1
|
Karabatić Knezović S, Knezović D, Matana A, Puizina Ivić N, Drmić Hofman I. Strong association of TLR2 and TLR3 polymorphisms with keratoacanthoma and common warts: a case-control study. Croat Med J 2024; 65:232-238. [PMID: 38868969 PMCID: PMC11157254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024] Open
Abstract
AIM To determine variations in allele and genotype frequencies between keratoacanthoma (KA) and common warts (CW), compared with the control group, in three single nucleotide polymorphisms (SNPs) within the TLR2, TLR3, and TLR9 genes. METHODS This case-control study involved samples from 161 patients with KA, 152 patients with CW, and 469 controls. DNA was isolated from formalin-fixed paraffin-embedded tissue sections. Three SNPs - rs4696480 in TLR2, rs7657186 in TLR9, and rs35213 in TLR3 - were genotyped with TaqMan Genotyping Assays on the 7500 Real-Time PCR System. RESULTS TLR2 rs4696480 and TLR3 rs7657186 were significantly overrepresented in KA and CW compared with controls (P<0.001). The association was stronger for CW than for KA, as evidenced by higher frequencies of the A allele and AA genotype for rs4696480. Both KA and CW patients had higher frequencies of the G allele and GG genotype for rs7657186 than controls. rs7657186 was moderately associated with KA and CW, with the G allele and GG genotype being more prevalent in CW cases, where no AA homozygotes were found. CONCLUSION Genetic variants in TLR2 (rs4696480) and TLR3 (rs7657186) genes may affect KA and CW development, influencing immune responses and susceptibility to these skin lesions. Further research is required to elucidate TLR expression patterns and their role in KA development.
Collapse
Affiliation(s)
| | | | | | | | - Irena Drmić Hofman
- Irena Drmić Hofman, Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia,
| |
Collapse
|
2
|
Zeng W, Liu G, Luan Q, Yang C, Luo X, Zhu Z, Yu X. Epstein-Barr Virus Promotes Inflammatory Cytokine Production in Human Gingival Fibroblasts. Int Dent J 2024; 74:607-615. [PMID: 38228433 PMCID: PMC11123576 DOI: 10.1016/j.identj.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Periodontitis is one of the most common chronic oral inflammatory diseases. Over the past decade, herpes viruses, particularly Epstein-Barr virus (EBV), have been considered promising pathogenic candidates for periodontitis. However, the specific mechanism by which EBV contributes to the development of periodontitis is still unknown. This study aimed to explore the mechanism of EBV underlying the inflammatory response in human gingival fibroblasts (HGFs). MATERIALS AND METHODS HGFs were stimulated with different concentrations of EBV (104, 105, 106, 107, and 108 DNA copies/mL) for 0, 8, 24, or 48 hours. The mRNA levels of interleukin (IL)-1β, tumour necrosis factor-α (TNF-α), IL-8, monocyte chemoattractant protein-1 (MCP-1), and Toll-like receptor 9 (TLR9) were measured using quantitative real-time polymerase chain reaction (PCR). Enzyme-linked immunosorbent assays (ELISAs) were performed for determining the mRNA and protein levels of IL-1β, TNF-α, IL-8, and MCP-1. Real-time PCR and ELISA were performed to determine the protein levels of IL-1β, TNF-α, IL-8, and MCP-1. Activation of the TLR9/myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κB) pathway was evaluated using western blotting. RESULTS The expressions of IL-1β, TNF-α, IL-8, and MCP-1 were significantly upregulated in HGFs under EBV stimulation in a concentration- and time-dependent manner. EBV promoted TLR9 and MyD88 expression and induced NF-κB transcription. On the contrary, the upregulation of these factors and the activation of NF-κB pathway were drastically inhibited by TLR9 antagonists. CONCLUSIONS Our findings demonstrate that EBV promotes the production of inflammatory cytokines IL-1β and TNF-α and chemokines IL-8 and MCP-1 in HGFs through the TLR9/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Wenmin Zeng
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| | - Guojing Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| | - Chunyu Yang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| | - Xin Luo
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| | - Zijun Zhu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| | - Xiaoqian Yu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China.
| |
Collapse
|
3
|
Nunes JM, Kell DB, Pretorius E. Herpesvirus Infection of Endothelial Cells as a Systemic Pathological Axis in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Viruses 2024; 16:572. [PMID: 38675914 PMCID: PMC11053605 DOI: 10.3390/v16040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is critical for advancing treatment options. This review explores the novel hypothesis that a herpesvirus infection of endothelial cells (ECs) may underlie ME/CFS symptomatology. We review evidence linking herpesviruses to persistent EC infection and the implications for endothelial dysfunction, encompassing blood flow regulation, coagulation, and cognitive impairment-symptoms consistent with ME/CFS and Long COVID. This paper provides a synthesis of current research on herpesvirus latency and reactivation, detailing the impact on ECs and subsequent systemic complications, including latent modulation and long-term maladaptation. We suggest that the chronicity of ME/CFS symptoms and the multisystemic nature of the disease may be partly attributable to herpesvirus-induced endothelial maladaptation. Our conclusions underscore the necessity for further investigation into the prevalence and load of herpesvirus infection within the ECs of ME/CFS patients. This review offers conceptual advances by proposing an endothelial infection model as a systemic mechanism contributing to ME/CFS, steering future research toward potentially unexplored avenues in understanding and treating this complex syndrome.
Collapse
Affiliation(s)
- Jean M. Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Chemitorvet 200, 2800 Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
4
|
GÜLER AAVANOGLU, ÖZÇİMEN B, AYDOĞDU MS, SARI A, NUMUNE A, ERSAN NTÜZÜN, ÇOLAK S, KARADENİZ H, VASİ İ, KÜÇÜK H, YALÇINKAYA Y, ERDEN A, KAYAALP M, ÖZTÜRK MA, GÖKER B, OMMA A, YILMAZ S, KOCA SS, İNANÇ M, AKDOĞAN A, TUFAN A. Clinical characteristics and disease course before and after SARS-CoV-2 infection in a large cohort of systemic sclerosis patients. Turk J Med Sci 2023; 54:76-85. [PMID: 38812619 PMCID: PMC11031159 DOI: 10.55730/1300-0144.5768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/15/2024] [Accepted: 12/21/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim The objective of this study is to evaluate the clinical presentations and adverse outcomes of Coronavirus Disease 2019 (COVID-19) in patients with systemic sclerosis (SSc) and assess the impact of SSc features on the clinical course of COVID-19. Materials and methods In this multicenter, retrospective study, SSc patients with COVID-19 were included. Clinical features of SSc, along with detailed COVID-19 data, were extracted from medical records and patient interviews. Results The study included 112 patients (mean age 51.4 ± 12.8 years; 90.2% female). SSc-associated interstitial lung disease (ILD) was evident in 57.1% of the patients. The findings revealed hospitalization in 25.5%, respiratory support in 16.3%, intensive care unit admission in 3.6%, and a mortality rate of 2.7% among SSc patients with COVID-19. Risk factors for respiratory failure, identified through univariate analysis, included ILD (OR: 7.49, 95% CI: 1.63-34.46), ≥1 comorbidity (OR: 4.55, 95% CI: 1.39-14.88), a higher physician global assessment score at the last outpatient visit (OR 2.73, 95% CI: 1.22-6.10), and the use of mycophenolate at the time of infection (OR: 5.16, 95 %CI: 1.79-14.99). Notably, ≥1 comorbidity emerged as the sole significant predictor of the need for respiratory support in COVID-19 (OR: 5.78, 95% CI: 1.14-29.23). In the early post-COVID-19 period, 17% of patients reported the progression of the Raynaud phenomenon, and 10.6% developed new digital ulcers. Furthermore, progression or new onset of dyspnea and cough were detected in 28.3% and 11.4% of patients, respectively. Conclusion This study suggests a potential association between adverse outcomes of COVID-19 and SSc-related ILD, severe disease activity, and the use of mycophenolate. Additionally, it highlights that having comorbidities is an independent risk factor for the need for respiratory support in COVID-19 cases.
Collapse
Affiliation(s)
- Aslıhan AVANOGLU GÜLER
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara,
Turkiye
| | - Büşra ÖZÇİMEN
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Mesude Seda AYDOĞDU
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Fırat University, Elazığ,
Turkiye
| | - Alper SARI
- Department of Rheumatology, Etlik City Hospital, Ankara,
Turkiye
| | - Aliyeva NUMUNE
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, İstanbul University, İstanbul,
Turkiye
| | - Nazife TÜZÜN ERSAN
- Department of Internal Medicine, Gazi University Hospital, Ankara,
Turkiye
| | - Seda ÇOLAK
- Department of Rheumatology, Gülhane Training and Research Hospital, University of Health Sciences, Ankara,
Turkiye
| | - Hazan KARADENİZ
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara,
Turkiye
| | - İbrahim VASİ
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara,
Turkiye
| | - Hamit KÜÇÜK
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara,
Turkiye
| | - Yasemin YALÇINKAYA
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, İstanbul University, İstanbul,
Turkiye
| | - Abdülsamet ERDEN
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara,
Turkiye
| | - Mehmet KAYAALP
- Department of Internal Medicine, Yıldırım Beyazıt University, Ankara,
Turkiye
| | - Mehmet Akif ÖZTÜRK
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara,
Turkiye
| | - Berna GÖKER
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara,
Turkiye
| | - Ahmet OMMA
- Department of Rheumatology, Ankara City Hospital, Health Sciences University, Ankara,
Turkiye
| | - Sedat YILMAZ
- Department of Rheumatology, Gülhane Training and Research Hospital, University of Health Sciences, Ankara,
Turkiye
| | - Süleyman Serdar KOCA
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Fırat University, Elazığ,
Turkiye
| | - Murat İNANÇ
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, İstanbul University, İstanbul,
Turkiye
| | - Ali AKDOĞAN
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Abdurrahman TUFAN
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara,
Turkiye
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland,
USA
| |
Collapse
|
5
|
Liu W, Zhang Q, Zhang Y, Sun L, Xiao H, Luo B. Epstein-Barr Virus Regulates Endothelin-1 Expression through the ERK/FOXO1 Pathway in EBV-Associated Gastric Cancer. Microbiol Spectr 2023; 11:e0089822. [PMID: 36475746 PMCID: PMC9927292 DOI: 10.1128/spectrum.00898-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is one of the four subtypes of gastric carcinoma and its unique clinicopathological mechanism is unclear. Herein, the expression of endothelin-1 (ET-1) in EBVaGC was lower than of Epstein-Barr virus-negative gastric carcinoma (EBVnGC) and associated with a low frequency of lymph node metastasis of EBVaGC. Functional studies showed that the activation of ET-1/endothelin receptor type A (ETAR) axis could promote cell growth, migration, and antiapoptosis. The expression of the ET-1 gene was unrelated to methylation of its promoter region and miRNAs (-1, -125a, -125b). After being treated with MEK1/2 inhibitor (PD0325901), the inactivation of ERK1/2 pathway resulted in downregulation of ET-1 and forkhead box O1 (FOXO1) expression. Further, FOXO1 knockdown decreased the ET-1 expression. These findings indicated that ET-1 could be involved in development of gastric cancer and EBV could suppress the expression of ET-1 via the regulation of the transcription factor FOXO1 through the MAPK/ERK pathway. IMPORTANCE The relationship between Epstein-Barr virus and gastric cancer has been relatively clear. However, there are still many unresolved mechanisms of the virus in tumorigenesis. In recent years, activation of the endothelin-1 signaling axis has been found to play an important role in tumorigenesis, which is involved in tumor angiogenesis and epithelial-mesenchymal transition. EBV genes. In our study, we found that ET-1 was low-expressed in EBV-positive gastric cancer cells, which was due to the inhibition of ERK signaling by EBNA1 through the repression of FOXO1 expression. The low expression of ET-1 limits the proliferation, migration, and anti-apoptotic ability of tumor cells. These findings contribute to further understanding of the role of EBV in EBV-associated gastric cancer.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qianqian Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Central Hospital of Zibo, Zibo, China
| | - Lingling Sun
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Xiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Hua C, Chen S, Cheng H. Therapeutic potential of mesenchymal stem cells for refractory inflammatory and immune skin diseases. Hum Vaccin Immunother 2022; 18:2144667. [PMID: 36382475 PMCID: PMC9746473 DOI: 10.1080/21645515.2022.2144667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inflammatory and immunological skin diseases such as psoriasis, systemic sclerosis, dermatomyositis and atopic dermatitis, whose abnormal skin manifestations not only affected life quality but also caused social discrimination, have been wildly concerned. Complex variables such as hereditary predisposition, racial differences, age and gender can influence the prevalence and therapeutic options. The population of patients with unsatisfactory curative effects under current therapies is growing, it's advisable to seek novel and advanced therapies that are less likely to cause systemic damage. Mesenchymal stem cells (MSCs) have been proven with therapeutic benefits in tissue regeneration, self-renewal and differentiation abilities when treating refractory skin disorders in preclinical and clinical studies. Here we highlighted the immune modulation and inflammation suppression of MSCs in skin diseases, summarized current studies, research progress and related clinical trials, hoping to strengthen the confidence of promising MSCs therapy in future clinical application.
Collapse
Affiliation(s)
- Chunting Hua
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siji Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Aung WW, Hamaguchi Y, Matsushita T. Targeting cytokines and potentiality of
JAK–STAT
inhibition in systemic sclerosis. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2022. [DOI: 10.1002/cia2.12288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Wah Wah Aung
- Department of Dermatology, Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Medicine Kanazawa University Kanazawa Ishikawa Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Medicine Kanazawa University Kanazawa Ishikawa Japan
| | - Takashi Matsushita
- Department of Dermatology, Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Medicine Kanazawa University Kanazawa Ishikawa Japan
| |
Collapse
|
8
|
Kakkar V, Assassi S, Allanore Y, Kuwana M, Denton CP, Khanna D, Del Galdo F. Type 1 interferon activation in systemic sclerosis: a biomarker, a target or the culprit. Curr Opin Rheumatol 2022; 34:357-364. [PMID: 36125916 PMCID: PMC9594133 DOI: 10.1097/bor.0000000000000907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
PURPOSE OF REVIEW Activation of the type 1 interferon (T1 IFN) pathway has been implicated in the pathogenesis of systemic sclerosis (SSc) by an increasing number of studies, most of which share key findings with similar studies in systemic lupus erythematosus (SLE). Here we will focus on the evidence for T1 IFN activation and dysregulation in SSc, and the rationale behind targeting the pathway going forward. RECENT FINDINGS An increased expression and activation of T1 IFN-regulated genes has been shown to be present in a significant proportion of SSc patients. TI IFN activation markers have been found to predict and correlate with response to immunosuppressive treatment as well as severity of organ involvement. As inhibition of the IFN-α receptor has been proven to be effective in active SLE, benefit may be seen in targeting the IFN pathway in SSc. SUMMARY The role played by T1 IFN and its regulatory genes in SSc is becoming increasingly evident and strikingly similar to the role observed in SLE. This observation, together with the benefit of type 1 IFN targeting in SLE, supports the notion of a potential therapeutic benefit in targeting T1 IFN in SSc.
Collapse
Affiliation(s)
- Vishal Kakkar
- Department of Rheumatology, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center at Houston, Texas, USA
| | - Yannick Allanore
- INSERM U1016 UMR 8104, Université Paris Cité, Hôpital Cochin, Paris, France
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School, Tokyo, Japan
| | | | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, Michigan, USA
| | - Francesco Del Galdo
- Department of Rheumatology, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Serum microRNAs in Systemic Sclerosis, Associations with Digital Vasculopathy and Lung Involvement. Int J Mol Sci 2022; 23:ijms231810731. [PMID: 36142646 PMCID: PMC9503032 DOI: 10.3390/ijms231810731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background and aims: Systemic sclerosis (SSc) is an autoimmune, rare multisystem chronic disease that is still not well-understood aetiologically and is challenging diagnostically. In the literature, there are ever-increasing assumptions regarding the epigenetic mechanisms involved in SSc development; one of them is circulating microRNAs. Many of them regulate TLR pathways and are significant in autoimmune balance. The aim of this study was to determine profile expression of selected microRNAs in SSc patients, including miR-126, -132, -143, -145, -155, -181a, -29a and -3148, in comparison to healthy controls. Methods: Serum microRNAs were isolated from 45 patients with SSc and 57 healthy donors (HC). Additionally, SSc patients were considered in the aspect of disease subtype, including diffuse systemic sclerosis (dcSSc) and limited systemic sclerosis (lcSSc). Results: miR-3148 was detected neither in the serum of HC nor in SSc patients. All of the rest of the analyzed microRNAs, excluding miR-126, miR-29a and miR-181a, were significantly upregulated in SSc patients in comparison to HC. However, miR-181a has been revealed only in the serum of patients with lcSSc but not dcSSc. Moderate positive correlations between the transfer factor of the lung for carbon monoxide (TLCO) and miR-126 and miR-145 were observed. A significant correlation has been found between serum miR-143 level and forced vital capacity (FVC). SSc patients with FVC ≤ 70% were characterized by significantly lower levels of miR-143 compared to patients with normal FVC. Additionally, the expression of miR-132 was significantly higher in dcSSc subgroup with detected active lung lesions compared to dcSSc patients with fibrotic lesions. Patients with an early scleroderma pattern of microangiopathy seen on nailfold video-capillaroscopy (NVC) revealed higher expression of miR-155 in serum than those with a late pattern. Conclusions: The expression profile of circulating cell-free miRNAs is significantly changed in the serum of SSc patients compared to healthy individuals. Downregulation of miRNA-181a and overexpression of miR-132, miR-143, miR-145 and miR-155 in serum may be significant in SSc in the context of biomarkers.
Collapse
|
10
|
Machhua S, Sharma SK, Kumar Y, Singh S, Anand S, Handa S, Minz RW. Detection of Epstein-Barr virus in systemic sclerosis patients: A molecular and serological based study. Int J Rheum Dis 2022; 25:1431-1436. [PMID: 36102054 DOI: 10.1111/1756-185x.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/05/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aimed to evaluate an association between Epstein-Barr virus (EBV) and systemic sclerosis (SSc). METHODOLOGY One hundred and fifty (138 female, 12 male) consecutive adult SSc patients fulfilling the American College of Rheumatology (ACR)/ European League Against Rheumatism (EULAR) criteria were included in this cross-sectional study. Serological analysis by line blot for class immunoglobulin G (IgG) and IgM antibodies against EBV antigen (EBV capsid antigen [VCA] gp125, VCA p19, EBNA-1, p22, EA-D) and quantification of EBV DNA in whole blood by real-time polymerase chain reaction was performed. RESULTS Class IgM antibodies against VCA gp125 (22.8% vs 0%, P < .0002), VCA p19 (55.7% vs 4.4%, P < .0001), EBNA1 (35.7% vs 0%, P < .0001), p22 (24.2% vs 0%, P < .0001), EA-D (14.2% vs 2.2%, P < .04), and class IgG antibodies against p22 (95.7% vs 82.2%, P < .02) and EA-D (54.2% vs 0%, P < .0001) reactivities were significantly higher in SSc patients than in controls. The past infection was significantly associated with the control group (42.8% vs 91%, P < .0001); and the viral reactivation was significantly associated with the SSc group (55.7% vs 4.4%, P < .0001). Only three (2%) out of 150 SSc patients were positive for EBV DNA, similar to the control group (2%) (P > .9). CONCLUSION The study shows a strong serological association of EBV (reactivation stage) with SSc patients in the absence of viral DNA in the circulation, indicating the EBV reservoir or tropism presence elsewhere.
Collapse
Affiliation(s)
- Sanghamitra Machhua
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shefali Khanna Sharma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shashi Anand
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanjeev Handa
- Department of Dermatology Venereology Leprology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
11
|
The Role of Exposomes in the Pathophysiology of Autoimmune Diseases II: Pathogens. PATHOPHYSIOLOGY 2022; 29:243-280. [PMID: 35736648 PMCID: PMC9231084 DOI: 10.3390/pathophysiology29020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
In our continuing examination of the role of exposomes in autoimmune disease, we use this review to focus on pathogens. Infections are major contributors to the pathophysiology of autoimmune diseases through various mechanisms, foremost being molecular mimicry, when the structural similarity between the pathogen and a human tissue antigen leads to autoimmune reactivity and even autoimmune disease. The three best examples of this are oral pathogens, SARS-CoV-2, and the herpesviruses. Oral pathogens reach the gut, disturb the microbiota, increase gut permeability, cause local inflammation, and generate autoantigens, leading to systemic inflammation, multiple autoimmune reactivities, and systemic autoimmunity. The COVID-19 pandemic put the spotlight on SARS-CoV-2, which has been called “the autoimmune virus.” We explore in detail the evidence supporting this. We also describe how viruses, in particular herpesviruses, have a role in the induction of many different autoimmune diseases, detailing the various mechanisms involved. Lastly, we discuss the microbiome and the beneficial microbiota that populate it. We look at the role of the gut microbiome in autoimmune disorders, because of its role in regulating the immune system. Dysbiosis of the microbiota in the gut microbiome can lead to multiple autoimmune disorders. We conclude that understanding the precise roles and relationships shared by all these factors that comprise the exposome and identifying early events and root causes of these disorders can help us to develop more targeted therapeutic protocols for the management of this worldwide epidemic of autoimmunity.
Collapse
|
12
|
Das P, Minz RW, Saikia B, Sharma A, Anand S, Singh H, Singh S. Association of Human Leucocyte Antigen Class II, with viral load and immune response to Epstein-Barr virus in adult and pediatric Systemic lupus erythematosus patients. Lupus 2022; 31:1054-1066. [PMID: 35607991 DOI: 10.1177/09612033221100156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease, which is known to be associated with HLA-DRB1 and Epstein-Barr virus (EBV) infection. In the Indian subcontinent where there is high seroendemicity of EBV, we postulated that the association of this virus in adult SLE (aSLE) and pediatric SLE (pSLE) patients would be different and differentially associate with the HLA-DRB1 susceptibility and protective genes. METHODS A total of 109 aSLE, 52 pSLE, 215 adult healthy and 63 pediatric healthy controls were recruited. HLA-DRB1 genotyping by PCR-SSP, EBV load estimation by real-time PCR and antibody profiling (IgG & IgM) to EBV antigens by line blot assay were performed. RESULTS DRB1*15 was found predominant in pSLE patients and DRB1*03 in aSLE patients. DRB1*15/X heterozygous was predominant in overall SLE patients, although disease severity, like hypocomplementemia, higher autoantibody levels and more organ involvement was observed in *15/*15 homozygous state. EBV strongly associated with pSLE patients showing higher percent of EA-D IgG (p < 0.0001) and p22 IgG (p = 0.035) along with higher viral load (p = 0.001) as compared to healthy controls. In addition, the higher EBV DNA load significantly associated with anti-EA-D IgG (p = 0.013) and DRB1*15/*15 (p = 0.007) in pSLE patients as compared to aSLE patients. CONCLUSIONS This study therefore indicates that different HLA-DRB1 allotypes confer susceptibility to SLE in children and adults and disease may be triggered by increased EBV reactivation.
Collapse
Affiliation(s)
- Prabir Das
- Department of Immunopathology, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W Minz
- Department of Immunopathology, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shashi Anand
- Department of Immunopathology, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Heera Singh
- Department of Immunopathology, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Advanced Pediatric Centre, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
13
|
The Immunogenetics of Systemic Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:259-298. [DOI: 10.1007/978-3-030-92616-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Wenzel D, Haddadi N, Afshari K, Richmond JM, Rashighi M. Upcoming treatments for morphea. Immun Inflamm Dis 2021; 9:1101-1145. [PMID: 34272836 PMCID: PMC8589364 DOI: 10.1002/iid3.475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 11/25/2022] Open
Abstract
Morphea (localized scleroderma) is a rare autoimmune connective tissue disease with variable clinical presentations, with an annual incidence of 0.4-2.7 cases per 100,000. Morphea occurs most frequently in children aged 2-14 years, and the disease exhibits a female predominance. Insights into morphea pathogenesis are often extrapolated from studies of systemic sclerosis due to their similar skin histopathologic features; however, clinically they are two distinct diseases as evidenced by different demographics, clinical features, disease course and prognosis. An interplay between genetic factors, epigenetic modifications, immune and vascular dysfunction, along with environmental hits are considered as the main contributors to morphea pathogenesis. In this review, we describe potential new therapies for morphea based on both preclinical evidence and ongoing clinical trials. We focus on different classes of therapeutics, including antifibrotic, anti-inflammatory, cellular and gene therapy, and antisenolytic approaches, and how these target different aspects of disease pathogenesis.
Collapse
Affiliation(s)
- Dan Wenzel
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Nazgol‐Sadat Haddadi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Khashayar Afshari
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Jillian M. Richmond
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Mehdi Rashighi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
15
|
Gaglia MM. Anti-viral and pro-inflammatory functions of Toll-like receptors during gamma-herpesvirus infections. Virol J 2021; 18:218. [PMID: 34749760 PMCID: PMC8576898 DOI: 10.1186/s12985-021-01678-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) control anti-viral responses both directly in infected cells and in responding cells of the immune systems. Therefore, they are crucial for responses against the oncogenic γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the related murine virus MHV68, which directly infect immune system cells. However, since these viruses also cause lifelong persistent infections, TLRs may also be involved in modulation of inflammation during latent infection and contribute to virus-driven tumorigenesis. This review summarizes work on both of these aspects of TLR/γ-herpesvirus interactions, as well as results showing that TLR activity can drive these viruses' re-entry into the replicative lytic cycle.
Collapse
Affiliation(s)
- Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
16
|
Kim SK, Choe JY, Park KY. Activation of CpG-ODN-Induced TLR9 Signaling Inhibited by Interleukin-37 in U937 Human Macrophages. Yonsei Med J 2021; 62:1023-1031. [PMID: 34672136 PMCID: PMC8542467 DOI: 10.3349/ymj.2021.62.11.1023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Interleukin-37 (IL-37) is an anti-inflammatory cytokine that inhibits a broad spectrum of inflammatory responses in various human cells, including neutrophils, macrophages, and endothelial cells. The aim of this study was to identify the role of IL-37 in toll-like receptor 9 (TLR9) signaling in human macrophages. MATERIALS AND METHODS Human macrophage U937 cells treated with CpG-oligonucleotides (CpG-ODN), recombinant IL-37, or dexamethasone were used in an in vitro study. IL-37 small interfering RNA (siRNA) and TLR9 siRNA were used to silence endogenous IL-37 and TLR9, respectively. Expression levels of phosphorylated nuclear factor-κB (NF-κB), IκBα, IL-37, IL-1β, tumor necrosis factor-α (TNF-α), and IL-6 protein were assessed by real-time quantitative polymerase chain reaction and Western blotting. CpG-ODN-mediated IL-37 expression stimulated by dexamethasone was detected using immunofluorescent analysis. RESULTS U937 cells treated with CpG-ODN induced activation of the NF-κB pathway and increased the expression of the pro-inflammatory cytokines IL-1β, TNF-α, and IL-6, but reduced that of IL-37. Recombinant IL-37 attenuated phosphorylation of NF-κB and IκBα and the expression of IL-1β, TNF-α, and IL-6 stimulated by CpG-ODN. Human macrophages transfected with IL-37 siRNA augmented the expression of IL-1β, TNF-α, and IL-6 mRNA and protein in cells treated with CpG-ODN. Dexamethasone markedly inhibited expression of pro-inflammatory cytokines in U937 cells, whereas IL-37 expression was increased with the addition of dexamethasone. Inflammatory responses elicited by CpG-ODN were dependent on an MyD88-TRAF6 pathway. IL-37 inhibited CpG-ODN-induced ubiquitination of TRAF6 in U937 macrophages. CONCLUSION IL-37 inhibits CpG-ODN-mediated inflammatory responses through regulation of a TRAF6-NF-κB pathway in human macrophages.
Collapse
Affiliation(s)
- Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu, Korea.
| | - Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu, Korea
| | - Ki-Yeun Park
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu, Korea
| |
Collapse
|
17
|
Matucci-Cerinic M, Hughes M, Taliani G, Kahaleh B. Similarities between COVID-19 and systemic sclerosis early vasculopathy: A "viral" challenge for future research in scleroderma. Autoimmun Rev 2021; 20:102899. [PMID: 34274540 PMCID: PMC8280663 DOI: 10.1016/j.autrev.2021.102899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To review similarities between COVID-19 and systemic sclerosis (SSc) early vasculopathy to provide novel insights into both diseases. METHODS A narrative review of the literature supplemented with expert opinion. RESULTS There is clear evidence that the endothelium is at the centre stage in SSc and COVID-19, with endothelial cell activation/injury and dysfunction creating the crucial evolving step in the pathogenesis of both diseases. The angiotensin system has also been implicated in the early stages of both COVID-19 and SSc. Autoptic studies provide novel insights into the effects of SARS-CoV-2 on the endothelium. Normal endothelium and endothelial dysfunction in COVID-19 and SSc are discussed. It is debated whether SARS-CoV-2 infection triggers autoimmunity with production of autoantibodies which is of mechanistic interest because other viral illnesses are potentially involved in endothelial dysfunction and in SSc pathogenesis. CONCLUSION COVID-19 is due to a direct assault of SARS-CoV-2 on the vascular system as an acute infection, whereas SSc remains a chronic/sub-acute autoimmune disease of largely unknown etiology Further study and exploration of the SARS-CoV-2 pathogenic mechanisms might provide further useful milestones in the understanding of the early SSc pathogenesis.
Collapse
Affiliation(s)
- Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence & Division of Rheumatology AOUC, Florence, Italy; Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy.
| | - Michael Hughes
- Department of Rheumatology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Gloria Taliani
- Infectious Diseases Unit, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Bashar Kahaleh
- Division of Rheumatology, Allergy and Immunology, University of Toledo Medical Center, Toledo, OH, USA
| |
Collapse
|
18
|
Abstract
From the clinical standpoint, systemic sclerosis (SSc) is characterized by skin and internal organ fibrosis, diffuse fibroproliferative vascular modifications, and autoimmunity. Clinical presentation and course are highly heterogenous and life expectancy variably affected mostly dependent on lung and heart involvement. SSc touches more women than men with differences in disease severity and environmental exposure. Pathogenetic events originate from altered homeostasis favored by genetic predisposition, environmental cues and a variety of endogenous and exogenous triggers. Epigenetic modifications modulate SSc pathogenesis which strikingly associate profound immune-inflammatory dysregulation, abnormal endothelial cell behavior, and cell trans-differentiation into myofibroblasts. SSc myofibroblasts show enhanced survival and enhanced extracellular matrix deposition presenting altered structure and altered physicochemical properties. Additional cell types of likely pathogenic importance are pericytes, platelets, and keratinocytes in conjunction with their relationship with vessel wall cells and fibroblasts. In SSc, the profibrotic milieu is favored by cell signaling initiated in the one hand by transforming growth factor-beta and related cytokines and in the other hand by innate and adaptive type 2 immune responses. Radical oxygen species and invariant receptors sensing danger participate to altered cell behavior. Conventional and SSc-specific T cell subsets modulate both fibroblasts as well as endothelial cell dysfunction. Beside autoantibodies directed against ubiquitous antigens important for enhanced clinical classification, antigen-specific agonistic autoantibodies may have a pathogenic role. Recent studies based on single-cell RNAseq and multi-omics approaches are revealing unforeseen heterogeneity in SSc cell differentiation and functional states. Advances in system biology applied to the wealth of data generated by unbiased screening are allowing to subgroup patients based on distinct pathogenic mechanisms. Deciphering heterogeneity in pathogenic mechanisms will pave the way to highly needed personalized therapeutic approaches.
Collapse
|
19
|
Farina A, Rosato E, York M, Gewurz BE, Trojanowska M, Farina GA. Innate Immune Modulation Induced by EBV Lytic Infection Promotes Endothelial Cell Inflammation and Vascular Injury in Scleroderma. Front Immunol 2021; 12:651013. [PMID: 33953718 PMCID: PMC8089375 DOI: 10.3389/fimmu.2021.651013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Microvascular injury is considered an initial event in the pathogenesis of scleroderma and endothelial cells are suspected of being the target of the autoimmune process seen in the disease. EBV has long been proposed as a trigger for autoimmune diseases, including scleroderma. Nevertheless, its contribution to the pathogenic process remains poorly understood. In this study, we report that EBV lytic antigens are detected in scleroderma dermal vessels, suggesting that endothelial cells might represent a target for EBV infection in scleroderma skin. We show that EBV DNA load is remarkably increased in peripheral blood, plasma and circulating monocytes from scleroderma patients compared to healthy EBV carriers, and that monocytes represent the prominent subsets of EBV-infected cells in scleroderma. Given that monocytes have the capacity to adhere to the endothelium, we then investigated whether monocyte-associated EBV could infect primary human endothelial cells. We demonstrated that endothelial cells are infectable by EBV, using human monocytes bound to recombinant EBV as a shuttle, even though cell-free virus failed to infect them. We show that EBV induces activation of TLR9 innate immune response and markers of vascular injury in infected endothelial cells and that up-regulation is associated with the expression of EBV lytic genes in infected cells. EBV innate immune modulation suggests a novel mechanism mediating inflammation, by which EBV triggers endothelial cell and vascular injury in scleroderma. In addition, our data point to up-regulation of EBV DNA loads as potential biomarker in developing vasculopathy in scleroderma. These findings provide the framework for the development of novel therapeutic interventions to shift the scleroderma treatment paradigm towards antiviral therapies.
Collapse
Affiliation(s)
- Antonella Farina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Edoardo Rosato
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - Michael York
- Division of Rheumatology, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program in Virology, Harvard Medical School, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Maria Trojanowska
- Division of Rheumatology, Boston University School of Medicine, Boston, MA, United States
| | | |
Collapse
|
20
|
Hashempour A, Moayedi J, Musavi Z, Ghasabi F, Halaji M, Hasanshahi Z, Nazarinia MA. First report of HHV-8 viral load and seroprevalence of major blood-borne viruses in Iranian patients with systemic sclerosis. Mult Scler Relat Disord 2021; 51:102872. [PMID: 33711714 DOI: 10.1016/j.msard.2021.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is characterized by autoimmune manifestations, and viral infections may have a key role in the development and progression of it. This study aimed to investigate the seroprevalence of major blood-borne viruses and HHV-8 viral load in Iranian SSc patients. METHODS In this cross-sectional study, 90 patients with a confirmed history of SSc and 90 healthy blood donors were enrolled. The frequency of HHV-8, CMV, EBV, HIV, HBV, and HCV antibodies and HHV-8 viral load were evaluated by enzyme-linked immunosorbent assay and real-time PCR assay, respectively. RESULTS HHV-8 IgG antibody was diagnosed in 61 (67.8%) patients and 3 (3.3%) healthy individuals (p<0.0001), but its genomic DNA was not detected in the patients or healthy blood donors. CMV and EBV antibodies were detected in 100% and 88.9% of SSc patients without any significant difference with healthy population (p>0.05). None of the patients or healthy population was positive for HBsAg and HIVAb; however, HCVAb was detected in two patients. CONCLUSION According to the results, HHV-8 antibody was uniquely increased in SSc population while its frequency in healthy population was very low. Since none of the SSc patients were positive for HHV-8 genomic DNA, the high prevalence of HHV-8 antibody in this group was not related to the real history of infection. Therefore, antibody-mediated epitope mimicry can play a role to get the high rate of seropositivity and lead to pathogeneses of SSc. Besides, CMV and EBV viral load monitoring in SSc patients can help the physician to prescribe the viral drugs to suppress the viral replication and avoid the crucial effect of reactivation.
Collapse
Affiliation(s)
- Ava Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Musavi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Ghasabi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Halaji
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
21
|
Šudomová M, Hassan STS. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms 2021; 9:microorganisms9020292. [PMID: 33572685 PMCID: PMC7912164 DOI: 10.3390/microorganisms9020292] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Herpesviruses are DNA viruses that infect humans and animals with the ability to induce latent and lytic infections in their hosts, causing critical health complications. The enrolment of nutraceutical anti-herpesvirus drugs in clinical investigations with promising levels of reduced resistance, free or minimal cellular toxicity, and diverse mechanisms of action might be an effective way to defeat challenges that hurdle the progress of anti-herpesvirus drug development, including the problems with drug resistance and recurrent infections. Therefore, in this review, we aim to hunt down all investigations that feature the curative properties of curcumin, a principal bioactive phenolic compound of the spice turmeric, in regard to various human and animal herpesvirus infections and inflammation connected with these diseases. Curcumin was explored with potent antiherpetic actions against herpes simplex virus type 1 and type 2, human cytomegalovirus, Kaposi’s sarcoma-associated herpesvirus, Epstein–Barr virus, bovine herpesvirus 1, and pseudorabies virus. The mechanisms and pathways by which curcumin inhibits anti-herpesvirus activities by targeting multiple steps in herpesvirus life/infectious cycle are emphasized. Improved strategies to overcome bioavailability challenges that limit its use in clinical practice, along with approaches and new directions to enhance the anti-herpesvirus efficacy of this compound, are also reviewed. According to the reviewed studies, this paper presents curcumin as a promising natural drug for the prevention and treatment of herpesvirus infections and their associated inflammatory diseases.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 6-Suchdol, 16500 Prague, Czech Republic
- Correspondence: ; Tel.: +420-774-630-604
| |
Collapse
|
22
|
Mehta BK, Espinoza ME, Hinchcliff M, Whitfield ML. Molecular "omic" signatures in systemic sclerosis. Eur J Rheumatol 2020; 7:S173-S180. [PMID: 33164732 DOI: 10.5152/eurjrheum.2020.19192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/05/2020] [Indexed: 01/15/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder characterized by immunologic, vascular, and extracellular matrix abnormalities. Variation in the proportion and/or timing of activation in the deregulated molecular pathways that underlie SSc may explain the observed clinical heterogeneity in terms of disease phenotype and treatment response. In recent years, SSc research has generated massive amounts of "omics" level data. In this review, we discuss the body of "omics" level work in SSc and how each layer provides unique insight to our understanding of SSc. We posit that effective integration of genomic, transcriptomic, metagenomic, and epigenomic data is an important step toward precision medicine and is vital to the identification of effective therapeutic options for patients with SSc.
Collapse
Affiliation(s)
- Bhaven K Mehta
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Monica E Espinoza
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Monique Hinchcliff
- Department of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, CT, USA
| | - Michael L Whitfield
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Biomedical Data Science, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
23
|
Ouchene L, Muntyanu A, Lavoué J, Baron M, Litvinov IV, Netchiporouk E. Toward Understanding of Environmental Risk Factors in Systemic Sclerosis [Formula: see text]. J Cutan Med Surg 2020; 25:188-204. [PMID: 32988228 DOI: 10.1177/1203475420957950] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Systemic sclerosis (SSc) is a severe, chronic, and incurable autoimmune fibrotic skin disease with significant extracutaneous involvement. Low concordance rate in twin studies and unequal geographic distribution of SSc argues for importance of environment in disease initiation and progression. OBJECTIVE In this manuscript we provide a summary of all investigated potential external risk factors for SSc. DATA SOURCES A literature search in PubMed and EMBASE database was performed for studies published until January 1, 2020 by 2 reviewers (EN and LO) independently. FINDINGS Occupational and/or environmental exposures to silica and organic solvents are associated with increased incidence and severity of SSc. Exposure to epoxy resins, asbestos, and particulate air pollution favors increased risk of SSc, but data are based on limited number of observational studies. There is insufficient evidence to conclude an association between SSc development and other occupational (eg, welding fumes) or personal exposures (eg, smoking, vitamin D deficiency). Association of SSc with silicone breast implants has been disproven. Infectious pathogens (eg, Helicobacter pylori and angiotropic viruses) and dysbiosis seem to play a role in SSc development and severity, but their role remains to be clarified. CONCLUSIONS AND RELEVANCE It may be prudent to counsel our patients with SSc (or those at risk of SSc) to avoid occupations with exposure to silica, organic solvents, asbestos and epoxy resins; restraint from smoking, using cocaine or drugs with pro-fibrotic potential. While the association between low vitamin D and SSc remains to be confirmed, we believe that SSc patients should be encouraged to maintain healthy vitamin D levels as benefits outweigh the risks.
Collapse
Affiliation(s)
- Lydia Ouchene
- 12367 Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Anastasiya Muntyanu
- 54473 Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Jérôme Lavoué
- 5622 Department of Environmental and Occupational Health, School of Public Health, Université de Montreal, Montreal, Québec, Canada
| | - Murray Baron
- 5621 Division of Rheumatology, Department of Medicine, Jewish General Hospital, Montreal, QC, Canada
| | - Ivan V Litvinov
- 54473 Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Elena Netchiporouk
- 54473 Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
24
|
Zheng JN, Li Y, Yan YM, Shi H, Zou TT, Shao WQ, Wang Q. Identification and Validation of Key Genes Associated With Systemic Sclerosis-Related Pulmonary Hypertension. Front Genet 2020; 11:816. [PMID: 32793290 PMCID: PMC7393672 DOI: 10.3389/fgene.2020.00816] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022] Open
Abstract
Systemic sclerosis-associated with pulmonary arterial hypertension (SSc-PAH) is still a major cause of SSc related deaths. Early diagnosis and prompt treatment are crucial to reduce the mortality of patients with SSc-PAH. To screen the candidate biomarkers and potential therapeutic targets for SSc-PAH, we analyzed the data set (GSE33463 and GSE19617) for confirming key genes in peripheral blood mononuclear cells from SSc-PAH patients. A total of 105 SSc patients from gene expression omnibus (GEO) were included as discovery cohort (n = 69) and duplication cohort (n = 36) for screening hub genes by weighted gene co-expression network analysis (WGCNA). Furthermore, an independent validation cohort (n = 40), including healthy controls, SSc and SSc-PAH patients, was used for further validation by quantitative real-time polymerase chain reaction. The results showed that four key genes, including IFIT2, IFIT3, RSAD2, and PARP14, may serve as potential biomarkers in SSc-PAH. Also, they could be independent risk factors for SSc-PAH. In conclusion, the four key genes can be expected to become the potential therapeutic targets and early biomarkers for accurate therapy and diagnosis of SSc-PAH in the future, which also provides promising insights into the pathogenesis of SSc-PAH at the molecular level.
Collapse
Affiliation(s)
- Ji-Na Zheng
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Li
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue-Mei Yan
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tian-Tian Zou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Wen-Qi Shao
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Bo M, Niegowska M, Eames HL, Almuttaqi H, Arru G, Erre GL, Passiu G, Khoyratty TE, van Grinsven E, Udalova IA, Sechi LA. Antibody response to homologous epitopes of Epstein-Barr virus, Mycobacterium avium subsp. paratuberculosis and IRF5 in patients with different connective tissue diseases and in mouse model of antigen-induced arthritis. J Transl Autoimmun 2020; 3:100048. [PMID: 32743529 PMCID: PMC7388397 DOI: 10.1016/j.jtauto.2020.100048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
Background Improved knowledge of different biomarkers is crucial for early diagnosis of rheumatic diseases and to provide important insights for clinical management. In this study, we evaluated the seroreactivity of patients with different connective tissue diseases (CTDs) (rheumatoid arthritis, RA; systemic lupus erythematosus, SLE; systemic sclerosis, SSc; and Sjogren’s syndrome, SSj) to interferon regulatory factor 5 (IRF5) peptide and homologs derived from Epstein-Barr virus (EBV) and Mycobacterium avium subsp. paratuberculosis (MAP). Antigen-induced arthritis (AIA) experiments have been performed in control and IRF5 conditional knockout mice to reinforce the hypothesis that antibodies generated against the three homologous peptides are cross-reactive. Methods Reactivity against wild-type (wt) and citrullinated (cit) IRF5 (IRF5424-434), MAP (MAP_402718-32) and EBV (BOLF1305-320) peptides were tested by indirect ELISA in sera from 100 RA patients, 54 patients with other CTDs (14 SLE, 28 SSc and 12 SSj) and 100 healthy subjects (HCs). Antibody responses to the same wt peptides have been tested in AIA mouse sera after immunization with complete Freud’s adjuvant (CFA) and methylated bovine serum albumin (mBSA) to induce arthritis in the knee joint. Results BOLF1, MAP_4027 and IRF5 peptides triggered different antibody responses in CTD diseases with a stronger reactivity in RA (p=0.0001). Similar trends were observed in AIA mice with significantly higher reactivity after 7 days from induction of arthritis. We also found statistically significant differences in antibody responses between SSc and HCs for BOLF1 (p=0.003), MAP_4027 (p=0.0076) and IRF5 (p=0.0042). Peripheral reactivity to cit peptides was lower compared to their wt counterparts, except for cit-MAP_402718-32, which induced stronger responses in RA than wt-MAP_402718-32 (46% vs. 26%, p=0.0170). Conclusion(s): Our results show differential antibody responses to BOLF1, MAP_4027 and IRF5 peptides among CTDs, highlighting their potential as diagnostic biomarkers in these diseases. Experiments performed in IRF5 conditional knockout mice support the hypothesis of cross-reactivity between the investigated homologous antigens. Serum IgG anti-BOLF1, MAP_4027 and IRF5 Abs responses are significantly higher in RA than in other rheumatic conditions. Antibody responses to epitopes of EBV, IRF5 and MAP in AIA mouse model is comparable to results obtained in humans. Antigens present in the CFA are homologous to MAP, EBV and IRF5 peptides trigger cross-reactive responses. MAP might be a possible triggering factor in the etiology of systemic sclerosis and RA.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100, Sassari, Italy
| | - Magdalena Niegowska
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100, Sassari, Italy
| | - Hayley L Eames
- Kennedy Institute of Rheumatology, Oxford University, Oxford, Roosevelt Drive, Headington, OX3 7FY, United Kingdom
| | - Hannah Almuttaqi
- Kennedy Institute of Rheumatology, Oxford University, Oxford, Roosevelt Drive, Headington, OX3 7FY, United Kingdom
| | - Giannina Arru
- Department of Clinical, Surgical and Experimental Medicine, Neurological Clinic, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy
| | - Gian Luca Erre
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Sassari, UOC of Rheumatology, Viale San Pietro 8, 07100, Sassari, Italy
| | - Giuseppe Passiu
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Sassari, UOC of Rheumatology, Viale San Pietro 8, 07100, Sassari, Italy
| | - Tariq E Khoyratty
- Kennedy Institute of Rheumatology, Oxford University, Oxford, Roosevelt Drive, Headington, OX3 7FY, United Kingdom
| | - Erinke van Grinsven
- Kennedy Institute of Rheumatology, Oxford University, Oxford, Roosevelt Drive, Headington, OX3 7FY, United Kingdom
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, Oxford University, Oxford, Roosevelt Drive, Headington, OX3 7FY, United Kingdom
| | - Leonardo A Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100, Sassari, Italy
| |
Collapse
|
26
|
Jones-Brando L, Dickerson F, Ford G, Stallings C, Origoni A, Katsafanas E, Sweeney K, Squire A, Khushalani S, Yolken R. Atypical immune response to Epstein-Barr virus in major depressive disorder. J Affect Disord 2020; 264:221-226. [PMID: 32056754 PMCID: PMC7025817 DOI: 10.1016/j.jad.2019.11.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND An atypical immune response to Epstein-Barr virus (EBV) infection has been associated with several complex diseases including schizophrenia. The etiology of MDD is unclear; host immune response to EBV infection could play a role. METHODS We utilized solid phase immunoassays and western blots to measure antibodies to EBV virions, specific viral proteins, and 5 other herpesviruses in 87 individuals with MDD and 312 control individuals. RESULTS Individuals with MDD had significantly reduced levels of reactivity to EBV Nuclear Antigen-1. Quantitative levels of antibodies to EBV virions and Viral Capsid Antigen did not differ between groups. Individuals with decreased levels of anti-Nuclear Antigen-1, or elevated levels of anti-virion had increased odds of being in the MDD group. The odds of MDD were elevated in individuals who had the combination of high levels of anti-virion and low levels of anti-Nuclear Antigen-1 (OR =13.6). Western blot analysis corroborated decreased reactivity to Nuclear Antigen-1 in the MDD group and revealed altered levels of antibodies to other EBV proteins. There was a trend towards decreased levels of antibodies to varicella virus in the group of individuals with MDD. LIMITATIONS The MDD sample size was relatively small. There could be unmeasured factors that account for the association between MDD and the immune response to EBV. CONCLUSIONS Individuals with MDD have altered levels and patterns of antibodies to EBV antigens. This atypical response could contribute to the immunopathology of MDD. Therapeutic interventions available for treatment of EBV infection could potentially be of benefit in MDD.
Collapse
Affiliation(s)
- Lorraine Jones-Brando
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, United States.
| | - Faith Dickerson
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD.,Joint first-authors
| | | | | | - Andrea Origoni
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD
| | | | - Kevin Sweeney
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD
| | - Amalia Squire
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD
| | | | - Robert Yolken
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
27
|
Frasca L, Lande R. Toll-like receptors in mediating pathogenesis in systemic sclerosis. Clin Exp Immunol 2020; 201:14-24. [PMID: 32048277 DOI: 10.1111/cei.13426] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved receptors essential for the host defence against pathogens. Both immune and non-immune cells can express TLRs, although at different levels. Systemic sclerosis (SSc) is a chronic disease in which autoimmunity, dysregulated profibrotic mediator release and activation of fibroblasts lead to dysregulated collagen deposition and fibrosis. There is now increasing knowledge that the innate immune system and, in particular, TLRs take a part in SSc pathogenesis. The list of endogenous ligands that can stimulate TLRs in SSc is growing: these ligands represent specific danger-associated molecular patterns (DAMPs), involved either in the initiation or the perpetuation of inflammation, and in the release of factors that sustain the fibrotic process or directly stimulate the cells that produce collagen and the endothelial cells. This review reports evidences concerning TLR signalling involvement in SSc. We report the new DAMPs, as well as the TLR-linked pathways involved in disease, with emphasis on type I interferon signature in SSc, the role of plasmacytoid dendritic cells (pDCs) and platelets. The dissection of the contribution of all these pathways to disease, and their correlation with the disease status, as well as their values as prognostic tools, can help to plan timely intervention and design new drugs for more appropriate therapeutic strategies.
Collapse
Affiliation(s)
- L Frasca
- National Centre for Drug Research and Evaluation, Pharmacological Research and Experimental Therapy Unit, Istituto Superiore di Sanità, Rome, Italy
| | - R Lande
- National Centre for Drug Research and Evaluation, Pharmacological Research and Experimental Therapy Unit, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
28
|
Innate immunity and Toll-like receptor signaling in the pathogenesis of scleroderma: advances and opportunities for therapy. Curr Opin Rheumatol 2019; 30:600-605. [PMID: 30234721 DOI: 10.1097/bor.0000000000000542] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is an autoimmune connective tissue disease in which inflammation and cytokine dysregulation leads to skin fibrosis. Toll-like receptors (TLRs) are conserved pattern recognition receptors, recognizing pathogens danger-associated molecular patterns (DAMPs) that elicit a cascade of proinflammatory signaling. Recently, TLRs have been found to be critically important in SSc pathogenesis, with increased levels of the TLRs and their ligands present in the disease. Animal models have also been pivotal in delineating the role of these innate immune receptors in SSc. This current review examines the role of TLRs and the most recent evidence of the role of DAMPs and how these may be exploited therapeutically. RECENT FINDINGS Increasingly, studies have demonstrated the key roles of TLR4 and other intracellular TLRs in mediating fibrosis in SSc patients and animal models. TLR4 activation appears a key point and novel DAMPs, expressed upon tissue damage, appear critical in mediating the profibrotic effect through a downstream enhancement of transforming growth factor β. Deletion of Tenascin-C or a splice variant of fibronectin ameliorates animal models of skin fibrosis. Intracellular, nucleic acid sensing, TLR8 is critical in activating macrophages to secrete profibrotic molecules. The mechanism involves histone modification through epigenetic modifying enzymes. SUMMARY TLRs are key therapeutic targets in SSc.
Collapse
|
29
|
Zakrzewska K, Arvia R, Torcia MG, Clemente AM, Tanturli M, Castronovo G, Sighinolfi G, Giuggioli D, Ferri C. Effects of Parvovirus B19 In Vitro Infection on Monocytes from Patients with Systemic Sclerosis: Enhanced Inflammatory Pathways by Caspase-1 Activation and Cytokine Production. J Invest Dermatol 2019; 139:2125-2133.e1. [DOI: 10.1016/j.jid.2019.03.1144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/28/2023]
|
30
|
Dickerson F, Jones-Brando L, Ford G, Genovese G, Stallings C, Origoni A, O’Dushlaine C, Katsafanas E, Sweeney K, Khushalani S, Yolken R. Schizophrenia is Associated With an Aberrant Immune Response to Epstein-Barr Virus. Schizophr Bull 2019; 45:1112-1119. [PMID: 30462333 PMCID: PMC6737467 DOI: 10.1093/schbul/sby164] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a highly prevalent human herpesvirus capable of infecting the central nervous system and establishing persistent infection. METHODS We employed solid phase immunoassay techniques to measure immunoglobulin G (IgG) class antibodies to EBV virions and defined proteins in 432 individuals with schizophrenia and 311 individuals without a history of a psychiatric disorder. Western blot testing was performed to document reactivity to specific EBV proteins. Polygenic risk for schizophrenia was calculated from genome sequencing arrays. Levels of antibodies between the groups were compared by multivariate analyses incorporating clinical, genetic, and demographic measures. RESULTS Individuals with schizophrenia had marked elevations in the levels of antibodies to EBV virions as compared to the control population. Further analyses indicated increased levels of reactivity to EBV-viral capsid antibody (VCA) but not to EBV nuclear antigen-1 (EBNA-1) or to other human herpesviruses. Western blot analysis confirmed increased reactivity to VCA proteins in the group of individuals with schizophrenia and documented a lack of increased levels of antibodies to EBNA-1. Genetic analyses indicated an additive effect of increased levels of antibodies to EBV virions and genetic susceptibility to schizophrenia, with individuals with elevated levels of both type of markers having a greater than 8.5-fold odds of a schizophrenia diagnosis. CONCLUSIONS Individuals with schizophrenia have increased levels of antibodies to some but not all EBV proteins indicating an aberrant response to EBV infection. This aberrant response may contribute to the immunopathology of schizophrenia and related disorders.
Collapse
Affiliation(s)
- Faith Dickerson
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD,To whom correspondence should be addressed; Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, US; tel: 410-938-4359, fax: 410-938-4364, e-mail:
| | - Lorraine Jones-Brando
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Andrea Origoni
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD
| | - Colm O’Dushlaine
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Kevin Sweeney
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD
| | | | - Robert Yolken
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
31
|
Molecular mimicry, genetic homology, and gene sharing proteomic "molecular fingerprints" using an EBV (Epstein-Barr virus)-derived microarray as a potential diagnostic method in autoimmune disease. Immunol Res 2019; 66:686-695. [PMID: 30552620 DOI: 10.1007/s12026-018-9045-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
EBV (Epstein-Barr Virus) and other human DNA viruses are associated with autoimmune syndromes in epidemiologic studies. In this work, immunoglobulin G response to EBV-encoded proteins which share regions with human immune response proteins from the human host including ZEBRA (BZLF-1 encoded protein), BALF-2 recombinase expressed primarily during the viral lytic replication cycle, and EBNA-1 (Epstein-Barr Virus Nuclear Antigen) expressed during the viral latency cycle respectively were characterized using a laser-printed micro-array ( PEPperprint.com ). IgG response to conserved "A/T hooks" in EBV-encoded proteins such as EBNA-1 and the BALF-2 recombinase related to host DNA-binding proteins including RAG-1 recombinase and histones, and EBV-encoded virokines such as the IL-10 homologue BCRF-1 suggest further directions for clinical research. The author suggests that proteomic "molecular fingerprints" of the immune response to viral proteins shared with human immune response genes are potentially useful in early diagnosis and monitoring of autoantibody production and response to therapy in EBV-related autoimmune syndromes.
Collapse
|
32
|
Wu M, Skaug B, Bi X, Mills T, Salazar G, Zhou X, Reveille J, Agarwal SK, Blackburn MR, Mayes MD, Assassi S. Interferon regulatory factor 7 (IRF7) represents a link between inflammation and fibrosis in the pathogenesis of systemic sclerosis. Ann Rheum Dis 2019; 78:1583-1591. [PMID: 31439591 DOI: 10.1136/annrheumdis-2019-215208] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVES There is considerable evidence that implicates dysregulation of type I interferon signalling (or type I IFN signature) in the pathogenesis of systemic sclerosis (SSc). Interferon regulatory factor 7 (IRF7) has been recognised as a master regulator of type I IFN signalling. The objective of this study was to elucidate the role of IRF7 in dermal fibrosis and SSc pathogenesis. METHODS SSc and healthy control skin biopsies were investigated to determine IRF7 expression and activation. The role of IRF7 in fibrosis was investigated using IRF7 knockout (KO) mice in the bleomycin-induced and TSK/+mouse models. In vitro experiments with dermal fibroblasts from patients with SSc and healthy controls were performed. RESULTS IRF7 expression was significantly upregulated and activated in SSc skin tissue and explanted SSc dermal fibroblasts compared with unaffected, matched controls. Moreover, IRF7 expression was stimulated by IFN-α in dermal fibroblasts. Importantly, IRF7 co-immunoprecipitated with Smad3, a key mediator of transforming growth factor (TGF)-β signalling, and IRF7 knockdown reduced profibrotic factors in SSc fibroblasts. IRF7 KO mice demonstrated attenuated dermal fibrosis and inflammation compared with wild-type mice in response to bleomycin. Specifically, hydroxyproline content, dermal thickness as well as Col1a2, ACTA2 and interleukin-6 mRNA levels were significantly attenuated in IRF7 KO mice skin tissue. Furthermore, IRF7 KO in TSK/+mice attenuated hydroxyproline content, subcutaneous hypodermal thickness, Col1a2 mRNA as well as α-smooth muscle actin and fibronectin expression. CONCLUSIONS IRF7 is upregulated in SSc skin, interacts with Smad3 and potentiates TGF-β-mediated fibrosis, and therefore may represent a promising therapeutic target in SSc.
Collapse
Affiliation(s)
- Minghua Wu
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Brian Skaug
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Xiongjie Bi
- First Affiliated Hospital of Guangxi University of Science And Technology, Liuzhou, Guangxi, China
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Gloria Salazar
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Xiaodong Zhou
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - John Reveille
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Sandeep K Agarwal
- Department of Medicine, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Maureen D Mayes
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Shervin Assassi
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
33
|
Cheng S, Li Z, He J, Fu S, Duan Y, Zhou Q, Yan Y, Liu X, Liu L, Feng C, Zhang L, He J, Deng Y, Sun LQ. Epstein-Barr virus noncoding RNAs from the extracellular vesicles of nasopharyngeal carcinoma (NPC) cells promote angiogenesis via TLR3/RIG-I-mediated VCAM-1 expression. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1201-1213. [PMID: 30659926 DOI: 10.1016/j.bbadis.2019.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/30/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Viral noncoding RNAs (Epstein-Barr virus-encoded RNAs, EBERs) are believed to play a critical role in the progression of lymphoma and nasopharyngeal carcinoma (NPC). However, the accurate mechanisms accounting for their oncogenic function have not been elucidated, especially in terms of interaction between tumor cells and mesenchymal cells. Here, we report that, in addition to NPC cells, EBERs are also found in endothelial cells in Epstein-Barr virus (EBV)-infected NPC parenchymal tissues, which implicates NPC-derived extracellular vesicles (EVs) in transmitting EBERs to endothelial cells. In support of this hypothesis, we first ascertained if EBERs could be transferred to endothelial cells via EVs isolated from NPC culture supernatant. Then, we clarified that EVs-derived EBERs could promote angiogenesis through stimulation of VCAM-1 expression. Finally, we explored the involvement of EBER recognition by TLR3 and RIG-I in NPC angiogenesis. Our observations collectively illustrate the significance and mechanism of EVs-derived EBERs in angiogenesis and underlie the interaction mechanisms between EBV-infected NPC cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Shiyue Cheng
- Center for Molecular Medicine, Xiangya Hospital and Collaboration Innovation Center for Cancer Medicine, Central South University, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital and Collaboration Innovation Center for Cancer Medicine, Central South University, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, China.
| | - Junju He
- Center for Molecular Medicine, Xiangya Hospital and Collaboration Innovation Center for Cancer Medicine, Central South University, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, China
| | - Shujun Fu
- Center for Molecular Medicine, Xiangya Hospital and Collaboration Innovation Center for Cancer Medicine, Central South University, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, China
| | - Yumei Duan
- Department of Pathology, Xiangya Hospital, Central South University, China
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoyu Liu
- Shanghai Institute of Medical Image, Fudan University, Shanghai 200032, China
| | - Liyu Liu
- Center for Molecular Medicine, Xiangya Hospital and Collaboration Innovation Center for Cancer Medicine, Central South University, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, China
| | - Chang Feng
- Center for Molecular Medicine, Xiangya Hospital and Collaboration Innovation Center for Cancer Medicine, Central South University, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, China
| | - Lu Zhang
- Center for Molecular Medicine, Xiangya Hospital and Collaboration Innovation Center for Cancer Medicine, Central South University, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital and Collaboration Innovation Center for Cancer Medicine, Central South University, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, China
| | - Yuezhen Deng
- Center for Molecular Medicine, Xiangya Hospital and Collaboration Innovation Center for Cancer Medicine, Central South University, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital and Collaboration Innovation Center for Cancer Medicine, Central South University, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, China.
| |
Collapse
|
34
|
Unmet Needs in Systemic Sclerosis Understanding and Treatment: the Knowledge Gaps from a Scientist's, Clinician's, and Patient's Perspective. Clin Rev Allergy Immunol 2019; 55:312-331. [PMID: 28866756 PMCID: PMC6244948 DOI: 10.1007/s12016-017-8636-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Systemic sclerosis (SSc) is a highly heterogeneous disease caused by a complex molecular circuitry. For decades, clinical and molecular research focused on understanding the primary process of fibrosis. More recently, the inflammatory, immunological and vascular components that precede the actual onset of fibrosis, have become a matter of increasing scientific scrutiny. As a consequence, the field has started to realize that the early identification of this syndrome is crucial for optimal clinical care as well as for understanding its pathology. The cause of SSc cannot be appointed to a single molecular pathway but to a multitude of molecular aberrances in a spatial and temporal matter and on the backbone of the patient's genetic predisposition. These alterations underlie the plethora of signs and symptoms which patients experience and clinicians look for, ultimately culminating in fibrotic features. To solve this complexity, a close interaction among the patient throughout its "journey," the clinician through its clinical assessments and the researcher with its experimental design, seems to be required. In this review, we aimed to highlight the features of SSc through the eyes of these three professionals, all with their own expertise and opinions. With this unique setup, we underscore the importance of investigating the role of environmental factors in the onset and perpetuation of SSc, of focusing on the earliest signs and symptoms preceding fibrosis and on the application of holistic research approaches that include a multitude of potential molecular alterations in time in an unbiased fashion, in the search for a patient-tailored cure.
Collapse
|
35
|
Johnson ME, Franks JM, Cai G, Mehta BK, Wood TA, Archambault K, Pioli PA, Simms RW, Orzechowski N, Arron S, Whitfield ML. Microbiome dysbiosis is associated with disease duration and increased inflammatory gene expression in systemic sclerosis skin. Arthritis Res Ther 2019; 21:49. [PMID: 30728065 PMCID: PMC6366065 DOI: 10.1186/s13075-019-1816-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Infectious agents have long been postulated to be disease triggers for systemic sclerosis (SSc), but a definitive link has not been found. Metagenomic analyses of high-throughput data allows for the unbiased identification of potential microbiome pathogens in skin biopsies of SSc patients and allows insight into the relationship with host gene expression. METHODS We examined skin biopsies from a diverse cohort of 23 SSc patients (including lesional forearm and non-lesional back samples) by RNA-seq. Metagenomic filtering and annotation was performed using the Integrated Metagenomic Sequencing Analysis (IMSA). Associations between microbiome composition and gene expression were analyzed using single-sample gene set enrichment analysis (ssGSEA). RESULTS We find the skin of SSc patients exhibits substantial changes in microbial composition relative to controls, characterized by sharp decreases in lipophilic taxa, such as Propionibacterium, combined with increases in a wide range of gram-negative taxa, including Burkholderia, Citrobacter, and Vibrio. CONCLUSIONS Microbiome dysbiosis is associated with disease duration and increased inflammatory gene expression. These data provide a comprehensive portrait of the SSc skin microbiome and its association with local gene expression, which mirrors the molecular changes in lesional skin.
Collapse
Affiliation(s)
- Michael E Johnson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer M Franks
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Guoshuai Cai
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Environmental Health Science, University of South Carolina Arnold School of Public Health, Columbia, SC, USA
| | - Bhaven K Mehta
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Tammara A Wood
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kimberly Archambault
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Patricia A Pioli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Robert W Simms
- Division of Rheumatology, Arthritis Center, Boston University Medical Center, Boston, MA, USA
| | - Nicole Orzechowski
- Division of Rheumatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Sarah Arron
- Division of Dermatology, University of California, San Francisco, USA
| | - Michael L Whitfield
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA. .,Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA. .,Department of Biomedical Data Science, Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
36
|
Skaug B, Assassi S. Type I interferon dysregulation in Systemic Sclerosis. Cytokine 2019; 132:154635. [PMID: 30685202 DOI: 10.1016/j.cyto.2018.12.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022]
Abstract
Systemic Sclerosis (Scleroderma, SSc) is a multifaceted disease characterized by autoimmunity, vasculopathy, and fibrosis affecting the skin and internal organs. Despite advances in the understanding and treatment of SSc in recent years, SSc continues to cause reduced quality of life and premature mortality. Type I interferons (IFNs), a family of cytokines with essential roles in the immune response to microbial infection, play a pathogenic role in certain autoimmune diseases (reviewed elsewhere in this edition). Polymorphisms in interferon-regulatory factors confer an increased risk of SSc, and IFN excess is evident in the blood and skin of a large percentage of SSc patients. Here we describe the evidence of Type I IFN dysregulation in SSc, revealed predominately by genetics and gene expression profiling. We also discuss evidence regarding mechanisms by which Type I IFN might contribute to SSc pathogenesis, mechanisms driving excess Type I IFN production in SSc, and the potential roles of Type I IFNs as biomarkers and therapeutic targets in SSc.
Collapse
Affiliation(s)
- Brian Skaug
- The University of Texas Health Science Center in Houston, Division of Rheumatology, 6431 Fannin, MSB 5.262, Houston, TX 77030, United States
| | - Shervin Assassi
- The University of Texas Health Science Center in Houston, Division of Rheumatology, 6431 Fannin, MSB 5.262, Houston, TX 77030, United States.
| |
Collapse
|
37
|
Systemic Sclerosis Pathogenesis and Emerging Therapies, beyond the Fibroblast. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4569826. [PMID: 30809542 PMCID: PMC6364098 DOI: 10.1155/2019/4569826] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis (SSc) is a complex rheumatologic autoimmune disease in which inflammation, fibrosis, and vasculopathy share several pathogenic pathways that lead to skin and internal organ damage. Recent findings regarding the participation and interaction of the innate and acquired immune system have led to a better understanding of the pathogenesis of the disease and to the identification of new therapeutic targets, many of which have been tested in preclinical and clinical trials with varying results. In this manuscript, we review the state of the art of the pathogenesis of this disease and discuss the main therapeutic targets related to each pathogenic mechanism that have been discovered so far.
Collapse
|
38
|
Raschi E, Chighizola CB, Cesana L, Privitera D, Ingegnoli F, Mastaglio C, Meroni PL, Borghi MO. Immune complexes containing scleroderma-specific autoantibodies induce a profibrotic and proinflammatory phenotype in skin fibroblasts. Arthritis Res Ther 2018; 20:187. [PMID: 30157947 PMCID: PMC6116570 DOI: 10.1186/s13075-018-1689-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Background In systemic sclerosis (SSc), autoantibodies provide the most accurate tool to predict the disease subset and pattern of organ involvement. Scleroderma autoantibodies target nucleic acids or DNA/RNA-binding proteins, thus SSc immune complexes (ICs) can embed nucleic acids. Our working hypothesis envisaged that ICs containing scleroderma-specific autoantibodies might elicit proinflammatory and profibrotic effects in skin fibroblasts. Methods Fibroblasts were isolated from skin biopsies obtained from healthy subjects and patients with diffuse cutaneous SSc (dcSSc). ICs were purified by polyethylene-glycol precipitation from sera of SSc patients bearing different autoantibodies. ICs from patients with systemic lupus erythematosus (SLE) and primary anti-phospholipid syndrome (PAPS) and from normal healthy subjects (NHS) were used as controls. After incubation with ICs, fibroblasts were evaluated for ICAM-1 expression, interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1, matrix metalloproteinase (MMP)-2, tumor growth factor (TGF)-β1 and Pro-CollagenIα1 secretion, collagen (col)Iα1, mmp-1, toll-like receptor (tlr)2, tlr3, tlr4, tlr7, tlr8, tlr9, interferon (ifn)-α, ifn-β and endothelin-1 mRNA, and NFκB, p38MAPK and SAPK-JNK activation rate. Experiments were also performed after pretreatment with DNase I/RNase and NFκB/p38MAPK inhibitors. Results The antigenic reactivity for each SSc-IC mirrored the corresponding serum autoantibody specificity, while no positivity was observed in NHS-ICs or sera. SSc-ICs but not NHS-ICs increased ICAM-1 expression, stimulated IL-6, IL-8, MMP-2, MCP-1, TGF-β1 and Pro-CollagenIα1 secretion, upregulated et-1, ifn-α, ifn-β, tlr2, tlr3 and tlr4, and activated NFκB, p38MAPK and SAPK-JNK. tlr9 was significantly upregulated by ARA-ICs, mmp-1 was significantly induced by ACA-ICs whereas colIα1 was not modulated by any SSc-ICs. SLE-ICs and PAPS-ICs significantly upregulated MMP-2 and activated NFκB, p38MAPK and SAPK-JNK. SLE-ICs and PAPS-ICs did not affect colIα1, mmp-1 and Pro-CollagenIα1. DNase I and RNase treatment significantly reduced the upregulation of study mediators induced by SSc-ICs. Pretreatment with NFκB/p38MAPK inhibitors suggested that response to anti-Th/To-ICs was preferentially mediated by p38MAPK whereas ATA-ICs, ACA-ICs and ARA-ICs engaged both mediators. In dcSSc fibroblasts, stimulation with SSc-ICs and NHS-ICs upregulated IL-6 and IL-8. Conclusions These data provide the first demonstration of the proinflammatory and profibrotic effects of SSc-ICs on fibroblasts, suggesting the potential pathogenicity of SSc autoantibodies. These effects might be mediated by Toll-like receptors via the interaction with nucleic acid fragments embedded in SSc-ICs.
Collapse
Affiliation(s)
- Elena Raschi
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy
| | - Cecilia Beatrice Chighizola
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy. .,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy. .,Allergology, Clinical Immunology and Rheumatology Unit, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| | - Laura Cesana
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy
| | - Daniela Privitera
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Francesca Ingegnoli
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.,Division of Rheumatology, ASST G. Pini, Piazza C Ferrari 1, 20122, Milan, Italy
| | - Claudio Mastaglio
- Rheumatology Unit, Ospedale Moriggia-Pelascini, Via Pelascini 3, 22015, Gravedona, Como, Italy
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.,Division of Rheumatology, ASST G. Pini, Piazza C Ferrari 1, 20122, Milan, Italy
| | - Maria Orietta Borghi
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| |
Collapse
|
39
|
Meiners S, Evankovich J, Mallampalli RK. The ubiquitin proteasome system as a potential therapeutic target for systemic sclerosis. Transl Res 2018; 198:17-28. [PMID: 29702079 DOI: 10.1016/j.trsl.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 01/16/2023]
Abstract
The present review aims to summarize available knowledge on the role of the ubiquitin-proteasome system (UPS) in the pathogenesis of scleroderma and scleroderma-related disease mechanisms. This will provide the reader with a more mechanistic understanding of disease pathogenesis and help to identify putative novel targets within the UPS for potential therapeutic intervention. Because of the heterogenous manifestations of scleroderma, we will primarily focus on conserved mechanisms that are involved in the development of lung scleroderma phenotypes.
Collapse
Affiliation(s)
- Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig Maximilians University, Helmholtz Zentrum München, Germany; Comprehensive Pneumology Center, Munich (CPC-M), Germany; Member of the German Center for Lung Research (DZL), Munich, Germany.
| | - John Evankovich
- Pulmonary, Allergy, and Critical Care Medicine, Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rama K Mallampalli
- Pulmonary, Allergy, and Critical Care Medicine, Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA, USA; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Intracellular delivery of colloids: Past and future contributions from microinjection. Adv Drug Deliv Rev 2018; 132:3-15. [PMID: 29935217 DOI: 10.1016/j.addr.2018.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/06/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023]
Abstract
The manipulation of single cells and whole tissues has been possible since the early 70's, when semi-automatic injectors were developed. Since then, microinjection has been used to introduce an ever-expanding range of colloids of up to 1000 nm in size into living cells. Besides injecting nucleic acids to study transfection mechanisms, numerous cellular pathways have been unraveled through the introduction of recombinant proteins and blocking antibodies. The injection of nanoparticles has also become popular in recent years to investigate toxicity mechanisms and intracellular transport, and to conceive semi-synthetic cells containing artificial organelles. This article reviews colloidal systems such as proteins, nucleic acids and nanoparticles that have been injected into cells for different research aims, and discusses the scientific advances achieved through them. The colloids' intracellular processing and ultimate fate are also examined from a drug delivery perspective with an emphasis on the differences observed for endocytosed versus microinjected material.
Collapse
|
41
|
Gheita TA, Sayed S, Azkalany GS, Abaza N, Hammam N, Eissa AH. Toll-like receptor 9 in systemic sclerosis patients: relation to modified Rodnan skin score, disease severity, and functional status. Clin Rheumatol 2017; 37:757-763. [DOI: 10.1007/s10067-017-3880-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/10/2017] [Accepted: 10/15/2017] [Indexed: 01/25/2023]
|
42
|
Ciechomska M, Skalska U. Targeting interferons as a strategy for systemic sclerosis treatment. Immunol Lett 2017; 195:45-54. [PMID: 29106987 DOI: 10.1016/j.imlet.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022]
Abstract
Systemic Sclerosis (SSc) is an autoimmune disease characterised by vasculopathy, uncontrolled inflammation and enhanced fibrosis which can subsequently lead to the loss of organ function or even premature death. Interferons (IFNs) are pleiotropic cytokines that are critical not only in mounting an effective immune response against viral and bacterial infections but also strongly contribute to the pathogenesis of SSc. Furthermore, elevated levels of IFNs are found in SSc patients and correlate with skin thickness and disease activity suggesting potential role of IFNs as biomarkers. In this review, we summarise existing knowledge regarding all types of IFNs and IFN-inducible genes in the pathogenesis of SSc. We then argue why IFN-blocking strategies are promising therapeutic targets in SSc and other autoimmune diseases.
Collapse
Affiliation(s)
- Marzena Ciechomska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Urszula Skalska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
43
|
O'Reilly S. Toll Like Receptors in systemic sclerosis: An emerging target. Immunol Lett 2017; 195:2-8. [PMID: 28888416 DOI: 10.1016/j.imlet.2017.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022]
Abstract
Pattern Recognition Receptors are critical receptors that elicit an immune response upon their activation that culminates in activation of NF-KB and cytokine secretion. Key among these receptors are the Toll-Like Receptors (TLRs). These evolutionary conserved receptors form a key part in the defence against various pathogens and comprise a key part of the innate immune system. Systemic sclerosis is an autoimmune disease in which a breach of tolerance has occurred and leads to fulminant autoimmunity, dysregulated cytokines, pro-fibrotic mediators and activation of fibroblasts leading to fibrosis via collagen deposition. It has become apparent in recent years that the innate immune system and specifically TLRs are important in disease pathogenesis; responding to internal ligands to initiate an innate immune response ultimately leading to release of a variety of factors that initiate and perpetuate fibrosis. This review will examine the recent evidence of TLR signalling in systemic sclerosis and the internal danger associated molecules that may mediate the fibrotic cascade. Evaluation of their contribution to disease in systemic sclerosis and possible therapeutic targeting will be discussed.
Collapse
Affiliation(s)
- Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
44
|
Epstein-Barr virus-encoded latent membrane protein 1 induces epithelial to mesenchymal transition by inducing V-set Ig domain containing 4 (VSIG4) expression via NF-kB in renal tubular epithelial HK-2 cells. Biochem Biophys Res Commun 2017; 492:316-322. [PMID: 28859984 DOI: 10.1016/j.bbrc.2017.08.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 11/22/2022]
Abstract
The epithelial to mesenchymal transition (EMT), a hallmark of chronic kidney disease, is a key event in the conversion from tubular epithelial cells to myofibroblasts in renal fibrosis. Epstein-Barr virus (EBV) is a γ-herpes oncovirus associated with chronic kidney disease. However, the relationship between EBV and the EMT process in renal tubular epithelial cells is not well understood. Among EBV-latent genes, EBV-encoded latent membrane protein 1 (LMP1) induces EMT by regulating a variety of molecules in EBV-induced oncogenic transformation. In this study, we investigated EBV-encoded LMP1 and EMT process markers in human proximal tubule epithelial cell line HK-2. LMP1 overexpression induces cell morphological changes via the epithelial to mesenchymal process in HK-2 cells, and these changes accelerate cell proliferation, cell motility, and invasion. Furthermore, VSIG4 upregulation by EBV-LMP1 induced LMP1-mediated EMT, cell motility, and invasion. VSIG4 upregulation by LMP1 was regulated at the transcriptional level via the NF-kB signaling axis. These results suggest that EBV-encoded LMP1 regulates EMT through the NF-kB-VSIG4 axis in HK-2 cells, and VSIG4 is a potential target in EBV-induced chronic kidney diseases.
Collapse
|
45
|
Xie X, Yang M, Ding Y, Chen J. Microbial infection, inflammation and epithelial ovarian cancer. Oncol Lett 2017; 14:1911-1919. [PMID: 28789426 PMCID: PMC5529868 DOI: 10.3892/ol.2017.6388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the most common, and life-threatening, type of female gynecological cancer. The etiology of ovarian cancer remains unclear, and there are currently no effective screening or treatment methods for the disease. Microbial infection serves a marked function in inducing carcinogenesis. A number of studies have identified pelvic inflammatory disease as a risk factor for epithelial ovarian cancer. Thus, it is hypothesized that microbial infection may contribute to ovarian cancer. In the present review, the microorganisms that have been identified to be associated with ovarian cancer and the underlying molecular mechanisms involved are discussed. Infection-induced chronic inflammation is considered an important process for carcinogenesis, cancer progression and metastasis. Therefore, the pathological process and associated inflammatory factors are reviewed in the present paper.
Collapse
Affiliation(s)
- Xiaohui Xie
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410001, P.R. China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410001, P.R. China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410001, P.R. China
| | - Jianlin Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410001, P.R. China
| |
Collapse
|
46
|
Xiao Y, Lu W, Li X, Zhao P, Yao Y, Wang X, Wang Y, Lin Z, Yu Y, Hua S, Wang L. An oligodeoxynucleotide with AAAG repeats significantly attenuates burn-induced systemic inflammatory responses via inhibiting interferon regulatory factor 5 pathway. Mol Med 2017; 23:166-176. [PMID: 28620671 DOI: 10.2119/molmed.2016.00243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Previously, we showed that an oligodeoxynucleotide with AAAG repeats (AAAG ODN) rescued mice from fatal acute lung injury (ALI) induced by influenza virus and inhibited production of tumor necrosis factor-α (TNF-α) in the injured lungs. However, the underlying mechanisms remain to be elucidated. Upon the bioinformatic analysis revealing that the AAAG ODN is consensus to interferon regulatory factor 5 (IRF5) binding site in the cis-regulatory elements of proinflammatory cytokines, we tried to explore whether the AAAG ODN could attenuate burn injury induced systemic inflammatory responses via inhibiting IRF5 pathway. Using the mouse model with sterile systemic inflammation induced by burn injury, we found that AAAG ODN prolonged the life span of the mice, decreased the expression of IRF5 at injured skin, reduced the production of TNF-α and IL-6 in blood and injured skin, and attenuated the ALI. Furthermore, AAAG ODN could bind IRF5 and inhibit the nuclear translocation of IRF5 in THP-1 cells. The data suggested that the AAAG ODN could act as a cytoplasmic decoy capable of interfering the function of IRF5, and be developed as a drug candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Wenting Lu
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Xin Li
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Peiyan Zhao
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Yun Yao
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Xiaohong Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Ying Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Zhipeng Lin
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Liying Wang
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| |
Collapse
|
47
|
Taroni JN, Greene CS, Martyanov V, Wood TA, Christmann RB, Farber HW, Lafyatis RA, Denton CP, Hinchcliff ME, Pioli PA, Mahoney JM, Whitfield ML. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med 2017; 9:27. [PMID: 28330499 PMCID: PMC5363043 DOI: 10.1186/s13073-017-0417-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. Methods We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. Results We identified a common pathogenic gene expression signature—an immune–fibrotic axis—indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an “inflammatory” SSc gene expression signature. Conclusions Our results suggest that the innate immune system is central to SSc disease processes but that subtle distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and tissue-specific disease processes in complex human diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0417-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaclyn N Taroni
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 7400 Remsen, Hanover, NH, 03755, USA
| | - Casey S Greene
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Viktor Martyanov
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 7400 Remsen, Hanover, NH, 03755, USA
| | - Tammara A Wood
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 7400 Remsen, Hanover, NH, 03755, USA
| | - Romy B Christmann
- Division of Rheumatology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Harrison W Farber
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Robert A Lafyatis
- Division of Rheumatology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15261, USA
| | | | - Monique E Hinchcliff
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Patricia A Pioli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - J Matthew Mahoney
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, HSRF 426, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| | - Michael L Whitfield
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 7400 Remsen, Hanover, NH, 03755, USA.
| |
Collapse
|
48
|
Yadav S, Libotte F, Buono E, Valia S, Farina G, Faggioni A, Farina A. EBV early lytic protein BFRF1 alters emerin distribution and post-translational modification. Virus Res 2017; 232:113-122. [DOI: 10.1016/j.virusres.2017.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/11/2017] [Accepted: 02/22/2017] [Indexed: 12/20/2022]
|
49
|
Farina A, Peruzzi G, Lacconi V, Lenna S, Quarta S, Rosato E, Vestri AR, York M, Dreyfus DH, Faggioni A, Morrone S, Trojanowska M, Farina GA. Epstein-Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes. Arthritis Res Ther 2017; 19:39. [PMID: 28245863 PMCID: PMC5331713 DOI: 10.1186/s13075-017-1237-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/16/2017] [Indexed: 01/15/2023] Open
Abstract
Background Monocytes/macrophages are activated in several autoimmune diseases, including systemic sclerosis (scleroderma; SSc), with increased expression of interferon (IFN)-regulatory genes and inflammatory cytokines, suggesting dysregulation of the innate immune response in autoimmunity. In this study, we investigated whether the lytic form of Epstein-Barr virus (EBV) infection (infectious EBV) is present in scleroderma monocytes and contributes to their activation in SSc. Methods Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) depleted of the CD19+ cell fraction, using CD14/CD16 negative-depletion. Circulating monocytes from SSc and healthy donors (HDs) were infected with EBV. Gene expression of innate immune mediators were evaluated in EBV-infected monocytes from SSc and HDs. Involvement of Toll-like receptor (TLR)8 in viral-mediated TLR8 response was investigated by comparing the TLR8 expression induced by infectious EBV to the expression stimulated by CL075/TLR8/agonist-ligand in the presence of TLR8 inhibitor in THP-1 cells. Results Infectious EBV strongly induced TLR8 expression in infected SSc and HD monocytes in vitro. Markers of activated monocytes, such as IFN-regulated genes and chemokines, were upregulated in SSc- and HD-EBV-infected monocytes. Inhibiting TLR8 expression reduced virally induced TLR8 in THP-1 infected cells, demonstrating that innate immune activation by infectious EBV is partially dependent on TLR8. Viral mRNA and proteins were detected in freshly isolated SSc monocytes. Microarray analysis substantiated the evidence of an increased IFN signature and altered level of TLR8 expression in SSc monocytes carrying infectious EBV compared to HD monocytes. Conclusion This study provides the first evidence of infectious EBV in monocytes from patients with SSc and links EBV to the activation of TLR8 and IFN innate immune response in freshly isolated SSc monocytes. This study provides the first evidence of EBV replication activating the TLR8 molecular pathway in primary monocytes. Immunogenicity of infectious EBV suggests a novel mechanism mediating monocyte inflammation in SSc, by which EBV triggers the innate immune response in infected cells. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1237-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonella Farina
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA.,Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Valentina Lacconi
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA
| | - Stefania Lenna
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA
| | - Silvia Quarta
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - Edoardo Rosato
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | | | - Michael York
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA
| | | | - Alberto Faggioni
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Stefania Morrone
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Maria Trojanowska
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA
| | - G Alessandra Farina
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA.
| |
Collapse
|
50
|
Abstract
Steroid sensitive nephrotic syndrome is marked by a massive proteinuria and loss of podocytes foot processes. The mechanism of the disease remains debated but recent publications suggest a primary role of Epstein-Barr Virus (EBV). EBV replication in the peripheral blood is found in 50% of patients during the first flare of the disease. The genetic locus of steroid sensitive nephrotic syndrome was also identified as influencing antibodies directed against EBNA1. EBV is able to establish, latent benign infection in memory B cells that display phenotypes similar to antigen-selected memory B cells. Consistently, memory B cells reconstitution after rituximab infusion is a predictor of the relapse of proteinuria. We suggest that a specific anti-EBNA1 antibody internalized in the podocytes via the neonatal Fc receptor might cross-react with a major protein present in the same cell trafficking compartment. The diversion of this major podocyte protein in the urinary space and the subsequent depletion is supposed to result in podocyte damages with loss of foot processes and massive proteinuria. Immunosuppression of B cells and subsequent clearance of anti-EBNA1 antibodies would lead to a restoration of the normal level of the protein allowing recovery of proteinuria and of normal podocyte morphology.
Collapse
|