1
|
Fukunaga S, Fujita Y. Low glomerular number at birth can lead to the development of chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1120801. [PMID: 36777357 PMCID: PMC9909536 DOI: 10.3389/fendo.2023.1120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Chronic kidney disease (CKD) prevalence is increasing worldwide, and reducing the number of patients with CKD is of utmost importance. The environment during the fetal, perinatal, and early childhood stages may influence CKD development (developmental origins of health and disease). Under conditions of maternal malnutrition, the glomerular number of infants reduces, and the risk of developing CKD may increase. Nephron progenitor cells and ureteric buds interact with each other to form glomeruli at the tip of the ureteric bud. Thus, the number of glomeruli is determined by the number of ureteric bud branches, which are reportedly decreased due to maternal malnutrition, in turn reducing the glomerular number. Four possible mechanisms can explain the low glomerular number resulting from maternal malnutrition: 1) suppression of c-Ret expression, 2) suppression of nephron formation by renin-angiotensin-aldosterone system inhibition, 3) exposure to excess glucocorticoids, and 4) promotion of apoptosis. Additionally, nephron formation does not continue after birth in humans. Therefore, a low glomerular number at birth is a lifelong burden on the glomeruli and increases the risk of developing CKD. Therefore, it is important to maintain the glomerular number at birth. Accurate glomerular counts are essential for conducting studies on the glomerular number. The dissector/fractionator method is the gold standard; however, it can only be performed at some institutions. Recently, methods have been developed to measure the glomerular number by combining computed tomography and pathological examination and measure the glomerular count using magnetic resonance imaging. Models of decreased and increased glomerular numbers have been developed. Moreover, research regarding the causes of decreased glomerular number and its relationship with development of lifestyle-related diseases and renal dysfunction has significantly progressed, furthering our understanding of the importance of glomerular number.
Collapse
Affiliation(s)
- Shohei Fukunaga
- Division of Nephrology, Shimane University Hospital, Izumo, Shimane, Japan
- *Correspondence: Shohei Fukunaga, ; Yuki Fujita,
| | - Yuki Fujita
- Department of Developmental Biology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
- *Correspondence: Shohei Fukunaga, ; Yuki Fujita,
| |
Collapse
|
2
|
Fukunaga S, Ogawa N, Matsumoto A, Ito T, Tanabe K, Otani H. Administration of retinoic acid to pregnant mice increases the number of fetal mouse glomeruli. Biochem Biophys Rep 2022; 30:101245. [PMID: 35280524 PMCID: PMC8907684 DOI: 10.1016/j.bbrep.2022.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide, and CKD is a serious global health problem. Low glomerular number is one of the risk factors for CKD; therefore, the glomerular number is associated with the risk of CKD. Increasing the glomerular number above normal levels may reduce the risk of CKD. It has been reported that, in vitro, the addition of retinoic acid (RA) to the culture medium increases the glomerular number. However, there is no report of an increase in glomerular number above normal levels with the addition of RA in vivo. In this study, RA (20 mg/kg) was administered intraperitoneally to pregnant mice once at embryonic day (E) 10.5, E12.5, E14.5, or E16.5. The fetuses were harvested at E18.5 and fetal mouse kidneys were evaluated. Fetal kidney volume and weight were significantly increased in the E16.5 group compared to the control group. The total glomerular number in the E16.5 group was also approximately 1.46 times higher than that in the control group. In summary, we established a method to increase the glomerular number in the fetal kidney by administration of RA to pregnant mice at E16.5. These results will facilitate the investigation of whether CKD risk is reduced when the glomerular number increases above normal.
Collapse
Affiliation(s)
- Shohei Fukunaga
- Department of Internal Medicine IV, Shimane University Faculty of Medicine, Izumo, Shimane, 693-8501, Japan
| | - Noriko Ogawa
- Department of Developmental Biology, Shimane University Faculty of Medicine, Izumo, Shimane, 693-8501, Japan
| | - Akihiro Matsumoto
- Department of Developmental Biology, Shimane University Faculty of Medicine, Izumo, Shimane, 693-8501, Japan
| | - Takafumi Ito
- Department of Internal Medicine IV, Shimane University Faculty of Medicine, Izumo, Shimane, 693-8501, Japan
| | - Kazuaki Tanabe
- Department of Internal Medicine IV, Shimane University Faculty of Medicine, Izumo, Shimane, 693-8501, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Shimane University Faculty of Medicine, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
3
|
Cwiek A, Suzuki M, deRonde K, Conaway M, Bennett KM, El Dahr S, Reidy KJ, Charlton JR. Premature differentiation of nephron progenitor cell and dysregulation of gene pathways critical to kidney development in a model of preterm birth. Sci Rep 2021; 11:21667. [PMID: 34737344 PMCID: PMC8569166 DOI: 10.1038/s41598-021-00489-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
Preterm birth is a leading cause of neonatal morbidity. Survivors have a greater risk for kidney dysfunction and hypertension. Little is known about the molecular changes that occur in the kidney of individuals born preterm. Here, we demonstrate that mice delivered two days prior to full term gestation undergo premature cessation of nephrogenesis, resulting in a lower glomerular density. Kidneys from preterm and term groups exhibited differences in gene expression profiles at 20- and 27-days post-conception, including significant differences in the expression of fat-soluble vitamin-related genes. Kidneys of the preterm mice exhibited decreased proportions of endothelial cells and a lower expression of genes promoting angiogenesis compared to the term group. Kidneys from the preterm mice also had altered nephron progenitor subpopulations, early Six2 depletion, and altered Jag1 expression in the nephrogenic zone, consistent with premature differentiation of nephron progenitor cells. In conclusion, preterm birth alone was sufficient to shorten the duration of nephrogenesis and cause premature differentiation of nephron progenitor cells. These candidate genes and pathways may provide targets to improve kidney health in preterm infants.
Collapse
Affiliation(s)
- Aleksandra Cwiek
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
- Cell & Developmental Biology Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Kimberly deRonde
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
| | - Mark Conaway
- University of Virginia Health System, Charlottesville, VA, USA
- Division of Translational Research and Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samir El Dahr
- Department of Pediatrics, Tulane University School of Medicine and Children's Hospital of New Orleans, New Orleans, LA, USA
| | - Kimberly J Reidy
- Division of Nephrology, Department of Pediatrics, Children's Hospital at Montefiore, New York, NY, USA
| | - Jennifer R Charlton
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA.
| |
Collapse
|
4
|
Immature megalin expression in the preterm neonatal kidney is associated with urinary loss of vitamin carrier proteins. Pediatr Res 2019; 85:405-411. [PMID: 30659269 DOI: 10.1038/s41390-018-0261-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/15/2018] [Accepted: 11/30/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Vitamin A and D deficiencies are common in preterm infants. Megalin is an endocytic receptor in the proximal tubule, which reabsorbs retinol-binding protein (RBP) and vitamin D-binding protein (VDBP). Although the proximal tubule is immature in preterm infants, little is known about megalin expression during kidney development. In this study, we establish the abundance of megalin in the developing human kidney and its relationship to the urinary excretion of vitamin carriers in preterm infants. METHODS We analyzed a postmortem group (20-40 weeks gestation), where we used morphometric means of measuring megalin and its ligands in kidney tissue and a living group of patients (28-40 weeks), where urinary RBP and VDBP were measured. RESULTS The presence of megalin, RBP, and VDBP increased in the proximal tubule through gestation. At birth the urinary concentration of RBP and VDBP were higher in the 28-32 week group compared to the 38-40 week group and a significant inverse correlation of tissue megalin and urinary loss of RBP and VDBP existed. CONCLUSIONS Preterm infants experience vitamin carrier protein losses, which are associated with decreased megalin expression. This developmental expression of megalin in the kidney has clinical implications in the prevention of vitamin deficiencies in preterm babies.
Collapse
|
5
|
Zhang Y, Zhang X, Wang X, Wang H, Wu X, Xu H, Shen Q. Gen1 Modulates Metanephric Morphology Through Retinoic Acid Signaling. DNA Cell Biol 2019; 38:263-271. [PMID: 30632787 DOI: 10.1089/dna.2018.4426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the leading cause of end-stage renal disease in children. Our group has discovered that Holliday Junction resolvase gene Gen1 is a potential candidate gene for CAKUT. Gen1 mutant mice showed CAKUT phenotypes similar to those observed in retinoic acid (RA)-deficient models. The expression of Raldh2, which encodes the key enzyme in RA synthesis, was reduced in Gen1 mutant metanephros through RNA sequencing. By real-time reverse transcription-PCR, the expression of both Raldh2 and downstream Ret was reduced in embryonic day (E) 11.5 Gen1 mutant ureters and E13.5 kidneys, and expression of RA receptor alpha was decreased in E13.5 Gen1 mutant ureters and kidneys. Further studies showed that all-trans retinoic acid (ATRA) rescued solitary kidney phenotype and improved ureteric branching; ATRA should be administered after ureteric budding to avoid increasing the incidence of ectopic budding in Gen1 mutants. Luciferase intensity of RA response element was lower in CHO-K1 cells transfected with Gen1 siRNA than in those transfected with scrambled RNA, and this inhibitory effect could be reversed by ATRA. These findings indicate that Gen1 mutation can result in renal malformation through RA signaling and Gen1-loss-induced CAKUT can be partly rescued by ATRA.
Collapse
Affiliation(s)
- Ya Zhang
- 1 Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xin Zhang
- 1 Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiaowen Wang
- 2 Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Herui Wang
- 3 Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xiaohui Wu
- 1 Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China.,4 State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Xu
- 1 Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Qian Shen
- 1 Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| |
Collapse
|
6
|
Walton SL, Singh RR, Little MH, Bowles J, Li J, Moritz KM. Prolonged prenatal hypoxia selectively disrupts collecting duct patterning and postnatal function in male mouse offspring. J Physiol 2018; 596:5873-5889. [PMID: 29676801 DOI: 10.1113/jp275918] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS In the present study, we investigated whether hypoxia during late pregnancy impairs kidney development in mouse offspring, and also whether this has long-lasting consequences affecting kidney function in adulthood. Hypoxia disrupted growth of the kidney, particularly the collecting duct network, in juvenile male offspring. By mid-late adulthood, these mice developed early signs of kidney disease, notably a compromised response to water deprivation. Female offspring showed no obvious signs of impaired kidney development and did not develop kidney disease, suggesting an underlying protection mechanism from the hypoxia insult. These results help us better understand the long-lasting impact of gestational hypoxia on kidney development and the increased risk of chronic kidney disease. ABSTRACT Prenatal hypoxia is a common perturbation to arise during pregnancy, and can lead to adverse health outcomes in later life. The long-lasting impact of prenatal hypoxia on postnatal kidney development and maturation of the renal tubules, particularly the collecting duct system, is relatively unknown. In the present study, we used a model of moderate chronic maternal hypoxia throughout late gestation (12% O2 exposure from embryonic day 14.5 until birth). Histological analyses revealed marked changes in the tubular architecture of male hypoxia-exposed neonates as early as postnatal day 7, with disrupted medullary development and altered expression of Ctnnb1 and Crabp2 (encoding a retinoic acid binding protein). Kidneys of the RARElacZ line offspring exposed to hypoxia showed reduced β-galactosidase activity, indicating reduced retinoic acid-directed transcriptional activation. Wild-type male mice exposed to hypoxia had an early decline in urine concentrating capacity, evident at 4 months of age. At 12 months of age, hypoxia-exposed male mice displayed a compromised response to a water deprivation challenge, which was was correlated with an altered cellular composition of the collecting duct and diminished expression of aquaporin 2. There were no differences in the tubular structures or urine concentrating capacity between the control and hypoxia-exposed female offspring at any age. The findings of the present study suggest that prenatal hypoxia selectively disrupts collecting duct patterning through altered Wnt/β-catenin and retinoic acid signalling and this results in impaired function in male mouse offspring in later life.
Collapse
Affiliation(s)
- Sarah L Walton
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Reetu R Singh
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Melissa H Little
- Murdoch Childrens Research Institute, Parkville, VIC, Australia.,Department of Pediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Joan Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
A Gene Implicated in Activation of Retinoic Acid Receptor Targets Is a Novel Renal Agenesis Gene in Humans. Genetics 2017; 207:215-228. [PMID: 28739660 DOI: 10.1534/genetics.117.1125] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/21/2017] [Indexed: 11/18/2022] Open
Abstract
Renal agenesis (RA) is one of the more extreme examples of congenital anomalies of the kidney and urinary tract (CAKUT). Bilateral renal agenesis is almost invariably fatal at birth, and unilateral renal agenesis can lead to future health issues including end-stage renal disease. Genetic investigations have identified several gene variants that cause RA, including EYA1, LHX1, and WT1 However, whereas compound null mutations of genes encoding α and γ retinoic acid receptors (RARs) cause RA in mice, to date there have been no reports of variants in RAR genes causing RA in humans. In this study, we carried out whole exome sequence analysis of two families showing inheritance of an RA phenotype, and in both identified a single candidate gene, GREB1L Analysis of a zebrafish greb1l loss-of-function mutant revealed defects in the pronephric kidney just prior to death, and F0 CRISPR/Cas9 mutagenesis of Greb1l in the mouse revealed kidney agenesis phenotypes, implicating Greb1l in this disorder. GREB1L resides in a chromatin complex with RAR members, and our data implicate GREB1L as a coactivator for RARs. This study is the first to associate a component of the RAR pathway with renal agenesis in humans.
Collapse
|
8
|
Schmiedchen B, Longardt AC, Loui A, Bührer C, Raila J, Schweigert FJ. Effect of vitamin A supplementation on the urinary retinol excretion in very low birth weight infants. Eur J Pediatr 2016; 175:365-72. [PMID: 26475348 DOI: 10.1007/s00431-015-2647-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED Despite high-dose vitamin A supplementation of very low birth weight infants (VLBW, <1500 g), their vitamin A status does not improve substantially. Unknown is the impact of urinary retinol excretion on the serum retinol concentration in these infants. Therefore, the effect of high-dose vitamin A supplementation on the urinary vitamin A excretion in VLBW infants was investigated. Sixty-three VLBW infants were treated with vitamin A (5000 IU intramuscular, 3 times/week for 4 weeks); 38 untreated infants were classified as control group. On days 3 and 28 of life, retinol, retinol-binding protein 4 (RBP4), glomerular filtration rate, proteinuria, and Tamm-Horsfall protein were quantified in urine. On day 3 of life, substantial retinol and RBP4 losses were found in both groups, which significantly decreased until day 28. Notwithstanding, the retinol excretion was higher (P < 0.01) under vitamin A supplementation as compared to infants of the control group. On day 28 of life, the urinary retinol concentrations were predictive for serum retinol concentrations in the vitamin A treated (P < 0.01), but not in the control group (P = 0.570). CONCLUSION High urinary retinol excretion may limit the vitamin A supplementation efficacy in VLBW infants. Advanced age and thus postnatal kidney maturation seems to be an important contributor in the prevention of urinary retinol losses.
Collapse
Affiliation(s)
- Bettina Schmiedchen
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | | | - Andrea Loui
- Department of Neonatology, Charité University Medical Center, Berlin, Germany.
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, Berlin, Germany.
| | - Jens Raila
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Florian J Schweigert
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| |
Collapse
|
9
|
Grzegorzewska AE, Ostromecki G, Zielińska P, Mostowska A, Niemir Z, Polcyn-Adamczak M, Pawlik M, Sowińska A, Jagodziński PP. Association of Retinoid X Receptor Alpha Gene Polymorphism with Clinical Course of Chronic Glomerulonephritis. Med Sci Monit 2015; 21:3671-81. [PMID: 26610845 PMCID: PMC4677740 DOI: 10.12659/msm.895249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Vitamin D (VD), VD binding protein, VD receptor (VDR), and retinoids are involved in pathogenesis of chronic glomerulonephritis (ChGN). We aimed to compare distribution of VD pathway gene polymorphisms in ChGN patients showing glomerular filtration rate (GFR) category 1–3, GFR category 5D, and healthy controls in order to elucidate the role of VD-related polymorphisms in the course of ChGN. Material/Methods GFR category 1–3 ChGN patients (n=195), GFR category 5D ChGN patients (n=178), and controls (n=751) underwent testing for polymorphisms of genes encoding VD binding protein (GC, rs2298849, rs7041, rs1155563), VDR (VDR, rs2228570, rs1544410), and retinoid X receptor alpha (RXRA, rs10776909, rs10881578, rs749759). Results Among GFR 1–3 subjects possessing TT genotype of RXRA rs10776909, 75% of patients had nephrotic syndrome, and 37.5% had glomerular hyperfiltration defined as GFR >140 ml/min/1.73 m2, and, consequently, serum creatinine was lower in these patients compared to the remaining subjects (0.67±0.26 vs. 0.94±0.34, P=0.014). In GFR category 5D ChGN patients, frequencies of RXRA rs10776909 allele T (25% vs. 19%) and CT+TT (46% vs. 34%) were higher compared to frequencies of respective variants in controls (Ptrend=0.004, Pgenotype=0.008). Conclusions RXRA rs10776909 allele T is specifically involved in the pathogenesis of ChGN. This risk allele may be also associated with worse clinical course of ChGN.
Collapse
Affiliation(s)
- Alicja E Grzegorzewska
- Department of Nephrology, Transplantology and Internal Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | | | - Paulina Zielińska
- Student Nephrology Research Group, Department of Nephrology, Transplantology and Internal Diseases, oznań University of Medical Sciences, Poznań, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Poznań, Poland
| | - Zofia Niemir
- Department of Nephrology, Transplantology and Internal Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Magdalena Polcyn-Adamczak
- Department of Nephrology, Transplantology and Internal Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Magdalena Pawlik
- Department of Nephrology, Transplantology and Internal Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Sowińska
- Department of Computer Science and Statistics, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
10
|
Molina-Jijón E, Rodríguez-Muñoz R, Namorado MDC, Bautista-García P, Medina-Campos ON, Pedraza-Chaverri J, Reyes JL. All- trans retinoic acid prevents oxidative stress-induced loss of renal tight junction proteins in type-1 diabetic model. J Nutr Biochem 2015; 26:441-54. [DOI: 10.1016/j.jnutbio.2014.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 12/31/2022]
|
11
|
Nagalakshmi VK, Yu J. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning. Mol Reprod Dev 2015; 82:151-66. [PMID: 25783232 DOI: 10.1002/mrd.22462] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/12/2015] [Indexed: 01/03/2023]
Abstract
The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney.
Collapse
Affiliation(s)
- Vidya K Nagalakshmi
- Department of Cell Biology and Division of Center of Immunity, Inflammation and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | | |
Collapse
|
12
|
Francipane MG, Lagasse E. The lymph node as a new site for kidney organogenesis. Stem Cells Transl Med 2015; 4:295-307. [PMID: 25646529 PMCID: PMC4339853 DOI: 10.5966/sctm.2014-0208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022] Open
Abstract
The shortage of organs for kidney transplantation has created the need to develop new strategies to restore renal structure and function. Given our recent finding that the lymph node (LN) can serve as an in vivo factory to generate or sustain complex structures like liver, pancreas, and thymus, we investigated whether it could also support kidney organogenesis from mouse renal embryonic tissue (metanephroi). Here we provide the first evidence that metanephroi acquired a mature phenotype upon injection into LN, and host cells likely contributed to this process. Urine-like fluid-containing cysts were observed in several grafts 12 weeks post-transplantation, indicating metanephroi transplants' ability to excrete products filtered from the blood. Importantly, the kidney graft adapted to a loss of host renal mass, speeding its development. Thus, the LN might provide a unique tool for studying the mechanisms of renal maturation, cell proliferation, and fluid secretion during cyst development. Moreover, we provide evidence that inside the LN, short-term cultured embryonic kidney cells stimulated with the Wnt agonist R-Spondin 2 gave rise to a monomorphic neuron-like cell population expressing the neuronal 200-kDa neurofilament heavy marker. This finding indicates that the LN might be used to validate the differentiation potential of candidate stem cells in regenerative nephrology.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Ri.MED Foundation, Palermo, Italy
| | - Eric Lagasse
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Ri.MED Foundation, Palermo, Italy
| |
Collapse
|
13
|
Barber T, Esteban-Pretel G, Marín MP, Timoneda J. Vitamin a deficiency and alterations in the extracellular matrix. Nutrients 2014; 6:4984-5017. [PMID: 25389900 PMCID: PMC4245576 DOI: 10.3390/nu6114984] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/26/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022] Open
Abstract
Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Retinoic acid, the main biologically active form of vitamin A, influences the expression of collagens, laminins, entactin, fibronectin, elastin and proteoglycans, which are the major components of the extracellular matrix. Consequently, the structure and macromolecular composition of this extracellular compartment is profoundly altered as a result of vitamin A deficiency. As cell behavior, differentiation and apoptosis, and tissue mechanics are influenced by the extracellular matrix, its modifications potentially compromise organ function and may lead to disease. This review focuses on the effects of lack of vitamin A in the extracellular matrix of several organs and discusses possible molecular mechanisms and pathologic implications.
Collapse
Affiliation(s)
- Teresa Barber
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, Avda V. Andrés Estellés s/n, 46100-Burjassot, Spain.
| | - Guillermo Esteban-Pretel
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, Avda V. Andrés Estellés s/n, 46100-Burjassot, Spain.
| | - María Pilar Marín
- Unidad de Microscopía IIS La Fe Valencia, Avda Campanar, 21, 46009-Valencia, Spain.
| | - Joaquín Timoneda
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, Avda V. Andrés Estellés s/n, 46100-Burjassot, Spain.
| |
Collapse
|
14
|
Blake J, Rosenblum ND. Renal branching morphogenesis: morphogenetic and signaling mechanisms. Semin Cell Dev Biol 2014; 36:2-12. [PMID: 25080023 DOI: 10.1016/j.semcdb.2014.07.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/28/2022]
Abstract
The human kidney is composed of an arborized network of collecting ducts, calyces and urinary pelvis that facilitate urine excretion and regulate urine composition. The renal collecting system is formed in utero, completed by the 34th week of gestation in humans, and dictates final nephron complement. The renal collecting system arises from the ureteric bud, a derivative of the intermediate-mesoderm derived nephric duct that responds to inductive signals from adjacent tissues via a process termed ureteric induction. The ureteric bud subsequently undergoes a series of iterative branching and remodeling events in a process called renal branching morphogenesis. Altered signaling that disrupts patterning of the nephric duct, ureteric induction, or renal branching morphogenesis leads to varied malformations of the renal collecting system collectively known as congenital anomalies of the kidney and urinary tract (CAKUT) and is the most frequently detected congenital renal aberration in infants. Here, we describe critical morphogenetic and cellular events that govern nephric duct specification, ureteric bud induction, renal branching morphogenesis, and cessation of renal branching morphogenesis. We also highlight salient molecular signaling pathways that govern these processes, and the investigative techniques used to interrogate them.
Collapse
Affiliation(s)
- Joshua Blake
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Canada; Department of Physiology, University of Toronto, Canada
| | - Norman D Rosenblum
- Division of Nephrology, Department of Paediatrics, The Hospital for Sick Children, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Canada; Department of Physiology, University of Toronto, Canada.
| |
Collapse
|
15
|
Takayama M, Miyatake K, Nishida E. Identification and characterization of retinoic acid-responsive genes in mouse kidney development. Genes Cells 2014; 19:637-49. [PMID: 24962468 DOI: 10.1111/gtc.12163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
Abstract
Retinoic acid (RA) signaling regulates a variety of developmental processes through controlling the expression of numerous genes. Here, we have identified and characterized RA-responsive genes in mouse kidney development. Analysis of isolated embryonic kidneys cultured in the presence and absence of RA identified 33 candidates of RA-responsive genes. Most of these candidate genes were down-regulated by treatment with the RA receptor antagonist. Many of them have potential binding sites for Elf5, one of the RA-responsive genes, in their promoter region. Whole-mount in situ hybridization showed that specific expression of Elf5 in the ureteric trunk depends on RA. RA-dependent expression in the ureteric trunk was also showed for the sodium channel subunit Scnn1b, which has been shown to be the marker gene of the collecting duct. In contrast, the expression of Ecm1, Tnfsf13b and IL-33 was detected in the stromal mesenchymal cells. Both Tnfsf13b and IL-33 were previously shown to cause nuclear factor κB (NF-κB) activation. We have showed that the inhibition of NF-κB signaling with specific inhibitors suppresses branching morphogenesis of the ureteric bud. Our study thus identifies and characterizes RA-dependent up-regulated genes in kidney development, and suggests an involvement of NF-κB signaling in the branching morphogenesis.
Collapse
Affiliation(s)
- Mami Takayama
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | |
Collapse
|
16
|
Paroly SS, Wang F, Spraggon L, Merregaert J, Batourina E, Tycko B, Schmidt-Ott KM, Grimmond S, Little M, Mendelsohn C. Stromal protein Ecm1 regulates ureteric bud patterning and branching. PLoS One 2013; 8:e84155. [PMID: 24391906 PMCID: PMC3877229 DOI: 10.1371/journal.pone.0084155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/12/2013] [Indexed: 01/28/2023] Open
Abstract
The interactions between the nephrogenic mesenchyme and the ureteric bud during kidney development are well documented. While recent studies have shed some light on the importance of the stroma during renal development, many of the signals generated in the stroma, the genetic pathways and interaction networks involving the stroma are yet to be identified. Our previous studies demonstrate that retinoids are crucial for branching of the ureteric bud and for patterning of the cortical stroma. In the present study we demonstrate that autocrine retinoic acid (RA) signaling in stromal cells is critical for their survival and patterning, and show that Extracellular matrix 1, Ecm1, a gene that in humans causes irritable bowel syndrome and lipoid proteinosis, is a novel RA-regulated target in the developing kidney, which is secreted from the cortical stromal cells surrounding the cap mesenchyme and ureteric bud. Our studies suggest that Ecm1 is required in the ureteric bud for regulating the distribution of Ret which is normally restricted to the tips, as inhibition of Ecm1 results in an expanded domain of Ret expression and reduced numbers of branches. We propose a model in which retinoid signaling in the stroma activates expression of Ecm1, which in turn down-regulates Ret expression in the ureteric bud cleft, where bifurcation normally occurs and normal branching progresses.
Collapse
Affiliation(s)
- Suneeta S. Paroly
- Department of Urology, Irving Cancer Research Center, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Fengwei Wang
- Department of Urology, Irving Cancer Research Center, Columbia University, New York, New York, United States of America
| | - Lee Spraggon
- Department of Urology, Irving Cancer Research Center, Columbia University, New York, New York, United States of America
| | - Joseph Merregaert
- Laboratory of Molecular Biotechnology, Department of Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Ekatherina Batourina
- Department of Urology, Irving Cancer Research Center, Columbia University, New York, New York, United States of America
| | - Benjamin Tycko
- Institute for Cancer Genetics & Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Kai M. Schmidt-Ott
- Max-Delbrueck Center for Molecular Medicine Robert-Roessle-Str. Berlin, Germany
| | - Sean Grimmond
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD, Australia
| | - Melissa Little
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD, Australia
| | - Cathy Mendelsohn
- Department of Urology, Irving Cancer Research Center, Columbia University, New York, New York, United States of America
| |
Collapse
|
17
|
Renal, metabolic and hematological effects of trans-retinoic acid during critical developmental windows in the embryonic chicken. J Comp Physiol B 2013; 184:107-23. [PMID: 24005719 DOI: 10.1007/s00360-013-0777-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
All-trans-retinoic acid (tRA), an active metabolite of vitamin A, directly influences the developing kidney, and is a major regulatory signal during vertebrate organogenesis. The aim of the current study was to specifically target potential critical windows in renal development, and assess altered renal function through disruptions in embryonic fluid compartments. In addition, the effect of exogenous tRA administration on embryonic growth and metabolism was determined. Embryos were exposed to 0.1 or 0.3 mg tRA on embryonic day 8. Morphological and physiological measurements were made on days 12, 14, 16 and 18. Embryo wet mass on day 18 was reduced by 23 % (0.1 mg tRA) and 44 % (0.3 mg tRA). tRA exposure elevated mass-specific oxygen consumption in embryos exposed to 0.1 mg (21.2 ± 0.3 μL(-1) g(-1) min(-1)) and 0.3 mg (23.4 ± 0.4 μL(-1) g(-1) min(-1)) when compared to sham (18.9 ± 0.6 μL(-1) g(-1) min(-1)) on day 14, but not subsequent incubation days. Osmolality of blood plasma was transiently lowered in embryos exposed to 0.3 mg tRA between days 14 and 16. Allantoic fluid osmolality was significantly elevated by tRA to ~220 mmol L(-1) from days 16 to 18 compared to controls. Blood plasma [Na(+)] was reduced by ~17 % over the same period, while allantoic fluid [Na(+)] was elevated in tRA-treated embryos compared to control embryos. Collectively, our data indicates that exogenous administration of tRA produces significant alterations to the developmental trajectory of the developing embryonic chicken.
Collapse
|
18
|
Delgadillo D, Barbier O, Sierra G, Reyes JL. Retinoic acid improves recovery after nephrectomy and decreases renal TGF-β1 expression. Gender-related effects. Fundam Clin Pharmacol 2012. [DOI: 10.1111/fcp.12013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dealmy Delgadillo
- Pharmacology Department, Center for Research and Advanced Studies; National Polytechnic Institute of Mexico (Cinvestav-IPN); C.P. 07360 Mexico City Mexico
| | - Olivier Barbier
- Toxicology Department, Center for Research and Advanced Studies; National Polytechnic Institute of Mexico (Cinvestav-IPN); C.P. 07360 Mexico City Mexico
| | - Gerardo Sierra
- Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies; National Polytechnic Institute of Mexico (Cinvestav-IPN); C.P. 07360 Mexico City Mexico
| | - Jose L. Reyes
- Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies; National Polytechnic Institute of Mexico (Cinvestav-IPN); C.P. 07360 Mexico City Mexico
| |
Collapse
|
19
|
Qiu L, Hyink DP, Gans WH, Amsler K, Wilson PD, Burrow CR. Midkine promotes selective expansion of the nephrogenic mesenchyme during kidney organogenesis. Organogenesis 2012; 1:14-21. [PMID: 19521555 DOI: 10.4161/org.1.1.979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 05/25/2004] [Indexed: 11/19/2022] Open
Abstract
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.
Collapse
Affiliation(s)
- Libo Qiu
- Division of Nephrology, Department of Medicine; New York, New York USA
| | | | | | | | | | | |
Collapse
|
20
|
Rogers SA, Droege D, Dusso A, Hammerman MR. Incubation of metanephroi with vitamin d(3) increases numbers of glomeruli. Organogenesis 2012; 1:52-4. [PMID: 19521561 DOI: 10.4161/org.1.2.1292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 10/11/2004] [Indexed: 11/19/2022] Open
Abstract
To characterize actions of vitamin D3 on metanephroi transplanted from rat embryos to adult recipients, we incubated metanephroi with or without 0.01, 0.1 or 1 ug/ml vitamin D3, 25-hydroxyvitamin D(3) [25(OH)D(3)] or 1, 25-hydroxyvitamin D(3) [1,25(OH)2D(3)] prior to implantation. The number of glomeruli in developed metanephroi three weeks post-transplantation that had been incubated with 1.0 ug/ml vitamin D(3) was increased relative to the number in metanephroi that were not incubated with vitamin D(3) (control), an effect that was not recapitulated by administration of vitamin D(3) directly to hosts at the time of transplantation. Incubation of metanephroi with 1.0 ug/ml vitamin D(3) also enhanced inulin clearances of metanephroi measured at 12 weeks post-transplantation. The hydroxylated derivative of vitamin D(3), 25(OH)D(3), increased glomerulus number when applied at 0.01 ug/ml but not at higher concentrations, while the twice-hydroxylated derivative 1,25(OH)(2)D(3), failed to increase glomerulus number at any concentration tested. We conclude that incubation with vitamin D(3) prior to implantation enhances inulin clearance possibly by increasing the number of glomeruli that develop post-transplantation.Our findings suggest the vitamin D(3) effect is mediated locally.
Collapse
Affiliation(s)
- Sharon A Rogers
- Renal Division; Department of Medicine; Washington University School of Medicine; St. Louis, Missouri USA
| | | | | | | |
Collapse
|
21
|
Gray SP, Cullen-McEwen LA, Bertram JF, Moritz KM. Mechanism of alcohol-induced impairment in renal development: Could it be reduced by retinoic acid? Clin Exp Pharmacol Physiol 2012; 39:807-13. [DOI: 10.1111/j.1440-1681.2011.05597.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Gubhaju L, Sutherland MR, Black MJ. Preterm birth and the kidney: implications for long-term renal health. Reprod Sci 2011; 18:322-33. [PMID: 21427457 DOI: 10.1177/1933719111401659] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the majority of preterm neonates now survive infancy, there is emerging epidemiological evidence to demonstrate that individuals born preterm exhibit an elevated risk for the development of hypertension and renal impairment later in life, thus supporting the developmental origins of health and disease hypothesis. The increased risk may potentially be attributed to a negative impact of preterm birth on nephron endowment. Indeed, at the time when most preterm neonates are delivered, nephrogenesis in the kidney is still ongoing with the majority of nephrons normally formed during the third trimester of pregnancy. A number of clinical studies have provided evidence of altered renal function during the neonatal period, but to date there have been limited studies describing the consequences of preterm birth on kidney structure. Importantly, studies in the preterm baboon have shown that nephrogenesis is clearly ongoing following preterm birth; however, the presence of abnormal glomeruli (up to 18% in some cases) is of concern. Similar glomerular abnormalities have been described in autopsied preterm infants. Prenatal and postnatal factors such as exposure to certain medications, hyperoxia and intrauterine and/or extrauterine growth restriction are likely to have a significant influence on nephrogenesis and final nephron endowment. Further studies are required to determine the factors contributing to renal maldevelopment and to identify potential interventional strategies to maximize nephron endowment at the start of life, thereby optimizing long-term renal health for preterm individuals.
Collapse
Affiliation(s)
- Lina Gubhaju
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
23
|
Sutherland MR, Gubhaju L, Black MJ. Stereological assessment of renal development in a baboon model of preterm birth. Am J Nephrol 2011; 33 Suppl 1:25-33. [PMID: 21659732 DOI: 10.1159/000327073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
At the time when most preterm babies are delivered, nephrogenesis is still ongoing, with the majority of nephrons normally formed during the third trimester of pregnancy. The extrauterine environment, however, is suboptimal for organogenesis, and therefore renal development is likely to be adversely affected by preterm birth. In the long-term, there is emerging evidence of high blood pressure and renal dysfunction amongst young adults born preterm. There is little knowledge to date, however, regarding the effects of preterm birth on renal structural development, perhaps due to the lack of an appropriate animal model. We have demonstrated that the baboon (Papio sp.) has a similar time course of nephrogenesis as the human kidney, and the baboon neonate can also be cared for in the same manner as a human neonate following preterm birth. Through a series of studies assessing renal development in the baboon model of preterm birth, involving the use of gold-standard stereological techniques, we have demonstrated that nephron endowment in the preterm baboon kidney is not reduced. Furthermore, antenatal glucocorticoid exposure prior to preterm delivery was associated with an increase in mature nephrons. There was, however, evidence of morphological abnormalities in a variable percentage of the glomeruli formed ex utero. Further research is therefore essential in order to establish what factors are involved in contributing to the glomerular abnormalities, and to identify ways in which 'normal' renal development can be conserved and optimised in the extrauterine setting.
Collapse
Affiliation(s)
- Megan R Sutherland
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia
| | | | | |
Collapse
|
24
|
Fanos V, Puddu M, Reali A, Atzei A, Zaffanello M. Perinatal nutrient restriction reduces nephron endowment increasing renal morbidity in adulthood: a review. Early Hum Dev 2010; 86 Suppl 1:37-42. [PMID: 20153126 DOI: 10.1016/j.earlhumdev.2010.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Perinatal malnutrition has been included among the causes of renal disease in adulthood. Here, we consider the relationships between early supply of specific nutrients (such as protein, fat, vitamins and electrolytes) and renal endowment. Prenatal and postnatal nutrition mismatch is also discussed. In addition, this article presents the role of nutrition of both mothers and pre-term infants on nephron endowment, with final practical considerations.
Collapse
Affiliation(s)
- V Fanos
- Neonatal Intensive Care Unit, Puericultura Institute and Neonatal Section, University and Azienda Mista of Cagliari, Italy.
| | | | | | | | | |
Collapse
|
25
|
Christian P, Stewart CP. Maternal micronutrient deficiency, fetal development, and the risk of chronic disease. J Nutr 2010; 140:437-45. [PMID: 20071652 DOI: 10.3945/jn.109.116327] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early life nutritional exposures, combined with changes in lifestyle in adult life, can result in increased risk of chronic diseases. Although much of the focus on the developmental origins of disease has been on birth size and growth in postnatal life and the availability of energy and protein during these critical developmental periods, micronutrient deficiencies may also play an important role in fetal growth and development. Micronutrient status in fetal and early life may alter metabolism, vasculature, and organ growth and function, leading to increased risk of cardiometabolic disorders, adiposity, altered kidney function, and, ultimately, to type 2 diabetes and cardiovascular diseases. This review elucidates pathways through which micronutrient deficiencies lead to developmental impairment and describes the research to date on the evidence that micronutrient deficiencies in utero influence the development of chronic disease risk. Animal studies, observational human studies examining maternal diet or micronutrient status, and limited data from intervention studies are reviewed. Where data are lacking, plausible mechanisms and pathways of action have been derived from the existing animal and in vitro models. This review fills a critical gap in the literature related to the seminal role of micronutrients in early life and extends the discussion on the developmental origins of health and disease beyond birth size and energy and protein deficiency.
Collapse
Affiliation(s)
- Parul Christian
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21200, USA.
| | | |
Collapse
|
26
|
Sutherland MR, Gubhaju L, Yoder BA, Stahlman MT, Black MJ. The effects of postnatal retinoic acid administration on nephron endowment in the preterm baboon kidney. Pediatr Res 2009; 65:397-402. [PMID: 19092718 PMCID: PMC3633555 DOI: 10.1203/pdr.0b013e3181975f52] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Administration of retinoic acid (RA), the active metabolite of vitamin A, is linked to the stimulation of nephrogenesis. The aim of this study was to determine whether early postnatal administration of RA could enhance ongoing nephrogenesis in a baboon model of premature birth. Unbiased stereological methods were used to estimate kidney volume, renal corpuscle volume, and nephron number. The percentage of abnormal glomeruli and the number of glomerular generations was also determined in the kidneys of preterm control (n = 6) and preterm +RA (n = 6) animals that received 500 microg/kg/d of all-trans RA after premature delivery. There was no significant difference between the preterm control and the preterm +RA groups in kidney size, nephron number (preterm control: 329,924 +/- 41,752; preterm +RA: 354,041 +/- 52,095; p = 0.59), renal corpuscle volume, number of glomerular generations, or the percentage of abnormal glomeruli. The proportion of abnormal glomeruli did not appear to be linked to any elements of postnatal care examined. The results of this study indicate that early postnatal administration of RA is unable to stimulate nephrogenesis in the kidney of the preterm baboon. Encouragingly, it does not appear to have any adverse effects on kidney development.
Collapse
Affiliation(s)
- Megan R. Sutherland
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Lina Gubhaju
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bradley A. Yoder
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, 84158
| | - Mildred T. Stahlman
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, 37232
| | - M. Jane Black
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
27
|
|
28
|
Vezina CM, Allgeier SH, Fritz WA, Moore RW, Strerath M, Bushman W, Peterson RE. Retinoic acid induces prostatic bud formation. Dev Dyn 2008; 237:1321-33. [PMID: 18393306 DOI: 10.1002/dvdy.21526] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Formation of prostatic buds from the urogenital sinus (UGS) to initiate prostate development requires localized action of several morphogenetic factors. This report reveals all-trans-retinoic acid (RA) to be a powerful inducer of mouse prostatic budding that is associated with reciprocal changes in expression of two regulators of budding: sonic hedgehog (Shh) and bone morphogenetic protein 4 (Bmp4). Localization of retinoid signaling and expression of RA synthesis, metabolism, and receptor genes in the UGS on embryonic days 14.5-17.5 implicate RA in the mechanism of bud initiation. In UGS organ culture, RA increased prostatic budding, increased Shh expression, and decreased Bmp4. Prostatic budding was stimulated in the absence of RA by recombinant SHH, by blocking BMP4 signaling with NOGGIN, or by combined treatment with SHH and NOGGIN in UGS organ culture media. These observations suggest that reciprocal changes in hedgehog and BMP signaling by RA may regulate bud initiation.
Collapse
Affiliation(s)
- Chad M Vezina
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Bhat PV, Manolescu DC. Role of vitamin A in determining nephron mass and possible relationship to hypertension. J Nutr 2008; 138:1407-10. [PMID: 18641182 DOI: 10.1093/jn/138.8.1407] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vitamin A (retinol) and its analogs (retinoids) are important regulators of cell proliferation, differentiation, immune function, and apoptosis. The kidneys are target organs for vitamin A action. Retinoic acid (RA), a vitamin A metabolite, is involved in embryonic kidney patterning through the control of receptor tyrosine kinase expression, which modulates ureteric bud branching morphogenesis. Vitamin A status of the mother profoundly affects kidney organogenesis of the newborn. In rodents, mild vitamin A deficiency results in a 20% reduction of nephron number. In adult humans, nephron number varies between 0.3 and 1.3 million per kidney, which is accepted as normal. However, recent studies indicate that humans at the low end of nephron number are predisposed to primary hypertension. Because RA regulates nephron mass, its optimal availability during nephrogenesis is critical. RA levels in the embryo are affected by several factors, such as maternal vitamin A nutrition and disturbances in retinol metabolism. Maternal vitamin A deficiency during pregnancy is widespread in developing countries and segments of these populations may be exposed to low vitamin A during fetal life when nephron number is determined. Infants are likely to be born with suboptimal nephrons and may develop primary hypertension later in life. Although maternal vitamin A deficiency is not common in developed countries, congenital nephron number nevertheless varies widely, indicating low fetal RA levels due to common variants of the enzymes that convert retinol to RA. These infants might require heightened surveillance for hypertension later in life.
Collapse
Affiliation(s)
- Pangala V Bhat
- Laboratory of Nutrition and Cancer, Centre Hospitalier de l'Université de Montréal, CHUM-Hotel Dieu, Université de Montreal, H2W 1T8 Montreal, Canada.
| | | |
Collapse
|
30
|
Sims-Lucas S, Caruana G, Dowling J, Kett MM, Bertram JF. Augmented and accelerated nephrogenesis in TGF-beta2 heterozygous mutant mice. Pediatr Res 2008; 63:607-12. [PMID: 18317401 DOI: 10.1203/pdr.0b013e31816d9130] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several members of the transforming growth factor-beta (TGF-beta) superfamily play key roles in kidney development, either directly or indirectly regulating nephron number. Although low nephron number is a risk factor for cardiovascular and renal disease, the implications of increased nephron number has not been examined due to the absence of appropriate animal models. Here, using unbiased stereology we demonstrated that kidneys from TGF-beta2 heterozygous (TGF-beta2(+/-)) mice have approximately 60% more nephrons than wild-type mice at postnatal day 30. To determine whether augmented nephron number involved accelerated ureteric branching morphogenesis, embryonic day 11.5 metanephroi were analyzed via confocal microscopy. A 40% increase in total ureteric branch length was observed in TGF-beta2(+/-) kidneys, together with an extra generation of branching. In embryonic day 12.5 metanephroi cultured for 48 h the numbers of both ureteric tree tips and glomeruli were significantly greater in TGF-beta2(+/-) kidneys. These findings suggest that augmented nephron number in TGF-beta2(+/-) kidneys results from accelerated ureteric branching morphogenesis and nephron formation. Manipulation of TGF-beta2 signaling in vivo may provide avenues for protection or rescue of nephron endowment in fetuses at risk.
Collapse
Affiliation(s)
- Sunder Sims-Lucas
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3800, Australia
| | | | | | | | | |
Collapse
|
31
|
Makrakis J, Zimanyi MA, Black MJ. Retinoic acid enhances nephron endowment in rats exposed to maternal protein restriction. Pediatr Nephrol 2007; 22:1861-7. [PMID: 17849154 DOI: 10.1007/s00467-007-0572-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 11/30/2022]
Abstract
A reduced nephron complement at birth renders the kidney susceptible to renal disease in adulthood. Retinoic acid (RA; the active metabolite of vitamin A) is linked to nephrogenesis in vitro and in vivo. The aim of this study was to determine the effect of administration of retinoic acid in midgestation in rats on nephron endowment in offspring exposed to maternal protein restriction. Rats were fed either a normal-protein diet (NPD) or a low-protein diet (LPD) during pregnancy and lactation. Half of the dams in the LPD group were injected intraperitoneally with retinoic acid (20 mg/kg) during gestation at embryonic day 11.5. At 4 weeks of age, the offspring were anesthetized and perfusion-fixed, and nephron number estimated using unbiased stereological techniques. Body weight and kidney volume was significantly reduced in all LPD offspring. There was a significant 29% reduction in nephron number in the LPD group compared with the NPD offspring, whereas the number of nephrons in kidneys from the LPD + RA offspring was not significantly different compared with controls. In conclusion, administration of a single bolus dose of retinoic acid during midgestation restored nephron endowment to normal in offspring exposed to maternal protein restriction.
Collapse
Affiliation(s)
- John Makrakis
- Department of Anatomy & Cell Biology, Monash University, Post Office Box 13C, Melbourne, VIC 3800, Australia
| | | | | |
Collapse
|
32
|
Abstract
Congenital abnormalities of the kidney and urinary tract (CAKUT) occur in 1 out of 500 newborns, and constitute approximately 20-30% of all anomalies identified in the prenatal period. CAKUT has a major role in renal failure, and there is increasing evidence that certain abnormalities predispose to the development of hypertension and cardiovascular disease in adult life. Moreover, defects in nephron formation can predispose to Wilms tumour, the most frequent solid tumour in children. To understand the basis of human renal diseases, it is essential to consider how the kidney develops.
Collapse
|
33
|
Quinlan J, Kaplan F, Sweezey N, Goodyer P. LGL1, a novel branching morphogen in developing kidney, is induced by retinoic acid. Am J Physiol Renal Physiol 2007; 293:F987-93. [PMID: 17670908 DOI: 10.1152/ajprenal.00098.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Late-gestation lung protein 1 (LGL1) is a glycoprotein secreted by fetal lung mesenchyme that stimulates branching morphogenesis of the developing lung bud. We show that Lgl1 mRNA and protein are also expressed in mesenchymally derived lineages of fetal kidney. Although Lgl1 expression is stimulated by glucocorticoids in kidney cells, cortisol (10−7M) actually suppresses ureteric bud branching of fetal kidneys from HoxB7/GFP mice in explant culture. However, early branching morphogenesis in the lung and kidney is stimulated by retinoic acid, and we identified putative retinoic acid response elements in the Lgl1 promoter. All- trans-retinoic acid (10−6M) stimulated Lgl1 promoter activity and endogenous Lgl1 mRNA expression in vitro. Branching of cultured fetal kidney explants was increased in the presence of all- trans retinoic acid (10−6M). Heterozygous Lgl1 knockout mice were crossed to HoxB7/GFP mice to visualize the extent of ureteric bud branching at fetal stages. At embryonic (E) days E12.5–E13.0, mutant Lgl1+/−embryos showed a 20% reduction in ureteric bud branching compared with wild-type littermates. We propose a model in which retinoic acid stimulates branching morphogenesis by activating Lgl1 early in development. The prominent effects of glucocorticoids on Lgl1 expression in late lung development suggest a second role for LGL1 in alveolar maturation.
Collapse
|
34
|
Duong Van Huyen JP, Viltard M, Nehiri T, Freund N, Bélair MF, Martinerie C, Lelongt B, Bruneval P, Lelièvre-Pégorier M. Expression of matrix metalloproteinases MMP-2 and MMP-9 is altered during nephrogenesis in fetuses from diabetic rats. J Transl Med 2007; 87:680-9. [PMID: 17496904 DOI: 10.1038/labinvest.3700562] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Remodeling of extracellular matrix (ECM) is an important physiological feature of normal growth and development. Recent studies have emphasized the role of matrix metalloproteinases (MMP-2 and MMP-9) in normal mouse nephrogenesis. We have demonstrated previously in the rat that in utero exposure to maternal diabetes impairs renal development leading to a 30% reduction in the nephron number. Transforming growth factor-beta1 (TGF-beta1) and connective tissue growth factor (CTGF) are known to mediate high glucose effects on matrix degradation. The aim of the present study was to address the expression of type IV collagenase and TGF-beta1/CTGF systems in rat kidney during normal development and after in utero exposure to maternal diabetes. Both MMP-2 and MMP-9 mRNA metanephric expressions and activities were dramatically downregulated in kidneys issued from diabetic fetuses and in metanephros cultured in the presence of high glucose concentration. TGF-beta1 and CTGF expressions were significantly enhanced in diabetic fetal kidneys and in high glucose cultured metanephroi. Conditioned media obtained from metanephroi grown with high glucose concentration upregulated functional TGF-beta activity in transfected ATDC5 cells. In conclusion, in impaired nephrogenesis resulting from in utero exposure to maternal diabetes, alteration of both type IV collagenase and TGF-beta1/CTGF systems may lead to abnormal remodeling of ECM, which may, in turn, induce defects in ureteral bud branching leading to the observed reduction in the nephron number with consequences later in life: progression of chronic renal disease and hypertension.
Collapse
Affiliation(s)
- Jean-Paul Duong Van Huyen
- INSERM U652, IFR 58, Centre de recherche des Cordeliers, Université René Descartes (Paris 5), Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Goodyer P, Kurpad A, Rekha S, Muthayya S, Dwarkanath P, Iyengar A, Philip B, Mhaskar A, Benjamin A, Maharaj S, Laforte D, Raju C, Phadke K. Effects of maternal vitamin A status on kidney development: a pilot study. Pediatr Nephrol 2007; 22:209-14. [PMID: 17093988 DOI: 10.1007/s00467-006-0213-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 03/03/2006] [Accepted: 03/23/2006] [Indexed: 12/13/2022]
Abstract
Nephron endowment ranges widely in normal human populations. Recent autopsy studies have drawn attention to the possibility that subtle congenital nephron deficits may be associated with increased risk of developing hypertension later in life. Since modest maternal vitamin A deficiency reduces nephron number in rats, we designed a pilot study to determine the prevalence of maternal vitamin A deficiency in Montreal (Canada) and Bangalore (India) and the usefulness of newborn renal volume as a surrogate for nephron endowment. Among 48 pregnant Montreal women, two (4%) had one isolated mid-gestation retinol level slightly below the accepted limit of normal (0.9 mumol/L), whereas 25 (55%) of 46 pregnant women in Bangalore had at least one sample below this limit. Average estimated retinoid intake was correlated with mean serum retinol in pregnant women from Bangalore. In Montreal where maternal vitamin A deficiency was negligible, we found that newborn renal volume (estimated by renal ultrasonography at 2-6 weeks of age) was correlated with surface area at birth and was inversely correlated with serum creatinine at 1 month. Interestingly, renal volume adjusted for body surface area in Montreal (184+/-44 ml/m(2)) was significantly greater than in Bangalore (114+/-33 ml/m(2)) (p<0.01). Definitive studies are needed to establish whether maternal vitamin A deficiency accounts for subtle renal hypoplasia in Indian newborns. If so, there may be important public health implications for regions of the world where maternal vitamin A deficiency is prevalent.
Collapse
Affiliation(s)
- Paul Goodyer
- Department of Pediatrics, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Mammalian kidney development has helped elucidate the general concepts of mesenchymal-epithelial interactions, inductive signaling, epithelial cell polarization, and branching morphogenesis. Through the use of genetically engineered mouse models, the manipulation of Xenopus and chick embryos, and the identification of human renal disease genes, the molecular bases for many of the early events in the developing kidney are becoming increasingly clear. Early patterning of the kidney region depends on interactions between Pax/Eya/Six genes, with essential roles for lim1 and Odd1. Ureteric bud outgrowth and branching morphogenesis are controlled by the Ret/Gdnf pathway, which is subject to positive and negative regulation by a variety of factors. A clear role for Wnt proteins in induction of the kidney mesenchyme is now well established and complements the classic literature nicely. Patterning along the proximal distal axis as the nephron develops is now being investigated and must involve aspects of Notch signaling. The development of a glomerulus requires interactions between epithelial cells and infiltrating endothelial cells to generate a unique basement membrane. The integrity of the glomerular filter depends in large part on the proteins of the nephrin complex, localized to the slit diaphragm. Despite the kidney's architectural complexity, with the advent of genomics and expression arrays, it is becoming one of the best-characterized organ systems in developmental biology.
Collapse
Affiliation(s)
- Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
37
|
He JC, Lu TC, Fleet M, Sunamoto M, Husain M, Fang W, Neves S, Chen Y, Shankland S, Iyengar R, Klotman PE. Retinoic acid inhibits HIV-1-induced podocyte proliferation through the cAMP pathway. J Am Soc Nephrol 2006; 18:93-102. [PMID: 17182884 PMCID: PMC3197239 DOI: 10.1681/asn.2006070727] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HIV-associated nephropathy is characterized by renal podocyte proliferation and dedifferentiation. This study found that all-trans retinoic acid (atRA) reverses the effects of HIV-1 infection in podocytes. Treatment with atRA reduced cell proliferation rate by causing G1 arrest and restored the expression of the differentiation markers (synaptopodin, nephrin, podocin, and WT-1) in HIV-1-infected podocytes. It is interesting that both atRA and 9-cis RA increased intracellular cAMP levels in podocytes. Podocytes expressed most isoforms of retinoic acid receptors (RAR) and retinoid X receptors (RXR) with the exception of RXRgamma. RARalpha antagonists blocked atRA-induced cAMP production and its antiproliferative and prodifferentiation effects on podocytes, suggesting that RARalpha is required. For determination of the effect of increased intracellular cAMP on HIV-infected podocytes, cells were stimulated with either forskolin or 8-bromo-cAMP. Both compounds inhibited cell proliferation significantly and restored synaptopodin expression in HIV-infected podocytes. The effects of atRA were abolished by Rp-cAMP, an inhibitor of the cAMP/protein kinase A pathway and were enhanced by rolipram, an inhibitor of phosphodiesterase 4, suggesting that the antiproliferative and prodifferentiation effects of atRA on HIV-infected podocytes are cAMP dependent. Furthermore, both atRA and forskolin suppressed HIV-induced mitogen-activated protein kinase 1 and 2 and Stat3 phosphorylation. In vivo, atRA reduced proteinuria, cell proliferation, and glomerulosclerosis in HIV-1-transgenic mice. These findings suggest that atRA reverses the abnormal phenotype in HIV-1-infected podocytes by stimulating RARalpha-mediated intracellular cAMP production. These results demonstrate the mechanism by which atRA reverses the proliferation of podocytes that is induced by HIV-1.
Collapse
Affiliation(s)
- John Cijiang He
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schreuder M, Delemarre-van de Waal H, van Wijk A. Consequences of Intrauterine Growth Restriction for the Kidney. Kidney Blood Press Res 2006; 29:108-25. [PMID: 16837795 DOI: 10.1159/000094538] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Low birth weight due to intrauterine growth restriction is associated with various diseases in adulthood, such as hypertension, cardiovascular disease, insulin resistance and end-stage renal disease. The purpose of this review is to describe the effects of intrauterine growth restriction on the kidney. Nephrogenesis requires a fine balance of many factors that can be disturbed by intrauterine growth restriction, leading to a low nephron endowment. The compensatory hyperfiltration in the remaining nephrons results in glomerular and systemic hypertension. Hyperfiltration is attributed to several factors, including the renin-angiotensin system (RAS), insulin-like growth factor (IGF-I) and nitric oxide. Data from human and animal studies are presented, and suggest a faltering IGF-I and an inhibited RAS in intrauterine growth restriction. Hyperfiltration makes the kidney more vulnerable during additional kidney disease, and is associated with glomerular damage and kidney failure in the long run. Animal studies have provided a possible therapy with blockage of the RAS at an early stage in order to prevent the compensatory glomerular hyperfiltration, but this is far from being applicable to humans. Research is needed to further unravel the effect of intrauterine growth restriction on the kidney.
Collapse
Affiliation(s)
- Michiel Schreuder
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
39
|
Wen X, Li Y, Hu K, Dai C, Liu Y. Hepatocyte growth factor receptor signaling mediates the anti-fibrotic action of 9-cis-retinoic acid in glomerular mesangial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:947-57. [PMID: 16192631 PMCID: PMC1603682 DOI: 10.1016/s0002-9440(10)61185-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Retinoic acid (RA), an active metabolite of vitamin A, plays a critical role in the regulation of cell proliferation, survival, and differentiation. RA action is primarily mediated through its receptors, ligand-dependent transcription factors of the steroid/thyroid/vitamin D nuclear receptor superfamily. Recent studies indicate that administration of RA mitigates progressive kidney disease, underscoring its renoprotective potential. In this study, we investigated the effects of 9-cis-RA on glomerular mesangial cell activation induced by transforming growth factor (TGF)-beta1 using an in vitro cell culture system. In human mesangial cells 9-cis-RA suppressed TGF-beta1-induced alpha-smooth muscle actin, fibronectin, and plasminogen activator inhibitor-1 expression, but it did not significantly affect cell proliferation and survival. Interestingly, 9-cis-RA induced hepatocyte growth factor (HGF) mRNA expression and protein secretion, stimulated HGF promoter activity, and activated c-met receptor phosphorylation. Similar to HGF, 9-cis-RA induced expression of the Smad transcriptional co-repressor TGIF in mesangial cells. Overexpression of exogenous TGIF by transfection or 9-cis-RA treatment suppressed trans-activation of the TGF-beta-responsive promoter. Moreover, conditional ablation of the c-met receptor completely abolished the anti-fibrotic effect of 9-cis-RA and abrogated TGIF induction. Collectively, these results indicate that 9-cis-RA possesses anti-fibrotic ability by antagonizing TGF-beta1 in mesangial cells and that 9-cis-RA activity is likely mediated through a mechanism dependent on HGF/c-met receptor signaling.
Collapse
Affiliation(s)
- Xiaoyan Wen
- Department of Pathology, University of Pittsburgh School of Medicine, S-405 Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
40
|
Polgar K, Burrow CR, Hyink DP, Fernandez H, Thornton K, Li X, Gusella GL, Wilson PD. Disruption of polycystin-1 function interferes with branching morphogenesis of the ureteric bud in developing mouse kidneys. Dev Biol 2005; 286:16-30. [PMID: 16122726 DOI: 10.1016/j.ydbio.2005.06.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 06/09/2005] [Accepted: 06/30/2005] [Indexed: 12/23/2022]
Abstract
The polycystic kidney disease (PKD1) gene-encoded protein, polycystin-1, is developmentally regulated, with highest expression levels seen in normal developing kidneys, where it is distributed in a punctate pattern at the basal surface of ureteric bud epithelia. Overexpression in ureteric epithelial cell membranes of an inhibitory pMyr-GFP-PKD1 fusion protein via a retroviral (VVC) delivery system and microinjection into the ureteric bud lumen of embryonic day 11 mouse metanephric kidneys resulted in disrupted branching morphogenesis. Using confocal quantitative analysis, significant reductions were measured in the numbers of ureteric bud branch points and tips, as well as in the total ureteric bud length, volume and area, while significant increases were seen as dilations of the terminal branches, where significant increases in outer diameter and volumes were measured. Microinjection of an activating 5TM-GFP-PKD1 fusion protein had an opposite effect and showed significant increases in ureteric bud length and area. These are the first studies to experimentally manipulate polycystin-1 expression by transduction in the embryonic mouse kidney and suggest that polycystin-1 plays a critical role in the regulation of epithelial morphogenesis during renal development.
Collapse
Affiliation(s)
- Katalin Polgar
- Department of Medicine, Division of Nephrology, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yosypiv IV, El-Dahr SS. Role of the renin-angiotensin system in the development of the ureteric bud and renal collecting system. Pediatr Nephrol 2005; 20:1219-29. [PMID: 15942783 DOI: 10.1007/s00467-005-1944-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/02/2005] [Accepted: 03/02/2005] [Indexed: 11/24/2022]
Abstract
Genetic, biochemical and physiological studies have demonstrated that the renin-angiotensin system (RAS) plays a fundamental role in kidney development. All of the components of the RAS are expressed in the metanephros. Mutations in the genes encoding components of the RAS in mice or pharmacological inhibition of RAS in animals or humans cause diverse congenital abnormalities of the kidney and lower urinary tract. The latter include renal vascular abnormalities, abnormal glomerulogenesis, renal papillary hypoplasia, hydronephrosis, aberrant UB budding, duplicated collecting system, and urinary concentrating defect. Thus, the actions of angiotensin (ANG) II during kidney development are pleiotropic both spatially and temporally. Whereas the role of ANG II in renovascular and glomerular development has received much attention, little is known about the potential role of ANG II and its receptors in the morphogenesis of the collecting system. In this review, we discuss recent genetic and functional evidence gathered from transgenic knockout mice and in vitro organ and cell culture implicating the RAS in the development of the ureteric bud and collecting ducts. A novel conceptual framework has emerged from this body of work which states that stroma-derived ANG II elicits activation of AT(1)/AT(2) receptors expressed on the ureteric bud to stimulate branching morphogenesis as well as collecting duct elongation and papillogenesis.
Collapse
Affiliation(s)
- Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | | |
Collapse
|
42
|
Tse HKW, Leung MBW, Woolf AS, Menke AL, Hastie ND, Gosling JA, Pang CP, Shum ASW. Implication of Wt1 in the pathogenesis of nephrogenic failure in a mouse model of retinoic acid-induced caudal regression syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1295-307. [PMID: 15855632 PMCID: PMC1606386 DOI: 10.1016/s0002-9440(10)62349-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2005] [Indexed: 11/18/2022]
Abstract
Renal malformations are common human birth defects that sometimes occur in the context of the caudal regression syndrome. Here, we found that exposure of pregnant mice to all-trans retinoic acid, at a time when the metanephros has yet to form, causes a failure of kidney development along with caudal regression. Maternal treatment with Am580 (retinoic acid receptor alpha agonist) also induced similar patterns of kidney maldevelopment in the fetus. In metanephroi from retinoic acid-treated pregnancies, renal mesenchyme condensed around the ureteric bud but then failed to differentiate into nephrons, instead undergoing involution by fulminant apoptosis to produce a renal agenesis phenotype. Results of whole organ cultures in serum-free medium, and also tissue recombination experiments, showed that the nephrogenic defect was intrinsic to the kidney and that it resided in the metanephric mesenchyme and not the ureteric bud. Renal mesenchyme from control embryos expressed Wilms' tumor 1 (Wt1), but this transcription factor, which is indispensable for kidney development, failed to express in metanephroi of retinoic acid-exposed embryos. Wt1 expression and organogenesis were both restored, however, when metanephroi from retinoic acid-treated pregnancies were grown in serum-containing media. Our data illuminate the pathobiology of a severe, teratogen-induced kidney malformation.
Collapse
Affiliation(s)
- Herman K W Tse
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
It has been hypothesized that a reduced number of nephrons at birth contributes to the development of essential hypertension. Nephron number in normal human kidneys has been shown to vary up to eightfold. Therefore, a significant proportion of the population appears to be at risk for developing hypertension. Furthermore, nephron deficits might explain why some racial groups have a higher incidence of hypertension and end-stage renal disease than others. Animal studies have demonstrated that maternal limitations in nutrient supply, both gross and nutrient-specific; exposure to elevated levels of hormones or toxins; and genetic factors can lead to permanent deficits in nephron number and, when examined, elevated blood pressure. In this review, maternal and genetic factors influencing nephron endowment and the implications of nephron deficit for hypertension and renal disease in humans are discussed.
Collapse
Affiliation(s)
- Michelle M Kett
- Department of Physiology, Monash University, Wellington Road, Victoria 3800, Australia.
| | | |
Collapse
|
44
|
Schaier M, Liebler S, Schade K, Shimizu F, Kawachi H, Grone HJ, Chandraratna R, Ritz E, Wagner J. Retinoic acid receptor alpha and retinoid X receptor specific agonists reduce renal injury in established chronic glomerulonephritis of the rat. J Mol Med (Berl) 2004; 82:116-25. [PMID: 14712350 DOI: 10.1007/s00109-003-0510-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 10/30/2003] [Indexed: 10/26/2022]
Abstract
Retinoids, derivatives of vitamin A, inhibit mesangial cell proliferation, glomerular inflammation, and extracellular matrix deposition in acute anti-Thy1.1 glomerulonephritis (Thy-GN) of the rat. We examined a model, chronic mesangioproliferative Thy-GN (MoAb 1-22-3), which is more akin to human disease. Treatment started on day 23 when Thy-GN had already been established. Nonnephritic control and Thy-GN rats were treated orally for 67 days with vehicle or with two doses of either the retinoic acid receptor alpha-specific agonist AGN 195183 (RARalpha agonist) or the retinoid X receptor specific agonist AGN 194204 (RXR agonist). Doses of either the RARalpha or the RXR agonist significantly reduced albuminuria and normalized blood pressure during the course of treatment. The glomerulosclerosis index, glomerular cell and interstitial cell counts, and area of the interstitial space were significantly lower in nephritic rats treated with the RARalpha agonist or RXR agonist than with vehicle. The RARalpha and RXR agonist significantly reduced the infiltration of the glomerulus by macrophages. The increase in glomerular TGFbeta1 and prepro-ET(1) gene expression in vehicle-treated nephritic rats was significantly attenuated by RARalpha or RXR agonists. Glomerular expression of RXRalpha and RARalpha receptor mRNA was significantly greater in vehicle-treated nephritic rats than in nonnephritic controls. Treatment with RARalpha or RXR agonists tended to normalize retinoid-receptor gene expression. Our data indicate that both RARalpha agonists and RXR agonists reduce renal damage in rats with established chronic glomerulonephritis. Receptor-specific retinoids may provide a novel therapeutic approach for the treatment of chronic glomerulonephritis.
Collapse
MESH Headings
- Albuminuria/metabolism
- Animals
- Biomarkers/analysis
- Blood Pressure/drug effects
- Chronic Disease
- Creatinine/metabolism
- Creatinine/urine
- Fatty Acids, Unsaturated/therapeutic use
- Gene Expression/drug effects
- Glomerulonephritis, Membranoproliferative/drug therapy
- Glomerulonephritis, Membranoproliferative/metabolism
- Glomerulonephritis, Membranoproliferative/pathology
- Isoantibodies/toxicity
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/therapy
- Kidney Glomerulus/pathology
- Male
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Retinoic Acid Receptor alpha
- Retinoid X Receptors
- Retinoids/metabolism
- Retinoids/therapeutic use
- Tetrahydronaphthalenes/pharmacology
- Tetrahydronaphthalenes/therapeutic use
- Transcription Factors/agonists
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Matthias Schaier
- Department of Nephrology, University Hospital, University of Heidelberg, Bergheimer Strasse 56a, 69115, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Perrotta S, Nobili B, Rossi F, Di Pinto D, Cucciolla V, Borriello A, Oliva A, Della Ragione F. Vitamin A and infancy. Biochemical, functional, and clinical aspects. VITAMINS AND HORMONES 2003; 66:457-591. [PMID: 12852263 DOI: 10.1016/s0083-6729(03)01013-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vitamin A is a very intriguing natural compound. The molecule not only has a complex array of physiological functions, but also represents the precursor of promising and powerful new pharmacological agents. Although several aspects of human retinol metabolism, including absorption and tissue delivery, have been clarified, the type and amounts of vitamin A derivatives that are intracellularly produced remain quite elusive. In addition, their precise function and targets still need to be identified. Retinoic acids, undoubtedly, play a major role in explaining activities of retinol, but, recently, a large number of physiological functions have been attributed to different retinoids and to vitamin A itself. One of the primary roles this vitamin plays is in embryogenesis. Almost all steps in organogenesis are controlled by retinoic acids, thus suggesting that retinol is necessary for proper development of embryonic tissues. These considerations point to the dramatic importance of a sufficient intake of vitamin A and explain the consequences if intake of retinol is deficient. However, hypervitaminosis A also has a number of remarkable negative consequences, which, in same cases, could be fatal. Thus, the use of large doses of retinol in the treatment of some human diseases and the use of megavitamin therapy for certain chronic disorders as well as the growing tendency toward vitamin faddism should alert physicians to the possibility of vitamin overdose.
Collapse
Affiliation(s)
- Silverio Perrotta
- Department of Pediatric, Medical School, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet 2002; 32:109-15. [PMID: 12195422 DOI: 10.1038/ng952] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Almost 1% of human infants are born with urogenital abnormalities, many of which are linked to irregular connections between the distal ureters and the bladder. During development, ureters migrate by an unknown mechanism from their initial integration site in the Wolffian ducts up to the base of the bladder in a process that we call ureter maturation. Rara(-/-) Rarb2(-/-) mice display impaired vitamin A signaling and develop syndromic urogenital malformations similar to those that occur in humans, including renal hypoplasia, hydronephrosis and mega-ureter, abnormalities also seen in mice with mutations in the proto-oncogene Ret. Here we show that ureter maturation depends on formation of the 'trigonal wedge', a newly identified epithelial outgrowth from the base of the Wolffian ducts, and that the distal ureter abnormalities seen in Rara(-/-) Rarb2(-/-) and Ret(-/-) mutant mice are probably caused by a failure of this process. Our studies indicate that formation of the trigonal wedge may be essential for correct insertion of the distal ureters into the bladder, and that these events are mediated by the vitamin A and Ret signaling pathways.
Collapse
Affiliation(s)
- Ekatherina Batourina
- Department of Urology, Columbia University, 630 West 168th Street, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Johkura K, Liang Y, Teng R, Ogiwara N, Sasaki K. Nephrogenesis accompanied by vascularisation in the mouse embryonic metanephros transplanted into the adult kidney for the creation of additional nephrons. Nephrology (Carlton) 2002. [DOI: 10.1046/j.1440-1797.2002.00098.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Vilar J, Lalou C, Van Huyen JPD, Charrin S, Hardouin S, Raulais D, Merlet-Bénichou C, Leliévre-Pégorier M. Midkine is involved in kidney development and in its regulation by retinoids. J Am Soc Nephrol 2002; 13:668-676. [PMID: 11856770 DOI: 10.1681/asn.v133668] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In the kidney, in which development depends on epithelial-mesenchymal interactions, it has been shown that retinoids modulate nephrogenesis in a dose-dependent manner in vivo and in vitro. Midkine (MK) is a retinoic acid responsive gene for a heparin-binding growth factor. The aim of the present study was therefore to quantify the expression of MK mRNA during renal development in the rat, to analyze the regulation of MK expression by retinoids in vivo and in vitro, and, finally, to study the role of MK in rat metanephric organ cultures. The spatiotemporal expression of MK in fetal kidney was studied. In control rats, MK expression is ubiquitous at gestational day 14, i.e., at the onset of nephrogenesis. On day 16, MK is expressed in the condensed mesenchyme and in early epithelialized mesenchymal derivatives. On gestational day 21, MK is rather localized in the nonmature glomeruli of the renal cortex. In utero exposure to vitamin A deficiency did not modify the specific spatial and temporal expression pattern of MK gene in the metanephros, although a decrease in mRNA expression occurred. In metanephroi explanted from 14-d-old fetuses and cultured in a defined medium, expression of MK mRNA was found to be stimulated when retinoic acid (100 nM) was added in the culture medium. Finally, in vitro nephrogenesis was strongly inhibited in the presence of neutralizing antibodies for MK: the number of nephrons formed in vitro was reduced by approximately 50% without changes in ureteric bud branching morphogenesis. These results indicated that MK is implicated in the regulation of kidney development by retinoids. These results also suggested that MK plays an important role in the molecular cascade of the epithelial conversion of the metanephric blastema.
Collapse
Affiliation(s)
- José Vilar
- *Unité de Recherches, INSERM U356, IFR 58, Université Paris 6; Unité de Recherches, INSERM U430, IFR 58, Hôpital Broussais; and Unité de Recherches, INSERM U440, Institut du Fer à Moulin, Paris, France
| | - Claude Lalou
- *Unité de Recherches, INSERM U356, IFR 58, Université Paris 6; Unité de Recherches, INSERM U430, IFR 58, Hôpital Broussais; and Unité de Recherches, INSERM U440, Institut du Fer à Moulin, Paris, France
| | - Jean-Paul Duong Van Huyen
- *Unité de Recherches, INSERM U356, IFR 58, Université Paris 6; Unité de Recherches, INSERM U430, IFR 58, Hôpital Broussais; and Unité de Recherches, INSERM U440, Institut du Fer à Moulin, Paris, France
| | - Stéphanie Charrin
- *Unité de Recherches, INSERM U356, IFR 58, Université Paris 6; Unité de Recherches, INSERM U430, IFR 58, Hôpital Broussais; and Unité de Recherches, INSERM U440, Institut du Fer à Moulin, Paris, France
| | - Sylvie Hardouin
- *Unité de Recherches, INSERM U356, IFR 58, Université Paris 6; Unité de Recherches, INSERM U430, IFR 58, Hôpital Broussais; and Unité de Recherches, INSERM U440, Institut du Fer à Moulin, Paris, France
| | - Daniel Raulais
- *Unité de Recherches, INSERM U356, IFR 58, Université Paris 6; Unité de Recherches, INSERM U430, IFR 58, Hôpital Broussais; and Unité de Recherches, INSERM U440, Institut du Fer à Moulin, Paris, France
| | - Claudie Merlet-Bénichou
- *Unité de Recherches, INSERM U356, IFR 58, Université Paris 6; Unité de Recherches, INSERM U430, IFR 58, Hôpital Broussais; and Unité de Recherches, INSERM U440, Institut du Fer à Moulin, Paris, France
| | - Martine Leliévre-Pégorier
- *Unité de Recherches, INSERM U356, IFR 58, Université Paris 6; Unité de Recherches, INSERM U430, IFR 58, Hôpital Broussais; and Unité de Recherches, INSERM U440, Institut du Fer à Moulin, Paris, France
| |
Collapse
|
49
|
Martinez G, Cullen-McEwen LA, Bertram JF. Transforming growth factor-beta superfamily members: roles in branching morphogenesis in the kidney. Nephrology (Carlton) 2001. [DOI: 10.1046/j.1440-1797.2001.00070.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Sharif KA, Li C, Gudas LJ. cis-acting DNA regulatory elements, including the retinoic acid response element, are required for tissue specific laminin B1 promoter/lacZ expression in transgenic mice. Mech Dev 2001; 103:13-25. [PMID: 11335108 DOI: 10.1016/s0925-4773(01)00326-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The LAMB1 gene encodes the laminin beta1 subunit of laminin, an extracellular matrix protein. Using several transgenic mouse lines containing various lengths of the LAMB1 promoter driving lacZ reporter gene expression, regions of LAMB1 promoter that contain cis-acting DNA regulatory element(s) have been identified. The 3.9LAMB1betagal transgene is expressed in various tissues during development. LAMB1 transgene expression is observed in a selective set of nephrons of the neonatal and adult kidneys. The cis-acting DNA regulatory elements responsible for LAMB1 transgene expression in ovaries and in juvenile kidneys are present between -'1.4 and -0.7 kb relative to the transcription start site, while those of adult kidneys are located between -2.5 and -1.4 kb. The LAMB1 transgene is also expressed in the epididymis of 1 week old transgenic mice. Mutation of the retinoic acid response element (RARE) in the context of the 3.9LAMB1betagal transgene results in loss of LAMB1 transgene expression in all tissues. Thus, sequences between -2.5 and -0.7 kb plus the RARE are required for appropriate expression of the LAMB1 transgene in mice.
Collapse
Affiliation(s)
- K A Sharif
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|