1
|
Xu X, Ding Z, Pu C, Kong C, Chen S, Lu W, Zhang J. The structural characterization and UV-protective properties of an exopolysaccharide from a Paenibacillus isolate. Front Pharmacol 2024; 15:1434136. [PMID: 39185320 PMCID: PMC11341463 DOI: 10.3389/fphar.2024.1434136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Overexposure to ultraviolet (UV) light is known to cause damage to the skin, leading to sunburn and photo-aging. Chemical sunscreen products may give rise to health risks including phototoxicity, photosensitivity, and photosensitivity. Natural polysaccharides have attracted considerable interests due to diverse biological activities. Methods A novel polysaccharide isolated was purified and structurally characterized using chemical methods followed by HPLC, GLC-MS, as well as 1D and 2D NMR spectroscopy. The photoprotective effect of the EPS on UVB-induced damage was assessed in vitro using cultured keratinocytes and in vivo using C57BL/6 mouse models. Results The average molecular weight of the EPS was 5.48 × 106 Da, composed of glucose, mannose and galactose residues at a ratio of 2:2:1. The repeating units of the EPS were →3)-β-D-Glcp (1→3) [β-D-Galp (1→2)-α-D-Glcp (1→2)]-α-D-Manp (1→3)-α-D-Manp (1→. In cultured keratinocytes, the EPS reduced cytotoxicity and excessive ROS production induced by UVB irradiation. The EPS also exhibits an inhibitory effect on oxidative stress, inflammation, and collagen degradation found in the photodamage in mice. 1H NMR-based metabolomics analysis for skin suggested that the EPS partly reversed the shifts of metabolic profiles of the skin in UVB-exposed mice. Conclusion The EPS exhibits skin photoprotective effects through regulating oxidative stress both in vivo and in vitro. Our findings highlight that the EPS is a potential candidate in sunscreen formulations for an efficient solution to UVB radiation.
Collapse
Affiliation(s)
- Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Chunlin Pu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| |
Collapse
|
2
|
Xiong L, Zhevlakova I, West XZ, Gao D, Murtazina R, Horak A, Brown JM, Molokotina I, Podrez EA, Byzova TV. TLR2 regulates hair follicle cycle and regeneration via BMP signaling. eLife 2024; 12:RP89335. [PMID: 38483447 PMCID: PMC10939499 DOI: 10.7554/elife.89335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
The etiology of hair loss remains enigmatic, and current remedies remain inadequate. Transcriptome analysis of aging hair follicles uncovered changes in immune pathways, including Toll-like receptors (TLRs). Our findings demonstrate that the maintenance of hair follicle homeostasis and the regeneration capacity after damage depend on TLR2 in hair follicle stem cells (HFSCs). In healthy hair follicles, TLR2 is expressed in a cycle-dependent manner and governs HFSCs activation by countering inhibitory BMP signaling. Hair follicles in aging and obesity exhibit a decrease in both TLR2 and its endogenous ligand carboxyethylpyrrole (CEP), a metabolite of polyunsaturated fatty acids. Administration of CEP stimulates hair regeneration through a TLR2-dependent mechanism. These results establish a novel connection between TLR2-mediated innate immunity and HFSC activation, which is pivotal to hair follicle health and the prevention of hair loss and provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Luyang Xiong
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Irina Zhevlakova
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Xiaoxia Z West
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Detao Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Rakhilya Murtazina
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Anthony Horak
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - J Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Iuliia Molokotina
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Eugene A Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Tatiana V Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
3
|
Geara P, Dilworth FJ. Epigenetic integration of signaling from the regenerative environment. Curr Top Dev Biol 2024; 158:341-374. [PMID: 38670712 DOI: 10.1016/bs.ctdb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle has an extraordinary capacity to regenerate itself after injury due to the presence of tissue-resident muscle stem cells. While these muscle stem cells are the primary contributor to the regenerated myofibers, the process occurs in a regenerative microenvironment where multiple different cell types act in a coordinated manner to clear the damaged myofibers and restore tissue homeostasis. In this regenerative environment, immune cells play a well-characterized role in initiating repair by establishing an inflammatory state that permits the removal of dead cells and necrotic muscle tissue at the injury site. More recently, it has come to be appreciated that the immune cells also play a crucial role in communicating with the stem cells within the regenerative environment to help coordinate the timing of repair events through the secretion of cytokines, chemokines, and growth factors. Evidence also suggests that stem cells can help modulate the extent of the inflammatory response by signaling to the immune cells, demonstrating a cross-talk between the different cells in the regenerative environment. Here, we review the current knowledge on the innate immune response to sterile muscle injury and provide insight into the epigenetic mechanisms used by the cells in the regenerative niche to integrate the cellular cross-talk required for efficient muscle repair.
Collapse
Affiliation(s)
- Perla Geara
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States
| | - F Jeffrey Dilworth
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
4
|
Roets B. Potential application of PBM use in hair follicle organoid culture for the treatment of androgenic alopecia. Mater Today Bio 2023; 23:100851. [PMID: 38024838 PMCID: PMC10663892 DOI: 10.1016/j.mtbio.2023.100851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Androgenic alopecia is a hereditary condition of pattern hair loss in genetically susceptible individuals. The condition has a significant impact on an individual's quality of life, with decreased self-esteem, body image issues and depression being the main effects. Various conventional treatment options, such as minoxidil, finasteride and herbal supplements, aim to slow down hair loss and promote hair growth. However, due to the chronic nature of the condition the financial cost of treatment for androgenic alopecia is very high and conventional treatment options are not universally effective and come with a host of side effects. Therefore, to address the limitations of current treatment options a novel regenerative treatment option is required. One promising approach is organoids, organoids are 3D cell aggregates with similar structures and functions to a target organ. Hair follicle organoids can be developed in vitro. However, the main challenges are to maintain the cell populations within the organoid in a proliferative and inductive state, as well as to promote the maturation of organoids. Photobiomodulation is a form of light therapy that stimulates endogenous chromophores. PBM has been shown to improve cell viability, proliferation, migration, differentiation and gene expression in dermal papilla cells and hair follicle stem cells. Therefore, photobiomodulation is a potential adjunct to hair follicle organoid culture to improve the proliferation and inductive capacity of cells.
Collapse
Affiliation(s)
- Brendon Roets
- Biomedical Science, Faculty of Health Science, University of Johannesburg, Johannesburg, 2028, South Africa
| |
Collapse
|
5
|
Xiong L, Zhevlakova I, West XZ, Gao D, Murtazina R, Horak A, Brown JM, Molokotina I, Podrez EA, Byzova TV. TLR2 Regulates Hair Follicle Cycle and Regeneration via BMP Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553236. [PMID: 37645905 PMCID: PMC10462054 DOI: 10.1101/2023.08.14.553236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The etiology of hair loss remains enigmatic, and current remedies remain inadequate. Transcriptome analysis of aging hair follicles uncovered changes in immune pathways, including Toll-like receptors (TLRs). Our findings demonstrate that the maintenance of hair follicle homeostasis and the regeneration capacity after damage depends on TLR2 in hair follicle stem cells (HFSCs). In healthy hair follicles, TLR2 is expressed in a cycle-dependent manner and governs HFSCs activation by countering inhibitory BMP signaling. Hair follicles in aging and obesity exhibit a decrease in both TLR2 and its endogenous ligand carboxyethylpyrrole (CEP), a metabolite of polyunsaturated fatty acids. Administration of CEP stimulates hair regeneration through a TLR2-dependent mechanism. These results establish a novel connection between TLR2-mediated innate immunity and HFSC activation, which is pivotal to hair follicle health and the prevention of hair loss and provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Luyang Xiong
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Irina Zhevlakova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Xiaoxia Z. West
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Detao Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Rakhylia Murtazina
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
- Current address: Department of Biochemistry and Molecular Genetics, University of Illinois; Chicago, IL 60607, USA
| | - Anthony Horak
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - J. Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Iuliia Molokotina
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Eugene A. Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Tatiana V. Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| |
Collapse
|
6
|
Wang S, Shan S, Zhang J, Liu Z, Gu X, Hong Y, He H, Ren T. Airway epithelium regeneration by photoactivated basal cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112732. [PMID: 37290293 DOI: 10.1016/j.jphotobiol.2023.112732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/27/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
The airway epithelium is the footstone to maintain the structure and functions of lung, in which resident basal cells (BCs) maintain homeostasis and functional regeneration of epithelial barrier in response to injury. In recent clinical researches, transplanting BCs has shown great inspiring achievements in therapy of various lung diseases. In this study, we report a noninvasive optical method to activate BCs for airway epithelium regeneration in vivo by fast scanning of focused femtosecond laser on BCs of airway epithelium to active Ca2+ signaling and subsequent ERK and Wnt pathways. The photoactivated BCs present high proliferative capacity and maintain high pluripotency, which enables them to plant in the injured airway epithelium and differentiate to club cells for regeneration of epithelium. This optical method can also work in situ to activate localized BCs in airway tissue. Therefore, our results provide a powerful technology for noninvasive BC activation in stem-cell therapy of lung diseases.
Collapse
Affiliation(s)
- Shaoyang Wang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China; School of Biomedical Engineering, Hainan University, 58 Renmin Avenue, 570228, Haikou, China; School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Shan Shan
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China
| | - Jingyuan Zhang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Zeyu Liu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China
| | - Xiaohua Gu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China
| | - Yue Hong
- Stem Cell Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China; School of Life Sciences, Hainan University, 58 Renmin Avenue, 570228 Haikou, China.
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China.
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, 200233 Shanghai, China.
| |
Collapse
|
7
|
Niu Y, Wang Y, Chen H, Liu X, Liu J. Overview of the Circadian Clock in the Hair Follicle Cycle. Biomolecules 2023; 13:1068. [PMID: 37509104 PMCID: PMC10377266 DOI: 10.3390/biom13071068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The circadian clock adapts to the light-dark cycle and autonomously generates physiological and metabolic rhythmicity. Its activity depends on the central suprachiasmatic pacemaker. However, it also has an independent function in peripheral tissues such as the liver, adipose tissue, and skin, which integrate environmental signals and energy homeostasis. Hair follicles (HFs) maintain homeostasis through the HF cycle, which depends heavily on HF stem cell self-renewal and the related metabolic reprogramming. Studies have shown that circadian clock dysregulation in HFs perturbs cell cycle progression. Moreover, there is increasing evidence that the circadian clock exerts a significant influence on glucose metabolism, feeding/fasting, stem cell differentiation, and senescence. This suggests that circadian metabolic crosstalk plays an essential role in regulating HF regeneration. An improved understanding of the role of the circadian clock in HFs may facilitate the discovery of new drug targets for hair loss. Therefore, the present review provides a discussion of the relationship between the circadian clock and HF regeneration, mainly from the perspective of HF metabolism, and summarizes the current understanding of the mechanisms by which HFs function.
Collapse
Affiliation(s)
- Ye Niu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Yujie Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Hao Chen
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiaomei Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Leitão DDSTC, Barbosa-Carvalho APP, de Siqueira FC, Sousa RPE, Lopes AS, Chisté RC. Extracts of Eryngium foetidum Leaves from the Amazonia Were Efficient Scavengers of ROS and RNS. Antioxidants (Basel) 2023; 12:antiox12051112. [PMID: 37237978 DOI: 10.3390/antiox12051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Eryngium foetidum L. is an edible plant widespread in Amazonian cuisine and its leaves have high levels of promising phenolic compounds for the production of extracts to be used as natural antioxidant additives. In this study, the in vitro scavenging capacity of three freeze-dried extracts of E. foetidum leaves, obtained by ultrasound-assisted extraction using green solvents [water (H2O), ethanol (EtOH), and ethanol/water (EtOH/H2O)], was investigated against the most common reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated in both physiological and food systems. Six phenolic compounds were identified, chlorogenic acid (2198, 1816 and 506 μg/g) being the major compound for EtOH/H2O, H2O, and EtOH extracts, respectively. All E. foetidum extracts were efficient in scavenging all the ROS and RNS (IC50 = 45-1000 µg/mL), especially ROS. The EtOH/H2O extract showed the highest contents of phenolic compounds (5781 μg/g) and showed the highest efficiency in scavenging all the reactive species, with high efficiency for O2•- (IC50 = 45 μg/mL), except for ROO•, for which EtOH extract was the most efficient. Therefore, E. foetidum leaf extracts, especially EtOH/H2O, showed high antioxidant potential to be used as natural antioxidants in food formulations and are promising for nutraceuticals products.
Collapse
Affiliation(s)
| | - Anna Paula Pereira Barbosa-Carvalho
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Francilia Campos de Siqueira
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Railson Pontes E Sousa
- Faculty of Biotechnology, Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Alessandra Santos Lopes
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| |
Collapse
|
9
|
Zhao Y, Gao C, Pan X, Lei K. Emerging roles of mitochondria in animal regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:14. [PMID: 37142814 PMCID: PMC10160293 DOI: 10.1186/s13619-023-00158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/19/2023] [Indexed: 05/06/2023]
Abstract
The regeneration capacity after an injury is critical to the survival of living organisms. In animals, regeneration ability can be classified into five primary types: cellular, tissue, organ, structure, and whole-body regeneration. Multiple organelles and signaling pathways are involved in the processes of initiation, progression, and completion of regeneration. Mitochondria, as intracellular signaling platforms of pleiotropic functions in animals, have recently gained attention in animal regeneration. However, most studies to date have focused on cellular and tissue regeneration. A mechanistic understanding of the mitochondrial role in large-scale regeneration is unclear. Here, we reviewed findings related to mitochondrial involvement in animal regeneration. We outlined the evidence of mitochondrial dynamics across different animal models. Moreover, we emphasized the impact of defects and perturbation in mitochondria resulting in regeneration failure. Ultimately, we discussed the regulation of aging by mitochondria in animal regeneration and recommended this for future study. We hope this review will serve as a means to advocate for more mechanistic studies of mitochondria related to animal regeneration on different scales.
Collapse
Affiliation(s)
- Yun Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Fudan University, Shanghai, China
| | - Chong Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xue Pan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
10
|
Mai Q, Han Y, Cheng G, Ma R, Yan Z, Chen X, Yu G, Chen T, Zhang S. Innovative Strategies for Hair Regrowth and Skin Visualization. Pharmaceutics 2023; 15:pharmaceutics15041201. [PMID: 37111686 PMCID: PMC10141228 DOI: 10.3390/pharmaceutics15041201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Today, about 50% of men and 15-30% of women are estimated to face hair-related problems, which create a significant psychological burden. Conventional treatments, including drug therapy and transplantation, remain the main strategies for the clinical management of these problems. However, these treatments are hindered by challenges such as drug-induced adverse effects and poor drug penetration due to the skin's barrier. Therefore, various efforts have been undertaken to enhance drug permeation based on the mechanisms of hair regrowth. Notably, understanding the delivery and diffusion of topically administered drugs is essential in hair loss research. This review focuses on the advancement of transdermal strategies for hair regrowth, particularly those involving external stimulation and regeneration (topical administration) as well as microneedles (transdermal delivery). Furthermore, it also describes the natural products that have become alternative agents to prevent hair loss. In addition, given that skin visualization is necessary for hair regrowth as it provides information on drug localization within the skin's structure, this review also discusses skin visualization strategies. Finally, it details the relevant patents and clinical trials in these areas. Together, this review highlights the innovative strategies for skin visualization and hair regrowth, aiming to provide novel ideas to researchers studying hair regrowth in the future.
Collapse
Affiliation(s)
- Qiuying Mai
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanhua Han
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Rui Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhao Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Guangtao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shu Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
11
|
Zhang Y, Liu W, Wang Q. Positive effects of low-dose photodynamic therapy with aminolevulinic acid or its methyl ester in skin rejuvenation and wound healing: An update. JOURNAL OF BIOPHOTONICS 2023; 16:e202200293. [PMID: 36602479 DOI: 10.1002/jbio.202200293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In dermatology, photodynamic therapy (PDT) is widely used in skin tumors, infections, etc., because of the killing effect triggered by toxic reactive oxygen species (ROS). However, the ROS concentration is determined by various photosensitizer concentrations and formulations, as well as various irradiation parameters. Low-dose PDT leads to sufficiently low ROS level, which results in biological effects that are the exact opposite of the killing potency. Therefore, in recent years, low-dose PDT has been exploited in improving aging and wound. Low-dose ALA/MAL PDT might improve aging through promoting the proliferation of fibroblasts, blocking DNA damage, counteracting oxidative stress, inhibiting melanogenesis, and remodeling lymphatic vessels in aged skin. Promoting fibroblasts and epidermal stem cells proliferation and migration, promoting granulation tissue formation and angiogenesis and regulating the inflammatory process might be the mechanisms of low-dose ALA/MAL PDT in wound healing. Nevertheless, the positive effects of low-dose PDT have not been thoroughly investigated in dermatology, and high-quality studies are still needed to fill the relevant vacancy.
Collapse
Affiliation(s)
- YuWei Zhang
- The Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Liu
- The Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qian Wang
- The Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
12
|
Yang G, Chen H, Chen Q, Qiu J, Qahar M, Fan Z, Chu W, Tredget EE, Wu Y. Injury-induced interleukin-1 alpha promotes Lgr5 hair follicle stem cells de novo regeneration and proliferation via regulating regenerative microenvironment in mice. Inflamm Regen 2023; 43:14. [PMID: 36803580 PMCID: PMC9940372 DOI: 10.1186/s41232-023-00265-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/29/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The hair follicles (HFs) are barely regenerated after loss in injuries in mammals as well as in human beings. Recent studies have shown that the regenerative ability of HFs is age-related; however, the relationship between this phenomenon and the stem cell niche remains unclear. This study aimed to find a key secretory protein that promotes the HFs regeneration in the regenerative microenvironment. METHODS To explore why age affects HFs de novo regeneration, we established an age-dependent HFs regeneration model in leucine-rich repeat G protein-coupled receptor 5 (Lgr5) + /mTmG mice. Proteins in tissue fluids were analyzed by high-throughput sequencing. The role and mechanism of candidate proteins in HFs de novo regeneration and hair follicle stem cells (HFSCs) activation were investigated through in vivo experiments. The effects of candidate proteins on skin cell populations were investigated by cellular experiments. RESULTS Mice under 3-week-old (3W) could regenerate HFs and Lgr5 HFSCs, which were highly correlated with the immune cells, cytokines, IL-17 signaling pathway, and IL-1α level in the regeneration microenvironment. Additionally, IL-1α injection induced de novo regeneration of HFs and Lgr5 HFSCs in 3W mouse model with a 5 mm wound, as well as promoted activation and proliferation of Lgr5 HFSCs in 7-week-old (7W) mice without wound. Dexamethasone and TEMPOL inhibited the effects of IL-1α. Moreover, IL-1α increased skin thickness and promoted the proliferation of human epidermal keratinocyte line (HaCaT) and skin-derived precursors (SKPs) in vivo and in vitro, respectively. CONCLUSIONS In conclusion, injury-induced IL-1α promotes HFs regeneration by modulating inflammatory cells and oxidative stress-induced Lgr5 HFSCs regeneration as well as promoting skin cell populations proliferation. This study uncovers the underlying molecular mechanisms enabling HFs de novo regeneration in an age-dependent model.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China. .,Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China. .,Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Haiyan Chen
- grid.499361.0Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
| | - Qun Chen
- grid.499361.0Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
| | - Jiayi Qiu
- grid.462844.80000 0001 2308 1657Faculté Des Lettres, Sorbonne Université (Paris Sorbonne, 75006 Paris IV), Paris, France
| | - Mulan Qahar
- grid.452847.80000 0004 6068 028XDepartment of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035 China ,grid.499361.0Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
| | - Zhimeng Fan
- grid.12527.330000 0001 0662 3178State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
| | - Weiwei Chu
- grid.12527.330000 0001 0662 3178State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China ,grid.499361.0Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
| | - Edward E. Tredget
- grid.241114.30000 0004 0459 7625Department of Surgery, Division of Critical Care, University of Alberta Hospital, Edmonton, AB ABT6G2B7 Canada
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China. .,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Tursch A, Holstein TW. From injury to patterning—MAPKs and Wnt signaling in Hydra. Curr Top Dev Biol 2023; 153:381-417. [PMID: 36967201 DOI: 10.1016/bs.ctdb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hydra has a regenerative capacity that is not limited to individual organs but encompasses the entire body. Various global and integrative genome, transcriptome and proteome approaches have shown that many of the signaling pathways and transcription factors present in vertebrates are already present in Cnidaria, the sister group of Bilateria, and are also activated in regeneration. It is now possible to investigate one of the central questions of regeneration biology, i.e., how does the patterning system become activated by the injury signals that initiate regeneration. This review will present the current data obtained in Hydra and draw parallels with regeneration in Bilateria. Important findings of this global analysis are that the Wnt signaling pathway has a dual function in the regeneration process. In the early phase Wnt is activated generically and in a second phase of pattern formation it is activated in a position specific manner. Thus, Wnt signaling is part of the generic injury response, in which mitogen-activated protein kinases (MAPKs) are initially activated via calcium and reactive oxygen species (ROS). The MAPKs, p38, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERK) are essential for Wnt activation in Hydra head and foot regenerates. Furthermore, the antagonism between the ERK signaling pathway and stress-induced MAPKs results in a balanced induction of apoptosis and mitosis. However, the early Wnt genes are activated by MAPK signaling rather than apoptosis. Early Wnt gene activity is differentially integrated with a stable, β-Catenin-based gradient along the primary body axis maintaining axial polarity and activating further Wnts in the regenerating head. Because MAPKs and Wnts are highly evolutionarily conserved, we hypothesize that this mechanism is also present in vertebrates but may be activated to different degrees at the level of early Wnt gene integration.
Collapse
|
14
|
Khorsandi K, Hosseinzadeh R, Esfahani H, Zandsalimi K, Shahidi FK, Abrahamse H. Accelerating skin regeneration and wound healing by controlled ROS from photodynamic treatment. Inflamm Regen 2022; 42:40. [PMID: 36192814 PMCID: PMC9529607 DOI: 10.1186/s41232-022-00226-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular metabolisms produce reactive oxygen species (ROS) which are essential for cellular signaling pathways and physiological functions. Nevertheless, ROS act as “double-edged swords” that have an unstable redox balance between ROS production and removal. A little raise of ROS results in cell proliferation enhancement, survival, and soft immune responses, while a high level of ROS could lead to cellular damage consequently protein, nucleic acid, and lipid damages and finally cell death. ROS play an important role in various pathological circumstances. On the contrary, ROS can show selective toxicity which is used against cancer cells and pathogens. Photodynamic therapy (PDT) is based on three important components including a photosensitizer (PS), oxygen, and light. Upon excitation of the PS at a specific wavelength, the PDT process begins which leads to ROS generation. ROS produced during PDT could induce two different pathways. If PDT produces control and low ROS, it can lead to cell proliferation and differentiation. However, excess production of ROS by PDT causes cellular photo damage which is the main mechanism used in cancer treatment. This review summarizes the functions of ROS in living systems and describes role of PDT in production of controllable ROS and finally a special focus on current ROS-generating therapeutic protocols for regeneration and wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Reza Hosseinzadeh
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Academic center for education, culture and research, Urmia, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Kavosh Zandsalimi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
15
|
Ning X, He G, Zeng W, Xia Y. The photosensitizer-based therapies enhance the repairing of skin wounds. Front Med (Lausanne) 2022; 9:915548. [PMID: 36035433 PMCID: PMC9403269 DOI: 10.3389/fmed.2022.915548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Wound repair remains a clinical challenge and bacterial infection is a common complication that may significantly delay healing. Therefore, proper and effective wound management is essential. The photosensitizer-based therapies mainly stimulate the photosensitizer to generate reactive oxygen species through appropriate excitation source irradiation, thereby killing pathogenic microorganisms. Moreover, they initiate local immune responses by inducing the recruitment of immune cells as well as the production of proinflammatory cytokines. In addition, these therapies can stimulate the proliferation, migration and differentiation of skin resident cells, and improve the deposition of extracellular matrix; subsequently, they promote the re-epithelialization, angiogenesis, and tissue remodeling. Studies in multiple animal models and human skin wounds have proved that the superior sterilization property and biological effects of photosensitizer-based therapies during different stages of wound repair. In this review, we summarize the recent advances in photosensitizer-based therapies for enhancing tissue regeneration, and suggest more effective therapeutics for patients with skin wounds.
Collapse
Affiliation(s)
- Xiaoying Ning
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Gang He
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yumin Xia,
| |
Collapse
|
16
|
Intrinsic ROS Drive Hair Follicle Cycle Progression by Modulating DNA Damage and Repair and Subsequently Hair Follicle Apoptosis and Macrophage Polarization. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8279269. [PMID: 35903712 PMCID: PMC9315455 DOI: 10.1155/2022/8279269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
Hair follicles (HFs) maintain homeostasis through the hair cycles; therefore, disrupting the hair cycle may lead to hair loss. Our previous study showed that apoptosis-inducing factor (AIF) nuclear translocation and poly [ADP-ribose] polymerase 1 (PARP1) upregulation induced apoptosis in mouse hair follicles during the hair cycle transition from anagen to catagen. However, the mechanism underlying this phenomenon remains unclear. In this study, we found that intrinsic ROS levels increased during the hair follicle cycle transition from anagen to catagen, followed by abrupt DNA breaks and activation of homologous recombinant and nonhomologous end joining DNA repair, along with the enhancement of apoptosis. Mice in different stages of the hair cycle were sacrificed, and the dorsal skins were collected. The results of western blot and histological staining indicated that AIF-PARP1 plays a key role in HF apoptosis, but their role in the regulation of the HF cycle is not clear. Mice were treated with inhibitors from anagen to catagen: treatment with BMN 673, a PARP1 inhibitor, increased DNA breaks and activated the cytochrome c/caspase-3-mediated apoptotic pathway, accelerating HF regression. Ac-DEVD-CHO (Ac), a caspase-3 inhibitor, attenuated HF degeneration by upregulating PARP1 expression, suggesting a seesaw relationship between cytochrome c-caspase-3- and AIF-PARP1-mediated apoptosis, wherein PARP1 may be the fulcrum. In addition, macrophages were involved in regulating the hair cycle, and the rate of M1 macrophages around HFs increased during catagen, while more M2 macrophages were found during anagen and telogen. Our results indicate that intrinsic ROS drive HF cycle progression through DNA damage and repair, followed by apoptosis. Intrinsic ROS drive hair follicle cycle progression by modulating DNA damage and repair, and consecutively, hair follicle apoptosis and macrophage polarization work together to promote the hair follicle cycle.
Collapse
|
17
|
Kowalczyk A, Chikina M, Clark N. Complementary evolution of coding and noncoding sequence underlies mammalian hairlessness. eLife 2022; 11:76911. [PMID: 36342464 PMCID: PMC9803358 DOI: 10.7554/elife.76911] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Body hair is a defining mammalian characteristic, but several mammals, such as whales, naked mole-rats, and humans, have notably less hair. To find the genetic basis of reduced hair quantity, we used our evolutionary-rates-based method, RERconverge, to identify coding and noncoding sequences that evolve at significantly different rates in so-called hairless mammals compared to hairy mammals. Using RERconverge, we performed a genome-wide scan over 62 mammal species using 19,149 genes and 343,598 conserved noncoding regions. In addition to detecting known and potential novel hair-related genes, we also discovered hundreds of putative hair-related regulatory elements. Computational investigation revealed that genes and their associated noncoding regions show different evolutionary patterns and influence different aspects of hair growth and development. Many genes under accelerated evolution are associated with the structure of the hair shaft itself, while evolutionary rate shifts in noncoding regions also included the dermal papilla and matrix regions of the hair follicle that contribute to hair growth and cycling. Genes that were top ranked for coding sequence acceleration included known hair and skin genes KRT2, KRT35, PKP1, and PTPRM that surprisingly showed no signals of evolutionary rate shifts in nearby noncoding regions. Conversely, accelerated noncoding regions are most strongly enriched near regulatory hair-related genes and microRNAs, such as mir205, ELF3, and FOXC1, that themselves do not show rate shifts in their protein-coding sequences. Such dichotomy highlights the interplay between the evolution of protein sequence and regulatory sequence to contribute to the emergence of a convergent phenotype.
Collapse
Affiliation(s)
- Amanda Kowalczyk
- Carnegie Mellon-University of Pittsburgh PhD Program in Computational BiologyPittsburghUnited States,Department of Computational Biology, University of PittsburghPittsburghUnited States
| | - Maria Chikina
- Department of Computational Biology, University of PittsburghPittsburghUnited States
| | - Nathan Clark
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| |
Collapse
|
18
|
Fernández-Martos S, Calvo-Sánchez MI, Lobo-Aldezabal A, Sánchez-Adrada AI, Moreno C, Vitale M, Espada J. The deleterious effects induced by an acute exposure of human skin to common air pollutants are prevented by extracts of Deschampsia antarctica. Sci Rep 2021; 11:23751. [PMID: 34887500 PMCID: PMC8660883 DOI: 10.1038/s41598-021-03190-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
The homeostatic and regenerative potential of the skin is critically impaired by an increasing accumulation of air pollutants in human ecosystems. These toxic compounds are frequently implicated in pathological processes such as premature cutaneous ageing, altered pigmentation and cancer. In this scenario, innovative strategies are required to tackle the effects of severe air pollution on skin function. Here we have used a Human Skin Organotypic Culture (HSOC) model to characterize the deleterious effects of an acute topic exposure of human skin to moderately high concentrations of common ambient pollutants, including As, Cd, Cr, dioxins and tobacco smoke. All these toxic compunds inflict severe damage in the tissue, activating the AHR-mediated response to xenobiotics. We have further evaluated the potential of an aqueous leaf extract of the polyextremophile plant Deschampsia antarctica (Edafence) to protect human skin against the acute exposure to toxic pollutants. Our results indicate that pre-treatment of HSOC samples with this aqueous extract conuterbalances the deleterious effects of the exposure to toxic comunds and triggers the activation of key genes invoved in the redox system and in the pro-inflammatory/wound healing response in the skin, suggesting that this natural compound might be effectively used in vivo to protect human skin routinely in different daily conditions.
Collapse
Affiliation(s)
- Sandra Fernández-Martos
- Experimental Dermatology and Skin Biology Group, Ramon y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - María I Calvo-Sánchez
- Experimental Dermatology and Skin Biology Group, Ramon y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Building E, Ctra. M-515 Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Ana Lobo-Aldezabal
- Experimental Dermatology and Skin Biology Group, Ramon y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Building E, Ctra. M-515 Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | | | - Carmen Moreno
- Anatomic Pathology Service, Ramón y Cajal University Hospital, Madrid, Spain
| | - María Vitale
- Medical Affairs Department, Cantabria Labs, Madrid, Spain
| | - Jesús Espada
- Experimental Dermatology and Skin Biology Group, Ramon y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain.
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
19
|
Advances in Hair Restoration. CURRENT OTORHINOLARYNGOLOGY REPORTS 2021. [DOI: 10.1007/s40136-021-00368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Gallego-Rentero M, Gutiérrez-Pérez M, Fernández-Guarino M, Mascaraque M, Portillo-Esnaola M, Gilaberte Y, Carrasco E, Juarranz Á. TGFβ1 Secreted by Cancer-Associated Fibroblasts as an Inductor of Resistance to Photodynamic Therapy in Squamous Cell Carcinoma Cells. Cancers (Basel) 2021; 13:cancers13225613. [PMID: 34830768 PMCID: PMC8616019 DOI: 10.3390/cancers13225613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/06/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Photodynamic therapy (PDT) is used for the treatment of in situ cutaneous squamous cell carcinoma (cSCC), the second most common form of skin cancer, as well as for its precancerous form, actinic keratosis. However, relapses after the treatment can occur. Transforming growth factor β1 (TGFβ1) produced by cancer-associated fibroblasts (CAFs) in the tumor microenvironment has been pointed as a key player in the development of cSCC resistance to other therapies, such as chemotherapy. Here, we demonstrate that TGFβ1 produced by CAFs isolated from patients with cSCC can drive resistance to PDT in SCC cells. This finding opens up novel possibilities for strategy optimization in the field of cSCC resistance to PDT and highlights CAF-derived TGFβ1 as a potential target to improve the efficacy of PDT. Abstract As an important component of tumor microenvironment, cancer-associated fibroblasts (CAFs) have lately gained prominence owing to their crucial role in the resistance to therapies. Photodynamic therapy (PDT) stands out as a successful therapeutic strategy to treat cutaneous squamous cell carcinoma. In this study, we demonstrate that the transforming growth factor β1 (TGFβ1) cytokine secreted by CAFs isolated from patients with SCC can drive resistance to PDT in epithelial SCC cells. To this end, CAFs obtained from patients with in situ cSCC were firstly characterized based on the expression levels of paramount markers as well as the levels of TGFβ1 secreted to the extracellular environment. On a step forward, two established human cSCC cell lines (A431 and SCC13) were pre-treated with conditioned medium obtained from the selected CAF cultures. The CAF-derived conditioned medium effectively induced resistance to PDT in A431 cells through a reduction in the cell proliferation rate. This resistance effect was recapitulated by treating with recombinant TGFβ1 and abolished by using the SB525334 TGFβ1 receptor inhibitor, providing robust evidence of the role of TGFβ1 secreted by CAFs in the development of resistance to PDT in this cell line. Conversely, higher levels of recombinant TGFβ1 were needed to reduce cell proliferation in SCC13 cells, and no induction of resistance to PDT was observed in this cell line in response to CAF-derived conditioned medium. Interestingly, we probed that the comparatively higher intrinsic resistance to PDT of SCC13 cells was mediated by the elevated levels of TGFβ1 secreted by this cell line. Our results point at this feature as a promising biomarker to predict both the suitability of PDT and the chances to optimize the treatment by targeting CAF-derived TGFβ1 in the road to a more personalized treatment of particular cSCC tumors.
Collapse
Affiliation(s)
- María Gallego-Rentero
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
| | - María Gutiérrez-Pérez
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
| | - Montserrat Fernández-Guarino
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
- Dermatology Service, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Marta Mascaraque
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
| | - Mikel Portillo-Esnaola
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
| | - Yolanda Gilaberte
- Servicio de Dermatología, Hospital Miguel Servet, 50009 Zaragoza, Spain;
| | - Elisa Carrasco
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
- Correspondence: (E.C.); (Á.J.)
| | - Ángeles Juarranz
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
- Correspondence: (E.C.); (Á.J.)
| |
Collapse
|
21
|
Yang Z, Hu X, Zhou L, He Y, Zhang X, Yang J, Ju Z, Liou YC, Shen HM, Luo G, Hamblin MR, He W, Yin R. Photodynamic therapy accelerates skin wound healing through promoting re-epithelialization. BURNS & TRAUMA 2021; 9:tkab008. [PMID: 34514005 PMCID: PMC8420953 DOI: 10.1093/burnst/tkab008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Background Epidermal stem cells (EpSCs) that reside in cutaneous hair follicles and the basal layer of the epidermis are indispensable for wound healing and skin homeostasis. Little is known about the effects of photochemical activation on EpSC differentiation, proliferation and migration during wound healing. The present study aimed to determine the effects of photodynamic therapy (PDT) on wound healing in vivo and in vitro. Methods We created mouse full-thickness skin resection models and applied 5-aminolevulinic acid (ALA) for PDT to the wound beds. Wound healing was analysed by gross evaluation and haematoxylin–eosin staining in vivo. In cultured EpSCs, protein expression was measured using flow cytometry and immunohistochemistry. Cell migration was examined using a scratch model; apoptosis and differentiation were measured using flow cytometry. Results PDT accelerated wound closure by enhancing EpSC differentiation, proliferation and migration, thereby promoting re-epithelialization and angiogenesis. PDT inhibited inflammatory infiltration and expression of proinflammatory cytokines, whereas the secretion of growth factors was greater than in other groups. The proportion of transient amplifying cells was significantly greater in vivo and in vitro in the PDT groups. EpSC migration was markedly enhanced after ALA-induced PDT. Conclusions Topical ALA-induced PDT stimulates wound healing by enhancing re-epithelialization, promoting angiogenesis as well as modulating skin homeostasis. This work provides a preliminary theoretical foundation for the clinical administration of topical ALA-induced PDT in skin wound healing.
Collapse
Affiliation(s)
- Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lina Zhou
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yaxiong He
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, No. 601 Huangpu Street, Tianhe District, Guangzhou, Guangdong Province, 510632, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
22
|
Wang Q, Chang H, Shen Q, Li Y, Xing D. Photobiomodulation therapy for thrombocytopenia by upregulating thrombopoietin expression via the ROS-dependent Src/ERK/STAT3 signaling pathway. J Thromb Haemost 2021; 19:2029-2043. [PMID: 33501731 DOI: 10.1111/jth.15252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chemotherapy-induced thrombocytopenia (CIT) can increase the risk of bleeding, which may delay or prevent the administration of anticancer treatment schedules. Photobiomodulation therapy (PBMT), a non-invasive physical treatment, has been proposed to improve thrombocytopenia; however, its underlying regulatory mechanism is not fully understood. OBJECTIVE To further investigate the mechanism of thrombopoietin (TPO) in megakaryocytopoiesis and thrombopoiesis. METHODS Multiple approaches such as western blotting, cell transfection, flow cytometry, and animal studies were utilized to explore the effect and mechanism of PBMT on thrombopoiesis. RESULTS PBMT prevented a severe drop in platelet count by increasing platelet production, and then ameliorated CIT. Mechanistically, PBMT significantly upregulated hepatic TPO expression in a thrombocytopenic mouse model, which promoted megakaryocytopoiesis and thrombopoiesis. The levels of TPO mRNA and protein increased by PBMT via the Src/ERK/STAT3 signaling pathway in hepatic cells. Furthermore, the generation of the reactive oxygen species was responsible for PBMT-induced activation of Src and its downstream target effects. CONCLUSIONS Our research suggests that PBMT is a promising therapeutic strategy for the treatment of CIT.
Collapse
Affiliation(s)
- Qiuhong Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yonghua Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
23
|
Zhu L, Feng Z, Shu X, Gao Q, Wu J, Du Z, Li R, Wang L, Chen N, Li Y, Luo M, Wu J. In situ transplantation of adipose-derived stem cells via photoactivation improves glucose metabolism in obese mice. Stem Cell Res Ther 2021; 12:408. [PMID: 34266493 PMCID: PMC8281693 DOI: 10.1186/s13287-021-02494-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/04/2021] [Indexed: 01/10/2023] Open
Abstract
Background Accumulating evidence suggests that enhanced adipose tissue macrophages (ATMs) are associated with metabolic disorders in obesity and type 2 diabetes. However, therapeutic persistence and reduced homing stem cell function following cell delivery remains a critical hurdle for the clinical translation of stem cells in current approaches. Methods We demonstrate that the effect of a combined application of photoactivation and adipose-derived stem cells (ASCs) using transplantation into visceral epididymal adipose tissue (EAT) in obesity. Cultured ASCs were derived from subcutaneous white adipose tissue isolated from mice fed a normal diet (ND). Results In diet-induced obesity, implantation of light-treated ASCs improved glucose tolerance and ameliorated systemic insulin resistance. Intriguingly, compared with non-light-treated ASCs, light-treated ASCs reduced monocyte infiltration and the levels of ATMs in EAT. Moreover, implantation of light-treated ASCs exerts more anti-inflammatory effects by suppressing M1 polarization and enhancing macrophage M2 polarization in EAT. Mass spectrometry revealed that light-treated human obese ASCs conditioned medium retained a more complete secretome with significant downregulation of pro-inflammatory cytokines and chemokines. Conclusions These data suggest that the combined application of photoactivation and ASCs using transplantation into dysfunctional adipose tissue contribute to selective suppression of inflammatory responses and protection from insulin resistance in obesity and type 2 diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02494-4.
Collapse
Affiliation(s)
- Luochen Zhu
- Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, Jiangsu, People's Republic of China.,Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ziqian Feng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xin Shu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Qian Gao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jiaqi Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zuoqin Du
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Rong Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yi Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China. .,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
| |
Collapse
|
24
|
Jin H, Zou Z, Chang H, Shen Q, Liu L, Xing D. Photobiomodulation therapy for hair regeneration: A synergetic activation of β-CATENIN in hair follicle stem cells by ROS and paracrine WNTs. Stem Cell Reports 2021; 16:1568-1583. [PMID: 34019818 PMCID: PMC8190671 DOI: 10.1016/j.stemcr.2021.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Photobiomodulation therapy (PBMT) has shown encouraging results in the treatment of hair loss. However, the mechanism by which PBMT controls cell behavior to coordinate hair cycle is unclear. Here, PBMT is found to drive quiescent hair follicle stem cell (HFSC) activation and alleviate hair follicle atrophy. Mechanistically, PBMT triggers a new hair cycle by upregulating β-CATENIN expression in HFSCs. Loss of β-Catenin (Ctnnb1) in HFSCs blocked PBMT-induced hair regeneration. Additionally, we show PBMT-induced reactive oxygen species (ROS) activate the PI3K/AKT/GSK-3β signaling pathway to inhibit proteasome degradation of β-CATENIN in HFSCs. Furthermore, PBMT promotes the expression and secretion of WNTs in skin-derived precursors (SKPs) to further activate the β-CATENIN signal in HFSCs. By contrast, eliminating ROS or inhibiting WNT secretion attenuates the activation of HFSCs triggered by PBMT. Collectively, our work suggests that PBMT promotes hair regeneration through synergetic activation of β-CATENIN in HFSCs by ROS and paracrine WNTs by SKPs.
Collapse
Affiliation(s)
- Huan Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lingfeng Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
25
|
Abreu CM, Reis RL, Marques AP. Dermal papilla cells and melanocytes response to physiological oxygen levels depends on their interactions. Cell Prolif 2021; 54:e13013. [PMID: 34101928 PMCID: PMC8249782 DOI: 10.1111/cpr.13013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/15/2021] [Accepted: 02/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background Human dermal papilla (DP) cells and melanocytes (hMel) are central players in hair growth and pigmentation, respectively. In hair follicles (HFs), oxygen (O2) levels average 5%, being coupled with the production of reactive oxygen species (ROS), necessary to promote hair growth. Materials and Methods DP cell and hMel proliferation and phenotype were studied under physiological (5%O2, physoxia) or atmospheric (21%O2, normoxia) oxygen levels. hMel‐DP cells interactions were studied in indirect co‐culture or by directly co‐culturing hMel with DP spheroids, to test whether their interaction affected the response to physoxia. Results Physoxia decreased DP cell senescence and improved their secretome and phenotype, as well as hMel proliferation, migration, and tyrosinase activity. In indirect co‐cultures, physoxia affected DP cells’ alkaline phosphatase (ALP) activity but their signalling did not influence hMel proliferation or tyrosinase activity. Additionally, ROS production was higher than in monocultures but a direct correlation between ROS generation and ALP activity in DP cells was not observed. In the 3D aggregates, where hMel are organized around the DP, both hMel tyrosinase and DP cells ALP activities, their main functional indicators, plus ROS production were higher in physoxia than normoxia. Conclusions Overall, we showed that the response to physoxia differs according to hMel‐DP cells interactions and that the microenvironment recreated when in direct contact favours their functions, which can be relevant for hair regeneration purposes.
Collapse
Affiliation(s)
- Carla M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
26
|
Xu L, Gao W, Bai S, Duan H, Pan X, Wu W. MEF/KSF-conditioned culture medium: An effective method for in vitro culture of mouse dermal papilla cells with osteogenic differentiation potential. Exp Ther Med 2021; 22:828. [PMID: 34149874 PMCID: PMC8200806 DOI: 10.3892/etm.2021.10260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/08/2021] [Indexed: 11/06/2022] Open
Abstract
Hair follicle stem cells are pluripotent and have a self-renewal capacity and multi-differentiation potential in vitro. As hair follicle stem cells can be easily sampled from the skin and hair of clinical patients at a considerable quantity, these cells have potential applications in wound repair and skin tissue engineering. Effective approaches for the in vitro culture and amplification of mouse hair follicle stem cells, as well as the in vitro osteogenic differentiation potential and cell source when obtaining mouse-separated cells were examined. Serial subculture was performed in different culture systems. Cell source was detected based on the relevant surface markers derived from mouse hair follicles at the gene and protein levels, and the differential potential was determined. The proliferative ability of hair follicle-derived stem cells obtained from mouse embryonic fibroblast (MEF)/keratinocyte serum-free medium (KSF)-conditioned medium was the highest among all culture systems. The induced group had a stronger osteogenic differentiation potential compared with the non-induced group, indicating that the cells obtained from MEF/KSF-conditioned medium were cells derived from the hair follicle dermal papilla. Therefore, the strong osteogenic differentiation potential of the hair follicle-derived mesenchymal stem cells was screened with MEF/KSF-conditioned culture medium following amplification, and biological characteristics similar to those of hair follicle dermal papilla cells were observed.
Collapse
Affiliation(s)
- Liang Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wenlan Gao
- Department of Stomatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Shanshan Bai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Huichuan Duan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaogang Pan
- Department of Orthodontics, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wei Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
27
|
Vallejo MCS, Moura NMM, Gomes ATPC, Joaquinito ASM, Faustino MAF, Almeida A, Gonçalves I, Serra VV, Neves MGPMS. The Role of Porphyrinoid Photosensitizers for Skin Wound Healing. Int J Mol Sci 2021; 22:4121. [PMID: 33923523 PMCID: PMC8072979 DOI: 10.3390/ijms22084121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
Microorganisms, usually bacteria and fungi, grow and spread in skin wounds, causing infections. These infections trigger the immune system and cause inflammation and tissue damage within the skin or wound, slowing down the healing process. The use of photodynamic therapy (PDT) to eradicate microorganisms has been regarded as a promising alternative to anti-infective therapies, such as those based on antibiotics, and more recently, is being considered for skin wound-healing, namely for infected wounds. Among the several molecules exploited as photosensitizers (PS), porphyrinoids exhibit suitable features for achieving those goals efficiently. The capability that these macrocycles display to generate reactive oxygen species (ROS) gives a significant contribution to the regenerative process. ROS are responsible for avoiding the development of infections by inactivating microorganisms such as bacteria but also by promoting cell proliferation through the activation of stem cells which regulates inflammatory factors and collagen remodeling. The PS can act solo or combined with several materials, such as polymers, hydrogels, nanotubes, or metal-organic frameworks (MOF), keeping both the microbial photoinactivation and healing/regenerative processes' effectiveness. This review highlights the developments on the combination of PDT approach and skin wound healing using natural and synthetic porphyrinoids, such as porphyrins, chlorins and phthalocyanines, as PS, as well as the prodrug 5-aminolevulinic acid (5-ALA), the natural precursor of protoporphyrin-IX (PP-IX).
Collapse
Affiliation(s)
- Mariana C. S. Vallejo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Ana T. P. C. Gomes
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Ana S. M. Joaquinito
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Maria Amparo F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Idalina Gonçalves
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Vanda Vaz Serra
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
| | - Maria Graça P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| |
Collapse
|
28
|
Lukac M, Zorman A, Lukac N, Perhavec T, Tasic B. Characteristics of Non-Ablative Resurfacing of Soft Tissues by Repetitive Er:YAG Laser Pulse Irradiation. Lasers Surg Med 2021; 53:1266-1278. [PMID: 33792949 PMCID: PMC8518959 DOI: 10.1002/lsm.23402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/04/2021] [Accepted: 03/14/2021] [Indexed: 11/12/2022]
Abstract
Background and Objectives Recently, several minimally invasive gynecological, ENT and esthetic procedures have been introduced that are based on delivering “smooth” sequences of Er:YAG laser pulses to cutaneous or mucosal tissue at moderate cumulative fluences that are not only below the ablation threshold but typically also do not require local anesthesia. To explain the observed clinical results using “smooth‐resurfacing,” it has been suggested that in addition to the direct heat injury to deeper‐lying connective tissues, there is an additional mechanism based on indirect triggering of tissue regeneration through short‐exposure, intense heat shocking of epithelia. The goal of this study is to improve understanding of the complex dynamics of the exposure of tissues to a series of short Er:YAG laser pulses, during which the thermal exposure times transition from extremely short to long durations. Study Design/Materials and Methods A physical model of laser‐tissue interaction was used to calculate the temperature evolution at the irradiated surface and deeper within the tissue, in combination with a chemical model of tissue response based on the recently introduced variable heat shock (VHS) model, which assumes that the tissue damage represents a combined effect of two limiting Arrhenius′ processes, defining cell viability at extremely long and short exposure times. Superficial tissue temperature evolution was measured during smooth‐resurfacing of cutaneous and mucosal tissue, and compared with the model. Two modalities of non‐ablative resurfacing were explored: a standard “sub‐resurfacing” modality with cumulative fluences near the ablation threshold, and the “smooth‐resurfacing” modality with fluences below the patient′s pain threshold. An exemplary skin tightening clinical situation was explored by measuring pain tolerance threshold fluences for treatments on abdominal skin with and without topical anesthesia. The obtained temperature data and pain thresholds were then used to study the influence of Er:YAG laser sequence parameters on the superficial (triggering) and deep (coagulative) tissue response. Results The simulations show that for the sub‐resurfacing modality, the parameter range where no excessive damage to the tissue will occur is very narrow. On the other hand, using pain tolerance as an indicator, the smooth‐resurfacing treatments can be performed more safely and without sacrificing the treatment efficacy. Two preferred smooth‐resurfacing treatment modalities were identified. One involves using optimally long pulse sequence durations (≈1–3 seconds) with an optimal number of pulses (N ≈ 10–30), resulting in a maximal short‐exposure superficial tissue response and moderate coagulation depths. And for deeper coagulation, without significant superficial heat shocking, very long pulse sequences (>5 seconds) with a large number of delivered pulses are to be used in combination with topical anesthesia. Conclusions A comparison of the simulations with the established smooth‐resurfacing clinical protocols in gynecology, ENT, and esthetics suggests that, through clinical experience, the clinical protocols have been optimized for the maximal superficial heat shock triggering effect. Further research is needed to gain a better understanding of the proposed role of heat shock triggering in the clinically observed regeneration of cutaneous, vaginal, and oral tissues following Er:YAG laser smooth‐resurfacing. Lasers Surg. Med. © 2021 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Matjaz Lukac
- Institut Jozef Stefan, Jamova 39 SI-1000, Ljubljana, Slovenia
| | - Anze Zorman
- Medilase Dermatology & Laser Center, Tbilisijska 59 SI-1000, Ljubljana, Slovenia
| | - Nejc Lukac
- Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6 SI-1000, Ljubljana, Slovenia
| | | | - Blaz Tasic
- Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6 SI-1000, Ljubljana, Slovenia
| |
Collapse
|
29
|
Lee SA, Li KN, Tumbar T. Stem cell-intrinsic mechanisms regulating adult hair follicle homeostasis. Exp Dermatol 2020; 30:430-447. [PMID: 33278851 DOI: 10.1111/exd.14251] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Adult hair follicle stem cells (HFSCs) undergo dynamic and periodic molecular changes in their cellular states throughout the hair homeostatic cycle. These states are tightly regulated by cell-intrinsic mechanisms and by extrinsic signals from the microenvironment. HFSCs are essential not only for fuelling hair growth, but also for skin wound healing. Increasing evidence suggests an important role of HFSCs in organizing multiple skin components around the hair follicle, thus functioning as an organizing centre during adult skin homeostasis. Here, we focus on recent findings on cell-intrinsic mechanisms of HFSC homeostasis, which include transcription factors, histone modifications, DNA regulatory elements, non-coding RNAs, cell metabolism, cell polarity and post-transcriptional mRNA processing. Several transcription factors are now known to participate in well-known signalling pathways that control hair follicle homeostasis, as well as in super-enhancer activities to modulate HFSC and progenitor lineage progression. Interestingly, HFSCs have been shown to secrete molecules that are important in guiding the organization of several skin components around the hair follicle, including nerves, arrector pili muscle and vasculature. Finally, we discuss recent technological advances in the field such as single-cell RNA sequencing and live imaging, which revealed HFSC and progenitor heterogeneity and brought new light to understanding crosstalking between HFSCs and the microenvironment. The field is well on its way to generate a comprehensive map of molecular interactions that should serve as a solid theoretical platform for application in hair and skin disease and ageing.
Collapse
Affiliation(s)
- Seon A Lee
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kefei Nina Li
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tudorita Tumbar
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
30
|
Nicu C, Wikramanayake TC, Paus R. Clues that mitochondria are involved in the hair cycle clock: MPZL3 regulates entry into and progression of murine hair follicle cycling. Exp Dermatol 2020; 29:1243-1249. [PMID: 33040410 DOI: 10.1111/exd.14213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
The molecular nature of the hair cycle clock (HCC), the intrinsic oscillator system that drives hair follicle (HF) cycling, remains incompletely understood; therefore, all relevant key players need to be identified. Here, we present evidence that implicates myelin protein zero-like 3 (MPZL3), a multifunctional nuclear-encoded mitochondrial protein known to be involved in epidermal differentiation, in HCC regulation. By analysing global Mpzl3 knockout (-/-) mice, we show that in the absence of functional MPZL3, mice commence HF cycling with retarded first catagen-telogen transition after normal postnatal HF morphogenesis. However, Mpzl3 -/- mice subsequently display strikingly accelerated HF cycling, i.e. a precocious telogen-to-anagen transition during the second hair cycle, compared to controls, suggesting that MPZL3 inhibits anagen entry. We also show that intrafollicular MPZL3 protein expression fluctuates in a hair cycle-dependent manner. In telogen HFs, MPZL3 is localized to the secondary hair germ, an epicentre of hair cycle regulation, where it partially co-localizes with P-cadherin. In early anagen HF, MPZL3 is localized immediately distal to the proximal hair matrix. These findings introduce the novel concept that mitochondria are more actively involved in hair cycle control than previously recognized and that MPZL3 plays a central role in the HCC.
Collapse
Affiliation(s)
- Carina Nicu
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tongyu C Wikramanayake
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
31
|
Carrasco E, Stockert JC, Juarranz Á, Blázquez-Castro A. Plasmonic Hot-Electron Reactive Oxygen Species Generation: Fundamentals for Redox Biology. Front Chem 2020; 8:591325. [PMID: 33425851 PMCID: PMC7793889 DOI: 10.3389/fchem.2020.591325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
For decades, the possibility to generate Reactive Oxygen Species (ROS) in biological systems through the use of light was mainly restricted to the photodynamic effect: the photoexcitation of molecules which then engage in charge- or energy-transfer to molecular oxygen (O2) to initiate ROS production. However, the classical photodynamic approach presents drawbacks, like per se chemical reactivity of the photosensitizing agent or fast molecular photobleaching due to in situ ROS generation, to name a few. Recently, a new approach, which promises many advantages, has entered the scene: plasmon-driven hot-electron chemistry. The effect takes advantage of the photoexcitation of plasmonic resonances in metal nanoparticles to induce a new cohort of photochemical and redox reactions. These metal photo-transducers are considered chemically inert and can undergo billions of photoexcitation rounds without bleaching or suffering significant oxidative alterations. Also, their optimal absorption band can be shape- and size-tailored in order to match any of the near infrared (NIR) biological windows, where undesired absorption/scattering are minimal. In this mini review, the basic mechanisms and principal benefits of this light-driven approach to generate ROS will be discussed. Additionally, some significant experiments in vitro and in vivo will be presented, and tentative new avenues for further research will be advanced.
Collapse
Affiliation(s)
- Elisa Carrasco
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
| | - Juan Carlos Stockert
- Area Investigación, Instituto de Oncología “Angel H. Roffo”, Universidad de Buenos Aires, Buenos Aires, Argentina
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
| | | |
Collapse
|
32
|
Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005029. [PMID: 34483808 PMCID: PMC8415493 DOI: 10.1002/adfm.202005029] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 05/04/2023]
Abstract
Light is a particularly appealing tool for on-demand drug delivery due to its noninvasive nature, ease of application and exquisite temporal and spatial control. Great progress has been achieved in the development of novel light-driven drug delivery strategies with both breadth and depth. Light-controlled drug delivery platforms can be generally categorized into three groups: photochemical, photothermal, and photoisomerization-mediated therapies. Various advanced materials, such as metal nanoparticles, metal sulfides and oxides, metal-organic frameworks, carbon nanomaterials, upconversion nanoparticles, semiconductor nanoparticles, stimuli-responsive micelles, polymer- and liposome-based nanoparticles have been applied for light-stimulated drug delivery. In view of the increasing interest in on-demand targeted drug delivery, we review the development of light-responsive systems with a focus on recent advances, key limitations, and future directions.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kam W Leong
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
33
|
Morgun EI, Vorotelyak EA. Epidermal Stem Cells in Hair Follicle Cycling and Skin Regeneration: A View From the Perspective of Inflammation. Front Cell Dev Biol 2020; 8:581697. [PMID: 33240882 PMCID: PMC7680886 DOI: 10.3389/fcell.2020.581697] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
There are many studies devoted to the role of hair follicle stem cells in wound healing as well as in follicle self-restoration. At the same time, the influence of the inflammatory cells on the hair follicle cycling in both injured and intact skin is well established. Immune cells of all wound healing stages, including macrophages, γδT cells, and T regs, may activate epidermal stem cells to provide re-epithelization and wound-induced hair follicle neogenesis. In addition to the ability of epidermal cells to maintain epidermal morphogenesis through differentiation program, they can undergo de-differentiation and acquire stem features under the influence of inflammatory milieu. Simultaneously, a stem cell compartment may undergo re-programming to adopt another fate. The proportion of skin resident immune cells and wound-attracted inflammatory cells (e.g., neutrophils and macrophages) in wound-induced hair follicle anagen and plucking-induced anagen is still under discussion to date. Experimental data suggesting the role of reactive oxygen species and prostaglandins, which are uncharacteristic of the intact skin, in the hair follicle cycling indicates the role of neutrophils in injury-induced conditions. In this review, we discuss some of the hair follicles stem cell activities, such as wound-induced hair follicle neogenesis, hair follicle cycling, and re-epithelization, through the prism of inflammation. The plasticity of epidermal stem cells under the influence of inflammatory microenvironment is considered. The relationship between inflammation, scarring, and follicle neogenesis as an indicator of complete wound healing is also highlighted. Taking into consideration the available data, we also conclude that there may exist a presumptive interlink between the stem cell activation, inflammation and the components of programmed cell death pathways.
Collapse
Affiliation(s)
- Elena I. Morgun
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
34
|
Guo S, Gong L, Shen Q, Xing D. Photobiomodulation reduces hepatic lipogenesis and enhances insulin sensitivity through activation of CaMKKβ/AMPK signaling pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112075. [PMID: 33152638 DOI: 10.1016/j.jphotobiol.2020.112075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Photobiomodulation (PBM) could improve systemic blood glucose and insulin resistance in diet-induced diabetic mice. A few possible molecular mechanisms for the beneficial effects of PBM on diabetes have been proposed, but there is still an urgent need to explore the underlying mechanisms that support the application of PBM in the treatment of diabetes. Our study aimed to evaluate the effects of PBM on lipid metabolism in the liver of high-fat diet (HFD)-induced mice and explore the potential mechanisms of PBM on obesity and type 2 diabetes. Here, we administered PBM therapy (wavelength: 635 nm, energy density: 8 J/cm2) daily for eight weeks to HFD-induced mice. We detected that eight-week daily administration of PBM ameliorated HFD-induced gain weight, hyperlipidemia, and hyperglycemia, but also protected against diet-induced hepatic steatosis and insulin resistance. Furthermore, PBM increased AMP-activated protein kinase (AMPK) activation, lowered nuclear translocation of sterol regulatory element binding protein 1 (SREBP1), decreased aberrant lipogenesis, and enhanced insulin sensitive in HFD-induced mice livers. We also observed that Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) activation was responsible for AMPK activation in insulin-resistant HepG2 cells exposed to PBM. In summary, PBM at 635 nm and 8 J/cm2 improved hepatic lipid metabolism and inhibited the development of HFD-induced obesity and type 2 diabetes. Moreover, increased intracellular Ca2+ content and CaMKKβ-dependent AMPK activation were possible molecular mechanisms underlying the PBM-induced improvement on obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Shuang Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Longlong Gong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
35
|
Guo Y, Qu Q, Chen J, Miao Y, Hu Z. Proposed mechanisms of low-level light therapy in the treatment of androgenetic alopecia. Lasers Med Sci 2020; 36:703-713. [PMID: 33111207 DOI: 10.1007/s10103-020-03159-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022]
Abstract
Androgenetic alopecia (AGA) is a global challenge, affecting a large number of people worldwide. Efficacy of the existed treatments can barely meet the demands of patients. Patients who are poorly responding to those treatments are seeking for a more effective and suitable technique to treat their disease. Low-level light therapy (LLLT) is a newly developed technique, which has been proved to stimulate hair growth. Based on the function principle of LLLT in other domains and refer to the published literatures, we write this review to neaten and elucidate the possible mechanism of LLLT in the treatment of AGA. A review of published literature which is associated with keywords LLLT, photobiomodulation, AGA, treatment, hair growth, and mechanism was performed to elucidate the proposed mechanism of LLLT in the treatment of AGA. The present study shows that LLLT can accelerate hair growth in AGA patients. The proposed mechanism of LLLT in treating AGA may vary among different specialists. But we can summarize the consensual mechanisms as follows; low-level light absorbed by chromophores can lead to the production of nitric oxide (NO) and the modulation of reactive oxygen species (ROS). These mobilized molecules subsequently activate redox-related signaling pathways in hair follicle cells and perifollicular cells. Finally, these activated cells participate in the regrowth of hair follicle. Even though the efficacy of LLLT in the treatment of AGA in both men and women has already been confirmed, the present studies focusing on discovering LLLT are still inadequate and unsystematic. More studies are needed to standardize the optimum treatment parameters applied in promoting hair growth and determine the long-term safety and efficacy of LLLT. Current recognitions about the mechanisms of LLLT, mainly focused on the molecules that may take effect, neglected different cellular components that are functional in the hair follicle macro-environment.
Collapse
Affiliation(s)
- Yilong Guo
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University Guangzhou, Guangzhou, 510515, Guangdong Province, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University Guangzhou, Guangzhou, 510515, Guangdong Province, China
| | - Jian Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University Guangzhou, Guangzhou, 510515, Guangdong Province, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University Guangzhou, Guangzhou, 510515, Guangdong Province, China.
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University Guangzhou, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
36
|
Leitão DDSTC, Siqueira FC, de Sousa SHB, Mercadante AZ, Chisté RC, Lopes AS. Amazonian Eryngium foetidum leaves exhibited very high contents of bioactive compounds and high singlet oxygen quenching capacity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1811311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Francilia Campos Siqueira
- Postgraduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Sérgio Henrique Brabo de Sousa
- Postgraduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| | | | - Renan Campos Chisté
- Postgraduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Alessandra Santos Lopes
- Postgraduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| |
Collapse
|
37
|
Fan X, Li K, Zhu L, Deng X, Feng Z, Xu C, Liu S, Wu J. Prolonged therapeutic effects of photoactivated adipose-derived stem cells following ischaemic injury. Acta Physiol (Oxf) 2020; 230:e13475. [PMID: 32306486 DOI: 10.1111/apha.13475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
AIM Adipose-derived stem cells (ASCs) therapies are emerging as a promising approach to therapeutic angiogenesis. Therapeutic persistence and reduced primitive stem cell function following cell delivery remains a critical hurdle for the clinical translation of stem cells in current approaches. METHODS Cultured ASCs were derived from subcutaneous white adipose tissue isolated from mice fed a normal diet (ND). Unilateral hindlimb ischaemia model was induced in high-fat diet (HFD)-fed mice by femoral artery interruption, after which photoactivated and non-light-treated ASCs were injected into the tail vein of mice. Laser Doppler imaging was conducted to measure the blood flow reperfusion. Capillary density was measured in the ischaemic gastrocnemius muscle. mRNA levels of angiogenic factors were determined by reverse-transcription polymerase chain reaction. Flow cytometry was used to determine the characterization of ASCs and endothelial progenitor cell (EPC). Human ASCs secretomes were analysed by liquid chromatography tandem mass spectrometry. RESULTS Our study demonstrated that photoactivated ND-ASCs prolonged functional blood flow perfusion and increased ASCs-derived EPC and neovascularization 38 days after ligation, when compared with saline-treated controls. Profiling analysis in ischaemic muscles showed upregulation of genes associated with pro-angiogenic factors after injection of photoactivated ND-ASCs when compared with the non-light-treated ASCs or saline treated HFD mice. Mass spectrometry revealed that light-treated ASCs conditioned medium retained a more complete pro-angiogenic activity with significant upregulation of angiogenesis related proteins. CONCLUSION Our data demonstrates that photoactivated ND-ASCs improve blood flow recovery and their injection may prove to be a useful strategy for the prevention and treatment of diabetic peripheral arterial disease.
Collapse
Affiliation(s)
- Xin Fan
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Kai Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Luochen Zhu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Ziqian Feng
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Chunrong Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Sijing Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| |
Collapse
|
38
|
A Photodynamic Tool to Promote a Sustained, ROS-Dependent Growth of Human Hair Follicles in Ex Vivo Culture. Methods Mol Biol 2020. [PMID: 32857345 DOI: 10.1007/978-1-0716-0896-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Reactive oxygen species (ROS) may severely affect the biochemical viability of most cells. However, ROS may act also as key second messengers regulating important physiological functions in eukaryotic organisms. Of special interest is the potential role of ROS in the regulation of stem cell function and tissue homeostasis and regeneration in adult mammalian tissues. In this context, the hair follicle constitutes an excellent experimental model to study this aspect of ROS biology.Here we present a robust protocol to promote a sustained growth of ex vivo cultured human hair follicles based on the induction of a transient/modulable production of nonlethal endogenous ROS levels in the tissue through a protoporphyrin IX-dependent photodynamic procedure. The light-switchable ROS production activates hair follicle stem cell niches, induces cell proliferation, and maintains the growth/anagen phase for long time. This approach constitutes a complementary experimental tool to study the physiological roles of ROS in human tissues.
Collapse
|
39
|
Calvo-Sánchez MI, Fernández-Martos S, Carrasco E, Moreno-Bueno G, Bernabéu C, Quintanilla M, Espada J. A role for the Tgf-β/Bmp co-receptor Endoglin in the molecular oscillator that regulates the hair follicle cycle. J Mol Cell Biol 2020; 11:39-52. [PMID: 30239775 PMCID: PMC6359924 DOI: 10.1093/jmcb/mjy051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
The hair follicle is a biological oscillator that alternates growth, regression, and rest phases driven by the sequential activation of the proliferation/differentiation programs of resident stem cell populations. The activation of hair follicle stem cell niches and subsequent entry into the growing phase is mainly regulated by Wnt/β-catenin signalling, while regression and resting phases are mainly regulated by Tgf-β/Bmp/Smad activity. A major question still unresolved is the nature of the molecular switch that dictates the coordinated transition between both signalling pathways. Here we have focused on the role of Endoglin (Eng), a key co-receptor for members of the Tgf-β/Bmp family of growth factors. Using an Eng haploinsufficient mouse model, we report that Eng is required to maintain a correct follicle cycling pattern and for an adequate stimulation of hair follicle stem cell niches. We further report that β-catenin binds to the Eng promoter depending on Bmp signalling. Moreover, we show that β-catenin interacts with Smad4 in a Bmp/Eng-dependent context and both proteins act synergistically to activate Eng promoter transcription. These observations point to the existence of a growth/rest switching mechanism in the hair follicle that is based on an Eng-dependent feedback cross-talk between Wnt/β-catenin and Bmp/Smad signals.
Collapse
Affiliation(s)
- María I Calvo-Sánchez
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC)-Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain
| | | | - Elisa Carrasco
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC)-Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Gema Moreno-Bueno
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC)-Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC)-Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jesús Espada
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC)-Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O´Higgins, Santiago, Chile
| |
Collapse
|
40
|
The Role of Extracellular Vesicles in Cutaneous Remodeling and Hair Follicle Dynamics. Int J Mol Sci 2019; 20:ijms20112758. [PMID: 31195626 PMCID: PMC6600598 DOI: 10.3390/ijms20112758] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are cell-derived membranous structures that were originally catalogued as a way of releasing cellular waste products. Since the discovery of their function in intercellular communication as carriers of proteins, lipids, and DNA and RNA molecules, numerous therapeutic approaches have focused on the use of EVs, in part because of their minimized risk compared to cell-based therapies. The skin is the organ with the largest surface in the body. Besides the importance of its body barrier function, much attention has been paid to the skin in regenerative medicine because of its cosmetic aspect, which is closely related to disorders affecting pigmentation and the presence or absence of hair follicles. The use of exosomes in therapeutic approaches for cutaneous wound healing has been reported and is briefly reviewed here. However, less attention has been paid to emerging interest in the potential capacity of EVs as modulators of hair follicle dynamics. Hair follicles are skin appendices that mainly comprise an epidermal and a mesenchymal component, with the former including a major reservoir of epithelial stem cells but also melanocytes and other cell types. Hair follicles continuously cycle, undergoing consecutive phases of resting, growing, and regression. Many biomolecules carried by EVs have been involved in the control of the hair follicle cycle and stem cell function. Thus, investigating the role of either naturally produced or therapeutically delivered EVs as signaling vehicles potentially involved in skin homeostasis and hair cycling may be an important step in the attempt to design future strategies towards the efficient treatment of several skin disorders.
Collapse
|
41
|
Morimoto H, Kanastu-Shinohara M, Ogonuki N, Kamimura S, Ogura A, Yabe-Nishimura C, Mori Y, Morimoto T, Watanabe S, Otsu K, Yamamoto T, Shinohara T. ROS amplification drives mouse spermatogonial stem cell self-renewal. Life Sci Alliance 2019; 2:2/2/e201900374. [PMID: 30940732 PMCID: PMC6448598 DOI: 10.26508/lsa.201900374] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023] Open
Abstract
Although reactive oxygen species (ROS) are required for spermatogonial stem cell (SSC) self-renewal, the mechanism has remained unknown. We show that SSC self-renewal signals activate MAPK14/MAPK7 pathway to induce nuclear translocation of BCL6B and activation of NOX1. Reactive oxygen species (ROS) play critical roles in self-renewal division for various stem cell types. However, it remains unclear how ROS signals are integrated with self-renewal machinery. Here, we report that the MAPK14/MAPK7/BCL6B pathway creates a positive feedback loop to drive spermatogonial stem cell (SSC) self-renewal via ROS amplification. The activation of MAPK14 induced MAPK7 phosphorylation in cultured SSCs, and targeted deletion of Mapk14 or Mapk7 resulted in significant SSC deficiency after spermatogonial transplantation. The activation of this signaling pathway not only induced Nox1 but also increased ROS levels. Chemical screening of MAPK7 targets revealed many ROS-dependent spermatogonial transcription factors, of which BCL6B was found to initiate ROS production by increasing Nox1 expression via ETV5-induced nuclear translocation. Because hydrogen peroxide or Nox1 transfection also induced BCL6B nuclear translocation, our results suggest that BCL6B initiates and amplifies ROS signals to activate ROS-dependent spermatogonial transcription factors by forming a positive feedback loop.
Collapse
Affiliation(s)
- Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mito Kanastu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science, Tokyo, Japan
| | - Narumi Ogonuki
- Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba, Japan
| | - Satoshi Kamimura
- Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba, Japan
| | - Atsuo Ogura
- Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba, Japan
| | | | - Yoshifumi Mori
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Morimoto
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Satoshi Watanabe
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Takuya Yamamoto
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science, Tokyo, Japan.,Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Yang BY, Deng GY, Zhao RZ, Dai CY, Jiang CY, Wang XJ, Jing YF, Liu XJ, Xia SJ, Han BM. Porous Se@SiO 2 nanosphere-coated catheter accelerates prostatic urethra wound healing by modulating macrophage polarization through reactive oxygen species-NF-κB pathway inhibition. Acta Biomater 2019; 88:392-405. [PMID: 30753941 DOI: 10.1016/j.actbio.2019.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
Abstract
Benign prostatic hyperplasia (BPH) patients experience complications after surgery. We studied oxidative stress scavenging by porous Se@SiO2 nanospheres in prostatic urethra wound healing after transurethral resection of the prostate (TURP). Beagle dogs were randomly distributed into two groups after establishing TURP models. Wound recovery and oxidative stress levels were evaluated. Re-epithelialization and the macrophage distribution at the wound site were assessed by histology. The mechanism by which porous Se@SiO2 nanospheres regulated macrophage polarization was investigated by qRT-PCR, western blotting, flow cytometry, immunofluorescence and dual luciferase reporter gene assays. Our results demonstrated that Porous Se@SiO2 nanosphere-coated catheters advance re-epithelization of the prostatic urethra, accelerating wound healing in beagle dogs after TURP, and improve the antioxidant capacity to inhibit oxidative stress and induced an M2 phenotype transition of macrophages at the wound. By restraining the function of reactive oxygen species (ROS), porous Se@SiO2 nanospheres downregulated Ikk, IκB and p65 phosphorylation to block the downstream NF-κB pathway in macrophages in vitro. Since activation of NF-κB signaling cascades drives macrophage polarization, porous Se@SiO2 nanospheres promoted macrophage phenotype conversion from M1 to M2. Our findings suggest that porous Se@SiO2 nanosphere-coated catheters promote postoperative wound recovery in the prostatic urethra by promoting macrophage polarization toward the M2 phenotype through suppression of the ROS-NF-κB pathway, attenuating the inflammatory response. STATEMENT OF SIGNIFICANCE: The inability to effectively control post-operative inflammatory responses after surgical treatment of benign prostatic hyperplasia (BPH) remains a challenge to researchers and surgeons, as it can lead to indirect cell death and ultimately delay wound healing. Macrophages at the wound site work as pivotal regulators of local inflammatory response. Here, we designed and produced a new type of catheter with a coating of porous Se@SiO2 nanosphere and demonstrated its role in promoting prostatic urethra wound repair by shifting macrophage polarization toward the anti-inflammatory M2 phenotype via suppressing ROS-NF-κB pathway. These results indicate that the use of porous Se@SiO2 nanosphere-coated catheter may provide a therapeutic strategy for postoperative complications during prostatic urethra wound healing to improve patient quality of life.
Collapse
|
43
|
Intrinsic activation of cell growth and differentiation in ex vivo cultured human hair follicles by a transient endogenous production of ROS. Sci Rep 2019; 9:4509. [PMID: 30872609 PMCID: PMC6418192 DOI: 10.1038/s41598-019-39992-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/07/2019] [Indexed: 02/06/2023] Open
Abstract
The emerging variety of signalling roles for ROS in eukaryotic cells and tissues is currently a matter of intense research. Here we make use of ex vivo cultured single human hair follicles as an experimental model to demonstrate that a transient production of non-lethal endogenous ROS levels in these mini-organs promotes efficiently the entry into the growth phase (anagen). The stimulatory process implicates the specific activation of the hair follicle stem cell niche, encompassing the induction of stem cell differentiation markers (Ck15), overall cell proliferation and sustained growth of the tissue associated with expression of gen targets (Ccnd1) concomitant with the inhibition of Wnt signaling antagonists and repressors (Dkk1, Gsk3β) of Wnt signaling. As a whole, this observation indicates that, once activated, ROS signalling is an intrinsic mechanism regulating the hair follicle stem cell niche independently of any external signal.
Collapse
|
44
|
Patel M, Nakaji‐Hirabayashi T, Matsumura K. Effect of dual‐drug‐releasing micelle–hydrogel composite on wound healingin vivoin full‐thickness excision wound rat model. J Biomed Mater Res A 2019; 107:1094-1106. [DOI: 10.1002/jbm.a.36639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/24/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Monika Patel
- School of Materials ScienceJapan Advanced Institute of Science and Technology Nomi, Ishikawa, 923‐1292 Japan
| | - Tadashi Nakaji‐Hirabayashi
- Graduate School of Science and EngineeringUniversity of Toyama Toyama, 930‐8555 Japan
- Graduate School of Innovative Life ScienceUniversity of Toyama Toyama, 930‐8555 Japan
| | - Kazuaki Matsumura
- School of Materials ScienceJapan Advanced Institute of Science and Technology Nomi, Ishikawa, 923‐1292 Japan
| |
Collapse
|
45
|
Lukač M, Lozar A, Perhavec T, Bajd F. Variable heat shock response model for medical laser procedures. Lasers Med Sci 2019; 34:1147-1158. [DOI: 10.1007/s10103-018-02704-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
|
46
|
Wang S, Nong X, Yang G. Selenium-Rich Diet Induces Myocardial Structural and Functional Abnormalities by Activating Caspase-9 and Caspase-3 in Gpx-1P198L-Overexpression Transgenic Mice. Med Sci Monit 2019; 25:61-70. [PMID: 30602716 PMCID: PMC6327778 DOI: 10.12659/msm.911120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Selenium (Se) deficiency and supplementation result in multiple effects. GPx-1 (Pro198Leu) polymorphism is associated with Se deficiency. This study aimed to observe associations between Se-deficiency/supplement and GPx-1-198Leu overexpression in myocardial injuries. Material/Methods GPx-1P198L transgenic (Tg) mice and non-transgenic wild-type (WT) littermates were divided into Control (CON, 0.1–0.2 mg/kg), Se-deficiency (SD, <0.02 mg/kg), and Se-supplement (SS, 0.4 mg/kg) groups. Cardiac functions were observed with animal M-mode echocardiography. Se level was measured using 2,3-diamino Kenai fluorospectrophotometry. Total cardiac GPx activity was also measured. Myocardial histopathology was determined with HE and Masson’s trichrome staining. Caspase-9 and caspase-3 were measured with Western blot analysis. Results In WT Se-deficient mice, cardiac GPx activity was significantly decreased, and was not elevated by overexpression of GPx-1-198Leu gene. Increased GPx activity was observed in WT Se-supplemented mice and Tg Se-supplemented mice (much more). Se deficiency as well as supplementation resulted in cardiac systolic dysfunction, which was not affected by GPx-1-198Leu gene. Se deficiency led to myocardial fibrosis and pathological changes accompanied by increased activation of caspase-9 and caspase-3. Se supplementation significantly reduced pathological changes, as well as caspase-9 and caspase-3 levels in the presence of increased myocardial fibrosis. In Se-deficient mice, GPx-1-198Leu overexpression did not significantly decrease myocardial pathological injuries and fibrosis. In Se-supplemented Tg mice, myocardial fibrosis and caspase-9 level were increased, although pathological injuries and caspase-3 were similar to that in Se-supplemented WT mice. Conclusions Se deficiency as well as supplementation induced myocardial structural and functional abnormalities through activation of caspase-9 and caspase-3 in GPx-1P198L overexpression transgenic mice.
Collapse
Affiliation(s)
- Suqin Wang
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China (mainland).,Department of Cardiology, People's Hospital of Henan Province, Zhengzhou, Henan, China (mainland)
| | - Xiting Nong
- Department of Endocrinology, Xi'an Central Hospital, Xi'an, Shaanxi, China (mainland)
| | - Guang Yang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
47
|
Kimizuka Y, Katagiri W, Locascio JJ, Shigeta A, Sasaki Y, Shibata M, Morse K, Sîrbulescu RF, Miyatake M, Reeves P, Suematsu M, Gelfand J, Brauns T, Poznansky MC, Tsukada K, Kashiwagi S. Brief Exposure of Skin to Near-Infrared Laser Modulates Mast Cell Function and Augments the Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3587-3603. [PMID: 30420435 PMCID: PMC6289684 DOI: 10.4049/jimmunol.1701687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
The treatment of skin with a low-power continuous-wave (CW) near-infrared (NIR) laser prior to vaccination is an emerging strategy to augment the immune response to intradermal vaccine, potentially substituting for chemical adjuvant, which has been linked to adverse effects of vaccines. This approach proved to be low cost, simple, small, and readily translatable compared with the previously explored pulsed-wave medical lasers. However, little is known on the mode of laser-tissue interaction eliciting the adjuvant effect. In this study, we sought to identify the pathways leading to the immunological events by examining the alteration of responses resulting from genetic ablation of innate subsets including mast cells and specific dendritic cell populations in an established model of intradermal vaccination and analyzing functional changes of skin microcirculation upon the CW NIR laser treatment in mice. We found that a CW NIR laser transiently stimulates mast cells via generation of reactive oxygen species, establishes an immunostimulatory milieu in the exposed tissue, and provides migration cues for dermal CD103+ dendritic cells without inducing prolonged inflammation, ultimately augmenting the adaptive immune response. These results indicate that use of an NIR laser with distinct wavelength and power is a safe and effective tool to reproducibly modulate innate programs in skin. These mechanistic findings would accelerate the clinical translation of this technology and warrant further explorations into the broader application of NIR lasers to the treatment of immune-related skin diseases.
Collapse
Affiliation(s)
- Yoshifumi Kimizuka
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Wataru Katagiri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129
- Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, 14152 Huddinge, Sweden
| | - Joseph J Locascio
- Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
| | - Ayako Shigeta
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Yuri Sasaki
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Mai Shibata
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Kaitlyn Morse
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Mizuki Miyatake
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan; and
| | - Patrick Reeves
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-0016, Japan
| | - Jeffrey Gelfand
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Timothy Brauns
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Kosuke Tsukada
- Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan; and
| | - Satoshi Kashiwagi
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129;
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129
| |
Collapse
|
48
|
Jones L, Harland D, Jarrold B, Connolly J, Davis M. The walking dead: sequential nuclear and organelle destruction during hair development. Br J Dermatol 2018; 178:1341-1352. [DOI: 10.1111/bjd.16148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Affiliation(s)
- L.A. Jones
- Institute of Molecular and Cell Biology; Agency for Science; Technology and Research; Singapore City Singapore
| | - D.P. Harland
- Food and Bio-Based Products Group; AgResearch Ltd; Christchurch New Zealand
| | | | - J.E. Connolly
- Institute of Molecular and Cell Biology; Agency for Science; Technology and Research; Singapore City Singapore
- Institute of Biomedical Studies; Baylor University; Waco TX U.S.A
- Department of Microbiology and Immunology; National University of Singapore; Singapore City Singapore
| | - M.G. Davis
- The Procter and Gamble Company; Mason OH U.S.A
| |
Collapse
|
49
|
Blázquez-Castro A. Direct 1O 2 optical excitation: A tool for redox biology. Redox Biol 2017; 13:39-59. [PMID: 28570948 PMCID: PMC5451181 DOI: 10.1016/j.redox.2017.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/30/2017] [Accepted: 05/20/2017] [Indexed: 12/28/2022] Open
Abstract
Molecular oxygen (O2) displays very interesting properties. Its first excited state, commonly known as singlet oxygen (1O2), is one of the so-called Reactive Oxygen Species (ROS). It has been implicated in many redox processes in biological systems. For many decades its role has been that of a deleterious chemical species, although very positive clinical applications in the Photodynamic Therapy of cancer (PDT) have been reported. More recently, many ROS, and also 1O2, are in the spotlight because of their role in physiological signaling, like cell proliferation or tissue regeneration. However, there are methodological shortcomings to properly assess the role of 1O2 in redox biology with classical generation procedures. In this review the direct optical excitation of O2 to produce 1O2 will be introduced, in order to present its main advantages and drawbacks for biological studies. This photonic approach can provide with many interesting possibilities to understand and put to use ROS in redox signaling and in the biomedical field.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Physics of Materials, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain; Formerly at Aarhus Institute of Advanced Studies (AIAS)/Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
50
|
Zamarrón A, García M, Río MD, Larcher F, Juarranz Á. Effects of photodynamic therapy on dermal fibroblasts from xeroderma pigmentosum and Gorlin-Goltz syndrome patients. Oncotarget 2017; 8:77385-77399. [PMID: 29100394 PMCID: PMC5652786 DOI: 10.18632/oncotarget.20485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
Abstract
PDT is widely applied for the treatment of non-melanoma skin cancer pre-malignant and malignant lesions (actinic keratosis, basal cell carcinoma and in situ squamous cell carcinoma). In photodynamic therapy (PDT) the interaction of a photosensitizer (PS), light and oxygen leads to the formation of reactive oxygen species (ROS) and thus the selective tumor cells eradication. Xeroderma pigmentosum (XP) and Gorlin-Goltz Syndrome (GS) patients are at high risk of developing skin cancer in sun-exposed areas. Therefore, the use of PDT as a preventive treatment may constitute a very promising therapeutic modality for these syndromes. Given the demonstrated role of cancer associated fibroblasts (CAFs) in tumor progression and the putative CAFs features of some cancer-prone genodermatoses fibroblasts, in this study, we have further characterized the phenotype of XP and GS dermal fibroblasts and evaluated their response to methyl-δ-aminolevulinic acid (MAL)-PDT compared to that of dermal fibroblasts obtained from healthy donors. We show here that XP/GS fibroblasts display clear features of CAFs and present a significantly higher response to PDT, even after being stimulated with UV light, underscoring the value of this therapeutic approach for these rare skin conditions and likely to other forms of skin cancer were CAFs play a major role.
Collapse
Affiliation(s)
- Alicia Zamarrón
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid, IRYCIS, Madrid, Spain
| | - Marta García
- Department of Bioengineering, Carlos III University (UC3M), Madrid, Spain
- CIEMAT-Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Marcela Del Río
- Department of Bioengineering, Carlos III University (UC3M), Madrid, Spain
- CIEMAT-Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Fernando Larcher
- Department of Bioengineering, Carlos III University (UC3M), Madrid, Spain
- CIEMAT-Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid, IRYCIS, Madrid, Spain
| |
Collapse
|