1
|
Ho JQ, Abramowitz MK. Clinical Consequences of Metabolic Acidosis-Muscle. Adv Chronic Kidney Dis 2022; 29:395-405. [PMID: 36175077 DOI: 10.1053/j.ackd.2022.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/10/2022] [Accepted: 04/25/2022] [Indexed: 01/25/2023]
Abstract
Metabolic acidosis is common in people with chronic kidney disease and can contribute to functional decline, morbidity, and mortality. One avenue through which metabolic acidosis can result in these adverse clinical outcomes is by negatively impacting skeletal muscle; this can occur through several pathways. First, metabolic acidosis promotes protein degradation and impairs protein synthesis, which lead to muscle breakdown. Second, metabolic acidosis hinders mitochondrial function, which decreases oxidative phosphorylation and reduces energy production. Third, metabolic acidosis directly limits muscle contraction. The purpose of this review is to examine the specific mechanisms of each pathway through which metabolic acidosis affects muscle, the impact of metabolic acidosis on physical function, and the effect of treating metabolic acidosis on functional outcomes.
Collapse
Affiliation(s)
- Jim Q Ho
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Matthew K Abramowitz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY; Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
2
|
Chen CH, Teitelbaum I. Peritoneal dialysis adequacy: a paradigm shift. Kidney Res Clin Pract 2022; 41:150-155. [PMID: 35286794 PMCID: PMC8995486 DOI: 10.23876/j.krcp.21.208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022] Open
Abstract
For the past 30 years, nephrologists have focused on a single minimal threshold of Kt/Vurea to determine the adequacy of peritoneal dialysis (PD). To date, there is no evidence that shows Kt/Vurea to be a good surrogate measure of uremic symptom control or nutritional state in patients on PD. Volume of distribution (Vurea) generally is considered equivalent to total body water (TBW). Yet, accurate determination of TBW is difficult. The most recent International Society for Peritoneal Dialysis practice recommendations on prescribing high-quality PD emphasized incorporation of multiple measures rather than the single value of Kt/Vurea. These measures include shared decision-making between the patient and the care team and assessment of health-related quality of life, burden of uremic symptoms, presence of residual kidney function, volume status, and biochemical measures including serum potassium and bicarbonate levels. In some cases, PD prescriptions can be tailored to the patient priorities and goals of care, such as in frail and pediatric patients. Overall, there has been a paradigm shift in providing high-quality care to PD patients. Instead of focusing on small solute clearance in the form of Kt/Vurea, nephrologists are encouraged to use a more comprehensive assessment of the patient as a whole.
Collapse
Affiliation(s)
- Chang Huei Chen
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Isaac Teitelbaum
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Remesar X, Alemany M. Dietary Energy Partition: The Central Role of Glucose. Int J Mol Sci 2020; 21:E7729. [PMID: 33086579 PMCID: PMC7593952 DOI: 10.3390/ijms21207729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Humans have developed effective survival mechanisms under conditions of nutrient (and energy) scarcity. Nevertheless, today, most humans face a quite different situation: excess of nutrients, especially those high in amino-nitrogen and energy (largely fat). The lack of mechanisms to prevent energy overload and the effective persistence of the mechanisms hoarding key nutrients such as amino acids has resulted in deep disorders of substrate handling. There is too often a massive untreatable accumulation of body fat in the presence of severe metabolic disorders of energy utilization and disposal, which become chronic and go much beyond the most obvious problems: diabetes, circulatory, renal and nervous disorders included loosely within the metabolic syndrome. We lack basic knowledge on diet nutrient dynamics at the tissue-cell metabolism level, and this adds to widely used medical procedures lacking sufficient scientific support, with limited or nil success. In the present longitudinal analysis of the fate of dietary nutrients, we have focused on glucose as an example of a largely unknown entity. Even most studies on hyper-energetic diets or their later consequences tend to ignore the critical role of carbohydrate (and nitrogen disposal) as (probably) the two main factors affecting the substrate partition and metabolism.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Abstract
Malnutrition is common in patients with renal failure. Causes of malnutrition in this population are varied and sometimes specific to the method of renal replacement therapy. No single marker absolutely identifies malnutrition or tracks changes in status. Renal dietitians use a variety of parameters and techniques to identify malnutrition because many of the traditional markers can be skewed by renal disease and its comorbidities. Once malnutrition is identified, treatment is also complex and not well defined. Treatment is usually progressive in nature, ranging from intense nutritional counseling to total parenteral nutrition. Further research is needed to define optimal nutrition status, to refine techniques to maintain optimal nutrition status, to simplify the identification of malnutrition, and to improve the treatment for malnutrition.
Collapse
Affiliation(s)
- Linda M. McCann
- Satellite Dialysis Centers, Inc., Redwood City; California, U.S.A
| |
Collapse
|
5
|
Dubé BP, Laveneziana P. Effects of aging and comorbidities on nutritional status and muscle dysfunction in patients with COPD. J Thorac Dis 2018; 10:S1355-S1366. [PMID: 29928518 DOI: 10.21037/jtd.2018.02.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent, complex and debilitating disease which imposes a formidable burden on patients and the healthcare system. The recognition that COPD is a multifaceted disease is not new, and increasing evidence have outlined the importance of its extra-pulmonary manifestations and its relation to other comorbid conditions in the clinical course of the disease and its societal cost. The relationship between aging, COPD and its comorbidities on skeletal muscle function and nutritional status is complex, multidirectional and incompletely understood. Despite this, the current body of knowledge allows the identification of various, seemingly partially independent factors related both to the normal aging process and to the independent deleterious effects of chronic diseases on muscle function and body composition. There is a dire need of studies evaluating the relative contribution of each of these factors, and their potential synergistic effects in patients with COPD and advanced age/comorbid conditions, in order to delineate the best course of therapeutic action in this increasingly prevalent population.
Collapse
Affiliation(s)
- Bruno-Pierre Dubé
- Département de Médecine, Service de Pneumologie, Centre Hospitalier de l'Université de Montréal (CHUM) Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) - Carrefour de l'Innovation et de l'Évaluation en Santé, Montréal, Québec, Canada
| | - Pierantonio Laveneziana
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée du Département R3S, Paris, France
| |
Collapse
|
6
|
Kanda H, Hirasaki Y, Iida T, Kanao-Kanda M, Toyama Y, Chiba T, Kunisawa T. Perioperative Management of Patients With End-Stage Renal Disease. J Cardiothorac Vasc Anesth 2017; 31:2251-2267. [DOI: 10.1053/j.jvca.2017.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Indexed: 12/17/2022]
|
7
|
The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease. Kidney Int 2016; 91:119-128. [PMID: 27653838 DOI: 10.1016/j.kint.2016.07.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022]
Abstract
Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD), but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin, which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes, indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD.
Collapse
|
8
|
Agnelli S, Arriarán S, Oliva L, Remesar X, Fernández-López JA, Alemany M. Modulation of rat liver urea cycle and related ammonium metabolism by sex and cafeteria diet. RSC Adv 2016. [DOI: 10.1039/c5ra25174e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Liver amino acid metabolism decreased with cafeteria diet through lower ammonium production (even lower in females) and urea cycle activity.
Collapse
Affiliation(s)
- Silvia Agnelli
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Sofía Arriarán
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Laia Oliva
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Xavier Remesar
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | | | - Marià Alemany
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
9
|
Saikumar JH, Kovesdy CP. Bicarbonate Therapy in End-Stage Renal Disease: Current Practice Trends and Implications. Semin Dial 2015; 28:370-6. [PMID: 25845518 DOI: 10.1111/sdi.12373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Management of metabolic acidosis covers the entire spectrum from oral bicarbonate therapy and dietary modifications in chronic kidney disease to delivery of high doses of bicarbonate-based dialysate during maintenance haemodialysis (MHD). Due to the gradual depletion of the body's buffers and rapid repletion during MHD, many potential problems arise as a result of our current treatment paradigms. Several studies have given rise to conflicting data about the adverse effects of our current practice patterns in MHD. In this review, we will describe the pathophysiology and consequences of metabolic acidosis and its therapy in CKD and ESRD, and discuss current evidence supporting a more individualized approach for bicarbonate therapy in MHD.
Collapse
Affiliation(s)
- Jagannath H Saikumar
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Csaba P Kovesdy
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee.,Nephrology Section, Memphis VA Medical Center, Memphis, Tennessee
| |
Collapse
|
10
|
Dong Y, Pan JS, Zhang L. Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction. PLoS One 2013; 8:e58554. [PMID: 23516508 PMCID: PMC3596298 DOI: 10.1371/journal.pone.0058554] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/05/2013] [Indexed: 11/28/2022] Open
Abstract
Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production.
Collapse
Affiliation(s)
- Yanjun Dong
- Department of Medicine, Nephrology Division, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jenny S. Pan
- Department of Medicine, Nephrology Division, Baylor College of Medicine, Houston, Texas, United States of America
| | - Liping Zhang
- Department of Medicine, Nephrology Division, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Modulation in Wistar rats of blood corticosterone compartmentation by sex and a cafeteria diet. PLoS One 2013; 8:e57342. [PMID: 23451210 PMCID: PMC3579843 DOI: 10.1371/journal.pone.0057342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/21/2013] [Indexed: 01/21/2023] Open
Abstract
In the metabolic syndrome, glucocorticoid activity is increased, but circulating levels show little change. Most of blood glucocorticoids are bound to corticosteroid-binding globulin (CBG), which liver expression and circulating levels are higher in females than in males. Since blood hormones are also bound to blood cells, and the size of this compartment is considerable for androgens and estrogens, we analyzed whether sex or eating a cafeteria diet altered the compartmentation of corticosterone in rat blood. The main corticosterone compartment in rat blood is that specifically bound to plasma proteins, with smaller compartments bound to blood cells or free. Cafeteria diet increased the expression of liver CBG gene, binding plasma capacity and the proportion of blood cell-bound corticosterone. There were marked sex differences in blood corticosterone compartmentation in rats, which were unrelated to testosterone. The use of a monoclonal antibody ELISA and a polyclonal Western blot for plasma CBG compared with both specific plasma binding of corticosterone and CBG gene expression suggested the existence of different forms of CBG, with varying affinities for corticosterone in males and females, since ELISA data showed higher plasma CBG for males, but binding and Western blot analyses (plus liver gene expression) and higher physiological effectiveness for females. Good cross- reactivity to the antigen for polyclonal CBG antibody suggests that in all cases we were measuring CBG.The different immunoreactivity and binding affinity may help explain the marked sex-related differences in plasma hormone binding as sex-linked different proportions of CBG forms.
Collapse
|
12
|
Insulin resistance and muscle metabolism in chronic kidney disease. ISRN ENDOCRINOLOGY 2013; 2013:329606. [PMID: 23431467 PMCID: PMC3575670 DOI: 10.1155/2013/329606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 01/21/2013] [Indexed: 12/31/2022]
Abstract
Insulin resistance is a common finding in chronic kidney disease (CKD) and is manifested by mild fasting hyperglycemia and abnormal glucose tolerance testing. Circulating levels of glucocorticoids are high. In muscle, changes in the insulin signaling pathway occur. An increase in the regulatory p85 subunit of Class I phosphatidylinositol 3-Kinase enzyme leads to decreased activation of the downstream effector protein kinase B (Akt). Mechanisms promoting muscle proteolysis and atrophy are unleashed. The link of Akt to the ubiquitin proteasome pathway, a major degradation pathway in muscle, is discussed. Another factor associated with insulin resistance in CKD is angiotensin II (Ang II) which appears to induce its intracellular effects through inflammatory cytokines or reactive oxygen species. Skeletal muscle ATP is depleted and the ability of AMP-activated protein kinase (AMPK) to replenish energy stores is blocked. How this can be reversed is discussed. Interleukin-6 (IL-6) levels are elevated in CKD and impair insulin signaling at the level of IRS-1. With exercise, IL-6 levels are reduced; glucose uptake and utilization are increased. For patients with CKD, exercise may improve insulin signaling and build up muscle. Treatment strategies for preventing muscle atrophy are discussed.
Collapse
|
13
|
Relationship between energy dense diets and white adipose tissue inflammation in metabolic syndrome. Nutr Res 2013; 33:1-11. [DOI: 10.1016/j.nutres.2012.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 10/19/2012] [Accepted: 11/20/2012] [Indexed: 12/25/2022]
|
14
|
Vashistha T, Kalantar-Zadeh K, Molnar MZ, Torlén K, Mehrotra R. Dialysis modality and correction of uremic metabolic acidosis: relationship with all-cause and cause-specific mortality. Clin J Am Soc Nephrol 2012. [PMID: 23184567 DOI: 10.2215/cjn.05780612] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Uremic metabolic acidosis is only partially corrected in many hemodialysis patients, and low serum bicarbonate predicts higher death risk. This study determined the comparative efficacy of peritoneal dialysis in correcting uremic metabolic acidosis and the association of serum bicarbonate and death risk with the two therapies. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Data were obtained from 121,351 prevalent ESRD patients (peritoneal dialysis, 10,400; hemodialysis, 110,951) treated in DaVita facilities between July 1, 2001 and June 30, 2006, with follow-up through June of 2007. RESULTS Serum bicarbonate was <22 mEq/L in 25% and 40% of peritoneal dialysis and hemodialysis patients, respectively. Thus, peritoneal dialysis patients were substantially less likely to have lower serum bicarbonate (adjusted odds ratio<20 mEq/L, 0.45 [0.42, 0.49]; <22 mEq/L, 0.41 [0.39, 0.43]). Time-averaged serum bicarbonate<19 mEq/L was associated with an 18% and 25% higher risk for all-cause and cardiovascular mortality, respectively, in prevalent peritoneal dialysis patients (reference group: serum bicarbonate between 24 and <25 mEq/L). In analyses using the entire cohort of peritoneal dialysis and hemodialysis patients, the adjusted risk for all-cause mortality was higher in most subgroups with serum bicarbonate<22 mEq/L, irrespective of dialysis modality. CONCLUSIONS The measured bicarbonate is significantly higher in peritoneal dialysis patients, suggesting that the therapy provides a more complete correction of metabolic acidosis than intermittent hemodialysis. Survival data suggest maintaining serum bicarbonate>22 mEq/L for all ESRD patients, irrespective of dialysis modality.
Collapse
Affiliation(s)
- Tania Vashistha
- Division of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles, Torrance, California, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Muscle wasting is a serious complication of various clinical conditions that significantly worsens the prognosis of the illnesses. Clinically relevant models of muscle wasting are essential for understanding its pathogenesis and for selective preclinical testing of potential therapeutic agents. The data presented here indicate that muscle wasting has been well characterized in rat models of sepsis (endotoxaemia, and caecal ligation and puncture), in rat models of chronic renal failure (partial nephrectomy), in animal models of intensive care unit patients (corticosteroid treatment combined with peripheral denervation or with administration of neuromuscular blocking drugs) and in murine and rat models of cancer (tumour cell transplantation). There is a need to explore genetically engineered mouse models of cancer. The degree of protein degradation in skeletal muscle is not well characterized in animal models of liver cirrhosis, chronic heart failure and chronic obstructive pulmonary disease. The major difficulties with all models are standardization and high variation in disease progression and a lack of reflection of clinical reality in some of the models. The translation of the information obtained by using these models to clinical practice may be problematic.
Collapse
Affiliation(s)
- Milan Holecek
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
16
|
Abstract
Muscle atrophy (cachexia) is a muscle wasting syndrome associated with several pathological conditions in humans such as congestive heart failure, diabetes, AIDS, cancer and renal failure, and the presence of cachexia worsens outcome. Many of the conditions associated with cachexia are accompanied by stimulation of the renin-angiotensin system and elevation in angiotensin II (ang II) levels. Ang II infusion induces skeletal muscle atrophy in rodents and mechanisms include increased expression of the E3 ligases atrogin-1/MuRF-1, an elevated rate of ubiquitin-proteasome mediated proteolysis and increased reactive oxygen species (ROS) levels, closely mimicking conditions of human cachexia. Ang II-induced oxidative stress contributes to muscle atrophy in a mouse model. Nicotinamide adenine dinucleotide phosphate oxidase- and mitochondria-derived ROS contribute to ang II-induced oxidative stress. Specific targeting of ROS and nicotinamide adenine dinucleotide phosphate oxidase/mitochondria cross-talk could be a beneficial, novel therapy to treat cachexia.
Collapse
|
17
|
Kraut JA, Madias NE. Consequences and therapy of the metabolic acidosis of chronic kidney disease. Pediatr Nephrol 2011; 26:19-28. [PMID: 20526632 PMCID: PMC2991191 DOI: 10.1007/s00467-010-1564-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/22/2010] [Accepted: 05/04/2010] [Indexed: 01/18/2023]
Abstract
Metabolic acidosis is common in patients with chronic kidney disease (CKD), particularly once the glomerular filtration rate (GFR) falls below 25 ml/min/1.73 m(2). It is usually mild to moderate in magnitude with the serum bicarbonate concentration ([HCO(3)(-)]) ranging from 12 to 23 mEq/l. Even so, it can have substantial adverse effects, including development or exacerbation of bone disease, growth retardation in children, increased muscle degradation with muscle wasting, reduced albumin synthesis with a predisposition to hypoalbuminemia, resistance to the effects of insulin with impaired glucose tolerance, acceleration of the progression of CKD, stimulation of inflammation, and augmentation of β(2)-microglobulin production. Also, its presence is associated with increased mortality. The administration of base to patients prior to or after initiation of dialysis leads to improvement in many of these adverse effects. The present recommendation by the National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF KDOQI) is to raise serum [HCO(3)(-)] to ≥ 22 mEq/l, whereas Caring for Australians with Renal Impairment (CARI) recommends raising serum [HCO(3)(-)] to >22 mEq/l. Base administration can potentially contribute to volume overload and exacerbation of hypertension as well as to metastatic calcium precipitation in tissues. However, sodium retention is less when given as sodium bicarbonate and sodium chloride intake is concomitantly restricted. Results from various studies suggest that enhanced metastatic calcification is unlikely with the pH values achieved during conservative base administration, but the clinician should be careful not to raise serum [HCO(3)(-)] to values outside the normal range.
Collapse
Affiliation(s)
- Jeffrey A. Kraut
- Medical and Research Services, VHAGLA Healthcare System, UCLA Membrane Biology Laboratory, Los Angeles, CA USA ,Division of Nephrology, VHAGLA Healthcare System, Los Angeles, USA ,David Geffen School of Medicine, Los Angeles, CA USA
| | - Nicolaos E. Madias
- Division of Nephrology, Department of Medicine, St. Elizabeth’s Medical Center, 736 Cambridge St., Boston, MA 02135 USA ,Department of Medicine, Tufts University School of Medicine, Boston, MA USA
| |
Collapse
|
18
|
Scheff JD, Almon RR, DuBois DC, Jusko WJ, Androulakis IP. A new symbolic representation for the identification of informative genes in replicated microarray experiments. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:239-48. [PMID: 20455749 DOI: 10.1089/omi.2010.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microarray experiments generate massive amounts of data, necessitating innovative algorithms to distinguish biologically relevant information from noise. Because the variability of gene expression data is an important factor in determining which genes are differentially expressed, analysis techniques that take into account repeated measurements are critically important. Additionally, the selection of informative genes is typically done by searching for the individual genes that vary the most across conditions. Yet because genes tend to act in groups rather than individually, it may be possible to glean more information from the data by searching specifically for concerted behavior in a set of genes. Applying a symbolic transformation to the gene expression data allows the detection overrepresented patterns in the data, in contrast to looking only for genes that exhibit maximal differential expression. These challenges are approached by introducing an algorithm based on a new symbolic representation that searches for concerted gene expression patterns; furthermore, the symbolic representation takes into account the variance in multiple replicates and can be applied to long time series data. The proposed algorithm's ability to discover biologically relevant signals in gene expression data is exhibited by applying it to three datasets that measure gene expression in the rat liver.
Collapse
Affiliation(s)
- Jeremy D Scheff
- Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
19
|
Zakar G. Metabolic effects of branched-chain amino acids and keto acids: mechanisms independent of protein intake? J Ren Nutr 2009; 19:S25-6. [PMID: 19712872 DOI: 10.1053/j.jrn.2009.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Gábor Zakar
- Dialysis Center No. 9, Health Care Service PLC, Euro Care Hungary, Székesfehérvár, Hungary.
| |
Collapse
|
20
|
Franch HA, Mitch WE. Navigating Between the Scylla and Charybdis of Prescribing Dietary Protein for Chronic Kidney Diseases. Annu Rev Nutr 2009; 29:341-64. [DOI: 10.1146/annurev-nutr-080508-141051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harold A. Franch
- Research Service, Atlanta Veterans Affairs Medical Center, Decatur, Georgia 30033, and Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322;
| | - William E. Mitch
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
21
|
|
22
|
Rajan VR, Mitch WE. Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact. Pediatr Nephrol 2008; 23:527-35. [PMID: 17987322 PMCID: PMC2259254 DOI: 10.1007/s00467-007-0594-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 02/06/2023]
Abstract
Muscle wasting in chronic kidney disease (CKD) and other catabolic diseases (e.g. sepsis, diabetes, cancer) can occur despite adequate nutritional intake. It is now known that complications of these various disorders, including acidosis, insulin resistance, inflammation, and increased glucocorticoid and angiotensin II production, all activate the ubiquitin-proteasome system (UPS) to degrade muscle proteins. The initial step in this process is activation of caspase-3 to cleave the myofibril into its components (actin, myosin, troponin, and tropomyosin). Caspase-3 is required because the UPS minimally degrades the myofibril but rapidly degrades its component proteins. Caspase-3 activity is easily detected because it leaves a characteristic 14kD actin fragment in muscle samples. Preliminary evidence from several experimental models of catabolic diseases, as well as from studies in patients, indicates that this fragment could be a useful biomarker because it correlates well with the degree of muscle degradation in dialysis patients and in other catabolic conditions.
Collapse
Affiliation(s)
- Vik R. Rajan
- Nephrology Division M/S: BCM 285, Baylor College of Medicine, One Baylor, Plaza, Alkek N-520, Houston, TX 77030 USA
| | - William E. Mitch
- Nephrology Division M/S: BCM 285, Baylor College of Medicine, One Baylor, Plaza, Alkek N-520, Houston, TX 77030 USA
| |
Collapse
|
23
|
Kamel KS, Sachdeva JS. Does Metabolic Acidosis Have Clinically Important Consequences in Dialysis Patients? Semin Dial 2007. [DOI: 10.1111/j.1525-139x.1998.tb00204.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Wang X, Hu J, Price SR. Inhibition of PI3-kinase signaling by glucocorticoids results in increased branched-chain amino acid degradation in renal epithelial cells. Am J Physiol Cell Physiol 2007; 292:C1874-9. [PMID: 17229808 DOI: 10.1152/ajpcell.00617.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol 3-kinase(PI3K) is a pivotal enzyme involved in the control of a variety of diverse metabolic functions. Glucocorticoids have been shown to attenuate PI3K signaling in some nonrenal cell types, raising the possibility that some physiological effects of glucocorticoids in renal cells may be achieved by a similar mechanism. Therefore, we tested whether glucocorticoids affect signaling through the insulin receptor substrate (IRS)-1/PI3K/Akt signaling cascade in LLC-PK1-GR101 renal epithelial cells. Treatment of cells with dexamethasone for 24 h: 1) suppressed IRS-1-associated PI3K activity and Akt phosphorylation, 2) increased the level of the PI3K p85 regulatory subunit but not the p110 catalytic subunit, and 3) induced the phosphorylation of IRS-1 on inhibitory Ser307. We have previously reported that glucocorticoids increase branched-chain ketoacid dehydrogenase (BCKD) activity in LLC-PK1-GR101 cells. This response was achieved, in part, by alterations in the transcription of BCKD subunits and BCKD kinase, which inactivates the enzyme complex by phosphorylation. Therefore, we tested whether inhibition of PI3K signaling would mimick glucocorticoids by increasing branched-chain amino acid degradation. Expression of a dominant negative PI3K p85 regulatory subunit (Adp85ΔiSH2) increased BCKD activity, and dexamethasone did not further stimulate enzyme activity. Inhibition of PI3K using LY-294002 increased the transcription of the BCKD E2 subunit but not the E1α subunit or BCKD kinase. Thus, glucocorticoids inhibit signaling through the IRS-1/PI3K/Akt pathway with a consequence of increased branched-chain amino acid catabolism.
Collapse
Affiliation(s)
- Xiaonan Wang
- Renal Division, Emory University, Rm. 338, Woodruff Memorial Bldg., 1639 Pierce Dr., Atlanta, GA 30322, USA
| | | | | |
Collapse
|
25
|
Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 2006; 17:1807-19. [PMID: 16738015 DOI: 10.1681/asn.2006010083] [Citation(s) in RCA: 876] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Stewart H Lecker
- Nephrology Division, Beth Isreal Deaconess, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
26
|
Du J, Hu Z, Mitch WE. Cellular signals activating muscle proteolysis in chronic kidney disease: A two-stage process. Int J Biochem Cell Biol 2005; 37:2147-55. [PMID: 15982920 DOI: 10.1016/j.biocel.2005.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 03/08/2005] [Accepted: 03/22/2005] [Indexed: 11/27/2022]
Abstract
Muscle atrophy is a prominent feature of catabolic conditions and in animal models of these conditions there is accelerated muscle proteolysis that is dependent on the ubiquitin-proteasome system. However, ubiquitin system cannot degrade actomyosin or myofibrils even though it rapidly degrades actin or myosin. We identified caspase-3 as the initial and potentially rate-limiting proteolytic step that cleaves actomyosin/myofibrils. In rodent models of catabolic conditions, we find that caspase-3 is activated to cleave muscle proteins and actomyosin to fragments that are rapidly degraded by the ubiquitin system. This initial proteolytic step in muscle can be recognized because it leaves a footprint of a characteristic 14-kDa actin band. Stimulation of caspase-3 activity depends on activation of phosphatidylinositol 3-kinase. When we suppressed this enzyme in muscle cells, protein breakdown increased as did the expression of caspase-3. In addition, there was increased expression of E3-ubiquitin-conjugating enzymes that are involved in muscle proteolysis, atrogin-1/MAFbx and MuRF1. Thus, when phosphatidylinositol 3-kinase activity is low in muscle cells or rat muscle, both caspase-3 and the ubiquitin-proteasome system are stimulated to degrade protein. Additional investigations will be needed to define the cell signaling processes that activate muscle proteolysis in uremia and catabolic conditions.
Collapse
Affiliation(s)
- Jie Du
- Nephrology Division, Baylor College of Medicine, One Baylor Plaza-BCM 285, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
Caso G, Garlick BA, Casella GA, Sasvary D, Garlick PJ. Response of protein synthesis to hypercapnia in rats: independent effects of acidosis and hypothermia. Metabolism 2005; 54:841-7. [PMID: 15988690 DOI: 10.1016/j.metabol.2005.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acute metabolic acidosis has been shown to inhibit muscle protein synthesis, although little is known on the effect of acidosis of respiratory origin. The aim of this study was to investigate the effect of acute respiratory acidosis on tissue protein synthesis. Rats (n = 8) were made acidotic by increasing the CO2 content of inspired air to 12% for 1 hour. Similar rats breathing normal air served as controls (n = 8). Muscle and liver protein synthesis rates were then measured with L-[ 2H5 ]phenylalanine (150 micromol per 100 g body weight, 40 mol%). The results show that protein synthesis is severely depressed in skeletal muscle (-44% in gastrocnemius, -39% in plantaris, and -24% in soleus muscles, P < .01) and liver (-20%, P < .001) in acidotic animals. However, because breathing CO2 -enriched air was found to lower body temperature by approximately 2 degrees C, in a second experiment (n = 10), the difference in body temperature between treated and control animals was minimized by gently wrapping rats breathing CO2 -enriched air in porous cloths. This second experiment confirmed that respiratory acidosis depresses protein synthesis in muscle (-22% in gastrocnemius, P < .001; -19% in plantaris, P < .01; and -4% in soleus, P = NS). However, no effect on liver protein synthesis could be detected, suggesting that liver protein synthesis may be sensitive to changes in body temperature but is not affected by acute respiratory acidosis for 1 hour. The results show that respiratory acidosis inhibits protein synthesis in skeletal muscle and indicates that acidosis, whether of metabolic or respiratory origin, may contribute to loss of muscle protein in patients with compromised renal or respiratory function.
Collapse
Affiliation(s)
- Giuseppe Caso
- Department of Surgery, State University of New York, Stony Brook, NY 11794-8191, USA.
| | | | | | | | | |
Collapse
|
28
|
Bailey JL. Metabolic acidosis: An unrecognized cause of morbidity in the patient with chronic kidney disease. Kidney Int 2005. [DOI: 10.1016/s0085-2538(15)51228-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Abstract
Metabolic acidosis is noted in the majority of patients with chronic kidney disease (CKD) when glomerular filtration rate (GFR) decreases to less than 20% to 25% of normal, although as many as 20% of individuals can have acid-base parameters close to or within the normal range. Acidosis generally is mild to moderate in degree, with plasma bicarbonate concentrations ranging from 12 to 22 mEq/L (mmol/L), and it is rare to see values less than 12 mEq/L (mmol/L) in the absence of an increased acid load. Degree of acidosis approximately correlates with severity of renal failure and usually is more severe at a lower GFR. The metabolic acidosis can be of the high-anion-gap variety, although anion gap can be normal or only moderately increased even with stage 4 to 5 CKD. Several adverse consequences have been associated with metabolic acidosis, including muscle wasting, bone disease, impaired growth, abnormalities in growth hormone and thyroid hormone secretion, impaired insulin sensitivity, progression of renal failure, and exacerbation of beta 2 -microglobulin accumulation. Administration of base aimed at normalization of plasma bicarbonate concentration might be associated with certain complications, such as volume overload, exacerbation of hypertension, and facilitation of vascular calcifications. Whether normalization of plasma bicarbonate concentrations in all patients is desirable therefore requires additional study. In the present review, we describe clinical and laboratory characteristics of metabolic acidosis, discuss potential adverse effects, and address benefits and complications of therapy.
Collapse
Affiliation(s)
- Jeffrey A Kraut
- Division of Nephrology, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA.
| | | |
Collapse
|
30
|
Song YH, Li Y, Du J, Mitch WE, Rosenthal N, Delafontaine P. Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest 2005; 115:451-8. [PMID: 15650772 PMCID: PMC544037 DOI: 10.1172/jci22324] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 11/16/2004] [Indexed: 12/21/2022] Open
Abstract
Advanced congestive heart failure is associated with activation of the renin-angiotensin system and skeletal muscle wasting. We previously showed that angiotensin II infusion in rats produces cachexia secondarily to increased muscle proteolysis and also decreases levels of circulating and skeletal muscle IGF-1. Here we show that angiotensin II markedly downregulates phospho-Akt and activates caspase-3 in skeletal muscle, leading to actin cleavage, an important component of muscle proteolysis, and to increased apoptosis. These changes are blocked by muscle-specific expression of IGF-1, likely via the Akt/mTOR/p70S6K signaling pathway. We also demonstrate that mRNA levels of the ubiquitin ligases atrogin-1 and muscle ring finger-1 are upregulated in angiotensin II-infused WT, but not in IGF-1-transgenic, mice. These findings strongly suggest that angiotensin II downregulation of IGF-1 in skeletal muscle is causally related to angiotensin II-induced wasting. Because the renin-angiotensin system is activated in many catabolic conditions, our findings have broad implications for understanding mechanisms of skeletal muscle wasting and provide a rationale for new therapeutic approaches.
Collapse
Affiliation(s)
- Yao-Hua Song
- Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA
| | | | | | | | | | | |
Collapse
|
31
|
Du J, Hu Z, Mitch WE. Molecular mechanisms activating muscle protein degradation in chronic kidney disease and other catabolic conditions. Eur J Clin Invest 2005; 35:157-63. [PMID: 15733069 DOI: 10.1111/j.1365-2362.2005.01473.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muscle atrophy is a prominent feature of chronic kidney disease (CKD) and is frequent in other catabolic conditions. Results from animal models of these conditions as well as patients indicate that atrophy is mainly owing to accelerated muscle proteolysis in the ubiquitin-proteasome (Ub-P'some) proteolytic system. The Ub-P'some system, however, rapidly degrades actin or myosin but cannot breakdown actomyosin or myofibrils. Consequently, another protease must initially cleave the complex structure of muscle. We identified caspase-3 as an initial and potentially rate-limiting proteolytic step that cleaves actomyosin/myofibrils to produce substrates degraded by the Ub-P'some system. In rodent models of CKD and other catabolic conditions, we find that caspase-3 is activated and cleaves actomyosin to actin, myosin and their fragments. This initial proteolytic step in muscle leaves a characteristic footprint, a 14-kDa actin band, providing a potential diagnostic tool to detect muscle catabolism. We also found that stimulation of caspase-3 activity depends on inhibition of IRS-1-associated phosphatidylinositol 3-kinase (PI3K) activity; inhibiting PI3K in muscle cells also leads to expression of a critical E3-ubiquitin-conjugating enzyme involved in muscle protein breakdown: atrogin-1/MAFbx. Thus, protein breakdown by caspase-3 and the ubiquitin-proteasome system in muscle are stimulated by the same signal: a low PI3K activity. These responses could yield therapeutic strategies to block muscle atrophy.
Collapse
Affiliation(s)
- J Du
- University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | |
Collapse
|
32
|
Mondry A. Antiglucocorticoid RU38486 reduces net protein catabolism in experimental acute renal failure. BMC Nephrol 2005; 6:2. [PMID: 15715918 PMCID: PMC550647 DOI: 10.1186/1471-2369-6-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 02/17/2005] [Indexed: 12/21/2022] Open
Abstract
Background In acute renal failure, a pronounced net protein catabolism occurs that has long been associated with corticoid action. By competitively blocking the glucocorticoid receptor with the potent antiglucocorticoid RU 38486, the present study addressed the question to what extent does corticoid action specific to uremia cause the observed muscle degradation, and does inhibition of glucocorticoid action reduce the protein wasting? Methods RU 38486 was administered in a dose of 50 mg/kg/24 h for 48 h after operation to fasted bilaterally nephrectomized (BNX) male adult Wistar rats and sham operated (SHAM) controls. Protein turnover was evaluated by high performance liquid chromatography (HPLC) of amino acid efflux in sera from isolated perfused hindquarters of animals treated with RU 38486 versus untreated controls. Results Administration of RU 38486 reduces the total amino acid efflux (TAAE) by 18.6% in SHAM and 15.6% in BNX and efflux of the indicator of net protein turnover, phenylalanine (Phe) by 33.3% in SHAM and 13% in BNX animals as compared to the equally operated, but untreated animals. However, the significantly higher protein degradation observed in BNX (0.6 ± 0.2 nmol/min/g muscle) versus SHAM (0.2 ± 0.1 nmol/min/g muscle) rats, as demonstrated by the marker of myofribrillar proteolytic rate, 3-Methylhistidine (3 MH) remains unaffected by administration of RU 38486 (0.5 ± 0.1 v. 0.2 ± 0.1 nmol/min/g muscle in BNX v. SHAM). Conclusion RU 38486 does not act on changes of muscular protein turnover specific to uremia but reduces the effect of stress- stimulated elevated corticosterone secretion arising from surgery and fasting. A potentially beneficial effect against stress- induced catabolism in severe illness can be postulated that merits further study.
Collapse
Affiliation(s)
- Adrian Mondry
- Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix Building, 138671 Singapore.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Abnormalities of acid-base balance accompany many pathological conditions. Acidosis is associated with several diseases such as chronic renal failure, diabetic ketosis, severe trauma and sepsis, and chronic obstructive respiratory disease, which are often associated with muscle wasting. There is evidence that acidosis can induce muscle protein catabolism and it could therefore be an important factor contributing to loss of muscle protein in these conditions. This review aims at outlining the effects of acid-base balance abnormalities on muscle protein metabolism, and will in particular summarize and evaluate the most recent studies on the impact of pH on control of muscle protein metabolism. RECENT FINDINGS Acidosis has been shown to promote muscle protein catabolism by stimulating protein degradation and amino acid oxidation. This effect is achieved through up-regulation of the ubiquitin-proteasome pathway - one of the major enzyme systems for protein degradation. Recent studies in animals and humans have also shown that acidosis inhibits muscle protein synthesis. Little is known about the mechanisms by which acidosis depresses protein synthesis, or of the impact of alkalosis on protein metabolism. SUMMARY Increasing evidence suggests that acidosis promotes muscle protein wasting by both increasing protein degradation and inhibiting protein synthesis. Correction of acidosis may therefore help to preserve muscle mass and improve the health of patients with pathological conditions associated with acidosis.
Collapse
Affiliation(s)
- Giuseppe Caso
- Department of Surgery, State University of New York, Stony Brook, New York, USA.
| | | |
Collapse
|
34
|
Caso G, Garlick BA, Casella GA, Sasvary D, Garlick PJ. Acute metabolic acidosis inhibits muscle protein synthesis in rats. Am J Physiol Endocrinol Metab 2004; 287:E90-6. [PMID: 14982751 DOI: 10.1152/ajpendo.00387.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the effect of acute metabolic acidosis on tissue protein synthesis. Groups of rats were made acidotic with intragastric administration of NH(4)Cl (20 mmol/kg body wt every 12 h for 24 h) or given equimolar amounts of NaCl (controls). Protein synthesis in skeletal muscle and a variety of different tissues, including lymphocytes, was measured after 24 h by injection of l-[(2)H(5)]phenylalanine (150 micromol/100 g body wt, 40 moles percent). Results show that acute acidosis inhibits protein synthesis in skeletal muscle (-29% in gastrocnemius, -23% in plantaris, and -17% in soleus muscles, P < 0.01) but does not affect protein synthesis in heart, liver, gut, kidney, and spleen. Protein synthesis in lymphocytes is also reduced by acidosis (-8%, P < 0.05). In a separate experiment, protein synthesis was also measured in acidotic and control rats by a constant infusion of l-[(2)H(5)]phenylalanine (1 micromol.100 g body wt(-1).h(-1)). The results confirm the earlier findings showing an inhibition of protein synthesis in gastrocnemius (-28%, P < 0.01) and plantaris (-19%, P < 0.01) muscles but no effect on heart and liver by acidosis. Similar results were also observed using a different model of acute metabolic acidosis, in which rats were given a cation exchange resin in the H(+) (acidotic) or the Na(+) (controls) form. In conclusion, this study demonstrates that acute metabolic acidosis for 24 h depresses protein synthesis in skeletal muscle and lymphocytes but does not alter protein synthesis in visceral tissues. Inhibition of muscle protein synthesis might be another mechanism contributing to the loss of muscle tissue observed in acidosis.
Collapse
Affiliation(s)
- Giuseppe Caso
- Dept. of Surgery, HSC T19-048, State Univ. of New York at Stony Brook, Stony Brook, NY 11794-8191, USA.
| | | | | | | | | |
Collapse
|
35
|
Franch HA, Raissi S, Wang X, Zheng B, Bailey JL, Price SR. Acidosis impairs insulin receptor substrate-1-associated phosphoinositide 3-kinase signaling in muscle cells: consequences on proteolysis. Am J Physiol Renal Physiol 2004; 287:F700-6. [PMID: 15161606 DOI: 10.1152/ajprenal.00440.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic acidosis is a stimulus for proteolysis in muscle in vivo, but the mechanism of this response is unknown. We tested the hypothesis that acidosis or TNF-alpha, a cytokine whose production increases in acidosis, regulates proteolysis by inhibiting insulin signaling through phosphoinositide 3-kinase (PI3K). In cultured L6 myotubes, acidified (pH 7.1) media did not accelerate the basal protein degradation rate, but it inhibited insulin's ability to suppress proteolysis. Insulin receptor substrate-1 (IRS-1)-associated PI3K activity was not altered in cells acidified for 10 min but was strongly inhibited in cells incubated at pH 7.1 for 24 h. Phosphorylation of Akt was also suppressed by acidification for 24 h. Acidification did not induce changes in IRS-1 abundance, insulin-stimulated IRS-1 tyrosine phosphorylation, or the amount of PI3K p85 regulatory subunit. In contrast to acidification, TNF-alpha suppressed proteolysis in the presence or absence of insulin but had no effect on IRS-1-associated PI3K activity. To establish that the PI3K pathway can regulate protein degradation in muscle, we measured proteolysis in cells after inhibition of PI3K activity with LY-294002 or infection with an adenovirus encoding a dominant negative PI3K p85alpha-subunit. Both approaches inhibited insulin-induced suppression of proteolysis to a degree similar to that seen with acidification. We conclude that acidosis accelerates protein degradation by impairing insulin signaling through PI3K in muscle cells.
Collapse
Affiliation(s)
- Harold A Franch
- Renal Divisioin, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Combaret L, Taillandier D, Dardevet D, Béchet D, Rallière C, Claustre A, Grizard J, Attaix D. Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles. Biochem J 2004; 378:239-46. [PMID: 14636157 PMCID: PMC1223943 DOI: 10.1042/bj20031660] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 11/13/2003] [Accepted: 11/25/2003] [Indexed: 11/17/2022]
Abstract
Circulating levels of glucocorticoids are increased in many traumatic and muscle-wasting conditions that include insulin-dependent diabetes, acidosis, infection, and starvation. On the basis of indirect findings, it appeared that these catabolic hormones are required to stimulate Ub (ubiquitin)-proteasome-dependent proteolysis in skeletal muscles in such conditions. The present studies were performed to provide conclusive evidence for an activation of Ub-proteasome-dependent proteolysis after glucocorticoid treatment. In atrophying fast-twitch muscles from rats treated with dexamethasone for 6 days, compared with pair-fed controls, we found (i) increased MG132-inhibitable proteasome-dependent proteolysis, (ii) an enhanced rate of substrate ubiquitination, (iii) increased chymotrypsin-like proteasomal activity of the proteasome, and (iv) a co-ordinate increase in the mRNA expression of several ATPase (S4, S6, S7 and S8) and non-ATPase (S1, S5a and S14) subunits of the 19 S regulatory complex, which regulates the peptidase and the proteolytic activities of the 26 S proteasome. These studies provide conclusive evidence that glucocorticoids activate Ub-proteasome-dependent proteolysis and the first in vivo evidence for a hormonal regulation of the expression of subunits of the 19 S complex. The results suggest that adaptations in gene expression of regulatory subunits of the 19 S complex by glucocorticoids are crucial in the regulation of the 26 S muscle proteasome.
Collapse
Affiliation(s)
- Lydie Combaret
- Human Nutrition Research Center of Clermont-Ferrand, and Nutrition and Protein Metabolism Unit, Institut National de la Recherche Agronomique, 63122 Ceyrat, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rao TS, Lariosa-Willingham KD, Yu N. Glutamate-dependent glutamine, aspartate and serine release from rat cortical glial cell cultures. Brain Res 2003; 978:213-22. [PMID: 12834916 DOI: 10.1016/s0006-8993(03)02841-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glia play a pivotal role in glutaminergic excitatory neurotransmission in the central nervous system by regulating synaptic levels of glutamate and by providing glutamine as the sole precursor for the neurotransmitter pool glutamate to neurons through the glutamate-glutamine cycle. In the present investigation, we examined the influence of glutamate application on glutamine, serine and aspartate release from rat cortical glial cultures. The glial glutamate transporters rapidly cleared exogenously applied glutamate and this was accompanied by rapid increases in aspartate and glutamine, and a delayed increase in serine levels in the glial-conditioned medium. While glutamate-induced increases in glutamine and serine were sustained for up to 24 h, increases in aspartate lasted only for up to 6 h. The glutamate-induced increases in aspartate and glutamine were dependent both on the concentration and the duration of glutamate stimulus, but were largely insensitive to the inhibition of non-N-methyl-D-aspartate receptors or the metabotropic glutamate receptor 5. Inhibition of the glutamate transporter function by L-trans-pyrrolidine 2,4-dicarboxylate decreased the rate of glutamate uptake but not completely abrogated the uptake process, and this resulted in the attenuation of rate of glutamate induced glutamine synthesis. Dexamethasone treatment increased serine and glutamine levels in conditioned medium and increased glutamate induced glutamine release suggesting an upregulation of glutamine synthase activity. These results further substantiate coupling between glutamate and glutamine, and shed light on glutamate-dependent release of serine and aspartate, which may further contribute to excitatory neurotransmission.
Collapse
Affiliation(s)
- Tadimeti S Rao
- Merck Research Laboratories, 3535 General Atomics Ct, MRLSDB1, San Diego, CA 92122, USA.
| | | | | |
Collapse
|
38
|
Vernaglione L, Marangi AL, Cristofano C, Giordano R, Chimienti S, Basile C. Predictors of serum creatinine in haemodialysis patients: a cross-sectional analysis. Nephrol Dial Transplant 2003; 18:1209-13. [PMID: 12748357 DOI: 10.1093/ndt/gfg269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND C-reactive protein (CRP) levels, an acute phase response index, predict cardiovascular outcome and are inversely related to visceral proteins, including albuminaemia in haemodialysis patients. Less definite is the relationship between inflammation and markers of somatic proteins such as serum creatinine in such patients. To explore these questions, a cross-sectional analysis of potential predictors of serum creatinine was performed. METHODS One hundred and seventy-nine prevalent haemodialysis patients as of June 2001 were included in the cohort. Midweek pre-dialysis blood samples were collected during the months of June, September through to December 2001 inclusive, and determinations of serum urea (urease method), creatinine (alkaline picrate method) and CRP levels by means of a high sensitivity immunonephelometric method were performed. Furthermore, pre- and post-dialysis body weights were recorded and 2 min post-dialysis serum urea levels were determined three times. They were utilized for the calculation of single pool Kt/V and of normalized protein catabolic rate (nPCR). Each of the data represents the mean of three determinations made every 3 months in the study period. RESULTS The analysis of multivariate linear regression was able to validate our model characterized by a dependent variable, serum creatinine and four independent variables (age, CRP, Kt/V and nPCR) (R(2)=0.60; F=24.10; P<0.00001; SE=1.94). Age (-0.08 mg/dl decrease in serum creatinine per 1-year increase in age), Kt/V (-0.25 mg/dl decrease in serum creatinine per 0.1 increase in Kt/V) and nPCR (0.10 mg/dl increase in serum creatinine per 0.1 g protein/kg/day increase in nPCR) were independently predictive of serum creatinine (P<0.00001). CRP and dialysis vintage did not predict serum creatinine. Stratifying the patients for the effects of CRP, only CRP values </=4 mg/l were directly predictive of serum creatinine (P<0.00001), whereas CRP values >4 mg/l were not. A further insight was given by the stratification of the patients for the effects of the interquartile ranges of CRP: it showed a progressive and statistically significant reduction of beta-coefficient inversely related to the increasing CRP values (P=0.003). Thus, the nature of the correlation between CRP and serum creatinine changes with increasing CRP values: from being a direct one, it shows a trend towards a transformation into an indirect one with beta=0 at a CRP value of approximately 9 mg/l. However, this indirect relationship does not reach statistical significance. CONCLUSIONS The present cross-sectional study suggests that the activation of acute phase response does not influence creatinine metabolism in haemodialysis patients; in contrast, age, Kt/V and nPCR predict serum creatinine levels. Larger prospective trials are needed to achieve a definitive answer about the relationship between somatic proteins, acute phase response activation and nutrition in dialysis patients.
Collapse
|
39
|
Long W, Barrett EJ, Wei L, Liu Z. Adrenalectomy enhances the insulin sensitivity of muscle protein synthesis. Am J Physiol Endocrinol Metab 2003; 284:E102-9. [PMID: 12388148 DOI: 10.1152/ajpendo.00028.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
After confirming that adrenalectomy per se does not affect skeletal muscle protein synthesis rates, we examined whether endogenously produced glucocorticoids modulate the effect of physiological insulin concentrations on protein synthesis in overnight-fasted rats 4 days after either a bilateral adrenalectomy (ADX), ADX with dexamethasone treatment (ADX + DEX), or a sham operation (Sham; n = 6 each). Rats received a 3-h euglycemic insulin clamp (3 mU. min(-1). kg(-1)). Rectus muscle protein synthesis was measured at the end of the clamp, and the phosphorylation states of protein kinase B (Akt), eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and ribosomal protein S6 kinase (p70(S6K)) were quantitated before and after the insulin clamp. The basal phosphorylation states of Akt, 4E-BP1, and p70(S6K) were similar between ADX and Sham rats. Insulin significantly enhanced the phosphorylation of Akt (P < 0.03), 4E-BP1 (P = 0.003), and p70(S6K) (P < 0.002) in ADX but not in Sham rats. Protein synthesis was significantly greater after insulin infusion in ADX than in Sham rats (P = 0.01). Glucocorticoid replacement blunted the effect of insulin on Akt, 4E-BP1, and p70(S6K) phosphorylation and protein synthesis. In conclusion, glucocorticoid deficiency enhances the insulin sensitivity of muscle protein synthesis, which is mediated by increased phosphorylation of translation initiation-regulatory proteins.
Collapse
Affiliation(s)
- Wen Long
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
40
|
Brink M, Anwar A, Delafontaine P. Neurohormonal factors in the development of catabolic/anabolic imbalance and cachexia. Int J Cardiol 2002; 85:111-21, discussion 121-4. [PMID: 12163215 DOI: 10.1016/s0167-5273(02)00239-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanisms that lead to cachexia are still poorly understood. The neurohormonal changes that occur in severe disease states may cause an imbalance between protein synthesis and degradation at the cellular level, followed by muscle wasting. Here, we review actions of angiotensin II, TNF-alpha, corticosteroids, insulin-like growth factor-I (IGF-I), and the IGF binding proteins, factors that may each contribute to the metabolic imbalance. The complex endocrine, autocrine and intracellular interactions between these factors will be described with examples from patient, rat and cell culture studies. Moreover, some of the data supporting that each of these hormones may directly affect cellular protein degradation mechanisms will be reviewed. Knowledge on these regulatory mechanisms will facilitate the development of new pharmaceutical strategies to treat cachexia.
Collapse
Affiliation(s)
- Marijke Brink
- Division of Cardiology, Fondation pour Recherches Médicales, 64 Ave. de la Roseraie, CH-1205 Geneva, Switzerland.
| | | | | |
Collapse
|
41
|
Mitch WE. Malnutrition: a frequent misdiagnosis for hemodialysis patients. J Clin Invest 2002; 110:437-9. [PMID: 12189236 PMCID: PMC150424 DOI: 10.1172/jci16494] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- William E Mitch
- Nephrology Division, Department of Medicine, University of Texas, Galveston, Galveston, Texas 77555, USA.
| |
Collapse
|
42
|
|
43
|
Roberts RG, Redfern CPF, Graham KA, Bartlett K, Wilkinson R, Goodship THJ. Sodium bicarbonate treatment and ubiquitin gene expression in acidotic human subjects with chronic renal failure. Eur J Clin Invest 2002; 32:488-92. [PMID: 12153548 DOI: 10.1046/j.1365-2362.2002.01008.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In chronic renal failure, metabolic acidosis is associated with increased whole body protein degradation. In rats this effect of acidosis occurs in skeletal muscle and is associated with increased ubiquitin mRNA expression. This has not been demonstrated in humans. MATERIALS AND METHODS Six patients with chronic renal failure and acidosis underwent muscle biopsy before and after 1 month's treatment with sodium bicarbonate. RNA was extracted from the biopsy, and the expression of the genes for ubiquitin and the proteasome component, C2, were measured by Northern blotting. RESULTS AND CONCLUSIONS There was no significant difference in the expression of ubiquitin or C2 after bicarbonate treatment. This is contrast with results from animal models of acidosis and some other catabolic conditions in humans. This may reflect the complexity of the ubiquitin-dependent pathway, and it may be that changes in ubiquitin expression are only seen with more severe and/or acute changes in pH.
Collapse
Affiliation(s)
- R G Roberts
- University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | | | | | | | | | | |
Collapse
|
44
|
Löfberg E, Gutierrez A, Wernerman J, Anderstam B, Mitch WE, Price SR, Bergström J, Alvestrand A. Effects of high doses of glucocorticoids on free amino acids, ribosomes and protein turnover in human muscle. Eur J Clin Invest 2002; 32:345-53. [PMID: 12027875 DOI: 10.1046/j.1365-2362.2002.00993.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Treatment with glucocorticosteroids causes a negative nitrogen balance, but the kinetic mechanisms responsible for this catabolic effect are controversial. We investigated the effects of 60 mg day(-1) prednisolone on protein synthesis and degradation in human skeletal muscle. MATERIALS AND METHODS Healthy adults (n = 9) were studied in the postabsorptive state, before and after 3 days of prednisolone treatment. The L-[ring 2,6(-3)H(5)]-phenylalanine tracer technique, concentration and size distribution of the ribosomes, mRNA content of the ubiquitin-proteasome pathway components in muscle, phenylalanine flux across the leg, and the free amino acid concentrations in skeletal muscle were used to study muscle protein metabolism. RESULTS The concentrations of most amino acids in arterial blood increased after prednisolone. There were also increased effluxes of phenylalanine, asparagine, arginine, alanine, methionine and isoleucine from the leg. The rate of protein degradation, as measured by the appearance rate (Ra) of phenylalanine, increased by 67% (P = 0.023) which, together with a doubling of the net release of phenylalanine from the leg (P = 0.007), indicated accelerated protein degradation. The pathway was not identified but there was no significant increase in mRNAs' encoding components of the ubiquitin-proteasome pathway. There was a 6% reduction in polyribosomes (P = 0.007), suggesting a decrease in the capacity for protein synthesis, although there was no measured decrease in the rate of protein synthesis. CONCLUSIONS These findings indicate that high doses of prednisolone lead to a sharp increase in net protein catabolism, which depends more on enhanced protein breakdown, and an uncertain effect on protein synthesis. The mechanisms stimulating proteolysis and the pathway stimulated to increase muscle protein degradation should be explored.
Collapse
Affiliation(s)
- E Löfberg
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Pickering WP, Price SR, Bircher G, Marinovic AC, Mitch WE, Walls J. Nutrition in CAPD: serum bicarbonate and the ubiquitin-proteasome system in muscle. Kidney Int 2002; 61:1286-92. [PMID: 11918735 DOI: 10.1046/j.1523-1755.2002.00276.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Metabolic acidosis in chronic renal failure (CRF) induces loss of lean body mass while elimination of acidosis during a one year trial improved anthropometric indices in continuous ambulatory peritoneal dialysis (CAPD) patients. In rats with CRF, the mechanisms causing loss of lean body mass have been linked to acidosis-induced destruction of the essential, branched-chain amino acids (BCAA) and activation of the ubiquitin-proteasome system that degrades muscle protein; the latter response includes increased transcription of the ubiquitin gene. METHOD Our aim was to determine if increasing the serum bicarbonate (HCO3) concentration of CAPD patients would improve their nutritional status, increase plasma BCAA levels, and reduce ubiquitin mRNA in their muscle as an index of suppressed activity of the ubiquitin-proteasome system. Eight, stable, long-term CAPD patients underwent vastus lateralis muscle biopsy before being randomized to continue 35 mmol/L lactate dialysate or convert to a 40 mmol/L lactate dialysate. After four weeks, measurements were repeated. RESULTS Serum HCO3 increased in all patients and final values did not differ statistically between the two groups so results for all patients were combined. Weight and body mass index increased significantly as did plasma BCAA. Muscle levels of ubiquitin mRNA decreased significantly; serum tumor necrosis factor-alpha (TNF-alpha) also decreased. CONCLUSION Our results indicate that even a small correction of serum HCO3 improves nutritional status, and provide evidence for down-regulation of BCAA degradation and muscle proteolysis via the ubiquitin-proteasome system. Whether acidosis and inflammatory cytokines (such as, TNF-alpha) interact to impair nutrition is unknown.
Collapse
Affiliation(s)
- Warren P Pickering
- Department of Nephrology, Leicester General Hospital, Leicester, England, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Uribarri J. Mild Metabolic Acidosis and Protein Metabolism in Dialysis Patients: A Reasoned Approach to Alkali Therapy. Semin Dial 2002. [DOI: 10.1046/j.1525-139x.1999.99040.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jaime Uribarri
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
47
|
|
48
|
Mitch WE. Insights into the Abnormalities of Chronic Renal Disease Attributed to Malnutrition. J Am Soc Nephrol 2002. [DOI: 10.1681/asn.v13suppl_1s22] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
ABSTRACT. Low values of serum proteins and loss of lean body mass are commonly found in patients with chronic renal insufficiency (CRI) and especially in dialysis patients. These abnormalities have been attributed to malnutrition (i.e., an inadequate diet), but available evidence indicates that this is not the principal cause. In contrast, there is persuasive evidence that secondary factors associated with the CRI condition cause abnormalities in protein turnover and ultimately result in low serum protein levels and loss of lean body mass. Recent reports have identified some factors that could interfere with the control of protein turnover in CRI patients, including acidosis, inflammation, and/or resistance to anabolic hormones. Each of these stimulates protein breakdown in muscle and activates a common proteolytic pathway, the ubiquitin-proteasome pathway. Moreover, acidosis or inflammation suppress hepatic albumin synthesis. Understanding the biochemical mechanisms that regulate the ubiquitin-proteasome and other catabolic pathways are required to identify new strategies for preventing protein deficits that are associated with CRI.
Collapse
|
49
|
Kleger GR, Turgay M, Imoberdorf R, McNurlan MA, Garlick PJ, Ballmer PE. Acute metabolic acidosis decreases muscle protein synthesis but not albumin synthesis in humans. Am J Kidney Dis 2001; 38:1199-207. [PMID: 11728951 DOI: 10.1053/ajkd.2001.29215] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chronic metabolic acidosis induces negative nitrogen balance by either increased protein breakdown or decreased protein synthesis. Few data exist regarding effects of acute metabolic acidosis on protein synthesis. We investigated fractional synthesis rates (FSRs) of muscle protein and albumin, plasma concentrations of insulin-like growth factor-I (IGF-I), thyroid-stimulating hormone (TSH), and thyroid hormones (free thyroxin [fT(4)] and triiodothyronine [fT(3)]) in seven healthy human volunteers after a stable controlled metabolic period of 5 days and again 48 hours later after inducing metabolic acidosis by oral ammonium chloride intake (4.2 mmol/kg/d divided in six daily doses). Muscle and albumin FSRs were obtained by the [(2)H(5)ring]phenylalanine flooding technique. Ammonium chloride induced a significant decrease in pH (7.43 +/- 0.02 versus 7.32 +/- 0.04; P < 0.0001) and bicarbonate concentration (24.6 +/- 1.6 versus 16.0 +/- 2.7 mmol/L; P < 0.0001) within 48 hours. Nitrogen balance decreased significantly on the second day of acidosis. The FSR of muscle protein decreased (1.94 +/- 0.25 versus 1.30 +/- 0.39; P < 0.02), whereas the FSR of albumin remained constant. TSH levels increased significantly (1.1 +/- 0.5 versus 1.9 +/- 1.1 mU/L; P = 0.03), whereas IGF-I, fT(4), and fT(3) levels showed no significant change. We conclude that acute metabolic acidosis for 48 hours in humans induces a decrease in muscle protein synthesis, which contributes substantially to a negative nitrogen balance. In contrast to prolonged metabolic acidosis of 7 days, a short period of acidosis in the present study did not downregulate albumin synthesis.
Collapse
Affiliation(s)
- G R Kleger
- Department of Medicine, Inselspital Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Liu Z, Jahn LA, Long W, Fryburg DA, Wei L, Barrett EJ. Branched chain amino acids activate messenger ribonucleic acid translation regulatory proteins in human skeletal muscle, and glucocorticoids blunt this action. J Clin Endocrinol Metab 2001; 86:2136-43. [PMID: 11344218 DOI: 10.1210/jcem.86.5.7481] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Branched chain amino acids (BCAA) are particularly effective anabolic agents. Recent in vitro studies suggest that amino acids, particularly leucine, activate a signaling pathway that enhances messenger ribonucleic acid translation and protein synthesis. The physiological relevance of these findings to normal human physiology is uncertain. We examined the effects of BCAA on the phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (eIF4E-BP1) and ribosomal protein S6 kinase (p70(S6K)) in skeletal muscle of seven healthy volunteers. We simultaneously examined whether BCAA affect urinary nitrogen excretion and forearm skeletal muscle protein turnover and whether the catabolic action of glucocorticoids could be mediated in part by inhibition of the action of BCAA on the protein synthetic apparatus. BCAA infusion decreased urinary nitrogen excretion (P < 0.02), whole body phenylalanine flux (P < 0.02), plasma phenylalanine concentration (P < 0.001), and improved forearm phenylalanine balance (P = 0.03). BCAA also increased the phosphorylation of both eIF4E-BP1 (P < 0.02) and p70(S6K) (P < 0.03), consistent with an action to activate the protein synthetic apparatus. Dexamethasone increased plasma phenylalanine concentration (P < 0.001), prevented the BCAA-induced anabolic shift in forearm protein balance, and inhibited their action on the phosphorylation of p70(S6K). We conclude that in human skeletal muscle BCAA act directly as nutrient signals to activate messenger ribonucleic acid translation and potentiate protein synthesis. Glucocorticoids interfere with this action, and that may be part of the mechanism by which they promote net protein catabolism in muscle.
Collapse
Affiliation(s)
- Z Liu
- Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|