Zhang G. Mapping the B cell epitopes within the major capsid protein L1 of human papillomavirus type 16. Int J Biol Macromol 2018; 118:1354-1361. [DOI: 10.1016/j.ijbiomac.2018.06.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/13/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
|
33
|
Roles of Fc Domain and Exudation in L2 Antibody-Mediated Protection against Human Papillomavirus. J Virol 2018; 92:JVI.00572-18. [PMID: 29743371 DOI: 10.1128/jvi.00572-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
To address how L2-specific antibodies prevent human papillomavirus (HPV) infection of the genital tract, we generated neutralizing monoclonal antibodies (MAbs) WW1, a rat IgG2a that binds L2 residues 17 to 36 (like mouse MAb RG1), and JWW3, a mouse IgG2b derivative of Mab24 specific for L2 residues 58 to 64. By Western blotting, WW1 recognized L2 of 29/34 HPV genotypes tested, compared to only 13/34 for RG1 and 25/34 for JWW3. WW1 IgG and F(ab')2 bound HPV16 pseudovirions similarly; however, whole IgG provided better protection against HPV vaginal challenge. Passive transfer of WW1 IgG was similarly protective in wild-type and neonatal Fc receptor (FcRn)-deficient mice, suggesting that protection by WW1 IgG is not mediated by FcRn-dependent transcytosis. Rather, local epithelial disruption, required for genital infection and induced by either brushing or nonoxynol-9 treatment, released serum IgG in the genital tract, suggesting Fc-independent exudation. Depletion of neutrophils and macrophages reduced protection of mice upon passive transfer of whole WW1 or JWW3 IgGs. Similarly, IgG-mediated protection by L2 MAbs WW1, JWW3, and RG1 was reduced in Fc receptor knockout compared to wild-type mice. However, levels of in vitro neutralization by WW1 IgG were similar in TRIM21 knockout and wild-type cells, indicating that Fc does not contribute to antibody-dependent intracellular neutralization (ADIN). In conclusion, the Fc domain of L2-specific IgGs is not active for ADIN, but it opsonizes bound extracellular pseudovirions for phagocytes in protecting mice from intravaginal HPV challenge. Systemically administered neutralizing IgG can access the site of infection in an abrasion via exudation without the need for FcRn-mediated transcytosis.IMPORTANCE At least 15 alpha HPV types are causative agents for 5% of all cancers worldwide, and beta types have been implicated in nonmelanoma skin cancer, whereas others produce benign papillomas, such as genital warts, associated with considerable morbidity and health systems costs. Vaccines targeting the minor capsid protein L2 have the potential to provide broad-spectrum immunity against medically relevant HPVs of divergent genera via the induction of broadly cross-neutralizing serum IgG. Here we examine the mechanisms by which L2-specific serum IgG reaches the viral inoculum in the genital tract to effect protection. Abrasion of the vaginal epithelium allows the virus to access and infect basal keratinocytes, and our findings suggest that this also permits the local exudation of neutralizing IgG and vaccine-induced sterilizing immunity. We also demonstrate the importance of Fc-mediated phagocytosis of L2 antibody-virion complexes for humoral immunity, a protective mechanism that is not detected by current in vitro neutralization assays.
Collapse
|
34
|
Chen X, Zhang T, Liu H, Hao Y, Liao G, Xu X. Displaying 31RG-1 peptide on the surface of HPV16 L1 by use of a human papillomavirus chimeric virus-like particle induces cross-neutralizing antibody responses in mice. Hum Vaccin Immunother 2018; 14:2025-2033. [PMID: 29683766 DOI: 10.1080/21645515.2018.1464355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Current available human papillomavirus (HPV) vaccines are based on the major capsid protein L1 virus-like particles (VLPs), which mainly induce type-specific neutralizing antibodies against vaccine types. Continuing to add more types of VLPs in a vaccine raises the complexity and cost of production which remains the principal impediment to achieve broad implementation of HPV vaccines, particularly in developing regions. In this study, we constructed 16L1-31L2 chimeric VLP (cVLP) by displaying HPV31 L2 aa.17-38 on the h4 coil surface region of HPV16 L1, and assessed its immunogenicity in mouse model. We found that the cVLP adjuvanted with alum plus monophosphoryl lipid A could induce cross-neutralizing antibody responses against 16 out of 17 tested HPV pseudoviruses, and the titer against HPV16 was as high as that was induced by HPV16 L1VLP (titer > 105), more importantly, titers over 103 were observed against two HR-HPVs including HPV31 (titer, 2,200) and -59 (titer, 1,013), among which HPV59 was not covered by Gardasil-9, and medium or low titers of cross-neutralizing antibodies against other 13 tested HPV pseudoviruses were also observed. Our data demonstrate that 16L1-31L2 cVLP is a promising candidate for the formulation of broader spectrum HPV vaccines.
Collapse
Affiliation(s)
- Xue Chen
- a Department of Biophysics and Structural Biology , Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College , Beijing , China
| | - Ting Zhang
- a Department of Biophysics and Structural Biology , Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College , Beijing , China
| | - Hongyang Liu
- a Department of Biophysics and Structural Biology , Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College , Beijing , China
| | - Yaru Hao
- a Department of Biophysics and Structural Biology , Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College , Beijing , China
| | - Guoyang Liao
- b The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Yunnan , China
| | - Xuemei Xu
- a Department of Biophysics and Structural Biology , Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College , Beijing , China
| |
Collapse
|
35
|
Hasche D, Vinzón SE, Rösl F. Cutaneous Papillomaviruses and Non-melanoma Skin Cancer: Causal Agents or Innocent Bystanders? Front Microbiol 2018; 9:874. [PMID: 29770129 PMCID: PMC5942179 DOI: 10.3389/fmicb.2018.00874] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
There is still controversy in the scientific field about whether certain types of cutaneous human papillomaviruses (HPVs) are causally involved in the development of non-melanoma skin cancer (NMSC). Deciphering the etiological role of cutaneous HPVs requires - besides tissue culture systems - appropriate preclinical models to match the obtained results with clinical data from affected patients. Clear scientific evidence about the etiology and underlying mechanisms involved in NMSC development is fundamental to provide reasonable arguments for public health institutions to classify at least certain cutaneous HPVs as group 1 carcinogens. This in turn would have implications on fundraising institutions and health care decision makers to force - similarly as for anogenital cancer - the implementation of a broad vaccination program against "high-risk" cutaneous HPVs to prevent NMSC as the most frequent cancer worldwide. Precise knowledge of the multi-step progression from normal cells to cancer is a prerequisite to understand the functional and clinical impact of cofactors that affect the individual outcome and the personalized treatment of a disease. This overview summarizes not only recent arguments that favor the acceptance of a viral etiology in NMSC development but also reflects aspects of causality in medicine, the use of empirically meaningful model systems and strategies for prevention.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| | - Sabrina E Vinzón
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
36
|
Abstract
The discovery of genotype 16 as the prototype oncogenic human papillomavirus (HPV) initiated a quarter century of laboratory and epidemiological studies that demonstrated their necessary, but not sufficient, aetiological role in cervical and several other anogenital and oropharyngeal cancers. Early virus-induced immune deviation can lead to persistent subclinical infection that brings the risk of progression to cancer. Effective secondary prevention of cervical cancer through cytological and/or HPV screening depends on regular and widespread use in the general population, but coverage is inadequate in low-resource settings. The discovery that the major capsid antigen L1 could self-assemble into empty virus-like particles (VLPs) that are both highly immunogenic and protective led to the licensure of several prophylactic VLP-based HPV vaccines for the prevention of cervical cancer. The implementation of vaccination programmes in adolescent females is underway in many countries, but their impact critically depends on the population coverage and is improved by herd immunity. This Review considers how our expanding knowledge of the virology and immunology of HPV infection can be exploited to improve vaccine technologies and delivery of such preventive strategies to maximize reductions in HPV-associated disease, including incorporation of an HPV vaccine covering oncogenic types within a standard multitarget paediatric vaccine.
Collapse
Affiliation(s)
| | - Peter L. Stern
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
37
|
Ong HK, Tan WS, Ho KL. Virus like particles as a platform for cancer vaccine development. PeerJ 2017; 5:e4053. [PMID: 29158984 PMCID: PMC5694210 DOI: 10.7717/peerj.4053] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022] Open
Abstract
Cancers have killed millions of people in human history and are still posing a serious health problem worldwide. Therefore, there is an urgent need for developing preventive and therapeutic cancer vaccines. Among various cancer vaccine development platforms, virus-like particles (VLPs) offer several advantages. VLPs are multimeric nanostructures with morphology resembling that of native viruses and are mainly composed of surface structural proteins of viruses but are devoid of viral genetic materials rendering them neither infective nor replicative. In addition, they can be engineered to display multiple, highly ordered heterologous epitopes or peptides in order to optimize the antigenicity and immunogenicity of the displayed entities. Like native viruses, specific epitopes displayed on VLPs can be taken up, processed, and presented by antigen-presenting cells to elicit potent specific humoral and cell-mediated immune responses. Several studies also indicated that VLPs could overcome the immunosuppressive state of the tumor microenvironment and break self-tolerance to elicit strong cytotoxic lymphocyte activity, which is crucial for both virus clearance and destruction of cancerous cells. Collectively, these unique characteristics of VLPs make them optimal cancer vaccine candidates. This review discusses current progress in the development of VLP-based cancer vaccines and some potential drawbacks of VLPs in cancer vaccine development. Extracellular vesicles with close resembling to viral particles are also discussed and compared with VLPs as a platform in cancer vaccine developments.
Collapse
Affiliation(s)
- Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
38
|
Kim HJ, Kim HJ. Current status and future prospects for human papillomavirus vaccines. Arch Pharm Res 2017; 40:1050-1063. [PMID: 28875439 DOI: 10.1007/s12272-017-0952-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/24/2017] [Indexed: 01/08/2023]
Abstract
Cervical cancer is the fourth most frequent cancer among women worldwide. Human papillomaviruses (HPVs) cause almost all cervical cancers in low-income countries. Three prophylactic HPV virus-like particle-based vaccines have been licensed to date, and they have all shown high efficacy and reliable safety profiles. However, isolated safety issues have resulted in a reluctance to use these vaccinations. In addition, the high prices of the vaccinations have caused the inequitable distribution of the vaccine: the prices are unaffordable for low-income countries. Meanwhile, great effort has been put into the development of therapeutic HPV vaccines, including protein/peptide-, live vector-, DNA- and cell-based vaccines. These new vaccines have considerable therapeutic potential but limited practical use. The development of immune checkpoint inhibitors and personalized immunotherapy remain challenges for future study. In this article, the current status of the licensed vaccines, therapeutic HPV vaccines and biosimilars, and new platforms for HPV vaccines, are reviewed, and safety issues related to the licensed vaccines are discussed. In addition, the prospects for HPV vaccines are considered.
Collapse
Affiliation(s)
- Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea.
| |
Collapse
|
39
|
Kalnin K, Chivukula S, Tibbitts T, Yan Y, Stegalkina S, Shen L, Cieszynski J, Costa V, Sabharwal R, Anderson SF, Christensen N, Jagu S, Roden RBS, Kleanthous H. Incorporation of RG1 epitope concatemers into a self-adjuvanting Flagellin-L2 vaccine broaden durable protection against cutaneous challenge with diverse human papillomavirus genotypes. Vaccine 2017; 35:4942-4951. [PMID: 28778613 PMCID: PMC6454882 DOI: 10.1016/j.vaccine.2017.07.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 12/23/2022]
Abstract
AIM To achieve durable and broad protection against human papillomaviruses by vaccination with multimers of minor capsid antigen L2 using self-adjuvanting fusions with the toll-like receptor-5 (TLR5) ligand bacterial flagellin (Fla) instead of co-formulation with alum. METHODS Fla fusions with L2 protective epitopes comprising residues 11-200, 11-88 and/or 17-38 of a single or multiple HPV types were produced in E. coli and their capacity to activate TLR5 signaling was assessed. Immunogenicity was evaluated serially following administration of 3 intramuscular doses of Fla-L2 multimer without exogenous adjuvant, followed by challenge 1, 3, 6 or 12months later, and efficacy compared to vaccination with human doses of L1 VLP vaccines (Gardasil and Cervarix) or L2 multimer formulated in alum. Serum antibody responses were assessed by peptide ELISA, in vitro neutralization assays and passive transfer to naïve rabbits in which End-Point Protection Titers (EPPT) were determined using serial dilutions of pooled immune sera collected 1, 3, 6 or 12months after completing active immunization. Efficacy was assessed by determining wart volume following concurrent challenge at different sites with HPV6/16/18/31/45/58 'quasivirions' containing cottontail rabbit papillomavirus (CRPV) genomes. RESULTS Vaccination in the absence of exogenous adjuvant with Fla-HPV16 L2 11-200 fusion protein elicited durable protection against HPV16, but limited cross-protection against other HPV types. Peptide mapping data suggested the importance of the 17-38 aa region in conferring immunity. Indeed, addition of L2 residues 17-38 of HPV6/18/31/39/52 to a Fla-HPV16 L2 11-200 or 11-88 elicited broader protection via active or passive immunization, similar to that seen with vaccination with an alum-adjuvanted L2 multimer comprising the aa 11-88 peptides of five or eight genital HPV types. CONCLUSIONS Vaccination with flagellin fused L2 multimers provided lasting (>1year) immunity without the need for an exogenous adjuvant. Inclusion of the L2 amino acid 17-38 region in such multi-HPV type fusions expanded the spectrum of protection.
Collapse
Affiliation(s)
- Kirill Kalnin
- Research, Sanofi Pasteur, 38 Sidney Street, Cambridge, MA, USA.
| | | | | | - Yanhua Yan
- Research, Sanofi Pasteur, 38 Sidney Street, Cambridge, MA, USA
| | | | - Lihua Shen
- Research, Sanofi Pasteur, 38 Sidney Street, Cambridge, MA, USA
| | | | - Victor Costa
- Research, Sanofi Pasteur, 38 Sidney Street, Cambridge, MA, USA
| | | | | | - Neil Christensen
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Subhashini Jagu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
40
|
Pouyanfard S, Müller M. Human papillomavirus first and second generation vaccines-current status and future directions. Biol Chem 2017; 398:871-889. [PMID: 28328521 DOI: 10.1515/hsz-2017-0105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023]
Abstract
It has been more than 10 years that the first prophylactic papillomavirus vaccine became available, although distribution has been mainly limited to the more affluent countries. The first two vaccines have been a great success, hundreds of millions of women and a much smaller number of men have been vaccinated ever since. In a few countries with high vaccination coverage, in particular Australia but also parts of Great Britain and others, clinical impact of vaccination programs is already visible and there are indications for herd immunity as well. Vaccine efficacy is higher than originally estimated and the vaccines have an excellent safety profile. Gardasil9 is a second generation HPV virus-like particle vaccine that was licensed in 2015 and there are more to come in the near future. Currently, burning questions in respect to HPV vaccination are the duration of protection - especially in regard to cross-protection - reduction of the three-dose regimen and its impact on cross-protection; and duration of response, as well as protection against oropharyngeal HPV infections. Furthermore, researchers are seeking to overcome limitations of the VLP vaccines, namely low thermal stability, cost, invasive administration, limited coverage of non-vaccine HPV types, and lack of therapeutic efficacy. In this review we summarize the current status of licensed VLP vaccines and address questions related to second and third generation HPV vaccines.
Collapse
|
41
|
Chen X, Liu H, Wang Z, Wang S, Zhang T, Hu M, Qiao L, Xu X. Human papillomavirus 16L1-58L2 chimeric virus-like particles elicit durable neutralizing antibody responses against a broad-spectrum of human papillomavirus types. Oncotarget 2017; 8:63333-63344. [PMID: 28968993 PMCID: PMC5609925 DOI: 10.18632/oncotarget.19327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 12/03/2022] Open
Abstract
The neutralizing antibodies elicited by human papillomavirus (HPV) major capsid protein L1 virus-like particle (VLP)-based vaccines are largely type-specific. An HPV vaccine inducing cross-neutralizing antibodies broadly will be cost-effective and of great value. To this end, we constructed HPV16L1-58L2 chimeric VLP (cVLP) by displaying HPV58 L2 aa.16-37 on the DE surface region of HPV16 L1. We found that vaccination with the HPV16L1-58L2 cVLP formulated with alum plus monophosphoryl lipid A (Alum-MPL) adjuvant elicited robust neutralizing antibodies in both mice and rabbits against all tested HPV types including HPV16/31/33/35/52/58 (genus α9), HPV18/39/45/59/68 (genus α7), HPV6/11 (genus α10), HPV2/27/57 (genus α4), and HPV5 (genus β1). Importantly, the cross-neutralizing antibody response was maintained at least 82 weeks in mice or 42 weeks in rabbits, and complete protection against HPV58 was observed at week 85 in mice. Our data demonstrate that HPV16L1-58L2 cVLP is an excellent pan-HPV vaccine candidate.
Collapse
Affiliation(s)
- Xue Chen
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Hongyang Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhirong Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Shuo Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Ting Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Meili Hu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Liang Qiao
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA.,Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
42
|
Gupta G, Glueck R, Patel PR. HPV vaccines: Global perspectives. Hum Vaccin Immunother 2017; 13:1-4. [PMID: 28362244 PMCID: PMC5489288 DOI: 10.1080/21645515.2017.1289301] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/27/2017] [Indexed: 01/07/2023] Open
Abstract
The discovery of HPV as the etiological factor for HPV-associated malignancies and disease has opened up several opportunities for prevention and therapy. Current commercially available HPV vaccines (Gardasil, Gardasil 9, and Cervarix) are prophylactic in nature and derived from adjuvanted L1-based virus-like particles of HPV. Globally, through several clinical trials, they were found to be very safe and efficacious. Certain limitations such as cost-effectiveness, low coverage against all HPV types and a 3-dose schedule make these vaccines difficult to use worldwide. Approaches to address these issues involve alternate expression systems using L1 or alternate antigen (L2) as well as optimizing doses and broadening protection to provide cheap and cross-protective vaccines. Additionally, promising preclinical immunogenicity results from our own studies using alternative hosts such as Pichia and an antigen delivery system-based measles vector have potential for development as next generation HPV prophylactic vaccines. Several other therapeutic approaches are also ongoing.
Collapse
Affiliation(s)
- Gaurav Gupta
- Vaccine Technology Centre, Zydus Biologics Compound, Changodar, Ahmedabad, Gujarat, India
| | - Reinhard Glueck
- Vaccine Technology Centre, Zydus Biologics Compound, Changodar, Ahmedabad, Gujarat, India
| | - Pankaj R. Patel
- Vaccine Technology Centre, Zydus Biologics Compound, Changodar, Ahmedabad, Gujarat, India
| |
Collapse
|
43
|
Huber B, Schellenbacher C, Shafti-Keramat S, Jindra C, Christensen N, Kirnbauer R. Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV). PLoS One 2017; 12:e0169533. [PMID: 28056100 PMCID: PMC5215943 DOI: 10.1371/journal.pone.0169533] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022] Open
Abstract
Common cutaneous human papillomavirus (HPV) types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP) self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas), but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa) 17-36) on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV) neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross-) protected against beta HPV5/20/24/38/96/16 (but not type 76), while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target cutaneous HPV infections.
Collapse
Affiliation(s)
- Bettina Huber
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christina Schellenbacher
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Saeed Shafti-Keramat
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christoph Jindra
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Neil Christensen
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
44
|
Developments in L2-based human papillomavirus (HPV) vaccines. Virus Res 2016; 231:166-175. [PMID: 27889616 DOI: 10.1016/j.virusres.2016.11.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/21/2022]
Abstract
Infections with sexually transmitted high-risk Human Papillomavirus (hrHPV), of which there are at least 15 genotypes, are responsible for a tremendous disease burden by causing cervical, and subsets of other ano-genital and oro-pharyngeal carcinomas, together representing 5% of all cancer cases worldwide. HPV subunit vaccines consisting of virus-like particles (VLP) self-assembled from major capsid protein L1 plus adjuvant have been licensed. Prophylactic vaccinations with the 2-valent (HPV16/18), 4-valent (HPV6/11/16/18), or 9-valent (HPV6/11/16/18/31/33/45/52/58) vaccine induce high-titer neutralizing antibodies restricted to the vaccine types that cause up to 90% of cervical carcinomas, a subset of other ano-genital and oro-pharyngeal cancers and 90% of benign ano-genital warts (condylomata). The complexity of manufacturing multivalent L1-VLP vaccines limits the number of included VLP types and thus the vaccines' spectrum of protection, leaving a panel of oncogenic mucosal HPV unaddressed. In addition, current vaccines do not protect against cutaneous HPV types causing benign skin warts, or against beta-papillomavirus (betaPV) types implicated in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. In contrast with L1-VLP, the minor capsid protein L2 contains type-common epitopes that induce low-titer yet broadly cross-neutralizing antibodies to heterologous PV types and provide cross-protection in animal challenge models. Efforts to increase the low immunogenicity of L2 (poly)-peptides and thereby to develop broader-spectrum HPV vaccines are the focus of this review.
Collapse
|
45
|
Zhang T, Liu H, Chen X, Wang Z, Wang S, Qu C, Zhang J, Xu X. Lipidated L2 epitope repeats fused with a single-chain antibody fragment targeting human FcγRI elicited cross-neutralizing antibodies against a broad spectrum of human papillomavirus types. Vaccine 2016; 34:5531-5539. [PMID: 27729176 DOI: 10.1016/j.vaccine.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 12/24/2022]
Abstract
Numerous types of human papillomaviruses (HPVs) have been identified, and the global burden of diseases associated with HPV infection is remarkable, especially in developing regions. Thus a low-cost broad-spectrum prophylactic vaccine is urgently needed. The N-terminal amino acid 17-36 of HPV 16 L2 protein is confirmed to be a major cross-neutralizing epitope (RG-1 epitope). Monomeric proteins containing RG-1 epitopes and scaffold proteins, such as bacterial thioredoxin or modified IgG1 Fc fragment and L2 epitope fusion protein, induced cross-neutralizing antibodies, arousing the possibility of the development of low-cost monomeric vaccine in bacterial expression system. Here we show that a novel immunogen-scaffold protein containing a lipidated triple-repeat HPV 16RG-1 epitope and a hFcγRI specific single-chain antibody fragment (H22scFv), named LpE3H22, elicited high titers of cross-neutralizing antibodies against a broad range of mucosal and cutaneous HPV types when adjuvanted with MF59 and poly I:C. LpE3H22 was produced in E. coli expression system. In contrast to three repeats of RG-1 epitope (E3) and unlipidated fusion protein E3H22, vaccination of LpE3H22 induced robust cross-neutralizing antibody responses in hFcγRI transgenic mice. Furthermore, the neutralizing antibody response induced by LpE3H22 was significantly weaker in WT mice than in the Tg mice. The cross-neutralizing antibodies induced by LpE3H22 sustained for at least 10months in Tg mice. Our results demonstrate that hFcγRI targeting and lipidation both contribute to the enhancement of immunogenicity of L2 antigen. Therefore, delivering the lipidated L2 antigen with H22scFv opens a new avenue for low-cost pan-HPV vaccine development.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongyang Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xue Chen
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhirong Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shuo Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chunfeng Qu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhi Zhang
- Changchun Werersai Biotec Pharmaceutical Co., LTD, Changchun, China
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
46
|
Li M, Wang X, Cao L, Lin Z, Wei M, Fang M, Li S, Zhang J, Xia N, Zhao Q. Quantitative and epitope-specific antigenicity analysis of the human papillomavirus 6 capsid protein in aqueous solution or when adsorbed on particulate adjuvants. Vaccine 2016; 34:4422-8. [PMID: 27426626 DOI: 10.1016/j.vaccine.2016.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 12/16/2022]
Abstract
Human papillomavirus (HPV) 6 is a human pathogen which causes genital warts. Recombinant virus-like particle (VLP) based antigens are the active components in prophylactic vaccines to elicit functional antibodies. The binding and functional characteristics of a panel of 15 murine monoclonal antibodies (mAbs) against HPV6 was quantitatively assessed. Elite conformational indicators, recognizing the conformational epitopes, are also elite viral neutralizers as demonstrated with their viral neutralization efficiency (5 mAbs with neutralization titer below 4ng/mL) in a pseudovirion (PsV)-based system. The functionality of a given mAb is closely related to the nature of the corresponding epitope, rather than the apparent binding affinity to antigen. The epitope-specific antigenicity assays can be used to assess the binding activity of PsV or VLP preparations to neutralizing mAbs. These mAb-based assays can be used for process monitoring and for product release and characterization to confirm the existence of functional epitopes in purified antigen preparations. Due to the particulate nature of the alum adjuvants, the vaccine antigen adsorbed on adjuvants was considered largely as "a black box" due to the difficulty in analysis and visualization. Here, a novel method with fluorescence-based high content imaging for visualization and quantitating the immunoreactivity of adjuvant-adsorbed VLPs with neutralizing mAbs was developed, in which antigen desorption was not needed. The facile and quantitative in situ antigenicity analysis was amendable for automation. The integrity of a given epitope or two non-overlapping epitopes on the recombinant VLPs in their adjuvanted form can be assessed in a quantitative manner for cross-lot or cross-product comparative analysis with minimal manipulation of samples.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Lu Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Zhijie Lin
- Innovax Corporation, Xiamen, Fujian 361000, PR China.
| | - Minxi Wei
- Innovax Corporation, Xiamen, Fujian 361000, PR China.
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
47
|
Lee KL, Twyman RM, Fiering S, Steinmetz N. Virus-based nanoparticles as platform technologies for modern vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:554-78. [PMID: 26782096 PMCID: PMC5638654 DOI: 10.1002/wnan.1383] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022]
Abstract
Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic via multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. WIREs Nanomed Nanobiotechnol 2016, 8:554-578. doi: 10.1002/wnan.1383 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Karin L. Lee
- Department of Biomedical Engineering, Case Western Reserve University Schools of Engineering and Medicine, Cleveland, OH 44106
| | | | - Steven Fiering
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Nicole Steinmetz
- Departments of Biomedical Engineering, Radiology, Materials Science and Engineering, and Macromolecular Science and Engineering, Case Western Reserve University and Medicine, Cleveland, OH 44106;
| |
Collapse
|
48
|
Broad Cross-Protection Is Induced in Preclinical Models by a Human Papillomavirus Vaccine Composed of L1/L2 Chimeric Virus-Like Particles. J Virol 2016; 90:6314-25. [PMID: 27147749 DOI: 10.1128/jvi.00449-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/09/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED At least 15 high-risk human papillomaviruses (HPVs) are linked to anogenital preneoplastic lesions and cancer. Currently, there are three licensed prophylactic HPV vaccines based on virus-like particles (VLPs) of the L1 major capsid protein from HPV-2, -4, or -9, including the AS04-adjuvanted HPV-16/18 L1 vaccine. The L2 minor capsid protein contains HPV-neutralizing epitopes that are well conserved across numerous high-risk HPVs. Therefore, the objective of our study was to assess the capacity to broaden vaccine-mediated protection using AS04-adjuvanted vaccines based on VLP chimeras of L1 with one or two L2 epitopes. Several chimeric VLPs were constructed by inserting L2 epitopes within the DE loop and/or C terminus of L1. Based on the shape, yield, size, and immunogenicity, one of seven chimeras was selected for further evaluation in mouse and rabbit challenge models. The chimeric VLP consisted of HPV-18 L1 with insertions of HPV-33 L2 (amino acid residues 17 to 36; L1 DE loop) and HPV-58 L2 (amino acid residues 56 to 75; L1 C terminus). This chimeric L1/L2 VLP vaccine induced persistent immune responses and protected against all of the different HPVs evaluated (HPV-6, -11, -16, -31, -35, -39, -45, -58, and -59 as pseudovirions or quasivirions) in both mouse and rabbit challenge models. The degree and breadth of protection in the rabbit were further enhanced when the chimeric L1/L2 VLP was formulated with the L1 VLPs from the HPV-16/18 L1 vaccine. Therefore, the novel HPV-18 L1/L2 chimeric VLP (alone or in combination with HPV-16 and HPV-18 L1 VLPs) formulated with AS04 has the potential to provide broad protective efficacy in human subjects. IMPORTANCE From evaluations in human papillomavirus (HPV) protection models in rabbits and mice, our study has identified a prophylactic vaccine with the potential to target a wide range of HPVs linked to anogenital cancer. The three currently licensed vaccines contain virus-like particles (VLPs) of the L1 major capsid protein from two, four, or nine different HPVs. Rather than increasing the diversity of L1 VLPs, this vaccine contains VLPs based on a recombinant chimera of two highly conserved neutralizing epitopes from the L2 capsid protein inserted into L1. Our study demonstrated that the chimeric L1/L2 VLP is an effective vehicle for displaying two different L2 epitopes and can be used in a quantity equivalent to what is used in the licensed vaccines. Hence, using the chimeric L1/L2 VLP may be a more cost-effective approach for vaccine formulation than adding different VLPs for each HPV.
Collapse
|
49
|
Spagnoli G, Bolchi A, Cavazzini D, Pouyanfard S, Müller M, Ottonello S. Secretory production of designed multipeptides displayed on a thermostable bacterial thioredoxin scaffold in Pichia pastoris. Protein Expr Purif 2016; 129:150-157. [PMID: 27133916 DOI: 10.1016/j.pep.2016.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 11/19/2022]
Abstract
Internal grafting of designed peptides to scaffold proteins is a valuable strategy for a variety of applications including recombinant peptide antigen construction. A peptide epitope from human papillomavirus (HPV) minor capsid protein L2 displayed on thioredoxin (Trx) has been validated preclinically as a broadly protective and low-cost alternative HPV vaccine. Focusing on thioredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus (PfTrx) as a scaffold, we have constructed a modified Pichia pastoris expression vector and used a PfTrx fusion derivative containing three tandemly repeated copies of a 19 amino acids peptide epitope from HPV-L2 for expression optimization and biochemical-immunological characterization of the Pichia-produced PfTrx-L2 antigen. We show that PfTrx-L2 is produced at high levels (up to 100 mg from a 100 ml starting culture using a multi-cycle induction protocol) and secreted into the culture medium as a highly enriched (>70% pure), non-glycosylated polypeptide that can be purified to homogeneity in a single step. Oxidation and aggregation state, thermal stability and immunogenicity of the endotoxin-free PfTrx-L2 antigen produced in P. pastoris were tested and found to be identical to those of the same antigen produced in Escherichia coli. Secretory production of endotoxin-free PfTrx-peptides in P. pastoris represents a cost- and time-effective alternative to E. coli production. Specifically designed for peptide antigens, the PfTrx-expression vector and conditions described herein are easily transferable to a variety of applications centred on the use of structurally constrained bioactive peptides as immune as well as target-specific binder reagents.
Collapse
Affiliation(s)
- Gloria Spagnoli
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma, Italy
| | - Angelo Bolchi
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma, Italy
| | - Davide Cavazzini
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma, Italy
| | | | | | - Simone Ottonello
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma, Italy.
| |
Collapse
|
50
|
Zhai L, Tumban E. Gardasil-9: A global survey of projected efficacy. Antiviral Res 2016; 130:101-9. [PMID: 27040313 DOI: 10.1016/j.antiviral.2016.03.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
Abstract
Human papillomaviruses (HPVs) are the causative agents of human neoplasias such as warts and cancers. There are ∼19 HPV types associated with cancers, which has made it very challenging for first generation HPV vaccines to offer complete protection against all cancer-causing HPV types. Recently, a second generation HPV vaccine, Gardasil-9, has been approved to protect against more HPV types. Worldwide, Gardasil-9 will protect against HPV types associated with ∼90% of cervical cancer case in women and 80-95% of other HPV-associated anogenital cancers in both men and women. However, due to variation in HPV-type specific prevalence and distribution, the vaccine will offer different percentages of protection in different geographical regions; Gardasil-9 will offer protection against HPV types associated with ∼87.7% of cervical cancers in Asia, 91.7% in Africa, 92% in North America, 90.9% in Europe, 89.5% in Latin America & the Caribbean, and 86.5% in Australia. Because of this, Pap smear screening and testing for HPV types not included in Gardasil-9 will need to continue, especially in HIV/AIDS patients. In order to achieve complete protection against all HPV types that cause cervical cancer, a third-generation HPV vaccine is needed.
Collapse
Affiliation(s)
- Lukai Zhai
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United states
| | - Ebenezer Tumban
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United states.
| |
Collapse
|