1
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2024:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
2
|
Vine EE, Austin PJ, O'Neil TR, Nasr N, Bertram KM, Cunningham AL, Harman AN. Epithelial dendritic cells vs. Langerhans cells: Implications for mucosal vaccines. Cell Rep 2024; 43:113977. [PMID: 38512869 DOI: 10.1016/j.celrep.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present. Importantly, there are functional differences in how LCs and DCs take up and process pathogens as well as their ability to activate and polarize T cells, though whether DCs participate in neuroimmune interactions like LCs is yet to be elucidated. A correct definition and functional characterization of APCs in the skin and anogenital tissues are of utmost importance for the design of better vaccines and blocking pathogen transmission. Here, we provide a historical perspective on the evolution of our understanding of the APCs that inhabit the SSE, including a detailed review of the most recent literature.
Collapse
Affiliation(s)
- Erica Elizabeth Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Westmead Clinic School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Paul Jonathon Austin
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas Ray O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Kirstie Melissa Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony Lawrence Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
3
|
Rametse CL, Webb EL, Herrera C, Alinde B, Besethi A, Motaung B, Mbangiwa T, Leach L, Sebaa S, Pillay ADA, Seiphetlo TB, Malhangu B, Petkov S, Else L, Mugaba S, Namubiru P, Odoch G, Opoka D, Serwanga J, Ssemata AS, Kaleebu P, Khoo S, Lebina L, Martinson N, Chiodi F, Fox J, Gray CM. A randomized clinical trial of on-demand oral pre-exposure prophylaxis does not modulate lymphoid/myeloid HIV target cell density in the foreskin. AIDS 2023; 37:1651-1659. [PMID: 37289572 PMCID: PMC11175721 DOI: 10.1097/qad.0000000000003619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVES As topical pre-exposure prophylaxis (PrEP) has been shown to cause immune modulation in rectal or cervical tissue, our aim was to examine the impact of oral PrEP on lymphoid and myeloid changes in the foreskin in response to dosing and timing of drug administration. DESIGN HIV-negative male individuals ( n = 144) were recruited in South Africa and Uganda into an open-label randomized controlled trial in a 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 ratio to control arm (with no PrEP) or one of eight arms receiving emtricitabine-tenofovir disoproxil fumarate (F/TDF) or emtricitabine-tenofovir alafenamide (F/TAF) at one of two different doses, 5 or 21 h before undergoing voluntary medical male circumcision (VMMC). METHODS After dorsal-slit circumcision, foreskin tissue sections were embedded into Optimal Cutting Temperature media and analysed, blinded to trial allocation, to determine numbers of CD4 + CCR5 + , CD1a + cells and claudin-1 expression. Cell densities were correlated with tissue-bound drug metabolites and p24 production after ex-vivo foreskin challenge with HIV-1 bal . RESULTS There was no significant difference in CD4 + CCR5 + or CD1a + cell numbers in foreskins between treatment arms compared with the control arm. Claudin-1 expression was 34% higher ( P = 0.003) in foreskin tissue from participants receiving PrEP relative to controls, but was no longer statistically significant after controlling for multiple comparisons. There was neither correlation of CD4 + CCR5 + , CD1a + cell numbers, or claudin-1 expression with tissue-bound drug metabolites, nor with p24 production after ex-vivo viral challenge. CONCLUSION Oral doses and timing of on-demand PrEP and in-situ drug metabolite levels in tissue have no effect on numbers or anatomical location of lymphoid or myeloid HIV target cells in foreskin tissue.
Collapse
Affiliation(s)
- Cosnet L. Rametse
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Emily L. Webb
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine
| | - Carolina Herrera
- Department of Infectious Disease, Imperial College London, London, UK
| | - Berenice Alinde
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Asiphe Besethi
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Bongani Motaung
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Tshepiso Mbangiwa
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Lloyd Leach
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa
| | - Shorok Sebaa
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Azure-Dee A.P. Pillay
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
- University of the Witwatersrand Perinatal HIV Research Unit, Johannesburg, South Africa
| | - Thabiso B. Seiphetlo
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
- University of the Witwatersrand Perinatal HIV Research Unit, Johannesburg, South Africa
| | - Boitshoko Malhangu
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
- University of the Witwatersrand Perinatal HIV Research Unit, Johannesburg, South Africa
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Else
- Department of Pharmacology, University of Liverpool, Liverpool, UK
| | - Susan Mugaba
- MRC/Uganda Virus Research Institute/London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Patricia Namubiru
- MRC/Uganda Virus Research Institute/London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Geoffrey Odoch
- MRC/Uganda Virus Research Institute/London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Daniel Opoka
- MRC/Uganda Virus Research Institute/London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Jennifer Serwanga
- MRC/Uganda Virus Research Institute/London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Andrew S. Ssemata
- MRC/Uganda Virus Research Institute/London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- MRC/Uganda Virus Research Institute/London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Saye Khoo
- Department of Pharmacology, University of Liverpool, Liverpool, UK
| | - Limakatso Lebina
- University of the Witwatersrand Perinatal HIV Research Unit, Johannesburg, South Africa
| | - Neil Martinson
- University of the Witwatersrand Perinatal HIV Research Unit, Johannesburg, South Africa
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Clive M. Gray
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
4
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
5
|
Caucheteux SM, Wheeldon J, Bayliss R, Piguet V. Macrophage Migration Inhibitory Factor Restriction of HIV-1 Transinfection from Dendritic Cells to CD4+ T Cells through the Regulation of Autophagy. J Invest Dermatol 2023; 143:679-682.e4. [PMID: 36257465 DOI: 10.1016/j.jid.2022.09.655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Stephan M Caucheteux
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James Wheeldon
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Rebecca Bayliss
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Han M, Woottum M, Mascarau R, Vahlas Z, Verollet C, Benichou S. Mechanisms of HIV-1 cell-to-cell transfer to myeloid cells. J Leukoc Biol 2022; 112:1261-1271. [PMID: 35355323 DOI: 10.1002/jlb.4mr0322-737r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to CD4+ T lymphocytes, cells of the myeloid lineage such as macrophages, dendritic cells (DCs), and osteoclasts (OCs) are emerging as important target cells for HIV-1, as they likely participate in all steps of pathogenesis, including sexual transmission and early virus dissemination in both lymphoid and nonlymphoid tissues where they can constitute persistent virus reservoirs. At least in vitro, these myeloid cells are poorly infected by cell-free viral particles. In contrast, intercellular virus transmission through direct cell-to-cell contacts may be a predominant mode of virus propagation in vivo leading to productive infection of these myeloid target cells. HIV-1 cell-to-cell transfer between CD4+ T cells mainly through the formation of the virologic synapse, or from infected macrophages or dendritic cells to CD4+ T cell targets, have been extensively described in vitro. Recent reports demonstrate that myeloid cells can be also productively infected through virus homotypic or heterotypic cell-to-cell transfer between macrophages or from virus-donor-infected CD4+ T cells, respectively. These modes of infection of myeloid target cells lead to very efficient spreading in these poorly susceptible cell types. Thus, the goal of this review is to give an overview of the different mechanisms reported in the literature for cell-to-cell transfer and spreading of HIV-1 in myeloid cells.
Collapse
Affiliation(s)
- Mingyu Han
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Zoï Vahlas
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Serge Benichou
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| |
Collapse
|
7
|
Baharlou H, Canete N, Vine EE, Hu K, Yuan D, Sandgren KJ, Bertram KM, Nasr N, Rhodes JW, Gosselink MP, Di Re A, Reza F, Ctercteko G, Pathma-Nathan N, Collins G, Toh J, Patrick E, Haniffa MA, Estes JD, Byrne SN, Cunningham AL, Harman AN. An in situ analysis pipeline for initial host-pathogen interactions reveals signatures of human colorectal HIV transmission. Cell Rep 2022; 40:111385. [PMID: 36130503 DOI: 10.1016/j.celrep.2022.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
The initial immune response to HIV determines transmission. However, due to technical limitations we still do not have a comparative map of early mucosal transmission events. By combining RNAscope, cyclic immunofluorescence, and image analysis tools, we quantify HIV transmission signatures in intact human colorectal explants within 2 h of topical exposure. We map HIV enrichment to mucosal dendritic cells (DCs) and submucosal macrophages, but not CD4+ T cells, the primary targets of downstream infection. HIV+ DCs accumulate near and within lymphoid aggregates, which act as early sanctuaries of high viral titers while facilitating HIV passage to the submucosa. Finally, HIV entry induces recruitment and clustering of target cells, facilitating DC- and macrophage-mediated HIV transfer and enhanced infection of CD4+ T cells. These data demonstrate a rapid response to HIV structured to maximize the likelihood of mucosal infection and provide a framework for in situ studies of host-pathogen interactions and immune-mediated pathologies.
Collapse
Affiliation(s)
- Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia.
| | - Nicolas Canete
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Erica E Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Di Yuan
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Martijn P Gosselink
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Angelina Di Re
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Faizur Reza
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Nimalan Pathma-Nathan
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Geoff Collins
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - James Toh
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Maths and Statistics, Faculty of Science, Sydney, NSW, Australia
| | - Muzlifah A Haniffa
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK; Wellcome Sanger Institute, Hinxton, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jacob D Estes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Scott N Byrne
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Xuan S, Li Y, Wu Y, Adcock IM, Zeng X, Yao X. Langerin-expressing dendritic cells in pulmonary immune-related diseases. Front Med (Lausanne) 2022; 9:909057. [PMID: 36160158 PMCID: PMC9490018 DOI: 10.3389/fmed.2022.909057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Dendritic cells (DCs) are “frontline” immune cells dedicated to antigen presentation. They serve as an important bridge connecting innate and adaptive immunity, and express various receptors for antigen capture. DCs are divided into various subclasses according to their differential expression of cell surface receptors and different subclasses of DCs exhibit specific immunological characteristics. Exploring the common features of each sub-category has became the focus of many studies. There are certain amounts of DCs expressing langerin in airways and peripheral lungs while the precise mechanism by which langerin+ DCs drive pulmonary disease is unclear. Langerin-expressing DCs can be further subdivided into numerous subtypes based on the co-expressed receptors, but here, we identify commonalities across these subtypes that point to the major role of langerin. Better understanding is required to clarify key disease pathways and determine potential new therapeutic approaches.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuebei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunhui Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiaoning Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xin Yao
| |
Collapse
|
9
|
Ogawa Y, Kinoshita M, Kawamura T, Shimada S. Intracellular TLRs of Mast Cells in Innate and Acquired Immunity. Handb Exp Pharmacol 2022; 276:133-159. [PMID: 34505203 DOI: 10.1007/164_2021_540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mast cells (MCs) distribute to interface tissues with environment, such as skin, airway, and gut mucosa, thereby functioning as the sentinel against invading allergens and pathogens. To respond to and exclude these external substances promptly, MCs possess granules containing inflammatory mediators, including heparin, proteases, tumor necrosis factor, and histamine, and produce these mediators as a consequence of degranulation within minutes of activation. As a delayed response to external substances, MCs de novo synthesize inflammatory mediators, such as cytokines and chemokines, by sensing pathogen- and damage-associated molecular patterns through their pattern recognition receptors, including Toll-like receptors (TLRs). A substantial number of studies have reported immune responses by MCs through surface TLR signaling, particularly TLR2 and TLR4. However, less attention has been paid to immune responses through nucleic acid-recognizing intracellular TLRs. Among intracellular TLRs, human and rodent MCs express TLR3, TLR7, and TLR9, but not TLR8. Some virus infections modulate intracellular TLR expression in MCs. MC-derived mediators, such as histamine, cysteinyl leukotrienes, LL-37, and the granulocyte-macrophage colony-stimulating factor, have also been reported to modulate intracellular TLR expression in an autocrine and/or paracrine fashion. Synthetic ligands for intracellular TLRs and some viruses are sensed by intracellular TLRs of MCs, leading to the production of inflammatory cytokines and chemokines including type I interferons. These MC responses initiate and facilitate innate responses and the subsequent recruitment of additional innate effector cells. MCs also associate with the regulation of adaptive immunity. In this overview, the expression of intracellular TLRs in MCs and the recognition of pathogens, including viruses, by intracellular TLRs in MCs were critically evaluated.
Collapse
Affiliation(s)
- Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Manao Kinoshita
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
10
|
HIV transmitting mononuclear phagocytes; integrating the old and new. Mucosal Immunol 2022; 15:542-550. [PMID: 35173293 PMCID: PMC9259493 DOI: 10.1038/s41385-022-00492-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023]
Abstract
In tissue, mononuclear phagocytes (MNP) are comprised of Langerhans cells, dendritic cells, macrophages and monocyte-derived cells. They are the first immune cells to encounter HIV during transmission and transmit the virus to CD4 T cells as a consequence of their antigen presenting cell function. To understand the role these cells play in transmission, their phenotypic and functional characterisation is important. With advancements in high parameter single cell technologies, new MNPs subsets are continuously being discovered and their definition and classification is in a state of flux. This has important implications for our knowledge of HIV transmission, which requires a deeper understanding to design effective vaccines and better blocking strategies. Here we review the historical research of the role MNPs play in HIV transmission up to the present day and revaluate these studies in the context of our most recent understandings of the MNP system.
Collapse
|
11
|
Xu X, Petersen S, Rodriguez C, Yi G. VISTA facilitates phagocytic clearance of HIV infected CEM-SS T cells. Heliyon 2021; 7:e07496. [PMID: 34401556 PMCID: PMC8353305 DOI: 10.1016/j.heliyon.2021.e07496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 07/02/2021] [Indexed: 11/02/2022] Open
Abstract
Phagocytosis is a critical component of the innate immune response to viral infection, resulting in the clearance of infected cells while minimizing the exposure of uninfected cells. On the other hand, phagocytosis of HIV-infected T cells may cause phagocytes, such as macrophages and dendritic cells, to be infected, thus leading to HIV cell-to-cell transmission. V domain immunoglobulin suppressor of T cell activation (VISTA, gene Vsir, aliases Gi24, Dies-1, PD-1H, and DD1α) has been identified as an immune checkpoint molecule that possesses dual activities when expressed on APCs and T cells. Our study found that VISTA might play a significant role during the immune response to HIV infection via apoptosis upregulation and subsequent phagocytosis of infected CEM-SS T cells. HIV-induced apoptosis and monocytic cell engulfment were tested utilizing CEM-SS T cells as target cells and the monocytic cell line THP-1 as phagocytic cells. Cells were infected with a GFP-labeled HIV strain, NL4-3. HIV-infected CEM-SS T cells displayed greater apoptotic activity (approximately 18.0%) than mock-infected controls. Additionally, phagocytosis of HIV-infected CEM-SS T cells was increased approximately 4-fold. Expression of VISTA on infected CEM-SS T cells was detected in 16.7% of cells, which correlated with the increased phagocytosis observed. When an antagonistic antibody against VISTA was used, the number of phagocytosed cells was reduced by a factor of 2, which was replicated utilizing human stem cell-derived dendritic cells. Phagocytosis was also confirmed by the upregulation of IL-1β expression, which was 5-fold higher in infected cells than in control cells. We also found that VISTA overexpression on both phagocytes and HIV-infected CEM-SS T cells facilitated phagocytosis. Our study suggests that VISTA may act as a direct ligand in the phagocytosis of HIV-infected T cells.
Collapse
Affiliation(s)
- Xuequn Xu
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Sean Petersen
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Cynthia Rodriguez
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Guohua Yi
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States.,Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, United States
| |
Collapse
|
12
|
Posch W, Bermejo-Jambrina M, Lass-Flörl C, Wilflingseder D. Role of Complement Receptors (CRs) on DCs in Anti-HIV-1 Immunity. Front Immunol 2020; 11:572114. [PMID: 33224139 PMCID: PMC7670068 DOI: 10.3389/fimmu.2020.572114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Upon entry of human immunodeficiency virus 1 (HIV-1) into the host, innate immune mechanisms are acting as a first line of defense, that considerably also modify adaptive immunity by the provision of specific signals. Innate and adaptive immune responses are intimately linked and dendritic cells (DCs) together with complement (C) play an important role in regulation of adaptive immunity. Initially, the role of complement was considered to primarily support – or COMPLEMENT - cytolytic actions of antibodies or antibody-complexed antigens (immune complexes, ICs) or directly kill the pathogens by complement-mediated lysis. Recently, the role of complement was revised and found to significantly augmenting and modulating adaptive immunity, in particular against viruses. Complement and DCs are therefore predestined to open novel avenues for antiviral research and potential therapeutic interventions. Recent studies on interactions of complement-opsonized HIV-1 with DCs demonstrated a high potential of such primed DCs to initiate efficient antiviral and cytotoxic anti-HIV-1 immunity and complement-coated viral particles shift DCs functions via CR3 and CR4 in an antithetic manner. This review will focus on our current knowledge of CR3 and CR4 actions on DCs during HIV-1 binding and the outcome of infection influenced by entry and signaling pathways.
Collapse
Affiliation(s)
- Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marta Bermejo-Jambrina
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Abrahem R, Chiang E, Haquang J, Nham A, Ting YS, Venketaraman V. The Role of Dendritic Cells in TB and HIV Infection. J Clin Med 2020; 9:jcm9082661. [PMID: 32824563 PMCID: PMC7465216 DOI: 10.3390/jcm9082661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells are the principal antigen-presenting cells (APCs) in the host defense mechanism. An altered dendritic cell response increases the risk of susceptibility of infections, such as Mycobacterium tuberculosis (M. tb), and the survival of the human immunodeficiency virus (HIV). The altered response of dendritic cells leads to decreased activity of T-helper-1 (Th1), Th2, Regulatory T cells (Tregs), and Th17 cells in tuberculosis (TB) infections due to a diminishment of cytokine release from these APCs, while HIV infection leads to DC maturation, allowing DCs to migrate to lymph nodes and the sub-mucosa where they then transfer HIV to CD4 T cells, although there is controversy around this topic. Increases in the levels of the antioxidant glutathione (GSH) plays a critical role in maintaining dendritic cell redox homeostasis, leading to an adequate immune response with sufficient cytokine release and a subsequent robust immune response. Thus, an understanding of the intricate pathways involved in the dendritic cell response are needed to prevent co-infections and co-morbidities in individuals with TB and HIV.
Collapse
Affiliation(s)
- Rachel Abrahem
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Emerald Chiang
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Joseph Haquang
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Amy Nham
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Yu-Sam Ting
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
- Correspondence: ; Tel.: +1-909-706-3736; Fax: +1-909-469-5698
| |
Collapse
|
14
|
Perot BP, Ménager MM. Tetraspanin 7 and its closest paralog tetraspanin 6: membrane organizers with key functions in brain development, viral infection, innate immunity, diabetes and cancer. Med Microbiol Immunol 2020; 209:427-436. [PMID: 32468130 DOI: 10.1007/s00430-020-00681-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
Tetraspanin (TSPAN) protein family forms a family of transmembrane proteins that act as organizers/scaffold for other proteins. TSPANs are primarily present on plasma membranes although they are also found in other biological membranes. They are organized in tetraspanin-enriched microdomains (TEMs), which allow spatiotemporal tuning of protein functions through the control of their membrane localization. TSPAN6 and TSPAN7 are close paralogs expressed in different tissues, TSPAN7 being highly expressed in the brain. Their functions only started to be unveiled in the late 2000's and are still poorly understood. Here, we introduce how TSPAN7 was first highlighted has a protein mutated in some forms of X-linked mental retardation, which was later proposed to be caused by defects in neuronal morphogenesis and synaptic transmission. We then discuss the impacts TSPAN7 has on cell morphology of dendritic cells and osteoclasts, through rearrangement of actin cytoskeleton and how TSPAN7 was shown to be a target of autoantibody in patients suffering from type 1 diabetes. Finally, we are addressing the double edge sword that is TSPAN7 in cancer. In the second part of this review, we address the known roles of TSPAN6 and how this protein was shown to participate in synaptic transmission and in amyloid precursor protein secretion, which may contribute to Alzheimer's disease pathology. We conclude this review by discussing the anti-inflammatory effect of TSPAN6.
Collapse
Affiliation(s)
- Brieuc P Perot
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, 24 boulevard du Montparnasse, 75015, Paris, France
- Inserm UMR 1163, ATIP-Avenir Team, Paris, France
- Université de Paris, Paris, France
| | - Mickaël M Ménager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, 24 boulevard du Montparnasse, 75015, Paris, France.
- Inserm UMR 1163, ATIP-Avenir Team, Paris, France.
- Université de Paris, Paris, France.
| |
Collapse
|
15
|
Kulkarni R, Jiang S, Birrane G, Prasad A. Lymphocyte-specific protein 1 (LSP1) regulates bone marrow stromal cell antigen 2 (BST-2)-mediated intracellular trafficking of HIV-1 in dendritic cells. FEBS Lett 2020; 594:1947-1959. [PMID: 32279313 DOI: 10.1002/1873-3468.13788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) subverts intracellular trafficking pathways to avoid its degradation and elimination, thereby enhancing its survival and spread. The molecular mechanisms involved in intracellular transport of HIV-1 are not yet fully defined. We demonstrate that the actin-binding protein lymphocyte-specific protein 1 (LSP1) interacts with the interferon-inducible protein bone marrow stromal antigen 2 (BST-2) in dendritic cells (DCs) to facilitate both endocytosis of surface-bound HIV-1 and the formation of early endosomes. Analysis of the molecular interaction between LSP1 and BST-2 reveals that the N terminus of LSP1 interacts with BST-2. Overall, we identify a novel mechanism of intracellular trafficking of HIV-1 in DCs centering on the LSP1/BST-2 complex. We also show that the HIV-1 accessory protein Vpu subverts this pathway by inducing proteasomal degradation of LSP1, augmenting cell-cell transmission of HIV-1.
Collapse
Affiliation(s)
- Rutuja Kulkarni
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Talotta R, Atzeni F, Laska MJ. Retroviruses in the pathogenesis of systemic lupus erythematosus: Are they potential therapeutic targets? Autoimmunity 2020; 53:177-191. [PMID: 32321325 DOI: 10.1080/08916934.2020.1755962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is characterised by the hyper-activation of immunologic pathways related to the antiviral response. Exogenous and endogenous retroviruses, by integrating their DNA templates in the host cell genome, may epigenetically control the transcription of genes involved in the immune response. Furthermore, their nucleic acids or neo-synthesized proteins could stimulate the sensor molecules placed upstream the inflammatory cascade. Exogenous retroviruses, like human immunodeficiency virus, have been associated to SLE-like manifestations or to a fair SLE diagnosis. In addition, there is some evidence confirming a pathogenic role of human endogenous retroviruses in SLE. In line with these data, the use of antiretroviral agents could represent an attractive opportunity in the future therapeutic algorithms of this disease, but studies are still missing.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | | |
Collapse
|
17
|
Perot BP, García-Paredes V, Luka M, Ménager MM. Dendritic Cell Maturation Regulates TSPAN7 Function in HIV-1 Transfer to CD4 + T Lymphocytes. Front Cell Infect Microbiol 2020; 10:70. [PMID: 32181159 PMCID: PMC7059179 DOI: 10.3389/fcimb.2020.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) serve a key function in host defense, linking innate detection of microbes to activation of pathogen-specific adaptive immune responses. DCs express cell surface receptors for HIV-1 entry, but are relatively resistant to productive viral replication. They do, however, facilitate infection of co-cultured T-helper cells through a process referred to as trans-infection. We previously showed that tetraspanin 7 (TSPAN7), a transmembrane protein, is involved, through positive regulation of actin nucleation, in the transfer of HIV-1 from the dendrites of immature monocyte-derived DCs (iMDDCs) to activated CD4+ T lymphocytes. Various molecular mechanisms have been described regarding HIV-1 trans-infection and seem to depend on DC maturation status. We sought to investigate the crosstalk between DC maturation status, TSPAN7 expression and trans-infection. We followed trans-infection through co-culture of iMDDCs with CD4+ T lymphocytes, in the presence of CXCR4-tropic replicative-competent HIV-1 expressing GFP. T cell infection, DC maturation status and dendrite morphogenesis were assessed through time both by flow cytometry and confocal microscopy. Our previously described TSPAN7/actin nucleation-dependent mechanism of HIV-1 transfer appeared to be mostly observed during the first 20 h of co-culture experiments and to be independent of HIV replication. In the course of co-culture experiments, we observed a progressive maturation of MDDCs, correlated with a decrease in TSPAN7 expression, a drastic loss of dendrites and a change in the shape of DCs. A TSPAN7 and actin nucleation-independent mechanism of trans-infection, relying on HIV-1 replication, was then at play. We discovered that TSPAN7 expression is downregulated in response to different innate immune stimuli driving DC maturation, explaining the requirement for a TSPAN7/actin nucleation-independent mechanism of HIV transfer from mature MDDCs (mMDDCs) to T lymphocytes. As previously described, this mechanism relies on the capture of HIV-1 by the I-type lectin CD169/Siglec-1 on mMDDCs and the formation of a “big invaginated pocket” at the surface of DCs, both events being tightly regulated by DC maturation. Interestingly, in iMDDCs, although CD169/Siglec-1 can capture HIV-1, this capture does not lead to HIV-1 transfer to T lymphocytes.
Collapse
Affiliation(s)
- Brieuc P Perot
- Inflammatory Responses and Transcriptomic Networks in Diseases, Institut Imagine, Paris, France.,Inserm U1163, Paris, France
| | - Victor García-Paredes
- Inflammatory Responses and Transcriptomic Networks in Diseases, Institut Imagine, Paris, France.,Inserm U1163, Paris, France
| | - Marine Luka
- Inflammatory Responses and Transcriptomic Networks in Diseases, Institut Imagine, Paris, France.,Inserm U1163, Paris, France
| | - Mickaël M Ménager
- Inflammatory Responses and Transcriptomic Networks in Diseases, Institut Imagine, Paris, France.,Inserm U1163, Paris, France
| |
Collapse
|
18
|
Qian Y, Che X, Jiang J, Wang Z. Mechanisms of Blood-Retinal Barrier Disruption by HIV-1. Curr HIV Res 2020; 17:26-32. [PMID: 30873925 DOI: 10.2174/1570162x17666190315163514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
It has been found that human immunodeficiency virus (HIV)-1 RNA or antigens can be detected in the intraocular tissues of HIV-1 patients even under effective highly active anti-retroviral therapy (HAART). In vivo, blood-retinal barrier (BRB) establishes a critical, physiological guardian against microbial invasion of the eye, but may be compromised in the presence of HIV-1. The envelope glycoprotein gp120 is exposed on the surface of the HIV envelope, essential for virus entry into cells by the attachment to specific cell surface receptors. The BRB disruption by glycoprotein gp120 has been widely recognized, which is toxic to human retinal epithelial cells (RPE) and umbilical vein endothelial cells (HUVEC). The present review elaborates on various mechanisms of BRB disruption induced by HIV gp120, which may represent potential targets for the prevention of ocular HIV complications in the future.
Collapse
Affiliation(s)
- Yiwen Qian
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Xin Che
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Jing Jiang
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Zhiliang Wang
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
19
|
Single-Step Genome-Wide Association Study for Resistance to Piscirickettsia salmonis in Rainbow Trout ( Oncorhynchus mykiss). G3-GENES GENOMES GENETICS 2019; 9:3833-3841. [PMID: 31690599 PMCID: PMC6829148 DOI: 10.1534/g3.119.400204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
One of the main pathogens affecting rainbow trout (Oncorhynchus mykiss) farming is the facultative intracellular bacteria Piscirickettsia salmonis Current treatments, such as antibiotics and vaccines, have not had the expected effectiveness in field conditions. Genetic improvement by means of selection for resistance is proposed as a viable alternative for control. Genomic information can be used to identify the genomic regions associated with resistance and enhance the genetic evaluation methods to speed up the genetic improvement for the trait. The objectives of this study were to i) identify the genomic regions associated with resistance to P. salmonis; and ii) identify candidate genes associated with the trait in rainbow trout. We experimentally challenged 2,130 rainbow trout with P. salmonis and genotyped them with a 57 K single nucleotide polymorphism (SNP) array. Resistance to P. salmonis was defined as time to death (TD) and as binary survival (BS). Significant heritabilities were estimated for TD and BS (0.48 ± 0.04 and 0.34 ± 0.04, respectively). A total of 2,047 fish and 26,068 SNPs passed quality control for samples and genotypes. Using a single-step genome wide association analysis (ssGWAS) we identified four genomic regions explaining over 1% of the genetic variance for TD and three for BS. Interestingly, the same genomic region located on Omy27 was found to explain the highest proportion of genetic variance for both traits (2.4 and 1.5% for TD and BS, respectively). The identified SNP in this region is located within an exon of a gene related with actin cytoskeletal organization, a protein exploited by P. salmonis during infection. Other important candidate genes identified are related with innate immune response and oxidative stress. The moderate heritability values estimated in the present study show it is possible to improve resistance to P. salmonis through artificial selection in the rainbow trout population studied here. Furthermore, our results suggest a polygenic genetic architecture for the trait and provide novel insights into the candidate genes underpinning resistance to P. salmonis in O. mykiss.
Collapse
|
20
|
Cattin A, Wiche Salinas TR, Gosselin A, Planas D, Shacklett B, Cohen EA, Ghali MP, Routy JP, Ancuta P. HIV-1 is rarely detected in blood and colon myeloid cells during viral-suppressive antiretroviral therapy. AIDS 2019; 33:1293-1306. [PMID: 30870200 PMCID: PMC6686847 DOI: 10.1097/qad.0000000000002195] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of this study was to explore the contribution of blood and colon myeloid cells to HIV persistence during antiretroviral therapy (ART). DESIGN Leukapheresis was collected from HIV-infected individuals with undetectable plasma viral load during ART (HIV + ART; n = 15) and viremics untreated (HIV+; n = 6). Rectal sigmoid biopsies were collected from n = 8 HIV+ART. METHODS Myeloid cells (total monocytes (Mo), CD16/CD16 Mo, CD1c dendritic cells) and CD4 T cells were isolated by magnetic-activated cell sorting (MACS) and/or fluorescence-activated cell sorting (FACS) from peripheral blood. Matched myeloid and CCR6CD4 T cells were isolated from blood and rectal biopsies by FACS. Levels of early (RU5 primers), late (Gag primers) and/or integrated HIV-DNA (Alu/HIV primers) were quantified by nested real-time PCR. Replication-competent HIV was amplified by co-culturing cells from HIV-positive individuals with CD3/CD28-activated CD4 T cells from uninfected donors. RESULTS Early/late but not integrated HIV reverse transcripts were detected in blood myeloid subsets of four out of 10 HIV+ART; in contrast, integrated HIV-DNA was exclusively detected in CD4 T cells. In rectal biopsies, late HIV reverse transcripts were detected in myeloid cells and CCR6CD4 T cells from one out of eight and seven out of eight HIV+ART individuals, respectively. Replication-competent HIV was outgrown from CD4 T cells but not from myeloid of untreated/ART-treated HIV-positive individuals. CONCLUSION In contrast to CD4 T cells, blood and colon myeloid cells carry detectable HIV only in a small fraction of HIV+ART individuals. This is consistent with the documented resistance of Mo to HIV infection and the rapid turnover of Mo-derived macrophages in the colon. Future assessment of multiple lymphoid and nonlymphoid tissues is required to include/exclude myeloid cells as relevant HIV reservoirs during ART.
Collapse
Affiliation(s)
- Amélie Cattin
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| | - Tomas Raul Wiche Salinas
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| | | | - Delphine Planas
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| | | | - Eric A. Cohen
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
- Institut de Recherche Clinique de Montréal, Montréal, Qc, Canada
| | - Maged P. Ghali
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Canada
| | - Jean-Pierre Routy
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service and Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Petronela Ancuta
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| |
Collapse
|
21
|
Norton TD, Zhen A, Tada T, Kim J, Kitchen S, Landau NR. Lentiviral Vector-Based Dendritic Cell Vaccine Suppresses HIV Replication in Humanized Mice. Mol Ther 2019; 27:960-973. [PMID: 30962161 DOI: 10.1016/j.ymthe.2019.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022] Open
Abstract
HIV-1-infected individuals are treated with lifelong antiretroviral drugs to control the infection. A means to strengthen the antiviral T cell response might allow them to control viral loads without antiretroviral drugs. We report the development of a lentiviral vector-based dendritic cell (DC) vaccine in which HIV-1 antigen is co-expressed with CD40 ligand (CD40L) and a soluble, high-affinity programmed cell death 1 (PD-1) dimer. CD40L activates the DCs, whereas PD-1 binds programmed death ligand 1 (PD-L1) to prevent checkpoint activation and strengthen the cytotoxic T lymphocyte (CTL) response. The injection of humanized mice with DCs transduced with vector expressing CD40L and the HIV-1 SL9 epitope induced antigen-specific T cell proliferation and memory differentiation. Upon HIV-1 challenge of vaccinated mice, viral load was suppressed by 2 logs for 6 weeks. Introduction of the soluble PD-1 dimer into a vector that expressed full-length HIV-1 proteins accelerated the antiviral response. The results support development of this approach as a therapeutic vaccine that might allow HIV-1-infected individuals to control virus replication without antiretroviral therapy.
Collapse
Affiliation(s)
- Thomas D Norton
- Department of Medicine, Division of Infectious Diseases, NYU Langone Medical Center, New York, NY 10016, USA; Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Takuya Tada
- Department of Medicine, Division of Infectious Diseases, NYU Langone Medical Center, New York, NY 10016, USA
| | - Jennifer Kim
- Department of Medicine, Division of Hematology and Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Department of Medicine, Division of Hematology and Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Nathaniel R Landau
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
22
|
Wen HC, Lin CH, Huang JS, Tsai CL, Chen TF, Wang SK. Selective targeting of DC-SIGN by controlling the oligomannose pattern on a polyproline tetra-helix macrocycle scaffold. Chem Commun (Camb) 2019; 55:9124-9127. [PMID: 31298664 DOI: 10.1039/c9cc03124c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DC-SIGN and langerin receptors both bind to oligomannose but lead to opposite effects upon encountering HIV. Because selective targeting of DC-SIGN can lead to anti-viral effects, we developed a glycoconjugate, which provides over 4800-fold selectivity for DC-SIGN over langerin, by controlling the oligomannose pattern on a polyproline tetra-helix macrocycle scaffold.
Collapse
Affiliation(s)
- Hsin-Chuan Wen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | | | | | | | | | | |
Collapse
|
23
|
Agosto LM, Henderson AJ. CD4 + T Cell Subsets and Pathways to HIV Latency. AIDS Res Hum Retroviruses 2018; 34:780-789. [PMID: 29869531 DOI: 10.1089/aid.2018.0105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Latent infection of CD4+ T cells is the main barrier to eradicating HIV-1 infection from infected patients. The cellular and molecular mechanisms involved in the establishment and maintenance of latent infection are directly linked to the transcriptional program of the different CD4+ T cell subsets targeted by the virus. In this review, we provide an overview of how T cell activation, T cell differentiation into functional subsets, and the mode of initial viral infection influence HIV proviral transcription and entry into latency.
Collapse
Affiliation(s)
- Luis M. Agosto
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Andrew J. Henderson
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
24
|
Caucheteux S, Piguet V. Vaginal epidermal dendritic cells: defense against HIV-1 or a safe haven? J Clin Invest 2018; 128:3228-3230. [PMID: 29985165 DOI: 10.1172/jci121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Langerhans cells (LCs) are likely among the first targets of HIV-1 infection due to their localization in mucosal tissues. In their recent work, Pena-Cruz and colleagues were able to study HIV-1 infection in vaginal epithelial DCs (VEDCs), termed CD1a+ VEDCs. They show that VEDCs are distinct from other blood- and tissue-derived DCs or LCs because they express the protein langerin but not the lectin receptor DC-SIGN, and they do not have Birbeck granules. The results from this study indicate that HIV-1 using CXCR4 replicates poorly in VEDCs but that a higher replication for HIV-1 using CCR5 strains is supported by VDECs. Furthermore, Pena-Cruz and colleagues demonstrate that VDECs can represent a viral reservoir in HIV-1-infected virologically suppressed women. As such, VDECs may represent another sanctuary of viral persistence and can be an additional obstacle to viral eradication.
Collapse
Affiliation(s)
- Stephan Caucheteux
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Dermatology, Women's College Hospital, Toronto, Ontario, Canada
| |
Collapse
|
25
|
The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses 2018; 10:v10020065. [PMID: 29415518 PMCID: PMC5850372 DOI: 10.3390/v10020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells such as monocytes, dendritic cells (DC) and macrophages (MΦ) are key components of the innate immune system contributing to the maintenance of tissue homeostasis and the development/resolution of immune responses to pathogens. Monocytes and DC, circulating in the blood or infiltrating various lymphoid and non-lymphoid tissues, are derived from distinct bone marrow precursors and are typically short lived. Conversely, recent studies revealed that subsets of tissue resident MΦ are long-lived as they originate from embryonic/fetal precursors that have the ability to self-renew during the life of an individual. Pathogens such as the human immunodeficiency virus type 1 (HIV-1) highjack the functions of myeloid cells for viral replication (e.g., MΦ) or distal dissemination and cell-to-cell transmission (e.g., DC). Although the long-term persistence of HIV reservoirs in CD4+ T-cells during viral suppressive antiretroviral therapy (ART) is well documented, the ability of myeloid cells to harbor replication competent viral reservoirs is still a matter of debate. This review summarizes the current knowledge on the biology of monocytes and DC during homeostasis and in the context of HIV-1 infection and highlights the importance of future studies on long-lived resident MΦ to HIV persistence in ART-treated patients.
Collapse
|
26
|
HIV Fusion in Dendritic Cells Occurs Mainly at the Surface and Is Limited by Low CD4 Levels. J Virol 2017; 91:JVI.01248-17. [PMID: 28814521 DOI: 10.1128/jvi.01248-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 01/06/2023] Open
Abstract
HIV-1 poorly infects monocyte-derived dendritic cells (MDDCs). This is in large part due to SAMHD1, which restricts viral reverse transcription. Pseudotyping HIV-1 with vesicular stomatitis virus G protein (VSV-G) strongly enhances infection, suggesting that earlier steps of viral replication, including fusion, are also inefficient in MDDCs. The site of HIV-1 fusion remains controversial and may depend on the cell type, with reports indicating that it occurs at the plasma membrane or, conversely, in an endocytic compartment. Here, we examined the pathways of HIV-1 entry in MDDCs. Using a combination of temperature shift and fusion inhibitors, we show that HIV-1 fusion mainly occurs at the cell surface. We then asked whether surface levels or intracellular localization of CD4 modulates HIV-1 entry. Increasing CD4 levels strongly enhanced fusion and infection with various HIV-1 isolates, including reference and transmitted/founder strains, but not with BaL, which uses low CD4 levels for entry. Overexpressing coreceptors did not facilitate viral infection. To further study the localization of fusion events, we generated CD4 mutants carrying heterologous cytoplasmic tails (LAMP1 or Toll-like receptor 7 [TLR7]) to redirect the molecule to intracellular compartments. The intracellular CD4 mutants did not facilitate HIV-1 fusion and replication in MDDCs. Fusion of an HIV-2 isolate with MDDCs was also enhanced by increasing surface CD4 levels. Our results demonstrate that MDDCs are inefficiently infected by various HIV-1 and HIV-2 strains, in part because of low CD4 levels. In these cells, viral fusion occurs mainly at the surface, and probably not after internalization.IMPORTANCE Dendritic cells (DCs) are professional antigen-presenting cells inducing innate and adaptive immune responses. DCs express the HIV receptor CD4 and are potential target cells for HIV. There is debate about the sensitivity of DCs to productive HIV-1 and HIV-2 infection. The fusion step of the viral replication cycle is inefficient in DCs, and the underlying mechanisms are poorly characterized. We show that increasing the levels of CD4 at the plasma membrane allows more HIV fusion and productive infection in DCs. We further demonstrate that HIV fusion occurs mainly at the cell surface and not in an intracellular compartment. Our results help us understand why DCs are poorly sensitive to HIV infection.
Collapse
|
27
|
Chistiakov DA, Grechko AV, Orekhov AN, Bobryshev YV. An immunoregulatory role of dendritic cell-derived exosomes versus HIV-1 infection: take it easy but be warned. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:362. [PMID: 28936456 DOI: 10.21037/atm.2017.06.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, Moscow, Russia
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Alexander N Orekhov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia.,Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia.,Department of Biophysics, Biological Faculty, Moscow State University, Moscow, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia.,School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| |
Collapse
|
28
|
Heat-Induced Editing of HPV Genes to Clear Mucocutaneous Warts? J Invest Dermatol 2017; 137:796-797. [PMID: 28340680 DOI: 10.1016/j.jid.2017.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 11/22/2022]
Abstract
Hyperthermia increases expression of the antiviral cellular factors APOBEC3A and APOBEC3G and induces G-to-A or C-to-T mutations in human papilloma virus cervical cell lines and genital warts. This unexpected effect of heat treatment correlated with regression of genital warts in a subset of patients, including at distant sites, suggesting that this effect may be mediated in part by antiviral as well as immunological mechanisms.
Collapse
|
29
|
Ruffin N, Hani L, Seddiki N. From dendritic cells to B cells dysfunctions during HIV-1 infection: T follicular helper cells at the crossroads. Immunology 2017; 151:137-145. [PMID: 28231392 DOI: 10.1111/imm.12730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
T follicular helper (Tfh) cells are essential for B-cell differentiation and the subsequent antibody responses. Their numbers and functions are altered during human and simian immunodeficiency virus (HIV/SIV) infections. In lymphoid tissues, Tfh cells are present in germinal centre, where they are the main source of replicative HIV-1 and represent a major reservoir. Paradoxically, Tfh cell numbers are increased in chronically infected individuals. Understanding the fate of Tfh cells in the course of HIV-1 infection is essential for the design of efficient strategies toward a protective HIV vaccine or a cure. The purpose of this review is to summarize the recent advance in our understanding of Tfh cell dynamics during HIV/SIV infection. In particular, to explore the possible causes of their expansion in lymphoid tissues by discussing the impact of HIV-1 infection on dendritic cells, to identify the molecular players rendering Tfh cells highly susceptible to HIV-1 infection, and to consider the contribution of regulatory follicular T cells in shaping Tfh cell functions.
Collapse
Affiliation(s)
- Nicolas Ruffin
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Lylia Hani
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| | - Nabila Seddiki
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| |
Collapse
|
30
|
Mzingwane ML, Tiemessen CT. Mechanisms of HIV persistence in HIV reservoirs. Rev Med Virol 2017; 27. [PMID: 28128885 DOI: 10.1002/rmv.1924] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/18/2023]
Abstract
The establishment and maintenance of HIV reservoirs that lead to persistent viremia in patients on antiretroviral drugs remains the greatest challenge of the highly active antiretroviral therapy era. Cellular reservoirs include resting memory CD4+ T lymphocytes, implicated as the major HIV reservoir, having a half-life of approximately 44 months while this is less than 6 hours for HIV in plasma. In some individuals, persistent viremia consists of invariant HIV clones not detected in circulating resting CD4+ T lymphocytes suggesting other possible sources of residual viremia. Some anatomical reservoirs that may harbor such cells include the brain and the central nervous system, the gastrointestinal tract and the gut-associated lymphoid tissue and other lymphoid organs, and the genital tract. The presence of immune cells and other HIV susceptible cells, occurring in differing compositions in anatomical reservoirs, coupled with variable and poor drug penetration that results in suboptimal drug concentrations in some sites, are all likely factors that fuel the continued low-level replication and persistent viremia during treatment. Latently, HIV-infected CD4+ T cells harboring replication-competent virus, HIV cell-to-cell spread, and HIV-infected T cell homeostatic proliferation due to chronic immune activation represent further drivers of this persistent HIV viremia during highly active antiretroviral therapy.
Collapse
Affiliation(s)
- Mayibongwe L Mzingwane
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Pathology, Faculty of Medicine, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Caroline T Tiemessen
- Centre for HIV and Sexually Transmitted Infections, National Institute for Communicable Diseases, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
31
|
Prasad A, Kulkarni R, Jiang S, Groopman JE. Cocaine Enhances DC to T-cell HIV-1 Transmission by Activating DC-SIGN/LARG/LSP1 Complex and Facilitating Infectious Synapse Formation. Sci Rep 2017; 7:40648. [PMID: 28094782 PMCID: PMC5240552 DOI: 10.1038/srep40648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023] Open
Abstract
DC-SIGN is a dendritic cell surface structure which participates in binding and transmission of HIV-1. Here, for the first time we demonstrate that cocaine induces over expression of DC-SIGN and significantly enhances virus transfer from DCs to T-cells by increasing the binding and internalization of HIV-1 in DCs. We found that cocaine activates a DC-SIGN mediated 'signalosome' complex by enhancing its association with LARG and LSP1. Further, LARG was observed to participate in DC-SIGN mediated internalization of HIV-1 in DCs. Intracellular trafficking studies of HIV-1 in cocaine treated DCs revealed increased co-localization of HIV-1 with endosomal or multi vesicular body (MVB) markers such as CD81 and VPS4 and decreased co-localization with the phagolysomal marker LAMP1; this signified altered intracellular trafficking and decreased degradation of HIV-1 in cocaine treated DCs. Furthermore, we found that cocaine induced activation of LARG which in turn activated Rho A and the focal adhesion molecules FAK, Pyk2 and paxillin. This signaling cascade enhanced the formation of an infectious synapse between DCs and T-cells. Our study provides insight into the molecular mechanisms of cocaine's contribution to key components in HIV pathogenesis and highlights novel targets for interrupting the virus life cycle in substance using hosts.
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rutuja Kulkarni
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jerome E. Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
32
|
Marone G, Varricchi G, Loffredo S, Galdiero MR, Rivellese F, de Paulis A. Are Basophils and Mast Cells Masters in HIV Infection? Int Arch Allergy Immunol 2016; 171:158-165. [PMID: 27960171 DOI: 10.1159/000452889] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The World Health Organization AIDS epidemic update estimates that more than 37 million people are living with HIV infection. Despite the unprecedented success of antiretroviral treatments, significant challenges remain in the fight against HIV. In particular, how uninfected cells capture HIV and transmit virions to target cells remains an unanswered question. Tissue mast cells and peripheral blood basophils can be exposed to virions or HIV products during infection. Several HIV proteins (i.e., envelope glycoproteins gp120 and gp41, Tat, and Nef) can interact with distinct surface receptors expressed by human basophils and mast cells and modulate their functional responses at different levels. Additionally, several groups have provided evidence that human mast cells can be infected in vitro, as well as in vivo, by certain strains of HIV. Recently, it has been demonstrated that basophils purified from healthy donors and intestinal mast cells can efficiently capture HIV on their cell surface and, cocultured with CD4+ T cells, they can transfer the virus to the cocultured cells leading to infection. Direct contact between human basophils or intestinal mast cells and CD4+ T cells can mediate viral trans-infection of T cells through the formation of viral synapses. Thus, basophils and mast cells can provide a cellular basis for capturing and then spreading viruses throughout the body. Collectively, these findings suggest that human basophils and mast cells play a complex and possibly distinct role in HIV infection, warranting further investigations.
Collapse
Affiliation(s)
- Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Astronomo RD, Santra S, Ballweber-Fleming L, Westerberg KG, Mach L, Hensley-McBain T, Sutherland L, Mildenberg B, Morton G, Yates NL, Mize GJ, Pollara J, Hladik F, Ochsenbauer C, Denny TN, Warrier R, Rerks-Ngarm S, Pitisuttithum P, Nitayapan S, Kaewkungwal J, Ferrari G, Shaw GM, Xia SM, Liao HX, Montefiori DC, Tomaras GD, Haynes BF, McElrath JM. Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine 2016; 14:97-111. [PMID: 27919754 PMCID: PMC5161443 DOI: 10.1016/j.ebiom.2016.11.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/18/2016] [Indexed: 12/28/2022] Open
Abstract
HIV-1 infection occurs primarily through mucosal transmission. Application of biologically relevant mucosal models can advance understanding of the functional properties of antibodies that mediate HIV protection, thereby guiding antibody-based vaccine development. Here, we employed a human ex vivo vaginal HIV-1 infection model and a rhesus macaque in vivo intrarectal SHIV challenge model to probe the protective capacity of monoclonal broadly-neutralizing (bnAb) and non-neutralizing Abs (nnAbs) that were functionally modified by isotype switching. For human vaginal explants, we developed a replication-competent, secreted NanoLuc reporter virus system and showed that CD4 binding site bnAbs b12 IgG1 and CH31 IgG1 and IgA2 isoforms potently blocked HIV-1JR-CSF and HIV-1Bal26 infection. However, IgG1 and IgA nnAbs, either alone or together, did not inhibit infection despite the presence of FcR-expressing effector cells in the tissue. In macaques, the CH31 IgG1 and IgA2 isoforms infused before high-dose SHIV challenge were completely to partially protective, respectively, while nnAbs (CH54 IgG1 and CH38 mIgA2) were non-protective. Importantly, in both mucosal models IgG1 isotype bnAbs were more protective than the IgA2 isotypes, attributable in part to greater neutralization activity of the IgG1 variants. These findings underscore the importance of potent bnAb induction as a primary goal of HIV-1 vaccine development.
Collapse
Affiliation(s)
- Rena D Astronomo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sampa Santra
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katharine G Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Linh Mach
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tiffany Hensley-McBain
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Benjamin Mildenberg
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Georgeanna Morton
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicole L Yates
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Gregory J Mize
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Ranjit Warrier
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Sorachai Nitayapan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Guido Ferrari
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | | | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Juliana M McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
34
|
Charles TP, Shellito JE. Human Immunodeficiency Virus Infection and Host Defense in the Lungs. Semin Respir Crit Care Med 2016; 37:147-56. [PMID: 26974294 DOI: 10.1055/s-0036-1572553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunosuppression associated with human immunodeficiency virus (HIV) infection impacts all components of host defense against pulmonary infection. Cells within the lung have altered immune function and are important reservoirs for HIV infection. The host immune response to infected lung cells further compromises responses to a secondary pathogenic insult. In the upper respiratory tract, mucociliary function is impaired and there are decreased levels of salivary immunoglobulin A. Host defenses in the lower respiratory tract are controlled by alveolar macrophages, lymphocytes, and polymorphonuclear leukocytes. As HIV infection progresses, lung CD4 T cells are reduced in number causing a lack of activation signals from CD4 T cells and impaired defense by macrophages. CD8 T cells, on the other hand, are increased in number and cause lymphocytic alveolitis. Specific antibody responses by B-lymphocytes are decreased and opsonization of microorganisms is impaired. These observed defects in host defense of the respiratory tract explain the susceptibility of HIV-infected persons for oropharyngeal candidiasis, bacterial pneumonia, Pneumocystis pneumonia, and other opportunistic infections.
Collapse
Affiliation(s)
- Tysheena P Charles
- Section of Pulmonary/Critical Care & Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Judd E Shellito
- Section of Pulmonary/Critical Care & Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
35
|
Dillon SM, Lee EJ, Donovan AM, Guo K, Harper MS, Frank DN, McCarter MD, Santiago ML, Wilson CC. Enhancement of HIV-1 infection and intestinal CD4+ T cell depletion ex vivo by gut microbes altered during chronic HIV-1 infection. Retrovirology 2016; 13:5. [PMID: 26762145 PMCID: PMC4712466 DOI: 10.1186/s12977-016-0237-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Early HIV-1 infection is characterized by high levels of HIV-1 replication and substantial CD4 T cell depletion in the intestinal mucosa, intestinal epithelial barrier breakdown, and microbial translocation. HIV-1-induced disruption of intestinal homeostasis has also been associated with changes in the intestinal microbiome that are linked to mucosal and systemic immune activation. In this study, we investigated the impact of representative bacterial species that were altered in the colonic mucosa of viremic HIV-1 infected individuals (HIV-altered mucosal bacteria; HAMB) on intestinal CD4 T cell function, infection by HIV-1, and survival in vitro. Lamina propria (LP) mononuclear cells were infected with CCR5-tropic HIV-1BaL or mock infected, exposed to high (3 gram-negative) or low (2 gram-positive) abundance HAMB or control gram-negative Escherichia coli and levels of productive HIV-1 infection and CD4 T cell depletion assessed. HAMB-associated changes in LP CD4 T cell activation, proliferation and HIV-1 co-receptor expression were also evaluated. RESULTS The majority of HAMB increased HIV-1 infection and depletion of LP CD4 T cells, but gram-negative HAMB enhanced CD4 T cell infection to a greater degree than gram-positive HAMB. Most gram-negative HAMB enhanced T cell infection to levels similar to that induced by gram-negative E. coli despite lower induction of T cell activation and proliferation by HAMB. Both gram-negative HAMB and E. coli significantly increased expression of HIV-1 co-receptor CCR5 on LP CD4 T cells. Lipopolysaccharide, a gram-negative bacteria cell wall component, up-regulated CCR5 expression on LP CD4 T cells whereas gram-positive cell wall lipoteichoic acid did not. Upregulation of CCR5 by gram-negative HAMB was largely abrogated in CD4 T cell-enriched cultures suggesting an indirect mode of stimulation. CONCLUSIONS Gram-negative commensal bacteria that are altered in abundance in the colonic mucosa of HIV-1 infected individuals have the capacity to enhance CCR5-tropic HIV-1 productive infection and depletion of LP CD4 T cells in vitro. Enhanced infection appears to be primarily mediated indirectly through increased expression of CCR5 on LP CD4 T cells without concomitant large scale T cell activation. This represents a novel mechanism potentially linking intestinal dysbiosis to HIV-1 mucosal pathogenesis.
Collapse
Affiliation(s)
- Stephanie M Dillon
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Eric J Lee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Andrew M Donovan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Kejun Guo
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Michael S Harper
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Daniel N Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. .,University of Colorado Microbiome Research Consortium, Aurora, CO, USA.
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Mario L Santiago
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Cara C Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
36
|
Pustylnikov S, Dave RS, Khan ZK, Porkolab V, Rashad AA, Hutchinson M, Fieschi F, Chaiken I, Jain P. Short Communication: Inhibition of DC-SIGN-Mediated HIV-1 Infection by Complementary Actions of Dendritic Cell Receptor Antagonists and Env-Targeting Virus Inactivators. AIDS Res Hum Retroviruses 2016; 32:93-100. [PMID: 26383762 DOI: 10.1089/aid.2015.0184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The DC-SIGN receptor on human dendritic cells interacts with HIV gp120 to promote both infection of antigen-presenting cells and transinfection of T cells. We hypothesized that in DC-SIGN-expressing cells, both DC-SIGN ligands such as dextrans and gp120 antagonists such as peptide triazoles would inhibit HIV infection with potential complementary antagonist effects. To test this hypothesis, we evaluated the effects of dextran (D66), isomaltooligosaccharides (D06), and several peptide triazoles (HNG156, K13, and UM15) on HIV infection of B-THP-1/DC-SIGN cells. In surface plasmon resonance competition assays, D66 (IC50 = 35.4 μM) and D06 (IC50 = 3.4 mM) prevented binding of soluble DC-SIGN to immobilized mannosylated bovine serum albumin (BSA). An efficacious dose-dependent inhibition of DC-SIGN-mediated HIV infection in both pretreatment and posttreatment settings was observed, as indicated by inhibitory potentials (EC50) [D66 (8 μM), D06 (48 mM), HNG156 (40 μM), UM15 (100 nM), and K13 (25 nM)]. Importantly, both dextrans and peptide triazoles significantly decreased HIV gag RNA levels [D66 (7-fold), D06 (13-fold), HNG156 (7-fold), K-13 (3-fold), and UM15 (6-fold)]. Interestingly, D06 at the highest effective concentration showed a 14-fold decrease of infection, while its combination with 50 μM HNG156 showed a 26-fold decrease. Hence, these compounds can combine to inactivate the viruses and suppress DC-SIGN-mediated virus-cell interaction that as shown earlier leads to dendritic cell HIV infection and transinfection dependent on the DC-SIGN receptor.
Collapse
Affiliation(s)
- Sergey Pustylnikov
- Novosibirsk Tuberculosis Research Institute, Novosibirsk, Russia
- State Research Center of Virology and Biotechnology “Vector,” Koltsovo, Russia
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Rajnish S. Dave
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Zafar K. Khan
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Vanessa Porkolab
- University Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Adel A. Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Matthew Hutchinson
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Frank Fieschi
- University Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells. J Virol 2015; 90:2928-37. [PMID: 26719250 DOI: 10.1128/jvi.03008-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4(+) T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viral trans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection. IMPORTANCE In this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1 trans-infection of CD4(+) T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination.
Collapse
|
38
|
Human Blood-Circulating Basophils Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells. J Virol 2015; 89:8050-62. [PMID: 26018157 DOI: 10.1128/jvi.01021-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Cell-associated HIV-1 infection has been proposed to play a pivotal role in the spread of HIV-1 infection. Granulocytes are a category of white blood cells, comprising mainly basophils, neutrophils, and eosinophils, and participate in various inflammatory reactions and defense against pathogens. Here, we investigated the role of human blood granulocytes in the dissemination of HIV-1. These cells were found to express a variety of HIV-1 attachment factors (HAFs). Basophils expressed HAFs dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM3)-grabbing nonintegrin (DC-SIGN), DC immunoreceptor (DCIR), heparan sulfate proteoglycan (HSPG), and α4β7 integrin and mediated the most efficient capture of HIV-1 on the cell surface. Neutrophils were found to express DCIR and demonstrated limited efficiency of viral capture. Eosinophils expressed α4β7 integrin but exhibited little or no virus-binding capacity. Intriguingly, following direct contact with CD4+ T cells, viruses harbored on the surface of basophils were transferred to T cells. The contact between basophils and CD4+ T cells and formation of infectious synapses appeared necessary for efficient HIV-1 spread. In HIV-1-infected individuals, the frequency of basophils remained fairly stable over the course of disease, regardless of CD4+ T depletion or the emergence of AIDS-associated opportunistic infections. Collectively, our results provide novel insights into the roles of granulocytes, particularly basophils, in HIV-1 dissemination. Thus, strategies designed to prevent basophil-mediated viral capture and transfer may be developed into a new form of therapy. IMPORTANCE Cell-associated HIV-1 infection has been proposed to play a pivotal role in the spread of HIV-1 infection. Here, we demonstrated that human blood-circulating granulocytes, particularly basophils, can capture HIV-1 and mediate viral trans-infection of CD4+ T cells. The expression of a variety of HIV-1 attachment factors, such as the C-type lectins, etc., facilitates viral capture and transfer. Intriguingly, the frequency of basophils in patients with different levels of CD4+ T counts remains fairly stable during the course of disease. Our results provide novel insights into the roles of granulocytes, particularly basophils, in HIV-1 dissemination. We suggest that strategies designed to prevent basophil-mediated viral capture and transfer may be a new direction for the development of anti-HIV therapy.
Collapse
|