1
|
Li S, Ye X, Wen X, Yang X, Wang L, Gao K, Xiao H, Jiang Z. Arginine and its metabolites stimulate proliferation, differentiation, and physiological function of porcine trophoblast cells through β-catenin and mTOR pathways. BMC Vet Res 2024; 20:167. [PMID: 38689278 PMCID: PMC11062007 DOI: 10.1186/s12917-024-04023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Arginine, which is metabolized into ornithine, proline, and nitric oxide, plays an important role in embryonic development. The present study was conducted to investigate the molecular mechanism of arginine in proliferation, differentiation, and physiological function of porcine trophoblast cells (pTr2) through metabolic pathways. The results showed that arginine significantly increased cell viability (P < 0.05). The addition of arginine had a quadratic tendency to increase the content of progesterone (P = 0.06) and protein synthesis rate (P = 0.03), in which the maximum protein synthesis rate was observed at 0.4 mM arginine. Arginine quadratically increased (P < 0.05) the intracellular contents of spermine, spermidine and putrescine, as well as linearly increased (P < 0.05) the intracellular content of NO in a dose-dependent manner. Arginine showed a quadratic tendency to increase the content of putrescine (P = 0.07) and a linear tendency to increase NO content (P = 0.09) in cell supernatant. Moreover, increasing arginine activated (P < 0.05) the mRNA expressions for ARG, ODC, iNOS and PCNA. Furthermore, inhibitors of arginine metabolism (L-NMMA and DFMO) both inhibited cell proliferation, while addition of its metabolites (NO and putrescine) promoted the cell proliferation and cell cycle, the mRNA expressions of PCNA, EGF and IGF-1, and increased (P < 0.05) cellular protein synthesis rate, as well as estradiol and hCG secretion (P < 0.05). In conclusion, our results suggested that arginine could promote cell proliferation and physiological function by regulating the metabolic pathway. Further studies showed that arginine and its metabolites modulate cell function mainly through β-catenin and mTOR pathways.
Collapse
Affiliation(s)
- Shuai Li
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiangyang Ye
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaolu Wen
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xuefen Yang
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Li Wang
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Hao Xiao
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zongyong Jiang
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| |
Collapse
|
2
|
Tapia E, Sanchez-Lozada LG, Soto V, Manrique AM, Ortiz-Vega KM, Santamaría J, Medina-Campos ON, Cristóbal M, Avila-Casado C, Pedraza-Chaverri J, Rodríguez-Iturbe B, Franco M. Sildenafil treatment prevents glomerular hypertension and hyperfiltration in rats with renal ablation. Kidney Blood Press Res 2012; 35:273-80. [PMID: 22378379 DOI: 10.1159/000334952] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 11/04/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sildenafil treatment ameliorates progressive renal injury resulting from extensive renal ablation; however, modifications induced by sildenafil in the glomerular hemodynamic pathophysiology of the remnant kidney have not been investigated. AIM To determine the effects of sildenafil in the glomerular microcirculation and their relation to histological damage in the renal ablation model. METHODS Micropuncture studies were performed 60 days after 5/6 nephrectomy in rats that received no treatment, sildenafil (5 mg/kg/day) and reserpine, hydralazine and hydrochlorothiazide to maintain the blood pressure within normal levels. Sham-operated rats untreated and treated with sildenafil served as controls. RESULTS As expected, renal ablation induced systemic and glomerular hypertension, hyperfiltration, proteinuria, glomerulosclerosis and tubulointerstitial inflammatory damage in the remnant kidney. Sildenafil treatment prevented single-nephron hyperfiltration and hypertension, suppressed renal arteriolar remodeling, ameliorated systemic hypertension and proteinuria, increased urinary excretion of cGMP and NO(2)(-)/NO(3)(-), decreased oxidative stress and improved histological damage in the remnant kidney. Normalization blood pressure with reserpine, hydralazine and hydrochlorothiazide did not modify glomerular hemodynamics, proteinuria or histological changes induced by renal ablation. CONCLUSIONS Beneficial effects of sildenafil in the remnant kidney are associated with a reduction in the arteriolar remodeling, renal inflammatory changes and prevention of changes in the glomerular microcirculation.
Collapse
Affiliation(s)
- Edilia Tapia
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Krepinsky JC, Li Y, Chang Y, Liu L, Peng F, Wu D, Tang D, Scholey J, Ingram AJ. Akt mediates mechanical strain-induced collagen production by mesangial cells. J Am Soc Nephrol 2005; 16:1661-72. [PMID: 15814837 DOI: 10.1681/asn.2004100897] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Increased glomerular hydrostatic pressure is an important determinant of glomerulosclerosis and can be modeled by in vitro exposure of mesangial cells to cyclic mechanical strain. Stretched mesangial cells increase extracellular matrix protein production, the hallmark of glomerulosclerosis. Recent data indicate that the serine/threonine kinase Akt may be involved in matrix modulation. Thus, Akt activation and matrix synthesis in stretched mesangial cells were studied. Exposure of mesangial cells to 1 Hz cyclic strain led to prompt Akt activation, which was biphasic to 24 h. Activation was dependent on signaling through phosphatidylinositol-3-kinase and required EGF receptor transactivation. Inhibition of signaling through the PDGF receptor, Src kinase, or cytoskeletal disruption failed to prevent strain-induced Akt activation. Collagen type 1A1 transcript expression, promoter activation, and protein secretion were increased by stretch at 24 h and were dependent on phosphatidylinositol-3 kinase. Overexpression of dominant-negative Akt inhibited strain-induced collagen 1A1 production. Conversely, overexpression of constitutively active Akt led to increased collagen 1A1 upregulation and secretion. Finally, Akt activation was observed in the glomeruli of remnant rat kidneys, a model marked by increased intraglomerular pressure. The authors conclude that mechanical strain induces Akt activation in mesangial cells through a mechanism requiring phosphatidylinositol-3-kinase and EGF receptor transactivation. Type 1 collagen production is dependent on Akt and can be induced by Akt overexpression. Akt activation is observed in remnant kidneys in vivo. Thus, the role of Akt in progression of chronic hemodynamic glomerular disease is worthy of further exploration.
Collapse
Affiliation(s)
- Joan C Krepinsky
- Department of Medicine, Division of Nephrology, McMaster University, Hamilton, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Krepinsky J, Wu D, Ingram A, Scholey J, Tang D. Developments in mitogen-induced extracellular kinase 1 inhibitors and their use in the treatment of disease. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.12.1795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Krepinsky JC, Ingram AJ, Tang D, Wu D, Liu L, Scholey JW. Nitric Oxide Inhibits Stretch-Induced MAPK Activation in Mesangial Cells Through RhoA Inactivation. J Am Soc Nephrol 2003; 14:2790-800. [PMID: 14569089 DOI: 10.1097/01.asn.0000094085.04161.a7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT. Glomerular capillary hypertension is an important determinant of glomerulosclerosis in rats with subtotal renal ablation. Dietary supplementation withl-arginine increases renal nitric oxide (NO) production and limits glomerular injury in this model, and early benefits are seen without altered glomerular capillary pressure. In anin vitromodel of hemodynamically mediated signaling, the authors have reported that subjecting MC to cyclic stretch/relaxation activates the mitogen-activated protein kinase p42/44 (Erk) cascade and that NO and cyclic GMP abrogate stretch-induced Erk activation by inducing actin cytoskeletal disassembly. The actin cytoskeleton is regulated by the Rho family of GTPases, including RhoA; therefore, the authors examined the role of RhoA in stretch-induced Erk activation and as an NO target. In primary rat MC subjected to cyclic mechanical strain, RhoA activity was maximally increased (2.4-fold) after 1 min of stretch, and Erk activation temporally followed. The Rho-kinase inhibitor Y-27632 attenuated Erk activation in a dose-dependent manner and prevented stretch-induced actin stress fiber formation. The NO donors S-nitroso-N-acetylpenicillamine and cGMP both inhibited stretch-induced RhoA and Erk activation and stress fiber formation. Infection of MC with the RhoA mutant RhoA-Ala188, which is resistant to NO-dependent phosphorylation, abrogated the effects of NO and cGMP on stretch-induced Erk activation and stress fiber formation. The authors conclude that the early activation of RhoA is essential for stretch-induced actin stress fiber formation and Erk activation in MC, events which are prevented by NO and cGMP through their action on RhoA. Inhibition of RhoA may thus be a new approach to the prevention of hemodynamically mediated glomerular injury. E-mail: krepinj@mcmaster.ca
Collapse
|
6
|
Zoja C, Benigni A, Camozzi D, Corna D, Longaretti L, Todeschini M, Remuzzi G. Combining lisinopril and l-arginine slows disease progression and reduces endothelin-1 in passive Heymann nephritis. Kidney Int 2003; 64:857-63. [PMID: 12911535 DOI: 10.1046/j.1523-1755.2003.00191.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Despite angiotensin-converting enzyme (ACE) inhibition is a very powerful therapy, it may not be uniformly renoprotective in patients with proteinuric nephropathies who might refer late in the course of the disease. In accelerated passive Heymann nephritis (PHN), a severe rat model of human membranous nephropathy, with proteinuria and increased urinary excretion of endothelin-1 (ET-1), early treatment with an ACE inhibition limited proteinuria as well as the exuberant formation of renal ET-1, while late treatment reduced urinary proteins not to a significant extent. Since biologic effects and production of ET-1 within the kidney are counteracted by nitric oxide, we studied the effect of combining lisinopril and l-arginine, the natural precursor of nitric oxide, starting late in the disease. METHODS Uninephrectomized PHN rats were divided in four groups (N = 10) and daily given orally: vehicle; 1.25 g/L l-arginine; 40 mg/L lisinopril; and l-arginine + lisinopril. Treatments started at 2 months, when rats had massive proteinuria, until 9 months. Six normal rats served as control. RESULTS Increase in systolic blood pressure was significantly limited by l-arginine. Lisinopril alone and the combination were more effective. Renal function impairment was not affected by l-arginine, partially ameliorated by ACE inhibitor and normalized by the combined therapy. In rats given l-arginine, proteinuria levels were similar to vehicle. ACE inhibitor kept proteinuria at values comparable to pretreatment and numerically lower than vehicle. Addition of l-arginine to lisinopril was more effective, with values significantly lower than vehicle. Glomerular and tubular changes were limited by the ACE inhibitor and further ameliorated by the combined therapy. Exaggerated urinary ET-1 of PHN was reduced by 23% and 40% after l-arginine and lisinopril, respectively, and by 62% with the combination. Defective urinary excretion of cyclic guanosine monophosphate (cGMP) was partially restored by lisinopril, while normalized by the combined therapy. CONCLUSION Combining l-arginine with ACE inhibitors would represent a novel strategy for patients with severe nephropathy not completely responsive to ACE inhibition. Restoring the nitric oxide/ET-1 balance could be of benefit in halting renal disease progression.
Collapse
Affiliation(s)
- Carla Zoja
- Mario Negri Institute for Pharmacological Research, Bergamo, Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
Krepinsky J, Ingram AJ, James L, Ly H, Thai K, Cattran DC, Miller JA, Scholey JW. 17beta -Estradiol modulates mechanical strain-induced MAPK activation in mesangial cells. J Biol Chem 2002; 277:9387-94. [PMID: 11777903 DOI: 10.1074/jbc.m106670200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gender is an important determinant of clinical outcome across a broad spectrum of kidney diseases, but the mechanism(s) responsible for the protective effect of female gender have not been fully elucidated. Remnant kidney glomerular injury is limited in female rats compared with male rats despite similar elevations in glomerular capillary pressure. In vitro, mechanical strain leads to the activation of p44/42 mitogen-activated kinase (p44/42 MAPK) and Jun N-terminal kinase/stress-activated protein kinase (SAPK) in glomerular mesangial cells (MC). Accordingly, we studied the effect of 17beta-estradiol on mechanical strain-induced signal transduction in MC. Exposure of MC to mechanical strain increased p44/42 MAPK activation (3-fold) and SAPK activation (2.5-fold), and kinase activation was inhibited by pretreatment with 17beta-estradiol (10(minus sign8) to 10(minus sign11) m) for 24 h in a dose-dependent manner. Mechanical strain-induced nuclear translocation of p44/42 MAPK and SAPK and nuclear protein binding to AP-1 were also attenuated by 17beta-estradiol. The inhibitory effects of 17beta-estradiol were not reproduced by the cell-impermeable estrogen, BSA/17beta-estradiol, nor did preincubation with 17beta-estradiol lead to actin cytoskeleton disassembly or impaired stress fiber formation. However, 17beta-estradiol did increase base-line levels of the dual specificity phosphatase MKP-1. The inhibitory effects of 17beta-estradiol on p44/42 MAPK activation and SAPK activation, translocation, and AP-1 binding were all abrogated by the estrogen receptor antagonist, ICI-182,780. We conclude that attenuation of mechanical strain-induced MAPK activation by 17beta-estradiol is dependent on intracellular estrogen receptor. The attenuation of stretch-induced kinase activation may be due, at least in part, to an effect of 17beta-estradiol on MKP-1 expression. Together, these findings add insight into the protective effect of gender on renal disease progression.
Collapse
Affiliation(s)
- Joan Krepinsky
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Romagnani P, Lazzeri E, Lasagni L, Mavilia C, Beltrame C, Francalanci M, Rotondi M, Annunziato F, Maurenzig L, Cosmi L, Galli G, Salvadori M, Maggi E, Serio M. IP-10 and Mig production by glomerular cells in human proliferative glomerulonephritis and regulation by nitric oxide. J Am Soc Nephrol 2002; 13:53-64. [PMID: 11752021 DOI: 10.1681/asn.v13153] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
High levels of expression of mRNA and protein for the chemokines interferon-gamma (IFN-gamma)-inducible protein of 10 kD (IP-10) (CXCL10) and the monokine induced by IFN-gamma (Mig) (CXCL9) were observed, by using in situ hybridization and immunohistochemical analyses, in kidney biopsy specimens from patients with glomerulonephritis (GN), particularly those with membranoproliferative or crescentic GN, but not in normal kidneys. Double-immunostaining or combined in situ hybridization and immunohistochemical analyses for IP-10, Mig, and proliferating cell nuclear antigen (PCNA) or alpha-smooth muscle actin (alpha-SMA) revealed that IP-10 and Mig production by resident glomerular cells was a selective property of glomeruli in which mesangial cells demonstrated active proliferation. IP-10 and Mig mRNA and protein were also expressed by primary cultures of human mesangial cells and human visceral epithelial cells after stimulation with IFN- gamma or with IFN-gamma plus tumor necrosis factor-alpha (TNF-alpha) (which produced greater stimulation). The induction of IP-10 and Mig mRNA and protein expression by IFN-gamma plus TNF-alpha was strongly inhibited by nitric oxide (NO) donors, such as sodium nitroprusside or S-nitroso-N-acetylpenicillamine, but not by cGMP analogues. Electrophoretic mobility shift assays demonstrated that NO donors repressed IP-10 gene transcription induced by IFN-gamma plus TNF-alpha through the inhibition of NF-kappaB activation. These data demonstrate that resident glomerular cells in kidneys of patients with proliferative GN produce large amounts of IP-10 and Mig, which may play important pathogenic roles in this disease. These data also indicate that the production of IP-10 and Mig by human mesangial cells can be downregulated by NO donors through cGMP-independent inhibition of NF-kappaB activation.
Collapse
Affiliation(s)
- Paola Romagnani
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Elena Lazzeri
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Laura Lasagni
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Carmelo Mavilia
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Chiara Beltrame
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Michela Francalanci
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Mario Rotondi
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Francesco Annunziato
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Lucia Maurenzig
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Lorenzo Cosmi
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Grazia Galli
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Maurizio Salvadori
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Enrico Maggi
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| | - Mario Serio
- *Department of Clinical Pathophysiology, Endocrinology Unit, Department of Internal Medicine, Immunoallergology Unit, Division of Nephrology and Dialysis, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Miyajima A, Chen J, Poppas DP, Vaughan ED, Felsen D. Role of nitric oxide in renal tubular apoptosis of unilateral ureteral obstruction. Kidney Int 2001; 59:1290-303. [PMID: 11260390 DOI: 10.1046/j.1523-1755.2001.0590041290.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The obstructed kidney in unilateral ureteral obstruction (UUO) is characterized by renal atrophy and tissue loss, which is mediated by renal tubular apoptosis. We sought to determine whether NO is involved in renal tubular apoptosis in vitro and in vivo. METHODS Rat renal tubular epithelial cells (NRK-52E) were subjected to mechanical stretch, and apoptosis and cell size were analyzed by flow cytometry. Furthermore, we studied UUO in mice lacking the gene for inducible nitric oxide synthase (iNOS-/-) and their wild-type littermates. Tubular apoptosis and proliferation were detected by immunostaining. NOS activity and NOS expression were assessed by a citrulline assay and Western blot, respectively. RESULTS Stretching-induced apoptosis in NRK-52E, which was reduced when NO was increased; conversely, stretch-induced apoptosis was increased when a NOS inhibitor was added to the cells. Stretched cells are larger and more apoptotic than unstretched cells. In UUO, the obstructed kidney of iNOS-/- mice exhibited more apoptotic renal tubules than the wild-type mice through 14 days of UUO. The obstructed kidney of iNOS-/- mice at day 3 showed more proliferative tubules compared with wild type. The obstructed kidney of wild-type mice exhibited higher total NOS activity until day 7 after UUO compared with iNOS-/- mice. However, the obstructed kidney of day 14 wild-type mice exhibited significantly lower iNOS activity and protein compared with the day 0 kidney. CONCLUSION These results suggest that mechanical stretch is related to renal tubular apoptosis and that NO plays a protective role in this system in UUO.
Collapse
Affiliation(s)
- A Miyajima
- Center for Pediatric Urology and Laboratory for Minimally Invasive Urologic Surgery, Department of Urology, New York Presbyterian Hospital, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
10
|
Dumont Y, D'Amours M, Lebel M, Larivière R. Supplementation with a low dose of L-arginine reduces blood pressure and endothelin-1 production in hypertensive uraemic rats. Nephrol Dial Transplant 2001; 16:746-54. [PMID: 11274268 DOI: 10.1093/ndt/16.4.746] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We documented recently that increased endothelin-1 (ET-1) production in blood vessels and glomeruli of uraemic rats plays a crucial role in the development of hypertension and the progression of chronic renal failure. Normally, biological effects and local production of ET-1 are attenuated by the immediate release of nitric oxide (NO). Increasing evidence suggest, however, that NO release is impaired in chronic renal failure. We investigated whether supplementation with L-arginine, the natural precursor of NO, improves NO synthesis in uraemic rats with reduced renal mass and modulates vascular and renal ET-1 production as well as blood pressure and renal failure progression. METHODS One week after surgical renal mass reduction, the uraemic and sham-operated animals received either no treatment or 0.1% L-arginine in drinking water for 5 weeks. In another series of experiments, uraemic rats received 1% L-arginine for 5 weeks. Immunoreactive-ET-1 (ir-ET-1) levels in plasma, urine, and vascular and renal tissue preparations was measured by radioimmunoassay after sample extraction and purification. RESULTS Before treatment, systolic blood pressure was significantly elevated in uraemic animals compared to sham-operated controls (156+/-7 vs 111+/-3 mmHg, respectively; P<0.01). Thereafter, systolic blood pressure increased further in uraemic-untreated rats (systolic blood pressure at week 5; 199+/-9 mmHg, P<0.01), whereas it remained similar in uraemic rats supplemented with 0.1% L-arginine (171+/-9 mmHg, NS). At the end of the study, serum creatinine and urea, proteinuria and ir-ET-1 excretion were significantly augmented, while creatinine clearance was reduced in uraemic animals compared to the controls. Ir-ET-1 level was also increased in glomeruli as well as in thoracic aorta, mesenteric arterial bed, and pre-glomerular arteries, and was associated with vascular hypertrophy as assessed by tissue weight. In contrast, ir-ET-1 level was diminished in the renal papilla of uraemic rats. Treatment with 0.1% L-arginine significantly reduced proteinuria and urinary ir-ET-1 excretion (P<0.05) as well as ir-ET-1 level in glomeruli (P<0.01) and in thoracic aorta (P<0.05). These changes were associated with increased plasma NO metabolites NO2/NO3 levels in L-arginine-treated animals (P<0.01) and reduced aortic hypertrophy (P<0.05). In contrast, supplementation with 1% L-arginine had no effect on systolic blood pressure in uraemic rats, but exacerbated proteinuria and urinary ir-ET-1 excretion and increased serum urea (P<0.05) were observed. CONCLUSIONS These results indicate that improvement of NO release with a low dose but not with a high dose of L-arginine significantly attenuates the development of hypertension and the progression of renal insufficiency in rats with reduced renal mass. These protective effects may be mediated in part by the reduction of vascular and renal ET-1 production.
Collapse
Affiliation(s)
- Y Dumont
- Research Center and Division of Nephrology, CHUQ, L'Hôtel-Dieu de Québec, and Department of Medicine, Laval University, Quebec, Canada
| | | | | | | |
Collapse
|
11
|
Vos IHC, Rabelink TJ, Dorland B, Loos R, Middelaar BVAN, Gröne HJ, Joles JA. L-arginine supplementation improves function and reduces inflammation in renal allografts. J Am Soc Nephrol 2001; 12:361-367. [PMID: 11158227 DOI: 10.1681/asn.v122361] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Recovery from ischemia/reperfusion and immune-mediated injury in the renal transplant is associated with reduced renal hemodynamics and increased leukocyte infiltration. In diverse models of renal failure, L-arginine supplementation improved hemodynamics and reduced inflammation. However in a proinflammatory environment, L-arginine can worsen renal injury. This study investigated the therapeutic potential of L-arginine supplementation in allogeneic renal transplantation: Brown Norway rat kidneys were transplanted into Lewis rat recipients, with one native kidney remaining. Recipients received low-dose cyclosporin A (2.5 mg/kg per d subcutaneously) to obtain moderate vascular and interstitial rejection, with or without 1% L-arginine in drinking water for 7 d posttransplantation. Transplantation increased renal vasoconstriction (from 16.9 +/- 1.33 to 35.1 +/- 8.6 units; P: < 0.01), thereby reducing GFR (from 0.96 +/- 0.09 to 0.48 +/- 0.10 ml/min; P: < 0.05). Treatment with L-arginine restored renal graft function to levels found in normal donors (renal vascular resistance, 15.7 +/- 1.69 units; GFR, 0.80 +/- 0.06 ml/min). L-arginine significantly reduced vascular occlusion because of less inflammation, endothelial disruption, and thrombosis. L-arginine also decreased tubulitis, interstitial injury, and macrophage infiltration. These protective effects suggest that L-arginine might be useful as additive therapy to conventional immune suppression.
Collapse
Affiliation(s)
- Ingrid H C Vos
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, the Netherlands
| | - Ton J Rabelink
- Department of Vascular Medicine, University Medical Center, Utrecht, the Netherlands
| | - Bert Dorland
- Department of Laboratory of Metabolic Diseases, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Remko Loos
- Department of Laboratory of Metabolic Diseases, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Ben VAN Middelaar
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, the Netherlands
| | - Hermann-Josef Gröne
- Department of Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
12
|
Ingram AJ, James L, Cai L, Thai K, Ly H, Scholey JW. NO inhibits stretch-induced MAPK activity by cytoskeletal disruption. J Biol Chem 2000; 275:40301-6. [PMID: 10984494 DOI: 10.1074/jbc.m007018200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mesangial cells (MC) grown on extracellular matrix protein-coated plates and exposed to cyclic strain/relaxation proliferate and produce extracellular matrix protein, providing an in vitro model of signaling in stretched MC. Intracellular transduction of mechanical strain involves mitogen-activated protein kinases, and we have shown that p42/44 mitogen-activated protein kinase (extracellular signal-regulated kinase (ERK)) is activated by cyclic strain in MC. In vivo studies show that increased production of nitric oxide (NO) in the remnant kidney limits glomerular injury without reducing glomerular capillary pressure, and we have observed that NO attenuates stretch-induced ERK activity in MC via generation of cyclic guanosine monophosphate (cGMP). Accordingly, we sought to determine whether NO affects strain-induced ERK activity after strain and how this is mediated. Strain-induced ERK activity was dependent on time and magnitude of stretch and was maximal after 10 min at -27 kilopascals. Actin cytoskeleton disruption with cytochalasin D abrogated this. The non-metabolizable cGMP analogue 8-bromo cyclic GMP (8-Br-cGMP) dose-dependently attenuated strain-induced ERK activity. Cytoskeletal stabilization with jasplakinolide prevented this inhibitory effect of 8-Br-cGMP. Cyclic strain increased nuclear translocation of phospho-ERK by immunofluorescent microscopy, again attenuated by 8-Br-cGMP. Jasplakinolide prevented the inhibitory effect of 8-Br-cGMP on activated ERK nuclear translocation after strain. Strain increased ERK-dependent AP-1 nuclear protein binding, which was attenuated by cytochalasin D and 8-Br-cGMP. These data indicate that cGMP can inhibit cyclic strain-induced ERK activity, nuclear translocation, and AP-1 nuclear protein binding. Cytoskeletal disruption leads to the same effect, whereas cytoskeleton stabilization reverses the effect of 8-Br-cGMP. Thus, NO inhibits strain-induced ERK activity by cytoskeletal destabilization.
Collapse
Affiliation(s)
- A J Ingram
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 1Y2, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
James LR, Fantus IG, Goldberg H, Ly H, Scholey JW. Overexpression of GFAT activates PAI-1 promoter in mesangial cells. Am J Physiol Renal Physiol 2000; 279:F718-27. [PMID: 10997922 DOI: 10.1152/ajprenal.2000.279.4.f718] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of hyperglycemia on glomerular cells may be mediated by glucose entry into the hexosamine pathway, and mesangial cell (MC) expression of the hexosamine pathway rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFAT) is increased in diabetic glomerulosclerosis. We hypothesized that GFAT activity would be an important determinant of gene expression in glomerular MC. When overexpressed in primary MC, GFAT produced a two- to threefold increase in the activity of plasminogen activator inhibitor-1 (PAI-1) promoter. There was a 1.4-fold increase in PAI-1 promoter activity in cells exposed to high glucose (20 mM), whereas in MC overexpressing GFAT, exposure to high glucose caused a 3.5- to 4-fold increase in promoter activity. PAI-1 promoter activation was dependent on GFAT enzyme activity because o-diazoacetyly-L-serine and 6-diazo-5-oxonorleucine, inhibitors of GFAT enzyme activity, abrogated the activation of PAI-1 promoter in MC overexpressing GFAT. Glucosamine, which is downstream of GFAT in the hexosamine pathway, produced a 2.5-fold increase in the PAI-1 promoter activity. In addition to increasing the mRNA levels for transforming growth factor-beta1 (TGF-beta1), GFAT overexpression also increased mRNA levels for the TGF-beta type I and type II receptors. TGF-beta-neutralizing antibody did not normalize PAI-1 promoter activity in MC exposed to glucosamine or those overexpressing GFAT. We conclude that GFAT expression and activity are important determinants of gene expression in MC and that flux through the hexosamine pathway activates expression of genes implicated in vascular injury pathways.
Collapse
Affiliation(s)
- L R James
- Division of Nephrology, Department of Medicine, Mount Sinai/University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 2C4
| | | | | | | | | |
Collapse
|
14
|
Ingram AJ, James L, Ly H, Thai K, Scholey JW. Stretch activation of jun N-terminal kinase/stress-activated protein kinase in mesangial cells. Kidney Int 2000; 58:1431-9. [PMID: 11012878 DOI: 10.1046/j.1523-1755.2000.00305.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mesangial cells (MCs) grown on extracellular matrix (ECM)-coated plates and exposed to cyclic stretch/relaxation proliferate and produce ECM protein, suggesting that this may be a useful in vitro model for MC behavior in response to increased physical forces. The induction of c-fos in response to MC stretch has been shown. Stimuli that lead to c-fos induction pass through mitogen-activated protein (MAP) kinase pathways. We have seen early activation of jun N-terminal kinase/stress-activated protein kinase (SAPK/JNK) in MCs exposed to cyclic stretch. Accordingly, we studied SAPK/JNK activation in stretched MCs and the downstream consequences of this signaling. METHODS MCs (passages 5 to 10) cultured on type 1 collagen-coated, flexible-bottom plates were exposed to 2 to 60 minutes of cyclic strain (60 cycles per minute) by generation of vacuums of -10 to -27 kPa, inducing approximately 16 to 28% maximum elongation in the diameter of the surfaces. Control MCs were grown on coated rigid bottom plates. Protein levels (by Western blot) and activity assays for SAPK/JNK were performed under these conditions. We observed marked activation at -18 kPa and above and at two minutes, and then we studied activation mechanisms under these conditions. Nuclear protein binding to activator protein-1 (AP-1) consensus sequences was also examined. The role of calcium was studied with EGTA and BAPTA-AM to chelate extra- and intracellular calcium, respectively. Protein kinase C (PKC) was down-regulated by incubation with phorbol ester (PMA) for 24 hours prior to stretch. In unstretched MCs, A23187 was used as a calcium ionophore, and PKC was up-regulated with PMA application for 30 minutes to determine the effects on SAPK/JNK. Nuclear protein binding to AP-1 was also determined under these conditions. The effects of stretch, acute PMA, and A23187 on fibronectin mRNA levels were studied using reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS Cyclic strain/relaxation led to increased SAPK/JNK activity only at two minutes and -18 kPa and above. The activation of SAPK/JNK was dependent on intracellular calcium, with BAPTA-AM almost completely abrogating the response to stretch. EGTA was without effect. Down-regulation of PKC also led to a diminution of activity. In static cells, the calcium ionophore A23187 increased SAPK/JNK activity, and this was potentiated by acute PMA. Stretch, acute PMA, and A23187 all increased nuclear protein binding to AP-1 consensus sequences. mRNA levels for fibronectin were increased by stretch in MCs and by PMA and A23187 in static MCs. No change was observed in the amount of SAPK/JNK protein present in stretched MCs by Western blot. CONCLUSIONS Stretch leads to early activation of SAPK/JNK in MCs. This is dependent on intracellular calcium and PKC and can be replicated by activation of these stimuli in static MCs. A downstream induction of nuclear protein binding to AP-1 consensus sequences was seen in a pattern that was completely concordant with the SAPK/JNK induction.
Collapse
Affiliation(s)
- A J Ingram
- Department of Medicine, McMaster University, Hamilton, and University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
15
|
Ingram AJ, James L, Ly H, Thai K, Cai L, Scholey JW. Nitric oxide modulates stretch activation of mitogen-activated protein kinases in mesangial cells. Kidney Int 2000; 58:1067-77. [PMID: 10972671 DOI: 10.1046/j.1523-1755.2000.00264.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In vivo, intraglomerular hypertension results in resident cell hypertrophy, proliferation and matrix protein production, leading to glomerulosclerosis. Mesangial cells (MCs) exposed to in vitro stretch also proliferate and produce matrix. We have shown activation of Jun N-terminal kinase/stress-activated protein kinase (SAPK) and p42/44 mitogen-activated protein kinase (MAPK) in stretched MCs and have also demonstrated that L-arginine decreases resident cell proliferation and protects against glomerulosclerosis in remnant kidney glomeruli, presumably by increasing nitric oxide (NO) production. Consequently, we studied whether NO could affect SAPK and p42/44 MAPK activation in stretched MCs. METHODS MCs (passages 5 to 10) cultured on type 1 collagen-coated, flexible-bottom plates were exposed to 0 to 30 minutes of cyclic strain (60 cycles per minute) by computer-driven generation of vacuum of -27 kPa, inducing 28% elongation in the diameter of the surface. Control MCs were grown on coated, flexible-bottom plates. Protein levels (by Western blot) and activity assays for SAPK/JNK and p42/44 MAPK were performed under these conditions. As maximal activation was at 10 minutes, with decay by 30 minutes, the effect of NO on kinase activation was studied at 0, 2, 5, and 10 minutes by preincubation with 70 micromol/L s-nitroso-n-acetylpenicillamine (SNAP; an NO donor) or 1 mmol/L 8-bromo cyclic guanosine monophosphate (8-bromo-cGMP). Downstream events in response to stretch and NO were studied at the time of maximal response (10 minutes) by examining nuclear translocation of SAPK with immunofluorescence microscopy and transcription factor activator protein-1 nuclear protein binding by gel mobility shift assay. The effect of kinase inhibition by NO donors on MC proliferation was studied by Western blotting for proliferating cell nuclear antigen (PCNA). RESULTS Cyclic MC stretch led to prompt SAPK and p42/44 MAPK activation, which was maximal at 10 minutes. Preincubation with either SNAP or 8-bromo-cGMP decreased this by 50 and 70%, respectively (N = 4), suggesting that the effect of NO was through cGMP generation. Nuclear translocation of both phosphorylated kinases was seen after 10 minutes of stretch and was largely prevented by 8-bromo-cGMP. Increased DNA binding of activator protein-1 proteins was observed in the nuclei of stretched MCs at 10 minutes by mobility shift assay (N = 4), which was also largely prevented by 8-bromo-cGMP. Stretch increased PCNA expression by MCs, and this was inhibited by 8-bromo-cGMP. CONCLUSIONS Stretch-induced activation of SAPK and p42/44 MAPK in MCs can be inhibited by NO. The effect of NO is mediated by the generation of cGMP. These mechanisms may be responsible, at least in part, for the protective effect of NO in animal models of glomerular injury characterized by glomerular capillary hypertension.
Collapse
Affiliation(s)
- A J Ingram
- Department of Medicine, McMaster University Hamilton, and University of Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
16
|
Shihab FS, Yi H, Bennett WM, Andoh TF. Effect of nitric oxide modulation on TGF-beta1 and matrix proteins in chronic cyclosporine nephrotoxicity. Kidney Int 2000; 58:1174-85. [PMID: 10972680 DOI: 10.1046/j.1523-1755.2000.00273.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chronic cyclosporine (CsA) nephrotoxicity is characterized by interstitial fibrosis and afferent arteriolar hyalinosis. L-arginine (L-Arg), the substrate for nitric oxide (NO) synthase and N-nitro-L-arginine-methyl ester (L-NAME), the NO synthase inhibitor, were shown to modulate acute CsA nephrotoxicity. However, the mechanism of fibrosis in chronic CsA nephrotoxicity remains unclear. Thus, we examined the effect of NO modulation on fibrosis and the expression of transforming growth factor-beta1 (TGF-beta1) and matrix proteins in chronic CsA nephrotoxicity. METHODS Rats were administered CsA (7.5 mg/kg), CsA + L-Arg (1.7 g/kg), CsA + L-NAME (3.5 mg/kg), vehicle (VH), VH + L-Arg, and VH + L-NAME, and were sacrificed at 7 or 28 days. NO production, physiologic parameters, and histology were studied in addition to the mRNA expression of TGF-beta1, plasminogen activator inhibitor-1 (PAI-1) and the matrix proteins biglycan and collagens type I and IV by Northern and the protein expression of PAI-1 and fibronectin by enzyme-linked immunosorbent assay. RESULTS While L-NAME strikingly reduced NO biosynthesis and worsened the glomerular filtration rate and CsA-induced fibrosis, L-Arg had the opposite beneficial effect. In addition, the CsA-induced up-regulated expression of TGF-beta1, PAI-1, and the matrix proteins biglycan, fibronectin, and collagen I was significantly increased with L-NAME and strikingly improved with L-Arg. Collagen IV expression was not affected. Also, NO modulation did not affect VH-treated rats. CONCLUSIONS Chronic CsA nephrotoxicity can be aggravated by NO blockade and ameliorated by NO enhancement, suggesting that NO maintains a protective function. NO modulation was associated with a change in TGF-beta1 expression, which, in turn, was associated with alterations in matrix deposition and matrix degradation through its effect on PAI-1.
Collapse
Affiliation(s)
- F S Shihab
- Divisions of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
17
|
Ingram AJ, James L, Thai K, Ly H, Cai L, Scholey JW. Nitric oxide modulates mechanical strain-induced activation of p38 MAPK in mesangial cells. Am J Physiol Renal Physiol 2000; 279:F243-51. [PMID: 10919842 DOI: 10.1152/ajprenal.2000.279.2.f243] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mesangial cells (MC), grown on extracellular matrix (ECM) protein-coated plates and stretched, proliferate and produce ECM, recapitulating in vivo responses to increased glomerular capillary pressure (Pgc). Transduction of strain involves mitogen-activated protein kinases (MAPK), and we have shown that p38 MAPK is activated by strain in MC. Because in vivo studies show that nitric oxide (NO) in the remnant kidney limits glomerular injury without reducing Pgc, we studied whether NO attenuated stretch-induced p38 activation in MC. Increasing p38 activation occurred with increasing stretch, maximally at 10 min at -27-kPa vacuum. Cyclic strain increased nuclear translocation of phosphorylated p38 by immunofluorescent microscopy and nuclear protein binding to nuclear factor-kappaB (NF-kappaB) consensus sequences by mobility shift assay. Both events were largely abrogated by the p38 inhibitor SB-203580. The NO donors 3-morpholinosydnonimine, S-nitroso-N-acetylpenicillamine, and 8-bromoguanosine 3',5'-cyclic monophosphate, a stable cGMP analog, prevented p38 activation and nuclear translocation. Thus strain induces p38 activity and translocation to the nucleus and p38-dependent increases in nuclear protein binding to NF-kappaB. This pathway is attenuated by the NO donors or a cGMP analog.
Collapse
Affiliation(s)
- A J Ingram
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- A Benigni
- Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| |
Collapse
|
19
|
De Nicola L, Bellizzi V, Minutolo R, Andreucci M, Capuano A, Garibotto G, Corso G, Andreucci VE, Cianciaruso B. Randomized, double-blind, placebo-controlled study of arginine supplementation in chronic renal failure. Kidney Int 1999; 56:674-84. [PMID: 10432408 DOI: 10.1046/j.1523-1755.1999.00582.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Supplementation with L-arginine (ARG) strikingly ameliorates proteinuria and glomerulosclerosis in remnant rats by overcoming nitric oxide (NO) deficiency. Whether or not the same holds true in humans is unknown. This study aimed at evaluating the effects of ARG on the NO system and renal function in proteinuric patients with moderate chronic renal failure (CRF). METHODS We measured plasma arginine, urinary and plasma NO3 (an index of NO synthesis), and urinary cGMP (an intracellular mediator of NO), as well as proteinuria and renal functional reserve (RFR) in CRF patients orally treated for six months with either ARG (0.2 g/kg body wt/day, CRF-A group) or the control vehicle (CRF-C). Normal subjects (NOR) were also included for basal comparisons. RESULTS In CRF patients at baseline, plasma arginine was within the normal range; similarly, the urinary excretion of NO3 was comparable to the NOR value (CRF, 0. 440 +/- 0.02; NOR, 0.537 +/- 0.08 micromol/min, P = NS). The plasma NO3 levels were higher than in NOR (CRF, 74 +/- 6; NOR, 27 +/- 2 micromol/liter, P < 0.001), and consequently the renal clearance of NO3 resulted as being reduced. During the six months of treatment, although a remarkable steadiness of ARG and NO3 levels was detected in the CRF-C group, the CRF-A group was characterized by a marked and immediate increase of plasma ARG. This was associated, however, with a delayed increment in urinary and plasma NO3 levels and no change in urinary cGMP. In CRF-A, as in CRF-C, blood pressure, proteinuria, glomerular filtration rate, and renal plasma flow did not vary. Likewise, RFR, which was reduced at baseline in CRF, did not improve after ARG. CONCLUSIONS In moderate CRF, the tonic release of NO is constant and, likely, not impaired, and ARG supplementation does not lead to an enhancement of NO activity, thus resulting in no renal effect.
Collapse
Affiliation(s)
- L De Nicola
- Nephrology Division and Department of Biochemistry, School of Medicine, University Federico II of Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Peters H, Border WA, Noble NA. L-Arginine supplementation increases mesangial cell injury and subsequent tissue fibrosis in experimental glomerulonephritis. Kidney Int 1999; 55:2264-73. [PMID: 10354274 DOI: 10.1046/j.1523-1755.1999.00462.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mesangial cell lysis in the antithymocyte serum (ATS)-induced model of glomerulonephritis is dependent on the generation of cytotoxic nitric oxide (NO) through transient induction of NO synthase (iNOS). We hypothesized that increased availability of L-arginine (L-Arg) during mesangial cell lysis might provide iNOS with increased substrate leading to increased lysis, and that this increased lysis would be reflected in more severe fibrotic disease at day 6. METHODS To ensure whole body equilibration with high L-Arg at the time of injury, rats were pretreated with 1% L-Arg in drinking water for one week prior to the administration of ATS. Animals were sacrificed six hours after ATS injection when previous experiments had indicated iNOS induction had occurred and at six days. At six hours, plasma was obtained for L-Arg levels and nitrite/nitrate (NOx) content. Renal tissues were taken for histological evaluation of glomerular cell counts, macrophage infiltration (ED-1), and iNOS expression. Glomeruli were isolated for detection of iNOS mRNA and placed in culture to study the dependence of NO production on L-Arg concentration. In rats sacrificed at six days, L-Arg supplementation was stopped 16 hours after ATS injection. Fibrotic disease was evaluated by urinary protein excretion, histological assessment of glomerular cell number, matrix accumulation, and production of transforming growth factor-beta1 and matrix components fibronectin and plasminogen activator inhibitor type-1 (PAI-1) by isolated glomeruli in culture. RESULTS At six hours, the glomerular cell number was significantly reduced by ATS injection (P < 0.01) and further significantly (P < 0. 05) reduced by L-Arg feeding [normal control (NC) = 64.2 +/- 1, ATS = 53.4 +/- 0.7, ATS + L-Arg = 50.8 +/- 0.7]. Disease increased macrophage infiltration and iNOS protein and iNOS mRNA levels markedly (P < 0.01), whereas L-Arg feeding did not further increase these variables. Plasma L-Arg levels (nmol/ml) were reduced by disease (NC = 121 +/- 9, ATS = 84 +/- 13, P < 0.01) and elevated by L-Arg feeding (ATS + L-Arg = 166 +/- 12, P < 0.01). Plasma NOx was significantly increased by ATS and further increased by ATS + L-Arg (P < 0.05). Production of NOx by cultured glomeruli showed striking L-Arg concentration dependence in six hours but not in normal glomeruli. In the group sacrificed at day 6, day 2 proteinuria was higher in the ATS + L-Arg group compared with the ATS alone group (P < 0.05). Measures of fibrotic disease at day 6 all showed large increases over control with ATS alone (P < 0.01), and further small, but significant increases when L-Arg was combined with ATS (P < 0.05). CONCLUSIONS The results indicate that if given during disease induction, L-Arg supplementation can enhance iNOS-dependent tissue injury by providing increased substrate. Although the increase in injury with L-Arg supplementation was small, it led to increased fibrosis at day 6. These data predict that in diseases with repeated iNOS-dependent tissue injury, L-Arg supplementation may produce cumulative increases in tissue fibrosis.
Collapse
Affiliation(s)
- H Peters
- Division of Nephrology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
21
|
Benigni A, Zoja C, Noris M, Corna D, Benedetti G, Bruzzi I, Todeschini M, Remuzzi G. Renoprotection by nitric oxide donor and lisinopril in the remnant kidney model. Am J Kidney Dis 1999; 33:746-53. [PMID: 10196019 DOI: 10.1016/s0272-6386(99)70229-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Previous studies showed a renoprotective effect of l-arginine in experimental uremia. Whether this was caused by an increased nitric oxide (NO) release or depended on l-arginine per se is not clear. Here, we evaluated whether chronic administration of an NO donor, molsidomine, controlled systemic blood pressure and renal disease progression and prolonged survival in rats with renal mass reduction (RMR). Rats with RMR received the following daily in the drinking water: group 1 (n = 21), no specific therapy (vehicle); group 2 (n = 12), molsidomine, 120 mg/L; group 3 (n = 9), lisinopril, 25 mg/L; and group 4 (n = 12), reserpine, 5 mg/L, hydralazine, 80 mg/L, and hydrochlorothiazide, 25 mg/L, from day 21 after surgery, when rats had hypertension and proteinuria, until the death of the vehicle-treated rats. Molsidomine normalized systemic hypertension, only partially reduced proteinuria and serum creatinine levels, but significantly prolonged animal survival, particularly in the early stage of the disease. Lisinopril at a similar systemic blood pressure was even better than molsidomine in limiting proteinuria, preserving renal function, and prolonging survival, but triple therapy, despite being effective on blood pressure, offered no renoprotection or prolonged survival. Endothelin-1 (ET-1) levels, formed in excessive amounts by the kidneys of these animals, were reduced by molsidomine and lisinopril, but not by triple therapy. The prolongation of survival by NO donor could be attributed to its effect of reducing ET levels, which in turn may limit the smooth muscle cell proliferation and matrix accumulation responsible for organ and, especially, myocardial fibrosis in uremia.
Collapse
Affiliation(s)
- A Benigni
- Mario Negri Institute for Pharmacological Research, Unit of Nephrology and Dialysis, Bergamo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mattana J, Margiloff L, Chaplia L, Chow A, Singhal PC. Metal-catalyzed oxidation of extracellular matrix increases macrophage nitric oxide generation. Kidney Int 1998; 54:1581-92. [PMID: 9844134 DOI: 10.1046/j.1523-1755.1998.00165.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Oxygen radicals are believed to play a significant role in glomerular disease. In part this may be due to oxidation of lipids, but protein oxidation may play a contributory role as well. We have demonstrated that the mesangial extracellular matrix is susceptible to metal-catalyzed oxidation and that this increases scavenger receptor-mediated adhesion of macrophages, cells which appear to be important participants in glomerular injury via their secretory products. As other scavenger receptor ligands can increase macrophage nitric oxide generation, we examined whether oxidation of matrix could increase the activity of macrophage inducible nitric oxide synthase (iNOS). METHODS Extracellular matrix was oxidized using a metal-catalyzed oxidation system. Matrix oxidation was measured using carbonyl analysis, and iNOS activity in macrophages seeded onto the matrix was measured by nitrite determination and Western and Northern analyses for iNOS. RESULTS Macrophages exposed to oxidized matrix demonstrated a significant enhancement of iNOS activity. This enhancement could be antagonized by cotreatment of matrix with the radical spin trap N-tert-butyl-a-phenylnitrone, resulting in a corresponding decrease in protein carbonyl content, a measure of protein oxidation. Seeding macrophages onto oxidized matrix and adding the scavenger receptor ligand polyinosinic acid further augmented iNOS activity, suggesting that additional scavenger receptors were available to bind ligand and that further augmentation of iNOS activity did not require an additional change in cell shape. Western blot analysis revealed an increase in iNOS protein expression as a consequence of interaction with the oxidized matrix, but there was no difference in iNOS mRNA expression by Northern analysis suggesting a post-transcriptional mechanism for enhanced iNOS activity. CONCLUSION These data demonstrate that oxidation of extracellular matrix enhances macrophage nitric oxide generation, and suggest a previously undescribed role for extracellular matrix modification in the regulation of cellular function and possibly the mediation of glomerular injury.
Collapse
Affiliation(s)
- J Mattana
- Department of Medicine, Long Island Jewish Medical Center, New Hyde Park, the Long Island Campus for the Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | |
Collapse
|
23
|
Böger RH, Bode-Böger SM, Kienke S, Stan AC, Nafe R, Frölich JC. Dietary L-arginine decreases myointimal cell proliferation and vascular monocyte accumulation in cholesterol-fed rabbits. Atherosclerosis 1998; 136:67-77. [PMID: 9544733 DOI: 10.1016/s0021-9150(97)00183-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
L-arginine, the precursor of endogenous nitric oxide (NO), has been shown to enhance endothelial function and to reduce the progression of atherosclerosis in cholesterol-fed rabbits. In the present study, we investigated whether myointimal cell proliferation is enhanced in hypercholesterolaemic rabbit aorta and whether chronic treatment of the rabbits with L-arginine or with the NO synthase inhibitor L-NAME influences this proliferative response and vascular monocyte accumulation. Rabbits were fed 1% cholesterol or normal rabbit chow for 12 weeks. Subgroups of cholesterol-fed rabbits were treated with oral L-arginine (2.25%) or L-NAME (3 mg/dl) in drinking water. Myointimal cell proliferation was quantified in aortic segments by immunohistochemical detection of bromodeoxyuridine (BrdU) incorporation into nuclear DNA; vascular monocyte accumulation was assessed by immunohistochemistry using a monoclonal anti-macrophage/monocyte antibody (RAM-11). Plasma levels of L-arginine and the endogenous NO synthase inhibitor, ADMA, were quantified by high-performance liquid chromatography (HPLC). Cholesterol feeding increased the aortic intima/media (I/M) ratio, which was not measurable in the control group, to 1.9 +/- 0.3. This was paralleled by enhanced cell proliferation (cholesterol, 2.4 +/- 0.2%; P < 0.05; control, 0.02 +/- 0.001% BrdU-positive cells per 72 h) and vascular monocyte accumulation. Double immunostaining for BrdU and alpha-actin showed that about two thirds of the proliferating cells were smooth muscle cells. ADMA levels increased from 0.8 +/- 0.1 micromol/l to 2.2 +/- 0.2 micromol/l in cholesterol-fed rabbits, but were unchanged by L-arginine or L-NAME treatment. Myointimal proliferation and intima/media ratios were correlated with ADMA plasma levels. Dietary L-arginine reduced monocyte accumulation by 85 +/- 2% (P < 0.05 vs cholesterol), myointimal cell proliferation (1.8 +/- 0.3% per 72 h; P < 0.05) and intimal thickening (I/M ratio: 0.7 +/- 0.2), whereas the inhibitor of NO synthase, L-NAME, further increased cell proliferation to 3.1 +/- 0.4% per 72 h (P < 0.05). No significant difference was observed in vascular monocyte infiltration between the cholesterol and L-NAME groups. We conclude that cell proliferation and vascular monocyte accumulation are enhanced in hypercholesterolaemic rabbit aorta. These atherogenic effects can be attenuated by dietary L-arginine. Decreased NO formation might underlie the enhanced monocyte accumulation and cell proliferation in hypercholesterolaemic rabbit aorta. The observed inhibition of cell proliferation adds to our understanding of the antiatherosclerotic effects of L-arginine in vivo.
Collapse
Affiliation(s)
- R H Böger
- Institute of Clinical Pharmacology, Hannover Medical School, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Aiello S, Noris M, Todeschini M, Zappella S, Foglieni C, Benigni A, Corna D, Zoja C, Cavallotti D, Remuzzi G. Renal and systemic nitric oxide synthesis in rats with renal mass reduction. Kidney Int 1997; 52:171-81. [PMID: 9211360 DOI: 10.1038/ki.1997.317] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In rats undergoing renal mass reduction (RMR) oral supplementation with the nitric oxide (NO) precursor L-arginine increases glomerular filtration rate and ameliorates signs of glomerular injury, suggesting that chronic renal failure in the rats is a condition of low NO formation in the kidney. On the contrary, data are available that in the systemic circulation of uremics, both rats and human beings, NO is formed in excessive amounts and may contribute to platelet dysfunction and bleeding tendency, well-known complications of uremia. The present study was designed to clarify the pathophysiology of renal and systemic NO synthesis in uremia. We showed that renal ex vivo NO generation, measured as the conversion of [3H] L-arginine to [3H] L-citrulline, was lower than normal in RMR rats, seven days after surgery, and progressively worsened with time in close correlation with signs of renal injury. Consistent with these results, urinary excretion of the stable NO metabolites, NO2-/NO3-, significantly decreased in rats with RMR. To go deeper into the cellular origin and biochemical nature of this abnormality we used two histochemical approaches that could locate either NO synthase (NOS) catalytic activity (NADPH-diaphorase) or NOS isoenzyme expression (immunoperoxidase). NADPH-diaphorase documented a progressive loss of renal NOS activity in RMR rats that co-localized with a strong progressive decrease of inducible NOS isoenzyme (iNOS) immunostaining. At variance with iNOS, endothelial cell NOS (ecNOS) staining was rather comparable in RMR and control kidneys. At variance to the kidney, in the systemic circulation of RMR rats the synthesis of NO increased as reflected by higher than normal plasma NO2-/NO3- concentrations. High systemic NO likely derives from vessels as documented by the increased NOS activity and higher expression of both iNOS and ecNOS in the aorta of RMR rats. Up-regulation of systemic NO synthesis might be an early defense mechanism against hypertension of uremia. On the other hand, more NO available to circulating cells may sustain the bleeding tendency, a well-known complication of uremia.
Collapse
Affiliation(s)
- S Aiello
- Mario Negri Institute for Pharmacological Research, Ospedali Riuniti di Bergamo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|