1
|
Zhou Z, Yang J, Liu Q, Gao J, Ji W. Patho-immunological mechanisms of atopic dermatitis: The role of the three major human microbiomes. Scand J Immunol 2024; 100:e13403. [PMID: 39267301 DOI: 10.1111/sji.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Atopic dermatitis (AD) is a genetically predisposed allergic inflammatory dermatosis with chronic, pruritic, and recurrent features. Patients with AD have dry and itchy skin, often accompanied by chronic eczematous lesions, allergic rhinitis, or asthma, which has a considerable impact on their daily lives. With advances in genome sequencing technology, it has been demonstrated that microorganisms are involved in this disease, and the microorganisms associated with AD are attracting considerable research attention. An increasing number of studies conducted in recent years have demonstrated that an imbalanced microbiome in AD patients has substantial impact on disease prognosis, and the causes are closely tied to various immune mechanisms. However, the involvement of microorganisms in the pathogenesis of AD remains poorly understood. In this paper, we review the advances in research on the immunological mechanisms of the skin microbiome, intestinal microbiome, and lung microbiome that are related to AD prognosis and immunotherapy protocols. It is hoped that this approach will lay the foundation for exploring the pathogenesis of and emerging treatments for AD.
Collapse
Affiliation(s)
- Zhaosen Zhou
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Liu
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Gao
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenting Ji
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Qian Z, Jiao M, Zhang N, Tang X, Liu S, Zhang F, Wang C, Zheng F. The IL-33/ST2 Axis Protects Retinal Ganglion Cells by Modulating the Astrocyte Response After Optic Nerve Injury. Neurosci Bull 2024:10.1007/s12264-024-01279-y. [PMID: 39190095 DOI: 10.1007/s12264-024-01279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/29/2024] [Indexed: 08/28/2024] Open
Abstract
IL-33 and its receptor ST2 play crucial roles in tissue repair and homeostasis. However, their involvement in optic neuropathy due to trauma and glaucoma remains unclear. Here, we report that IL-33 and ST2 were highly expressed in the mouse optic nerve and retina. Deletion of IL-33 or ST2 exacerbated retinal ganglion cell (RGC) loss, retinal thinning, and nerve fiber degeneration following optic nerve (ON) injury. This heightened retinal neurodegeneration correlated with increased neurotoxic astrocytes in Il33-/- mice. In vitro, rIL-33 mitigated the neurotoxic astrocyte phenotype and reduced the expression of pro-inflammatory factors, thereby alleviating the RGC death induced by neurotoxic astrocyte-conditioned medium in retinal explants. Exogenous IL-33 treatment improved RGC survival in Il33-/- and WT mice after ON injury, but not in ST2-/- mice. Our findings highlight the role of the IL-33/ST2 axis in modulating reactive astrocyte function and providing neuroprotection for RGCs following ON injury.
Collapse
Affiliation(s)
- Zhigang Qian
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Ophthalmology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiwang Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenchen Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China.
| |
Collapse
|
3
|
Nuwayhid R, Schulz T, Siemers F, Schreiter J, Kobbe P, Hofmann G, Langer S, Kurow O. A Platform for Testing the Biocompatibility of Implants: Silicone Induces a Proinflammatory Response in a 3D Skin Equivalent. Biomedicines 2024; 12:224. [PMID: 38275396 PMCID: PMC10813245 DOI: 10.3390/biomedicines12010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Biocompatibility testing of materials is carried out in 2D cell cultures or animal models despite serious limitations. 3D skin equivalents are advanced in vitro models for human skin. Silicone has been shown to be noncytotoxic but capable of eliciting an immune response. Our aim was to (1) establish a 3D skin equivalent to (2) assess the proinflammatory properties of silicone. We developed a coculture of keratinocytes and fibroblasts resulting in a 3D skin equivalent with an implant using samples from a breast implant. Samples with and without the silicone implant were studied histologically and immunohistochemically in comparison to native human skin samples. Cytotoxicity was assessed via LDH-assay, and cytokine response was assessed via ELISA. Histologically, our 3D skin equivalents had a four-layered epidermal and a dermal component. The presence of tight junctions was demonstrated in immunofluorescence. The only difference in 3D skin equivalents with implants was an epidermal thinning. Implanting the silicone samples did not cause more cell death, however, an inflammatory cytokine response was triggered. We were able to establish an organotypical 3D skin equivalent with an implant, which can be utilised for studies on biocompatibility of materials. This first integration of silicone into a 3D skin equivalent confirmed previous findings on silicone being non-cell-toxic but capable of exerting a proinflammatory effect.
Collapse
Affiliation(s)
- Rima Nuwayhid
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (T.S.); (S.L.)
| | - Torsten Schulz
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (T.S.); (S.L.)
| | - Frank Siemers
- Department of Plastic, Hand Surgery and Burn Care, BG Klinikum Bergmannstrost, 06112 Halle, Germany;
| | | | - Philipp Kobbe
- Department of Trauma and Reconstructive Surgery, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany;
- Department of Trauma and Reconstructive Surgery, BG Klinikum Bergmannstrost, 06112 Halle, Germany
| | - Gunther Hofmann
- Department of Trauma, Plastic and Reconstructive Surgery, University Hospital Jena, 07747 Jena, Germany;
| | - Stefan Langer
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (T.S.); (S.L.)
| | - Olga Kurow
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (T.S.); (S.L.)
| |
Collapse
|
4
|
Stabell SH, Renzi A, Nilsen HR, Antonsen OH, Fosse JH, Haraldsen G, Sundnes O. Detection of native, activated Notch receptors in normal human apocrine-bearing skin and in hidradenitis suppurativa. Exp Dermatol 2024; 33:e14977. [PMID: 38060347 DOI: 10.1111/exd.14977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 01/30/2024]
Abstract
Notch signalling has generated considerable interest as a pathogenetic factor and a drug target in a range of human diseases. The gamma-secretase complex is crucial in the activation of Notch receptors by cleaving the intracellular domain allowing nuclear translocation. In recent years several mutations in gamma-secretase components have been discovered in patients with familial hidradenitis suppurativa (HS). This has led to hypotheses that impaired Notch signalling could be an important driver for HS in general, not only in the monogenic variants. However, no study has examined in situ Notch activation per se in HS, and some reports with conflicting results have instead been based on expression of Notch receptors or indirect measures of Notch target gene expression. In this study we established immunostaining protocols to identify native, activated Notch receptors in human skin tissue. The ability to detect changes in Notch activation was confirmed with an ex vivo skin organ model in which signal was reduced or obliterated in tissue exposed to a gamma-secretase inhibitor. Using these methods on skin biopsies from healthy volunteers and a general HS cohort we demonstrated for the first time the distribution of active Notch signalling in human apocrine-bearing skin. Quantification of activated NOTCH1 & NOTCH2 revealed similar levels in non-lesional and peri-lesional HS to that of healthy controls, thus ruling out a general defect in Notch activation in HS patients. We did find a variable but significant reduction of activated Notch in epidermis of lesional HS with a distribution that appeared related to the extent of surrounding tissue inflammation.
Collapse
Affiliation(s)
- Siri Hansen Stabell
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Anastasia Renzi
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Guttorm Haraldsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Olav Sundnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Bonzano L, Borgia F, Casella R, Miniello A, Nettis E, Gangemi S. Microbiota and IL-33/31 Axis Linkage: Implications and Therapeutic Perspectives in Atopic Dermatitis and Psoriasis. Biomolecules 2023; 13:1100. [PMID: 37509136 PMCID: PMC10377073 DOI: 10.3390/biom13071100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Microbiome dysbiosis and cytokine alternations are key features of atopic dermatitis (AD) and psoriasis (PsO), two of the most prevalent and burdensome pruritic skin conditions worldwide. Interleukin (IL)-33 and IL-31 have been recognized to be major players who act synergistically in the pathogenesis and maintenance of different chronic inflammatory conditions and pruritic skin disorders, including AD and PsO, and their potential role as therapeutic targets is being thoroughly investigated. The bidirectional interplay between dysbiosis and immunological changes has been extensively studied, but there is still debate regarding which of these two factors is the actual causative culprit behind the aetiopathological process that ultimately leads to AD and PsO. We conducted a literature review on the Pubmed database assessing articles of immunology, dermatology, microbiology and allergology with the aim to strengthen the hypothesis that dysbiosis is at the origin of the IL-33/IL-31 dysregulation that contributes to the pathogenesis of AD and PsO. Finally, we discussed the therapeutic options currently in development for the treatment of these skin conditions targeting IL-31, IL-33 and/or the microbiome.
Collapse
Affiliation(s)
- Laura Bonzano
- Dermatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98122 Messina, Italy
| | - Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Andrea Miniello
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
6
|
Dai X, Shiraishi K, Muto J, Mori H, Murakami M, Sayama K. Nuclear IL-33 Plays an Important Role in EGFR-Mediated Keratinocyte Migration by Regulating the Activation of Signal Transducer and Activator of Transcription 3 and NF-κB. JID INNOVATIONS 2023; 3:100205. [PMID: 37441125 PMCID: PMC10333683 DOI: 10.1016/j.xjidi.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 07/15/2023] Open
Abstract
Nuclear IL-33 levels are high at the epidermal edges of skin wounds and facilitate wound healing. However, IL-33-mediated regulation of keratinocyte (KC) biology during wound healing remains poorly understood. During skin-wound healing, KC migration and re-epithelialization are mediated predominantly by EGFR signaling activation and depend on the function of signal transducer and activator of transcription 3 (STAT3). We found that migrating KCs at the leading edges of mouse skin wounds exhibited concomitant induction and nuclear colocalization of IL-33 and phosphorylated STAT3. In cultured human KCs, activation of EGFR signaling caused rapid elevation of nuclear IL-33, which directly interacts with phosphorylated STAT3, promoting STAT3 activation. In vitro KC migration and wound-healing assays revealed that high nuclear IL-33 levels were required for KC migration and wound closure. KC mobility associated with a lack of suprabasal epidermal keratins and extracellular matrix degradation mediated by matrix metalloproteinases (MMPs) control cell migration at the intracellular and extracellular levels, respectively. In EGFR-activated KCs, nuclear IL-33 mediated keratin 1 and 10 downregulation and MMP9 upregulation by promoting STAT3 activation and limited MMP1, MMP3, and MMP10 induction by suppressing NF-κB transactivation. Thus, epidermal nuclear IL-33 is involved in KC migration and wound closure by regulating the STAT3 and NF-κB pathways.
Collapse
Affiliation(s)
- Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Jun Muto
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hideki Mori
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
7
|
Kourouklis AP, Wahlsten A, Stracuzzi A, Martyts A, Paganella LG, Labouesse C, Al-Nuaimi D, Giampietro C, Ehret AE, Tibbitt MW, Mazza E. Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies. BIOMATERIALS ADVANCES 2023; 145:213241. [PMID: 36529095 DOI: 10.1016/j.bioadv.2022.213241] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland.
| | - Adam Wahlsten
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Alberto Stracuzzi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Anastasiya Martyts
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Celine Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Dunja Al-Nuaimi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
8
|
Furci F, Murdaca G, Allegra A, Gammeri L, Senna G, Gangemi S. IL-33 and the Cytokine Storm in COVID-19: From a Potential Immunological Relationship towards Precision Medicine. Int J Mol Sci 2022; 23:14532. [PMID: 36498859 PMCID: PMC9740753 DOI: 10.3390/ijms232314532] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus SARS-CoV-2 has represented, and still represents, a real challenge from a clinical, diagnostic and therapeutic point of view. During acute infection, the increased levels of pro-inflammatory cytokines, which are involved in the pathology of disease and the development of SARS-CoV-2-induced acute respiratory disease syndrome, the life-threatening form of this infection, are correlated with patient survival and disease severity. IL-33, a key cytokine involved in both innate and adaptive immune responses in mucosal organs, can increase airway inflammation, mucus secretion and Th2 cytokine synthesis in the lungs, following respiratory infections. Similar to cases of exposure to known respiratory virus infections, exposure to SARS-CoV-2 induces the expression of IL-33, correlating with T-cell activation and lung disease severity. In this work, we analyse current evidence regarding the immunological role of IL-33 in patients affected by COVID-19, to evaluate not only the clinical impact correlated to its production but also to identify possible future immunological therapies that can block the most expressed inflammatory molecules, preventing worsening of the disease and saving patient lives.
Collapse
Affiliation(s)
- Fabiana Furci
- Asthma Centre and Allergy Unit, University of Verona and Verona University Hospital, 37124 Verona, Italy
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, Policlinico G. Martino, University of Messina, 98100 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98122 Messina, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, Policlinico G. Martino, University of Messina, 98100 Messina, Italy
| | - Gianenrico Senna
- Asthma Centre and Allergy Unit, University of Verona and Verona University Hospital, 37124 Verona, Italy
- Department of Medicine, University of Verona and Verona University Hospital, 37124 Verona, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, Policlinico G. Martino, University of Messina, 98100 Messina, Italy
| |
Collapse
|
9
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
10
|
Cordier-Dirikoc S, Pedretti N, Garnier J, Clarhaut-Charreau S, Ryffel B, Morel F, Bernard FX, Hamon de Almeida V, Lecron JC, Jégou JF. Dermal fibroblasts are the key sensors of aseptic skin inflammation through interleukin 1 release by lesioned keratinocytes. Front Immunol 2022; 13:984045. [PMID: 36268013 PMCID: PMC9576869 DOI: 10.3389/fimmu.2022.984045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
IL-1 plays a crucial role in triggering sterile inflammation following tissue injury. Although most studies associate IL-1 release by injured cells to the recruitment of neutrophils for tissue repair, the inflammatory cascade involves several molecular and cellular actors whose role remains to be specified. In the present study, we identified dermal fibroblasts among the IL-1R1-expressing skin cells as key sensors of IL-1 released by injured keratinocytes. After in vitro stimulation by recombinant cytokines or protein extracts of lysed keratinocytes containing high concentrations of IL-1, we show that dermal fibroblasts are by far the most IL-1-responsive cells compared to keratinocytes, melanocytes and endothelial cells. Fibroblasts have the property to respond to very low concentrations of IL-1 (from 10 fg/ml), even in the presence of 100-fold higher concentrations of IL-1RA, by increasing their expression of chemokines such as IL-8 for neutrophil recruitment. The capacity of IL-1-stimulated fibroblasts to attract neutrophils has been demonstrated both in vitro using cell migration assay and in vivo using a model of superficial epidermal lesion in IL-1R1-deficient mice which harbored reduced expression of inflammatory mediators and neutrophil skin infiltration. Together, our results shed a light on dermal fibroblasts as key relay cells in the chain of sterile inflammation induced after epidermal lesion.
Collapse
Affiliation(s)
| | | | - Julien Garnier
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
| | - Sandrine Clarhaut-Charreau
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
- Université de Poitiers, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France
| | | | - Franck Morel
- Université de Poitiers, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France
| | | | | | - Jean-Claude Lecron
- Université de Poitiers, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France
- Service d’Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Jean-François Jégou
- Université de Poitiers, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France
- *Correspondence: Jean-François Jégou,
| |
Collapse
|
11
|
Lee SW, Park HJ, Van Kaer L, Hong S. Roles and therapeutic potential of CD1d-Restricted NKT cells in inflammatory skin diseases. Front Immunol 2022; 13:979370. [PMID: 36119077 PMCID: PMC9478174 DOI: 10.3389/fimmu.2022.979370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens rather than peptides. Due to their immunoregulatory properties, extensive work has been done to elucidate the immune functions of NKT cells in various immune contexts such as autoimmunity for more than two decades. In addition, as research on barrier immunity such as the mucosa-associated lymphoid tissue has flourished in recent years, the role of NKT cells to immunity in the skin has attracted substantial attention. Here, we review the contributions of NKT cells to regulating skin inflammation and discuss the factors that can modulate the functions of NKT cells in inflammatory skin diseases such as atopic dermatitis. This mini-review article will mainly focus on CD1d-dependent NKT cells and their therapeutic potential in skin-related immune diseases.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
- *Correspondence: Seokmann Hong,
| |
Collapse
|
12
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 2022; 156:155891. [DOI: 10.1016/j.cyto.2022.155891] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022]
|
13
|
Hypo-osmotic stress induces the epithelial alarmin IL-33 in the colonic barrier of ulcerative colitis. Sci Rep 2022; 12:11550. [PMID: 35798804 PMCID: PMC9263100 DOI: 10.1038/s41598-022-15573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Epithelial alarmins are gaining interest as therapeutic targets for chronic inflammation. The nuclear alarmin interleukin-33 (IL-33) is upregulated in the colonic mucosa of acute ulcerative colitis (UC) and may represent an early instigator of the inflammatory cascade. However, it is not clear what signals drive the expression of IL-33 in the colonic mucosa, nor is the exact role of IL-33 elucidated. We established an ex vivo model using endoscopic colonic biopsies from healthy controls and UC patients. Colonic biopsies exposed to hypo-osmotic medium induced a strong nuclear IL-33 expression in colonic crypts in both healthy controls and UC biopsies. Mucosal IL33 mRNA was also significantly increased following hypo-osmotic stress in healthy controls compared to non-stimulated biopsies (fold change 3.9, p-value < 0.02). We observed a modest induction of IL-33 in response to TGF-beta-1 stimulation, whereas responsiveness to inflammatory cytokines TNF and IFN-gamma was negligible. In conclusion our findings indicate that epithelial IL-33 is induced by hypo-osmotic stress, rather than prototypic proinflammatory cytokines in colonic ex vivo biopsies. This is a novel finding, linking a potent cytokine and alarmin of the innate immune system with cellular stress mechanisms and mucosal inflammation.
Collapse
|
14
|
Hasegawa T, Oka T, Demehri S. Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Front Immunol 2022; 13:876515. [PMID: 35432341 PMCID: PMC9005840 DOI: 10.3389/fimmu.2022.876515] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Skin acts as the primary interface between the body and the environment. The skin immune system is composed of a complex network of immune cells and factors that provide the first line of defense against microbial pathogens and environmental insults. Alarmin cytokines mediate an intricate intercellular communication between keratinocytes and immune cells to regulate cutaneous immune responses. Proper functions of the type 2 alarmin cytokines, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, are paramount to the maintenance of skin homeostasis, and their dysregulation is commonly associated with allergic inflammation. In this review, we discuss recent findings on the complex regulatory network of type 2 alarmin cytokines that control skin immunity and highlight the mechanisms by which these cytokines regulate skin immune responses in host defense, chronic inflammation, and cancer.
Collapse
Affiliation(s)
| | - Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Macleod T, Berekmeri A, Bridgewood C, Stacey M, McGonagle D, Wittmann M. The Immunological Impact of IL-1 Family Cytokines on the Epidermal Barrier. Front Immunol 2022; 12:808012. [PMID: 35003136 PMCID: PMC8733307 DOI: 10.3389/fimmu.2021.808012] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
The skin barrier would not function without IL-1 family members, but their physiological role in the immunological aspects of skin barrier function are often overlooked. This review summarises the role of IL-1 family cytokines (IL-1α, IL-1β, IL-1Ra, IL-18, IL-33, IL-36α, IL-36β, IL-36γ, IL-36Ra, IL-37 and IL-38) in the skin. We focus on novel aspects of their interaction with commensals and pathogens, the important impact of proteases on cytokine activity, on healing responses and inflammation limiting mechanisms. We discuss IL-1 family cytokines in the context of IL-4/IL-13 and IL-23/IL-17 axis-driven diseases and highlight consequences of human loss/gain of function mutations in activating or inhibitory pathway molecules. This review highlights recent findings that emphasize the importance of IL-1 family cytokines in both physiological and pathological cutaneous inflammation and emergent translational therapeutics that are helping further elucidate these cytokines.
Collapse
Affiliation(s)
- Tom Macleod
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Anna Berekmeri
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Martin Stacey
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom.,National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), The Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom.,National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), The Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
16
|
Cayrol C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021; 11:cells11010107. [PMID: 35011670 PMCID: PMC8750818 DOI: 10.3390/cells11010107] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) family that is expressed in the nuclei of endothelial and epithelial cells of barrier tissues, among others. It functions as an alarm signal that is released upon tissue or cellular injury. IL-33 plays a central role in the initiation and amplification of type 2 innate immune responses and allergic inflammation by activating various target cells expressing its ST2 receptor, including mast cells and type 2 innate lymphoid cells. Depending on the tissue environment, IL-33 plays a wide variety of roles in parasitic and viral host defense, tissue repair and homeostasis. IL-33 has evolved a variety of sophisticated regulatory mechanisms to control its activity, including nuclear sequestration and proteolytic processing. It is involved in many diseases, including allergic, inflammatory and infectious diseases, and is a promising therapeutic target for the treatment of severe asthma. In this review, I will summarize the literature around this fascinating pleiotropic cytokine. In the first part, I will describe the basics of IL-33, from the discovery of interleukin-33 to its function, including its expression, release and signaling pathway. The second part will be devoted to the regulation of IL-33 protein leading to its activation or inactivation.
Collapse
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
17
|
Wierzbicka JM, Piotrowska A, Purzycka-Bohdan D, Olszewska A, Nowak JI, Szczerkowska-Dobosz A, Nedoszytko B, Nowicki RJ, Żmijewski MA. The Effects of Vitamin D on the Expression of IL-33 and Its Receptor ST2 in Skin Cells; Potential Implication for Psoriasis. Int J Mol Sci 2021; 22:12907. [PMID: 34884710 PMCID: PMC8657669 DOI: 10.3390/ijms222312907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
Interleukin 33 (IL-33) belongs to the IL-1 family and is produced constitutively by epithelial and endothelial cells of various organs, such as the skin. It takes part in the maintenance of tissue homeostasis, repair, and immune response, including activation of Th2 lymphocytes. Its involvement in pathogenesis of several inflammatory diseases including psoriasis was also suggested, but this is not fully understood. The aim of the study was to investigate expression of IL-33 and its receptor, ST2, in psoriasis, and the effects of the active form of vitamin D (1,25(OH)2D3) on their expression in skin cells. Here we examined mRNA and protein profiles of IL-33 and ST2 in 18 psoriatic patients and healthy volunteers by qPCR and immunostaining techniques. Potential effects of 1,25(OH)2D3 and its receptor (VDR) on the expression of IL-33 and ST2 were tested in cultured keratinocytes, melanocytes, fibroblasts, and basal cell carcinoma cells. It was shown that 1,25(OH)2D3 effectively stimulated expression of IL-33 and its receptor ST2's mRNAs in a time-dependent manner, in keratinocytes and to the lesser extends in melanocytes, but not in fibroblasts. Furthermore, the effect of vitamin D on expression of IL-33 and ST2 was VDR-dependent. Finally, we demonstrated that the expression of mRNA for IL-33 was mainly elevated in the psoriatic skin but not in its margin. Interestingly, ST2 mRNA was downregulated in psoriatic lesion compared to both marginal tissue as well as healthy skin. Our data indicated that vitamin D can modulate IL-33 signaling, opening up new perspectives for our understanding of the mechanism of vitamin D action in psoriasis therapy.
Collapse
Affiliation(s)
- Justyna M. Wierzbicka
- Histology Department, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (J.M.W.); (A.P.); (A.O.); (J.I.N.)
| | - Anna Piotrowska
- Histology Department, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (J.M.W.); (A.P.); (A.O.); (J.I.N.)
| | - Dorota Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (D.P.-B.); (A.S.-D.); (B.N.); (R.J.N.)
| | - Anna Olszewska
- Histology Department, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (J.M.W.); (A.P.); (A.O.); (J.I.N.)
| | - Joanna I. Nowak
- Histology Department, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (J.M.W.); (A.P.); (A.O.); (J.I.N.)
| | - Aneta Szczerkowska-Dobosz
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (D.P.-B.); (A.S.-D.); (B.N.); (R.J.N.)
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (D.P.-B.); (A.S.-D.); (B.N.); (R.J.N.)
- Invicta Fertility and Reproductive Centre, Molecular Laboratory, 80-850 Gdansk, Poland
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (D.P.-B.); (A.S.-D.); (B.N.); (R.J.N.)
| | - Michał A. Żmijewski
- Histology Department, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (J.M.W.); (A.P.); (A.O.); (J.I.N.)
| |
Collapse
|
18
|
Dong Y, Zhong J, Dong L. IL-33 in Rheumatic Diseases. Front Med (Lausanne) 2021; 8:739489. [PMID: 34589505 PMCID: PMC8473687 DOI: 10.3389/fmed.2021.739489] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Interleukin-33 (IL-33) is a nuclear factor mainly expressed in barrier epithelium, endothelial cells, and fibroblast reticular cells. Some inflammatory cells also express IL-33 under certain conditions. The important role of IL-33 in allergic reactions, helminth infection, cancer, tissue fibrosis, chronic inflammation, organ transplantation, and rheumatic immune diseases has been extensively studied in recent years. IL-33 primarily activates various circulating and tissue-resident immune cells, including mast cell, group 2 innate lymphoid cell (ILC2), regulatory T cell (Treg), T helper 2 cell (Th2), natural killer cell (NK cell), and macrophage. Therefore, IL-33 plays an immunomodulatory role and shows pleiotropic activity in different immune microenvironments. The IL-33/serum stimulation-2 (ST2) axis has been shown to have a detrimental effect on rheumatoid arthritis, systemic lupus erythematosus, and other rheumatic diseases. Interestingly, IL-33 also plays a protective role in the repair of barrier epithelium and the activation of Tregs. Therefore, the role of IL-33/ST2 depends on the underlying pathological conditions in rheumatic diseases. This review focuses on the dual role of the IL-33/ST2 axis in rheumatic diseases.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Huang J, Gandini MA, Chen L, M'Dahoma S, Stemkowski PL, Chung H, Muruve DA, Zamponi GW. Hyperactivity of Innate Immunity Triggers Pain via TLR2-IL-33-Mediated Neuroimmune Crosstalk. Cell Rep 2021; 33:108233. [PMID: 33027646 DOI: 10.1016/j.celrep.2020.108233] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 01/09/2023] Open
Abstract
The innate immune system responds to infections that give rise to pain. How the innate immune system interacts with the sensory nervous system and contributes to pain is poorly understood. Here we report that hyperactivity of innate immunity primes and initiates pain states via the TLR2-interleukin-33 (IL-33) axis. Toll-like receptors (TLRs) are upregulated in the complete Freund's adjuvant (CFA) pain model, and knockout of TLR2 abolishes CFA-induced pain. Selective activation of TLR2/6 triggers acute pain via upregulation of IL-33 in the hindpaw, dorsal root ganglia (DRG), and spinal cord in an NLRP3-dependent manner. The IL-33 increase further initiates priming of nociceptive neurons and pain states. Finally, blocking IL-33 receptors at the spinal level mediates analgesia during acute and chronic inflammatory pain, underscoring an important function of IL-33 in pain signaling. Collectively, our data reveal a critical role of the TLR2-IL-33 axis in innate immune activation for pain initiation and maintenance.
Collapse
Affiliation(s)
- Junting Huang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Maria A Gandini
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Said M'Dahoma
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Patrick L Stemkowski
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hyunjae Chung
- Department of Medicine, Snyder Institute for Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Daniel A Muruve
- Department of Medicine, Snyder Institute for Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
20
|
Sundnes O, Ottestad W, Schjalm C, Lundbäck P, la Cour Poulsen L, Mollnes TE, Haraldsen G, Eken T. Rapid systemic surge of IL-33 after severe human trauma: a prospective observational study. Mol Med 2021; 27:29. [PMID: 33771098 PMCID: PMC8004436 DOI: 10.1186/s10020-021-00288-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/08/2021] [Indexed: 01/12/2023] Open
Abstract
Background Alarmins are considered proximal mediators of the immune response after tissue injury. Understanding their biology could pave the way for development of new therapeutic targets and biomarkers in human disease, including multiple trauma. In this study we explored high-resolution concentration kinetics of the alarmin interleukin-33 (IL-33) early after human trauma. Methods Plasma samples were serially collected from 136 trauma patients immediately after hospital admission, 2, 4, 6, and 8 h thereafter, and every morning in the ICU. Levels of IL-33 and its decoy receptor sST2 were measured by immunoassays. Results We observed a rapid and transient surge of IL-33 in a subset of critically injured patients. These patients had more widespread tissue injuries and a greater degree of early coagulopathy. IL-33 half-life (t1/2) was 1.4 h (95% CI 1.2–1.6). sST2 displayed a distinctly different pattern with low initial levels but massive increase at later time points. Conclusions We describe for the first time early high-resolution IL-33 concentration kinetics in individual patients after trauma and correlate systemic IL-33 release to clinical data. These findings provide insight into a potentially important axis of danger signaling in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00288-1.
Collapse
Affiliation(s)
- Olav Sundnes
- K.G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Rikshospitalet, N-0027, Oslo, Norway.,Department of Dermatology, Oslo University Hospital, Oslo, Norway
| | - William Ottestad
- Department of Anaesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Critical Care, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Camilla Schjalm
- K.G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Peter Lundbäck
- K.G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Rikshospitalet, N-0027, Oslo, Norway
| | - Lars la Cour Poulsen
- K.G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Rikshospitalet, N-0027, Oslo, Norway
| | - Tom Eirik Mollnes
- K.G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway.,Reserach Laboratory, Nordland Hospital, Bodø, and K.G.Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Guttorm Haraldsen
- K.G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. .,Department of Pathology, Oslo University Hospital, Rikshospitalet, N-0027, Oslo, Norway.
| | - Torsten Eken
- Department of Anaesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Critical Care, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Ribeiro WR, Queiroz AG, Mendes E, Casaro MB, Nascimento CM, Coelho LSSF, Martins FS, Leite-Silva VR, Ferreira CM. Preventive oral supplementation with Bifidobacterium longum 5 1A alleviates oxazolone-induced allergic contact dermatitis-like skin inflammation in mice. Benef Microbes 2021; 12:199-209. [PMID: 33573507 DOI: 10.3920/bm2020.0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allergic contact dermatitis (ACD) is a common allergic skin disease that affects individuals subjected to different antigen exposure conditions and significantly impacts the quality of life of those affected. Numerous studies have demonstrated that probiotics suppress inflammation through immunomodulatory effects. In this study, we aimed to evaluate the effect of the probiotic Bifidobacterium longum 51A as a preventive treatment for ACD using an oxazolone-induced murine model. We demonstrated that B. longum 51A exerted a prophylactic effect on oxazolone-induced ACD-like skin inflammation via reductions in ear and dermal thickness and leucocyte infiltration. The administration of inactivated B. longum 51A did not affect oxazolone-induced ACD-like skin inflammation, suggesting that the bacteria must be alive to be effective. Given that B. longum 51A is an acetate producer, we treated mice with acetate intraperitoneally, which also prevented ear and dermal thickening. Moreover, the tissue levels of the inflammatory cytokines and chemokines interleukin (IL)-10, IL-33, tumour necrosis factor-α, chemokine (C-C motif) ligand 2/monocyte chemoattractant protein-1 and chemokine (C-C motif) ligand 5/RANTES were significantly reduced after probiotic treatment, but only IL-33 and IL-10 were reduced when the mice were treated with acetate. These results show that B. longum 51A exerted a potential prophylactic effect on skin inflammation and that acetate represents one potential mechanism. However, other factors are likely involved since these two treatments do not yield the same results.
Collapse
Affiliation(s)
- W R Ribeiro
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - A G Queiroz
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - E Mendes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - M B Casaro
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - C M Nascimento
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - L S S F Coelho
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - F S Martins
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos 6627, Campus Pampulha UFMG Belo Horizonte, MG 31970201, Brazil
| | - V R Leite-Silva
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil.,Therapeutics Research Centre, Translational Research Institute, Diamantina Institute, University of Queensland, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - C M Ferreira
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| |
Collapse
|
22
|
West PW, Bahri R, Garcia-Rodriguez KM, Sweetland G, Wileman G, Shah R, Montero A, Rapley L, Bulfone-Paus S. Interleukin-33 Amplifies Human Mast Cell Activities Induced by Complement Anaphylatoxins. Front Immunol 2021; 11:615236. [PMID: 33597949 PMCID: PMC7882629 DOI: 10.3389/fimmu.2020.615236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
Both, aberrant mast cell responses and complement activation contribute to allergic diseases. Since mast cells are highly responsive to C3a and C5a, while Interleukin-33 (IL-33) is a potent mast cell activator, we hypothesized that IL-33 critically regulates mast cell responses to complement anaphylatoxins. We sought to understand whether C3a and C5a differentially activate primary human mast cells, and probe whether IL-33 regulates C3a/C5a-induced mast cell activities. Primary human mast cells were generated from peripheral blood precursors or isolated from healthy human lung tissue, and mast cell complement receptor expression, degranulation, mediator release, phosphorylation patterns, and calcium flux were assessed. Human mast cells of distinct origin express constitutively higher levels of C3aR1 than C5aR1, and both receptors are downregulated by anaphylatoxins. While C3a is a potent mast cell degranulation inducer, C5a is a weaker secretagogue with more delayed effects. Importantly, IL-33 potently enhances the human mast cell reactivity to C3a and C5a (degranulation, cytokine and chemokine release), independent of changes in C3a or C5a receptor expression or the level of Ca2+ influx. Instead, this reflects differential dynamics of intracellular signaling such as ERK1/2 phosphorylation. Since primary human mast cells respond differentially to anaphylatoxin stimulation, and that IL-33 is a key regulator of mast cell responses to complement anaphylatoxins, this is likely to aggravate Th2 immune responses. This newly identified cross-regulation may be important for controlling exacerbated complement- and mast cell-dependent Th2 responses and thus provides an additional rationale for targeting anti-IL33 therapeutically in allergic diseases.
Collapse
Affiliation(s)
- Peter W. West
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Karen M. Garcia-Rodriguez
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Georgia Sweetland
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Georgia Wileman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rajesh Shah
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Angeles Montero
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Laura Rapley
- Adaptive Immunity, GlaxoSmithKline, Stevenage, United Kingdom
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,*Correspondence: Silvia Bulfone-Paus,
| |
Collapse
|
23
|
Gatti F, Mia S, Hammarström C, Frerker N, Fosby B, Wang J, Pietka W, Sundnes O, Hol J, Kasprzycka M, Haraldsen G. Nuclear IL-33 restrains the early conversion of fibroblasts to an extracellular matrix-secreting phenotype. Sci Rep 2021; 11:108. [PMID: 33420328 PMCID: PMC7794291 DOI: 10.1038/s41598-020-80509-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
Interleukin (IL)-33 is a cytokine that appears to mediate fibrosis by signaling via its receptor ST2 (IL-33R/IL1RL1). It is also, however, a protein that after synthesis is sorted to the cell nucleus, where it appears to affect chromatin folding. Here we describe a novel role for nuclear IL-33 in regulating the fibroblast phenotype in murine kidney fibrosis driven by unilateral ureteral obstruction. Transcriptional profiling of IL-33-deficient kidneys 24 h after ligation revealed enhanced expression of fibrogenic genes and enrichment of gene sets involved in extracellular matrix formation and remodeling. These changes relied on intracellular effects of IL-33, because they were not reproduced by treatment with a neutralizing antibody to IL-33 that prevents IL-33R/ST2L receptor signaling nor were they observed in IL-33R/ST2-deficient kidneys. To further explore the intracellular function of IL-33, we established transcription profiles of human fibroblasts, observing that knockdown of IL-33 skewed the transcription profile from an inflammatory towards a myofibroblast phenotype, reflected in higher levels of COL3A1, COL5A1 and transgelin protein, as well as lower expression levels of IL6, CXCL8, CLL7 and CCL8. In conclusion, our findings suggest that nuclear IL-33 in fibroblasts dampens the initial profibrotic response until persistent stimuli, as enforced by UUO, can override this protective mechanism.
Collapse
Affiliation(s)
- Francesca Gatti
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Sobuj Mia
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Clara Hammarström
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Nadine Frerker
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Bjarte Fosby
- Department of Surgery, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Junbai Wang
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
| | - Wojciech Pietka
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Olav Sundnes
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Johanna Hol
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Monika Kasprzycka
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Guttorm Haraldsen
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway.
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway.
| |
Collapse
|
24
|
Gugliandolo E, Palma E, Cordaro M, D'Amico R, Peritore AF, Licata P, Crupi R. Canine atopic dermatitis: Role of luteolin as new natural treatment. Vet Med Sci 2020; 6:926-932. [PMID: 32741111 PMCID: PMC7738746 DOI: 10.1002/vms3.325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/10/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Luteolin has been demonstrated to possess numerous biological effects. However, the effect of luteolin on LPS (Lipopolysaccharides) stimulation in CPEK cells has not been investigated. Hypothesis/Objectives An in vitro model of atopic canine dermatitis was used to identify the antioxidant effect of luteolin as a new treatment that is capable of improving the conditions of veterinary patients. Methods CPEK cells were treated with or without luteolin in the presence or absence of LPS. A cell viability assay was performed to test luteolin toxicity and the protective effect of luteolin after LPS stimulation. Additionally, enzyme‐linked immunosorbent assay (ELISA) kits were used to detect the levels of IL‐33, IL‐1β, IL‐6, and IL‐8. Results Luteolin was capable to significantly decrease levels expression of IL‐33, IL 1β, IL‐6, and IL‐8. Conclusions and clinical importance Luteolin could be a new pharmacological treatment for canine atopic dermatitis.
Collapse
Affiliation(s)
- Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Patrizia Licata
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Janikowska G, Kurzeja E, Janikowski M, Strzałka-Mrozik B, Pyka-Pająk A, Janikowski T. The Effect of Cyclosporine A on Dermal Fibroblast Cell - Transcriptomic Analysis of Inflammatory Response Pathway. Curr Pharm Biotechnol 2020; 21:1213-1223. [PMID: 32297577 DOI: 10.2174/1389201021666200416103928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND The first immunosuppressive drug - cyclosporine A (CsA) has many unquestioned merits in maintaining organ transplants in patients, as well as, in the treatment of many inflammatory diseases, also associated with cutaneous manifestations. The main task of this drug is to suppress the inflammatory response at the sites of action, which is not well known. OBJECTIVE The objective of this study was to evaluate the influence of CsA in therapeutic concentration on the expression of genes associated with the inflammatory response pathway in normal human dermal fibroblasts (NHDF; CC-2511), and this study attempted to determine the mechanism of its action. METHODS The cytotoxicity MTT test was performed. The expression of the inflammatory response pathway genes was determined using HG-U133A_2.0 oligonucleotide microarrays. Statistical analysis was performed by GeneSpring 13.0 software using the PL-Grid platform. RESULTS Among the 5,300 mRNA, only 573 were changed significantly in response to CsA compared to the control fibroblasts (P≤0.05). CsA inhibited the expression of most genes associated with the inflammatory response in NHDFs. There were only 19 genes with a fold change (FC) lower than -2.0, among which EGR1, FOS, PBK, CDK1 and TOP2A had the lowest expression, as did CXCL2 which can directly impact inflammation. Furthermore, ZNF451 was strongly induced, and COL1A1, COL3A1, IL33, TNFRSFs were weakly up-regulated (FC lower than 2.0). CONCLUSION The CsA in therapeutic concentration influences the genes linked to the inflammatory response (in the transcriptional level) in human dermal fibroblasts. The findings suggest that the potential mechanism of CsA action in this concentration and on these genes can be associated with a profibrotic and proapoptotic, and genotoxic effects.
Collapse
Affiliation(s)
- Grażyna Janikowska
- Department of Analytical Chemistry, Medical University of Silesia in Katowice, Katowice, Poland
| | - Ewa Kurzeja
- Department of Analytical Chemistry, Medical University of Silesia in Katowice, Katowice, Poland
| | - Marcin Janikowski
- Student Scientific Club at the Department of Molecular Biology, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Alina Pyka-Pająk
- Department of Analytical Chemistry, Medical University of Silesia in Katowice, Katowice, Poland
| | | |
Collapse
|
26
|
Pietka W, Sundnes O, Hammarström C, Zucknick M, Khnykin D, Haraldsen G. Lack of interleukin-33 and its receptor does not prevent calcipotriol-induced atopic dermatitis-like inflammation in mice. Sci Rep 2020; 10:6451. [PMID: 32296080 PMCID: PMC7160114 DOI: 10.1038/s41598-020-63410-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 01/01/2023] Open
Abstract
Current studies addressing the influence of interleukin-33 or its receptor (IL-33R/ST2) on development of atopic dermatitis-like inflammation in mice have reported conflicting results. We compared the response in single- and double-deficient IL-33−/−/ST2−/− C57BL/6J BomTac mice in the well-established calcipotriol-induced model of atopic dermatitis. All genotypes (groups of up to 14 mice) developed atopic dermatitis-like inflammation yet we observed no biologically relevant difference between groups in gross anatomy or ear thickness. Moreover, histological examination of skin revealed no differences in mononuclear leukocyte and granulocyte infiltration nor Th2 cytokine levels (IL-4 and IL-13). Finally, skin CD45+ cells and CD3+ cells were found at similar densities across all groups. Our findings indicate that lack of interleukin-33 and its receptor ST2 does not prevent the development of AD-like skin inflammation.
Collapse
Affiliation(s)
- Wojciech Pietka
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Olav Sundnes
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Rheumatology, Dermatology and Infectious Diseases, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Clara Hammarström
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Manuela Zucknick
- Oslo Center for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Denis Khnykin
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guttorm Haraldsen
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway. .,Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
27
|
Possible Roles of IL-33 in the Innate-Adaptive Immune Crosstalk of Psoriasis Pathogenesis. Mediators Inflamm 2019; 2019:7158014. [PMID: 31736655 PMCID: PMC6815589 DOI: 10.1155/2019/7158014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/26/2019] [Indexed: 01/18/2023] Open
Abstract
Background IL-33 belongs to the IL-1 family, playing a role in several biologic processes as well as in the pathogenesis of different diseases, including skin pathologies. It acts as an alarmin, released by damaged cells. Binding to a ST2 receptor, it stimulates many immune cells such as ILC2 and Th2 cells. IL-33/ST2 axis seems to be involved in Th17 response. According to this, a review was performed to analyze if IL-33 even interplay in the onset of psoriasis, a Th1/Th17 inflammatory disease. Methods Data obtained from the included articles are study author name, publication date, group studied, clinical and biological variables, laboratory tests, and outcome of interest of the study. Results Data are obtained from the 19 studies identified, which assessed the association between IL-33 and psoriasis. Discussion It seems to promote the innate-adaptive immune crosstalk: it could induce mast cells and neutrophil response after being released by injured keratinocytes and after stimulation by some cytokines, in particular TNFα, INFγ, and IL-17A. In addition, it seems to be involved from the onset of disease to the development of comorbidities, as psoriatic arthritis. Conclusion The core of the future research on psoriasis could be to fully understand the role of this complex cytokine, in order also to find a new therapeutic approach.
Collapse
|
28
|
Tsai YG, Liou JH, Hung SI, Chen CB, Chiu TM, Wang CW, Chung WH. Increased Type 2 Innate Lymphoid Cells in Patients with Drug Reaction with Eosinophilia and Systemic Symptoms Syndrome. J Invest Dermatol 2019; 139:1722-1731. [DOI: 10.1016/j.jid.2018.10.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/14/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
|
29
|
Stankovic M, Ljujic B, Babic S, Maravic-Stojkovic V, Mitrovic S, Arsenijevic N, Radak D, Pejnovic N, Lukic ML. IL-33/IL-33R in various types of carotid artery atherosclerotic lesions. Cytokine 2019; 120:242-250. [PMID: 31132589 DOI: 10.1016/j.cyto.2019.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Inflammation plays a crucial role in the progression of atherosclerotic plaques. The aim of the study was to investigate serum levels and expression of Interleukin-33 (IL-33) and ST2 receptor in atherosclerotic plaques and to analyze correlation with the type of the carotid plaques in patients with carotid disease. METHODS This study included 191 consecutive patients submitted for carotid endarterectomy (CEA). Preoperative serum levels of IL-33 and soluble ST2 (sST2) were measured. Atherosclerotic plaques obtained during surgery were initially histologically classified and immunohistochemical analyzes of IL-33, IL-33R, CD68 and alpha-SMA expression was performed. Ultrasound assessment of the level of carotid stenosis in each patient was performed prior to carotid surgery. Demographic and clinical data such as gender, age, smoking status, blood pressure, glycaemia, hemoglobin and creatinine levels, and comorbidities were collected and the comparisons between variables were statistically evaluated. RESULTS Serum levels of IL-33 (35.86 ± 7.93 pg/ml vs.12.29 ± 1.8 pg/ml, p < 0.05) and sST2 (183 ± 8.03 pg/ml vs. 122.31 ± 15.89 pg/ml, p < 0.05) were significantly higher in the group of CEA patients vs. healthy subjects. We demonstrated abundant tissue expression of IL-33 and ST2 in atherosclerotic carotid artery lesions. The levels of IL-33 and IL-33R expression were significantly higher in vulnerable plaques and significantly correlated with the degree of inflammatory cells infiltration in these plaques (R = 0.579, p = 0.049). Immunohistochemical analysis also revealed that cells responsible for IL-33 expression are not only mononuclear cells confined to inflammatory atherosclerotic lesions, but also smooth muscle cells which gained phenotypic characteristics of foam cells and were loaded with lipid droplets. CONCLUSION The obtained results confirm the importance of IL-33/ST2 axis in the process of atherosclerosis, and indicate its ambiguous function in immune response, whether as proinflammatory cytokine in advanced atherosclerotic lesions, or as profibrotic, in early lesions.
Collapse
Affiliation(s)
- Milos Stankovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Srdjan Babic
- Dedinje Cardiovascular Institute, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vera Maravic-Stojkovic
- Dedinje Cardiovascular Institute, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodanka Mitrovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Djordje Radak
- Dedinje Cardiovascular Institute, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nada Pejnovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
30
|
Alvarez F, Fritz JH, Piccirillo CA. Pleiotropic Effects of IL-33 on CD4 + T Cell Differentiation and Effector Functions. Front Immunol 2019; 10:522. [PMID: 30949175 PMCID: PMC6435597 DOI: 10.3389/fimmu.2019.00522] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/26/2019] [Indexed: 12/16/2022] Open
Abstract
IL-33, a member of the IL-1 family of cytokines, was originally described in 2005 as a promoter of type 2 immune responses. However, recent evidence reveals a more complex picture. This cytokine is released locally as an alarmin upon cellular damage where innate cell types respond to IL-33 by modulating their differentiation and influencing the polarizing signals they provide to T cells at the time of antigen presentation. Moreover, the prominent expression of the IL-33 receptor, ST2, on GATA3+ T helper 2 cells (TH2) demonstrated that IL-33 could have a direct impact on T cells. Recent observations reveal that T-bet+ TH1 cells and Foxp3+ regulatory T (TREG) cells can also express the ST2 receptor, either transiently or permanently. As such, IL-33 can have a direct effect on the dynamics of T cell populations. As IL-33 release was shown to play both an inflammatory and a suppressive role, understanding the complex effect of this cytokine on T cell homeostasis is paramount. In this review, we will focus on the factors that modulate ST2 expression on T cells, the effect of IL-33 on helper T cell responses and the role of IL-33 on TREG cell function.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
- McGill University Research Center on Complex Traits, McGill University, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
- McGill University Research Center on Complex Traits, McGill University, Montréal, QC, Canada
| |
Collapse
|
31
|
Pietka W, Khnykin D, Bertelsen V, Lossius AH, Stav-Noraas TE, Hol Fosse J, Galtung HK, Haraldsen G, Sundnes O. Hypo-osmotic Stress Drives IL-33 Production in Human Keratinocytes-An Epidermal Homeostatic Response. J Invest Dermatol 2018; 139:81-90. [PMID: 30120934 DOI: 10.1016/j.jid.2018.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
Although inflammation has traditionally been considered a response to either exogenous pathogen-associated signals or endogenous signals of cell damage, other perturbations of homeostasis, generally referred to as stress, may also induce inflammation. The relationship between stress and inflammation is, however, not well defined. Here, we describe a mechanism of IL-33 induction driven by hypo-osmotic stress in human keratinocytes and also report interesting differences when comparing the responsiveness of other inflammatory mediators. The induction of IL-33 was completely dependent on EGFR and calcium signaling, and inhibition of calcium signaling not only abolished IL-33 induction but also dramatically changed the transcriptional pattern of other cytokines upon hypo-osmotic stress. IL-33 was not secreted but instead showed nuclear sequestration, conceivably acting as a failsafe mechanism whereby it is induced by potential danger but released only upon more extreme homeostatic perturbations that result in cell death. Finally, stress-induced IL-33 was also confirmed in an ex vivo human skin model, translating this mechanism to a potential tissue-relevant signal in the human epidermis. In conclusion, we describe hypo-osmotic stress as an inducer of IL-33 expression, linking cellular stress to nuclear accumulation of a strong proinflammatory cytokine.
Collapse
Affiliation(s)
- Wojciech Pietka
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Denis Khnykin
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vibeke Bertelsen
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Astrid Haaskjold Lossius
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Tor Espen Stav-Noraas
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Johanna Hol Fosse
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Hilde Kanli Galtung
- Department of Oral Biology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guttorm Haraldsen
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Olav Sundnes
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Rheumatology, Dermatology and Infectious Diseases, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
32
|
Chromatin regulates IL-33 release and extracellular cytokine activity. Nat Commun 2018; 9:3244. [PMID: 30108214 PMCID: PMC6092330 DOI: 10.1038/s41467-018-05485-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 06/24/2018] [Indexed: 12/16/2022] Open
Abstract
IL-33 is an epithelium-derived, pro-inflammatory alarmin with enigmatic nuclear localization and chromatin binding. Here we report the functional properties of nuclear IL-33. Overexpression of IL-33 does not alter global gene expression in transduced epithelial cells. Fluorescence recovery after photobleaching data show that the intranuclear mobility of IL-33 is ~10-fold slower than IL-1α, whereas truncated IL-33 lacking chromatin-binding activity is more mobile. WT IL-33 is more resistant to necrosis-induced release than truncated IL-33 and has a relatively slow, linear release over time after membrane dissolution as compared to truncated IL-33 or IL-1α. Lastly, IL-33 and histones are released as a high-molecular weight complex and synergistically activate receptor-mediated signaling. We thus propose that chromatin binding is a post-translational mechanism that regulates the releasability and ST2-mediated bioactivity of IL-33 and provide a paradigm to further understand the enigmatic functions of nuclear cytokines.
Collapse
|
33
|
Fanny M, Nascimento M, Baron L, Schricke C, Maillet I, Akbal M, Riteau N, Le Bert M, Quesniaux V, Ryffel B, Gombault A, Même S, Même W, Couillin I. The IL-33 Receptor ST2 Regulates Pulmonary Inflammation and Fibrosis to Bleomycin. Front Immunol 2018; 9:1476. [PMID: 29988569 PMCID: PMC6026799 DOI: 10.3389/fimmu.2018.01476] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive, devastating, and yet untreatable fibrotic disease of unknown origin. Interleukin-33 (IL-33), an IL-1 family member acts as an alarmin with pro-inflammatory properties when released after stress or cell death. Here, we investigated the role of IL-33 in the bleomycin (BLM)-induced inflammation and fibrosis model using mice IL-33 receptor [chain suppression of tumorigenicity 2 (ST2)] mice compared with C57BL/6 wild-type mice. Unexpectedly, 24 h post-BLM treatment ST2-deficient mice displayed augmented inflammatory cell recruitment, in particular by neutrophils, together with enhanced levels of chemokines and remodeling factors in the bronchoalveolar space and/or the lungs. At 11 days, lung remodeling and fibrosis were decreased with reduced M2 macrophages in the lung associated with M2-like cytokine profile in ST2-deficient mice, while lung cellular inflammation was decreased but with fluid retention (edema) increased. In vivo magnetic resonance imaging (MRI) analysis demonstrates a rapid development of edema detectable at day 7, which was increased in the absence of ST2. Our results demonstrate that acute neutrophilic pulmonary inflammation leads to the development of an IL-33/ST2-dependent lung fibrosis associated with the production of M2-like polarization. In addition, non-invasive MRI revealed enhanced inflammation with lung edema during the development of pulmonary inflammation and fibrosis in absence of ST2.
Collapse
Affiliation(s)
- Manoussa Fanny
- University of Orleans and CNRS, UMR7355, Orleans, France
| | | | - Ludivine Baron
- University of Orleans and CNRS, UMR7355, Orleans, France
| | | | | | - Myriam Akbal
- University of Orleans and CNRS, UMR7355, Orleans, France
| | - Nicolas Riteau
- University of Orleans and CNRS, UMR7355, Orleans, France
| | - Marc Le Bert
- University of Orleans and CNRS, UMR7355, Orleans, France
| | | | | | | | - Sandra Même
- University of Orleans and CNRS, UPR4301, Orleans, France
| | - William Même
- University of Orleans and CNRS, UPR4301, Orleans, France
| | | |
Collapse
|
34
|
Ryu WI, Lee H, Bae HC, Jeon J, Ryu HJ, Kim J, Kim JH, Son JW, Kim J, Imai Y, Yamanishi K, Jeong SH, Son SW. IL-33 down-regulates CLDN1 expression through the ERK/STAT3 pathway in keratinocytes. J Dermatol Sci 2018. [DOI: 10.1016/j.jdermsci.2018.02.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Asahina R, Nishida H, Kamishina H, Maeda S. Expression of IL-33 in chronic lesional skin of canine atopic dermatitis. Vet Dermatol 2018; 29:246-e91. [DOI: 10.1111/vde.12531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Ryota Asahina
- Department of Veterinary Medicine; Faculty of Applied Biological Sciences; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| | - Hidetaka Nishida
- Department of Veterinary Medicine; Faculty of Applied Biological Sciences; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| | - Hiroaki Kamishina
- Department of Veterinary Medicine; Faculty of Applied Biological Sciences; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| | - Sadatoshi Maeda
- Department of Veterinary Medicine; Faculty of Applied Biological Sciences; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
36
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 2017; 281:154-168. [DOI: 10.1111/imr.12619] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et de Biologie Structurale; IPBS; Université de Toulouse; CNRS; UPS; Toulouse France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale; IPBS; Université de Toulouse; CNRS; UPS; Toulouse France
| |
Collapse
|
37
|
Travers J, Rochman M, Caldwell JM, Besse JA, Miracle CE, Rothenberg ME. IL-33 is induced in undifferentiated, non-dividing esophageal epithelial cells in eosinophilic esophagitis. Sci Rep 2017; 7:17563. [PMID: 29242581 PMCID: PMC5730585 DOI: 10.1038/s41598-017-17541-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
The molecular and cellular etiology of eosinophilic esophagitis (EoE), an emerging tissue-specific allergic disease, involves dysregulated gene expression in esophageal epithelial cells. Herein, we assessed the esophageal expression of IL-33, an epithelium-derived alarmin cytokine, in patients with EoE. IL-33 protein was markedly overexpressed within the nuclei of a subpopulation of basal layer esophageal epithelial cells in patients with active EoE compared to control individuals. IL-33 exhibited dynamic expression as levels normalized upon EoE remission. IL-33–positive basal epithelial cells expressed E-cadherin and the undifferentiated epithelial cell markers keratin 5 and 14 but not the differentiation marker keratin 4. Moreover, the IL-33–positive epithelial cells expressed the epithelial progenitor markers p75 and p63 and lacked the proliferation markers Ki67 and phospho-histone H3. Additionally, the IL-33–positive cells had low expression of PCNA. IL-33 expression was detected in ex vivo–cultured primary esophageal epithelial cells in a subpopulation of cells lacking expression of proliferation markers. Collectively, we report that IL-33 expression is induced in an undifferentiated, non-dividing esophageal epithelial cell population in patients with active EoE.
Collapse
Affiliation(s)
- J Travers
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA
| | - M Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA
| | - J M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA
| | - J A Besse
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA
| | - C E Miracle
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA
| | - M E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA.
| |
Collapse
|
38
|
Noske K. Secreted immunoregulatory proteins in the skin. J Dermatol Sci 2017; 89:3-10. [PMID: 29111181 DOI: 10.1016/j.jdermsci.2017.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
Abstract
The skin, thought initially to protect the body passively from pathogenic organisms and other environmental insults, is now recognised additionally as a sophisticated immune organ that actively regulates local immunity. Studies linking local innate and adaptive immunity to skin health and disease have revealed a complex network of cell communication and cytokine signalling. Here, we review the last 10 years of literature on this topic, and its relevance to skin immunity.
Collapse
Affiliation(s)
- Katharina Noske
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba 4102, QLD, Australia.
| |
Collapse
|
39
|
|
40
|
IL-33 induces both regulatory B cells and regulatory T cells in dextran sulfate sodium-induced colitis. Int Immunopharmacol 2017; 46:38-47. [DOI: 10.1016/j.intimp.2017.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/14/2017] [Accepted: 02/03/2017] [Indexed: 12/15/2022]
|
41
|
Han JH, Suh CH, Jung JY, Ahn MH, Kwon JE, Yim H, Kim HA. Serum Levels of Interleukin 33 and Soluble ST2 Are Associated with the Extent of Disease Activity and Cutaneous Manifestations in Patients with Active Adult-onset Still's Disease. J Rheumatol 2017; 44:740-747. [PMID: 28365573 DOI: 10.3899/jrheum.170020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Interleukin 33 (IL-33), a member of the IL-1 family and a ligand of the orphan receptor ST2, plays key roles in innate and adaptive immunity. We examined the associations between IL-33/ST2 levels and clinical manifestations of patients with active adult-onset Still's disease (AOSD). METHODS Blood samples were collected from 40 patients with active AOSD, 28 patients with rheumatoid arthritis (RA), and 27 healthy controls (HC). The serum levels of IL-33 and soluble ST2 were determined using ELISA. Expression levels of IL-33 and ST2 in biopsy specimens obtained from 34 AOSD patients with rash were immunohistochemically investigated. RESULTS IL-33 levels of patients with AOSD were higher than those of patients with RA and HC. Soluble ST2 levels of patients with AOSD were higher than those of HC, but not of patients with RA. Serum IL-33 levels correlated with systemic score, erythrocyte sedimentation rate, ferritin levels, and aspartate transaminase levels. However, serum soluble ST2 levels correlated only with ferritin levels. The numbers of inflammatory cells expressing IL-33 and ST2 were elevated in skin lesions of patients with AOSD compared to HC, but did not differ from those of the skin lesions of eczema or psoriasis. CONCLUSION We found significantly higher serum IL-33 and soluble ST2 levels in patients with active AOSD. Results indicate that the IL-33/ST2 signaling pathway may play a role in the pathogenesis of the acute inflammation and skin manifestations associated with AOSD.
Collapse
Affiliation(s)
- Jae Ho Han
- From the Department of Pathology, and the Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea.,J.H. Han, MD, PhD, Department of Pathology, Ajou University School of Medicine; C.H. Suh, MD, PhD, Department of Rheumatology, Ajou University School of Medicine; J.Y. Jung, MD, Department of Rheumatology, Ajou University School of Medicine; M.H. Ahn, PhD, Department of Rheumatology, Ajou University School of Medicine; J.E. Kwon, MD, PhD, Department of Pathology, Ajou University School of Medicine; H. Yim, MD, PhD, Department of Pathology, Ajou University School of Medicine; H.A. Kim, MD, PhD, Department of Rheumatology, Ajou University School of Medicine
| | - Chang-Hee Suh
- From the Department of Pathology, and the Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea.,J.H. Han, MD, PhD, Department of Pathology, Ajou University School of Medicine; C.H. Suh, MD, PhD, Department of Rheumatology, Ajou University School of Medicine; J.Y. Jung, MD, Department of Rheumatology, Ajou University School of Medicine; M.H. Ahn, PhD, Department of Rheumatology, Ajou University School of Medicine; J.E. Kwon, MD, PhD, Department of Pathology, Ajou University School of Medicine; H. Yim, MD, PhD, Department of Pathology, Ajou University School of Medicine; H.A. Kim, MD, PhD, Department of Rheumatology, Ajou University School of Medicine
| | - Ju-Yang Jung
- From the Department of Pathology, and the Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea.,J.H. Han, MD, PhD, Department of Pathology, Ajou University School of Medicine; C.H. Suh, MD, PhD, Department of Rheumatology, Ajou University School of Medicine; J.Y. Jung, MD, Department of Rheumatology, Ajou University School of Medicine; M.H. Ahn, PhD, Department of Rheumatology, Ajou University School of Medicine; J.E. Kwon, MD, PhD, Department of Pathology, Ajou University School of Medicine; H. Yim, MD, PhD, Department of Pathology, Ajou University School of Medicine; H.A. Kim, MD, PhD, Department of Rheumatology, Ajou University School of Medicine
| | - Mi-Hyun Ahn
- From the Department of Pathology, and the Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea.,J.H. Han, MD, PhD, Department of Pathology, Ajou University School of Medicine; C.H. Suh, MD, PhD, Department of Rheumatology, Ajou University School of Medicine; J.Y. Jung, MD, Department of Rheumatology, Ajou University School of Medicine; M.H. Ahn, PhD, Department of Rheumatology, Ajou University School of Medicine; J.E. Kwon, MD, PhD, Department of Pathology, Ajou University School of Medicine; H. Yim, MD, PhD, Department of Pathology, Ajou University School of Medicine; H.A. Kim, MD, PhD, Department of Rheumatology, Ajou University School of Medicine
| | - Ji Eun Kwon
- From the Department of Pathology, and the Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea.,J.H. Han, MD, PhD, Department of Pathology, Ajou University School of Medicine; C.H. Suh, MD, PhD, Department of Rheumatology, Ajou University School of Medicine; J.Y. Jung, MD, Department of Rheumatology, Ajou University School of Medicine; M.H. Ahn, PhD, Department of Rheumatology, Ajou University School of Medicine; J.E. Kwon, MD, PhD, Department of Pathology, Ajou University School of Medicine; H. Yim, MD, PhD, Department of Pathology, Ajou University School of Medicine; H.A. Kim, MD, PhD, Department of Rheumatology, Ajou University School of Medicine
| | - Hyunee Yim
- From the Department of Pathology, and the Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea.,J.H. Han, MD, PhD, Department of Pathology, Ajou University School of Medicine; C.H. Suh, MD, PhD, Department of Rheumatology, Ajou University School of Medicine; J.Y. Jung, MD, Department of Rheumatology, Ajou University School of Medicine; M.H. Ahn, PhD, Department of Rheumatology, Ajou University School of Medicine; J.E. Kwon, MD, PhD, Department of Pathology, Ajou University School of Medicine; H. Yim, MD, PhD, Department of Pathology, Ajou University School of Medicine; H.A. Kim, MD, PhD, Department of Rheumatology, Ajou University School of Medicine
| | - Hyoun-Ah Kim
- From the Department of Pathology, and the Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea. .,J.H. Han, MD, PhD, Department of Pathology, Ajou University School of Medicine; C.H. Suh, MD, PhD, Department of Rheumatology, Ajou University School of Medicine; J.Y. Jung, MD, Department of Rheumatology, Ajou University School of Medicine; M.H. Ahn, PhD, Department of Rheumatology, Ajou University School of Medicine; J.E. Kwon, MD, PhD, Department of Pathology, Ajou University School of Medicine; H. Yim, MD, PhD, Department of Pathology, Ajou University School of Medicine; H.A. Kim, MD, PhD, Department of Rheumatology, Ajou University School of Medicine.
| |
Collapse
|
42
|
Lapérine O, Cloitre A, Caillon J, Huck O, Bugueno IM, Pilet P, Sourice S, Le Tilly E, Palmer G, Davideau JL, Geoffroy V, Guicheux J, Beck-Cormier S, Lesclous P. Interleukin-33 and RANK-L Interplay in the Alveolar Bone Loss Associated to Periodontitis. PLoS One 2016; 11:e0168080. [PMID: 27992569 PMCID: PMC5167367 DOI: 10.1371/journal.pone.0168080] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/27/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction Chronic Periodontitis (CP) is an inflammatory disease of bacterial origin that results in alveolar bone destruction. Porphyromonas gingivalis (Pg), one of the main periopathogens, initiates an inflammatory cascade by host immune cells thereby increasing recruitment and activity of osteoclasts, the bone resorbing cells, through enhanced production of the crucial osteoclastogenic factor, RANK-L. Antibodies directed against some cytokines (IL-1β, IL-6 and TNF-α) failed to exhibit convincing therapeutic effect in CP. It has been suggested that IL-33, could be of interest in CP. Objective the present study aims to analyze whether and how IL-33 and RANK-L and/or their interplay are involved in the bone destruction associated to CP. Material and Methods mRNAs and protein expressions of IL-33 and RANK-L were analyzed in healthy and CP human gingival samples by immunohistochemistry (IHC) and RT-qPCR. Murine experimental periodontitis (EP) was induced using Pg infected ligature and Pg free ligature around the first maxillary molar. Alveolar bone loss was recorded by μCT. Mouse gingival explants were stimulated for 24 hours with IL-33 and RANK-L mRNA expression investigated by RT-qPCR. Human oral epithelial cells were infected by Pg for 6, 12; 24 hours and IL-33 and RANK-L mRNA expressions were analyzed by RT-qPCR. Results IL-33 is overexpressed in gingival epithelial cells in human affected by CP as in the murine EP. In human as in murine gingival cells, RANK-L was independently induced by Pg and IL-33. We also showed that the Pg-dependent RANK-L expression in gingival epithelial cells occured earlier than that of IL-33. Conclusion Our results evidence that IL-33 overexpression in gingival epithelial cells is associated with CP and may trigger RANK-L expression in addition to a direct effect of Pg. Finally, IL-33 may act as an extracellular alarmin (danger signal) showing proinflammatory properties in CP perpetuating bone resorption induced by Pg infection.
Collapse
Affiliation(s)
- Olivier Lapérine
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
| | - Alexandra Cloitre
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
- ONIRIS, UMR-S 791, LIOAD, Nantes, France
| | - Jocelyne Caillon
- EA 3826 Thérapeutiques cliniques et expérimentales des infections, Nantes, France
| | - Olivier Huck
- INSERM, U1109 Osteoarticular & Dental Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Département de Parodontologie, Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Isaac Maximiliano Bugueno
- INSERM, U1109 Osteoarticular & Dental Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Paul Pilet
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
- ONIRIS, UMR-S 791, LIOAD, Nantes, France
| | - Sophie Sourice
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
| | - Elodie Le Tilly
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
| | - Gaby Palmer
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology-Immunology, University of Geneva, School of Medicine, Geneva, Switzerland
| | - Jean-Luc Davideau
- INSERM, U1109 Osteoarticular & Dental Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Département de Parodontologie, Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Valérie Geoffroy
- INSERM U1132 BIOSCAR, Hôpital Lariboisière, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jérôme Guicheux
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
- ONIRIS, UMR-S 791, LIOAD, Nantes, France
- * E-mail: (JG); (PL)
| | - Sarah Beck-Cormier
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
| | - Philippe Lesclous
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
- ONIRIS, UMR-S 791, LIOAD, Nantes, France
- * E-mail: (JG); (PL)
| |
Collapse
|
43
|
Loss of interleukin 33 expression in colonic crypts - a potential marker for disease remission in ulcerative colitis. Sci Rep 2016; 6:35403. [PMID: 27748438 PMCID: PMC5066310 DOI: 10.1038/srep35403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023] Open
Abstract
Interleukin 33 (IL-33) is a cytokine preferentially elevated in acute ulcerative colitis (UC), inferring a role in its pathogenesis. The role of IL-33 in intestinal inflammation is incompletely understood, with both pro-inflammatory and regulatory properties described. There are also conflicting reports on cellular sources and subcellular location of IL-33 in the colonic mucosa, justifying a closer look at IL-33 expression in well-defined clinical stages of UC. A total of 50 study participants (29 UC patients and 21 healthy controls) were included from a prospective cohort of inflammatory bowel disease patients treated to disease remission with infliximab, a tumour necrosis factor alpha (TNF) inhibitor. To our knowledge this is the first study examining mucosal IL-33 expression before and after anti-TNF therapy. In colonic mucosal biopsies we found a 3-fold increase in IL-33 gene expression comparing acute UC to healthy controls (p < 0.01). A significant reduction of IL33 between acute UC and disease remission was observed when TNF normalised in the mucosa (p = 0.02). Immunostaining revealed IL-33 in the nuclei of epithelial cells of scattered colonic crypts in acute disease, while at disease remission, IL-33 was undetectable, a novel finding suggesting that enterocyte-derived IL-33 is induced and maintained by inflammatory mediators.
Collapse
|
44
|
Regulation of IL-33 by Oncostatin M in Mouse Lung Epithelial Cells. Mediators Inflamm 2016; 2016:9858374. [PMID: 27703303 PMCID: PMC5040793 DOI: 10.1155/2016/9858374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 11/26/2022] Open
Abstract
IL-33 modulates both innate and adaptive immune responses at tissue sites including lung and may play critical roles in inflammatory lung disease. Although IL-33 expression can be altered upon NF-Kappa B activation, here we examine regulation by Oncostatin M, a gp130 cytokine family member, in mouse lung tissue. Responses were assessed in BALB/c mouse lung at day 7 of transient overexpression using endotracheally administered adenovirus encoding OSM (AdOSM) or empty vector (AdDel70). Whole lung extracts showed induction of IL-33 mRNA (>20-fold) and protein (10-fold increase in immunoblots) by AdOSM relative to AdDel70. Immunohistochemistry for IL-33 indicated a marked induction of nuclear staining in alveolar epithelial cells in vivo. Oncostatin M stimulated IL-33 mRNA and IL-33 full length protein in C10 mouse type 2 alveolar epithelial cells in culture in time-dependent and dose-dependent fashion, whereas IL-6, LIF, IL-31, IL-4, or IL-13 did not, and TGFβ repressed IL-33. IL-33 induction was associated with activation of STAT3, and pharmacological inhibition of STAT3 ameliorated IL-33 levels. These results indicate Oncostatin M as a potent inducer of IL-33 in mouse lung epithelial cells and suggest that an OSM/IL-33 axis may participate in innate immunity and inflammatory conditions in lung.
Collapse
|
45
|
Wounds that heal and wounds that don't - The role of the IL-33/ST2 pathway in tissue repair and tumorigenesis. Semin Cell Dev Biol 2016; 61:41-50. [PMID: 27521518 DOI: 10.1016/j.semcdb.2016.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
Abstract
IL-33 is a member of the IL-1 family of cytokines. IL-33 is predominantly located within the nucleus of cells where it plays a role in gene regulation. Given the right combination of signals and cellular damage, stored IL-33 is released from the cell where it can interact with its receptor ST2, triggering danger-associated responses and act as a cellular "alarmin". Whilst IL-33/ST2 signalling has been shown to induce potent pro-inflammatory responses that can be detrimental in certain disease states, a dichotomous, protective role of IL-33 in promoting wound healing has also emerged in multiple tissues types. This review will explore the current literature concerning this homeostatic role of IL-33/ST2 in tissue repair and also review its role in uncontrolled wound responses as seen in both fibrosis and tumorigenesis.
Collapse
|
46
|
Athari SK, Poirier E, Biton J, Semerano L, Hervé R, Raffaillac A, Lemeiter D, Herbelin A, Girard JP, Caux F, Boissier MC, Bessis N. Collagen-induced arthritis and imiquimod-induced psoriasis develop independently of interleukin-33. Arthritis Res Ther 2016; 18:143. [PMID: 27317338 PMCID: PMC4912820 DOI: 10.1186/s13075-016-1042-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/03/2016] [Indexed: 01/14/2023] Open
Abstract
Background Interleukin (IL)-33 is a dual cytokine with both an alarmin role and a T helper 2 cell (Th2)-like inducing effect. It is involved in the pathogenesis of rheumatoid arthritis (RA) and its models; we recently demonstrated that exogenous IL-33 could inhibit collagen-induced arthritis (CIA) in C57BL/6 mice. However, its pathophysiological role in RA is unclear. Indeed, mice deficient in the IL-33 receptor ST2 show reduced susceptibility to arthritis, and the disease is not modified in IL-33-deficient mice. We examined the immune response in wild-type (WT) and IL-33-deficient mice with CIA. To further understand the role of endogenous IL-33 in inflammatory diseases, we studied its role in a skin psoriasis model. Mice on a C57BL/6 background were deficient in IL-33 but expressed lacZ under the IL-33 promoter. Therefore, IL-33 promotor activity could be analyzed by lacZ detection and IL-33 gene expression was analyzed by X-Gal staining in various mice compartments. Frequencies of CD4+FoxP3+ regulatory T cells (Tregs) and Th1 and Th17 cells were evaluated by flow cytometry in WT and IL-33-/- mice. Bone resorption was studied by evaluating osteoclast activity on a synthetic mineral matrix. Psoriasis-like dermatitis was induced by application of imiquimod to the skin of mice. Results Severity of CIA was similar in IL-33-/- and WT littermates. Joints of IL-33-/- mice with CIA showed IL-33 promotor activity. In mice with CIA, frequencies of Tregs, Th1 and Th17 in the spleen or lymph nodes did not differ between the genotypes; osteoclast activity was higher but not significantly in IL-33-/- than WT mice. Psoriasis development did not differ between the genotypes. Conclusions Despite its expression in the synovium of arthritic mice and normal keratinocytes, IL-33 is not required for CIA development in arthritis or psoriasis. Its absence does not induce a T cell shift toward Th1, Th17 or Treg subpopulations. Altogether, these data and our previous ones, showing that exogenous IL-33 can almost completely inhibit CIA development, suggest that this cytokine is not crucial for development of chronic inflammation. Studies of RA patients are needed to determine whether treatment targeting the IL-33/ST2 axis would be effective.
Collapse
Affiliation(s)
- Sara Khaleghparast Athari
- INSERM, UMR 1125, 93017, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France
| | - Elodie Poirier
- INSERM, UMR 1125, 93017, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France
| | - Jérôme Biton
- INSERM, UMR 1125, 93017, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.,Present address: INSERM UMRS 1138 Equipe 13, Centre de Recherche des Cordeliers, 75006, Paris, France
| | - Luca Semerano
- INSERM, UMR 1125, 93017, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.,Assistance Publique-Hôpitaux de Paris, Avicenne Hospital, Rheumatology Department, 93009, Bobigny, France
| | - Roxane Hervé
- INSERM, UMR 1125, 93017, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France
| | - Aurélie Raffaillac
- INSERM, UMR 1125, 93017, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France
| | - Delphine Lemeiter
- INSERM, UMR 1125, 93017, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France
| | - André Herbelin
- INSERM U1082, Pôle Biologie Santé, CHU Poitiers, BP 633, Poitiers, 86022, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS) CNRS-Université de Toulouse III, 31077, Toulouse, France
| | - Frédéric Caux
- INSERM, UMR 1125, 93017, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.,Assistance Publique-Hôpitaux de Paris, Avicenne Hospital, Dermatology Department, 93009, Bobigny, France
| | - Marie-Christophe Boissier
- INSERM, UMR 1125, 93017, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.,Assistance Publique-Hôpitaux de Paris, Avicenne Hospital, Rheumatology Department, 93009, Bobigny, France
| | - Natacha Bessis
- INSERM, UMR 1125, 93017, Bobigny, France. .,Sorbonne Paris Cité Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.
| |
Collapse
|
47
|
Stojkovic S, Kaun C, Basilio J, Rauscher S, Hell L, Krychtiuk KA, Bonstingl C, de Martin R, Gröger M, Ay C, Holnthoner W, Eppel W, Neumayer C, Huk I, Huber K, Demyanets S, Wojta J. Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation. Sci Rep 2016; 6:25171. [PMID: 27142573 PMCID: PMC4855148 DOI: 10.1038/srep25171] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/08/2016] [Indexed: 12/25/2022] Open
Abstract
Tissue factor (TF) is the primary trigger of coagulation. Elevated levels of TF are found in atherosclerotic plaques, and TF leads to thrombus formation when released upon plaque rupture. Interleukin (IL)-33 was previously shown to induce angiogenesis and inflammatory activation of endothelial cells (ECs). Here, we investigated the impact of IL-33 on TF in human ECs, as a possible new link between inflammation and coagulation. IL-33 induced TF mRNA and protein in human umbilical vein ECs and coronary artery ECs. IL-33-induced TF expression was ST2- and NF-κB-dependent, but IL-1-independent. IL-33 also increased cell surface TF activity in ECs and TF activity in ECs-derived microparticles. IL-33-treated ECs reduced coagulation time of whole blood and plasma but not of factor VII-deficient plasma. In human carotid atherosclerotic plaques (n = 57), TF mRNA positively correlated with IL-33 mRNA expression (r = 0.691, p < 0.001). In this tissue, IL-33 and TF protein was detected in ECs and smooth muscle cells by immunofluorescence. Furthermore, IL-33 and TF protein co-localized at the site of clot formation within microvessels in plaques of patients with symptomatic carotid stenosis. Through induction of TF in ECs, IL-33 could enhance their thrombotic capacity and thereby might impact on thrombus formation in the setting of atherosclerosis.
Collapse
Affiliation(s)
- Stefan Stojkovic
- Department of Internal Medicine II, Medical University of Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | - Christoph Kaun
- Department of Internal Medicine II, Medical University of Vienna, Austria
| | - Jose Basilio
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Austria
| | | | - Lena Hell
- Department of Internal Medicine I, Clinical Division of Hematology and Hemostaseology, Medical University of Vienna, Austria
| | | | - Cornelia Bonstingl
- Ludwig Boltzmann Institute of Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Austria
| | - Marion Gröger
- Core Facilities, Medical University of Vienna, Austria
| | - Cihan Ay
- Department of Internal Medicine I, Clinical Division of Hematology and Hemostaseology, Medical University of Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute of Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Eppel
- Department of Obstetrics, Medical University of Vienna, Austria
| | - Christoph Neumayer
- Department of Surgery, Division of Vascular Surgery, Medical University of Vienna, Austria
| | - Ihor Huk
- Department of Surgery, Division of Vascular Surgery, Medical University of Vienna, Austria
| | - Kurt Huber
- 3rd Medical Department for Cardiology and Emergency Medicine, Wilhelminen Hospital, Vienna, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria.,Core Facilities, Medical University of Vienna, Austria
| |
Collapse
|
48
|
Interleukin-33: increasing role in dermatological conditions. Arch Dermatol Res 2016; 308:287-96. [DOI: 10.1007/s00403-016-1638-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/21/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022]
|
49
|
Rubic-Schneider T, Christen B, Brees D, Kammüller M. Minipigs in Translational Immunosafety Sciences: A Perspective. Toxicol Pathol 2016; 44:315-24. [PMID: 26839327 DOI: 10.1177/0192623315621628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The porcine immune system has been studied especially with regard to infectious diseases of the domestic pig, highlighting the economic importance of the pig in agriculture. Recently, in particular, minipigs have received attention as alternative species to dogs or nonhuman primates in drug safety evaluations. The increasing number of new drug targets investigated to modulate immunological pathways has triggered renewed interest to further explore the porcine immune system. Comparative immunological studies of minipigs with other species broaden the translational models investigated in drug safety evaluations. The porcine immune system overall seems functionally similar to other mammalian species, but there are some anatomical, immunophenotypical, and functional differences. Here, we briefly review current knowledge of the innate and adaptive immune system in pigs and minipigs. In conclusion, more systematic and cross-species comparisons are needed to assess the significance of immunological findings in minipigs in the context of translational safety sciences.
Collapse
Affiliation(s)
| | | | - Dominique Brees
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
50
|
Martin NT, Martin MU. Interleukin 33 is a guardian of barriers and a local alarmin. Nat Immunol 2016; 17:122-31. [DOI: 10.1038/ni.3370] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
|