1
|
Grigore TV, Zuidscherwoude M, Olauson H, Hoenderop JG. Lessons from Klotho mouse models to understand mineral homeostasis. Acta Physiol (Oxf) 2024; 240:e14220. [PMID: 39176993 DOI: 10.1111/apha.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
AIM Klotho, a key component of the endocrine fibroblast growth factor receptor-fibroblast growth factor axis, is a multi-functional protein that impacts renal electrolyte handling. The physiological significance of Klotho will be highlighted in the regulation of calcium, phosphate, and potassium metabolism. METHODS In this review, we compare several murine models with different renal targeted deletions of Klotho and the insights into the molecular and physiological function that these models offer. RESULTS In vivo, Klotho deficiency is associated with severely impaired mineral metabolism, with consequences on growth, longevity and disease development. Additionally, we explore the perspectives of Klotho in renal pathology and vascular events, as well as potential Klotho treatment options. CONCLUSION This comprehensive review emphasizes the use of Klotho to shed light on deciphering the renal molecular in vivo mechanisms in electrolyte handling, as well as novel therapeutic interventions.
Collapse
Affiliation(s)
- Teodora V Grigore
- Department of Medical BioSciences, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Malou Zuidscherwoude
- Department of Medical BioSciences, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hannes Olauson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joost G Hoenderop
- Department of Medical BioSciences, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Heitman K, Bollenbecker S, Bradley J, Czaya B, Fajol A, Thomas SM, Li Q, Komarova S, Krick S, Rowe GC, Alexander MS, Faul C. Hyperphosphatemia Contributes to Skeletal Muscle Atrophy in Mice. Int J Mol Sci 2024; 25:9308. [PMID: 39273260 PMCID: PMC11395169 DOI: 10.3390/ijms25179308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with various pathologic changes, including elevations in serum phosphate levels (hyperphosphatemia), vascular calcification, and skeletal muscle atrophy. Elevated phosphate can damage vascular smooth muscle cells and cause vascular calcification. Here, we determined whether high phosphate can also affect skeletal muscle cells and whether hyperphosphatemia, in the context of CKD or by itself, is associated with skeletal muscle atrophy. As models of hyperphosphatemia with CKD, we studied mice receiving an adenine-rich diet for 14 weeks and mice with deletion of Collagen 4a3 (Col4a3-/-). As models of hyperphosphatemia without CKD, we analyzed mice receiving a high-phosphate diet for three and six months as well as a genetic model for klotho deficiency (kl/kl). We found that adenine, Col4a3-/-, and kl/kl mice have reduced skeletal muscle mass and function and develop atrophy. Mice on a high-phosphate diet for six months also had lower skeletal muscle mass and function but no significant signs of atrophy, indicating less severe damage compared with the other three models. To determine the potential direct actions of phosphate on skeletal muscle, we cultured primary mouse myotubes in high phosphate concentrations, and we detected the induction of atrophy. We conclude that in experimental mouse models, hyperphosphatemia is sufficient to induce skeletal muscle atrophy and that, among various other factors, elevated phosphate levels might contribute to skeletal muscle injury in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.B.); (S.K.)
| | - Jordan Bradley
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Brian Czaya
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Abul Fajol
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Sarah Madison Thomas
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Qing Li
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Svetlana Komarova
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.B.); (S.K.)
| | - Glenn C. Rowe
- Division of Cardiovascular Disease, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Division of Neurology, Department of Pediatrics, Children’s of Alabama, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| |
Collapse
|
3
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
4
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
5
|
Verlinden L, Li S, Veldurthy V, Carmeliet G, Christakos S. Relationship of the bone phenotype of the Klotho mutant mouse model of accelerated aging to changes in skeletal architecture that occur with chronological aging. Front Endocrinol (Lausanne) 2024; 15:1310466. [PMID: 38352710 PMCID: PMC10861770 DOI: 10.3389/fendo.2024.1310466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Due to the relatively long life span of rodent models, in order to expediate the identification of novel therapeutics of age related diseases, mouse models of accelerated aging have been developed. In this study we examined skeletal changes in the male and female Klotho mutant (kl/kl) mice and in male and female chronically aged mice to determine whether the accelerated aging bone phenotype of the kl/kl mouse reflects changes in skeletal architecture that occur with chronological aging. Methods 2, 6 and 20-23 month old C57BL/6 mice were obtained from the National Institute of Aging aged rodent colony and wildtype and kl/kl mice were generated as previously described by M. Kuro-o. Microcomputed tomography analysis was performed ex vivo to examine trabecular and cortical parameters from the proximal metaphyseal and mid-diaphyseal areas, respectively. Serum calcium and phosphate were analyzed using a colorimetric assay. The expression of duodenal Trpv6, which codes for TRPV6, a vitamin D regulated epithelial calcium channel whose expression reflects intestinal calcium absorptive efficiency, was analyzed by quantitative real-time PCR. Results and discussion Trabecular bone volume (BV/TV) and trabecular number decreased continuously with age in males and females. In contrast to aging mice, an increase in trabecular bone volume and trabecular number was observed in both male and female kl/kl mice. Cortical thickness decreased with advancing age and also decreased in male and female kl/kl mice. Serum calcium and phosphate levels were significantly increased in kl/kl mice but did not change with age. Aging resulted in a decline in Trpv6 expression. In the kl/kl mice duodenal Trpv6 was significantly increased. Our findings reflect differences in bone architecture as well as differences in calcium and phosphate homeostasis and expression of Trpv6 between the kl/kl mutant mouse model of accelerated aging and chronological aging. Although the Klotho deficient mouse has provided a new understanding of the regulation of mineral homeostasis and bone metabolism, our findings suggest that changes in bone architecture in the kl/kl mouse reflect in part systemic disturbances that differ from pathophysiological changes that occur with age including dysregulation of calcium homeostasis that contributes to age related bone loss.
Collapse
Affiliation(s)
- Lieve Verlinden
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Shanshan Li
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, United States
| | - Vaishali Veldurthy
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, United States
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
6
|
Edmonston D, Grabner A, Wolf M. FGF23 and klotho at the intersection of kidney and cardiovascular disease. Nat Rev Cardiol 2024; 21:11-24. [PMID: 37443358 DOI: 10.1038/s41569-023-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD). As CKD progresses, CKD-specific risk factors, such as disordered mineral homeostasis, amplify traditional cardiovascular risk factors. Fibroblast growth factor 23 (FGF23) regulates mineral homeostasis by activating complexes of FGF receptors and transmembrane klotho co-receptors. A soluble form of klotho also acts as a 'portable' FGF23 co-receptor in tissues that do not express klotho. In progressive CKD, rising circulating FGF23 levels in combination with decreasing kidney expression of klotho results in klotho-independent effects of FGF23 on the heart that promote left ventricular hypertrophy, heart failure, atrial fibrillation and death. Emerging data suggest that soluble klotho might mitigate some of these effects via several candidate mechanisms. More research is needed to investigate FGF23 excess and klotho deficiency in specific cardiovascular complications of CKD, but the pathophysiological primacy of FGF23 excess versus klotho deficiency might never be precisely resolved, given the entangled feedback loops that they share. Therefore, randomized trials should prioritize clinical practicality over scientific certainty by targeting disordered mineral homeostasis holistically in an effort to improve cardiovascular outcomes in patients with CKD.
Collapse
Affiliation(s)
- Daniel Edmonston
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
Elsurer Afsar R, Afsar B, Ikizler TA. Fibroblast Growth Factor 23 and Muscle Wasting: A Metabolic Point of View. Kidney Int Rep 2023; 8:1301-1314. [PMID: 37441473 PMCID: PMC10334408 DOI: 10.1016/j.ekir.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 07/15/2023] Open
Abstract
Protein energy wasting (PEW), mostly characterized by decreased body stores of protein and energy sources, particularly in the skeletal muscle compartment, is highly prevalent in patients with moderate to advanced chronic kidney disease (CKD). Fibroblast growth factor 23 (FGF23) is an endocrine hormone secreted from bone and has systemic actions on skeletal muscle. In CKD, FGF23 is elevated and its coreceptor α-klotho is suppressed. Multiple lines of evidence suggest that FGF23 is interconnected with various mechanisms of skeletal muscle wasting in CKD, including systemic and local inflammation, exaggerated oxidative stress, insulin resistance (IR), and abnormalities in adipocytokine metabolism. Investigation of metabolic actions of FGF23 on muscle tissue could provide new insights into metabolic and nutritional abnormalities observed in patients with CKD.
Collapse
Affiliation(s)
- Rengin Elsurer Afsar
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Nephrology, Suleyman Demirel University Faculty of Medicine, Isparta, Turkey
| | - Baris Afsar
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Nephrology, Suleyman Demirel University Faculty of Medicine, Isparta, Turkey
| | - Talat Alp Ikizler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt O’Brien Center for Kidney Disease, Nashville, Tennessee, USA
- Tennessee Valley Healthcare System, Nashville VA Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
An C, Chen X, Zheng D. Association between anemia and serum Klotho in middle-aged and older adults. BMC Nephrol 2023; 24:38. [PMID: 36797683 PMCID: PMC9933285 DOI: 10.1186/s12882-023-03081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND The role of Klotho as a multifunctional protein in anemia is unclear. This study aimed to determine the association between anemia and serum Klotho concentrations in middle-aged and elderly populations. METHODS In this cross-sectional study, we used data collected from the National Health and Nutrition Examination Survey (NHANES) 2007-2016. A total of 13,357 individuals who received serum Klotho measurements, biochemical tests, and demographic surveys were analyzed. Multivariate linear regression models adjusting for covariates were used to investigate the associations between anemia and serum Klotho. RESULTS Multivariable regression showed that serum Klotho correlates positively with hemoglobin and red blood cells and inversely with red cell distribution width. After adjusting for all covariates, compared with Q4, there was a significantly increased risk of anemia in serum Klotho quartiles 1 to 2 (OR=1.54, 95% CI:1.21-1.95, P=0.002; OR=1.30, 95% CI:1.02-1.64, P=0.042,respectively). Segmented regression showed that for every 100 pg/mL increase in serum Klotho <9.746 pg/mL, the risk of anemia was reduced by 10.9%, and this reduction was significant (P<0.001). Furthermore, stratified analyses yielded a stronger association between reduced anemia and high levels of Klotho in men and those with diabetes (P< 0.05 for interaction). However, this association was not found to be significantly altered by chronic kidney disease. CONCLUSIONS In summary, we indicated that low serum Klotho is associated with an increased likelihood of anemia using a nationally representative sample of middle-aged and older adults.
Collapse
Affiliation(s)
- Chencheng An
- grid.440299.2Department of Nephrology, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huaian, 223002 Jiangsu China
| | - Xiaoling Chen
- grid.440299.2Department of Nephrology, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huaian, 223002 Jiangsu China
| | - Donghui Zheng
- Department of Nephrology, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second People's Hospital, Huaian, 223002, Jiangsu, China.
| |
Collapse
|
9
|
Abstract
Fibroblast growth factor-23 (FGF23) controls the homeostasis of both phosphate and vitamin D. Bone-derived FGF23 can suppress the transcription of 1α-hydroxylase (1α(OH)ase) to reduce renal activation of vitamin D (1,25(OH)2D3). FGF23 can also activate the transcription of 24-hydroxylase to enhance the renal degradation process of vitamin D. There is a counter-regulation for FGF23 and vitamin D; 1,25(OH)2D3 induces the skeletal synthesis and the release of FGF23, while FGF23 can suppress the production of 1,25(OH)2D3 by inhibiting 1α(OH)ase synthesis. Genetically ablating FGF23 activities in mice resulted in higher levels of renal 1α(OH)ase, which is also reflected in an increased level of serum 1,25(OH)2D3, while genetically ablating 1α(OH)ase activities in mice reduced the serum levels of FGF23. Similar feedback control of FGF23 and vitamin D is also detected in various human diseases. Further studies are required to understand the subcellular molecular regulation of FGF23 and vitamin D in health and disease.
Collapse
Affiliation(s)
- Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| |
Collapse
|
10
|
New concepts in regulation and function of the FGF23. Clin Exp Med 2022:10.1007/s10238-022-00844-x. [PMID: 35708778 DOI: 10.1007/s10238-022-00844-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
In comparison to the regulation of calcium homeostasis, which has been widely studied over the last several decades, phosphate homeostasis is little understood. The parathyroid hormone (PTH)/vitamin D axis has traditionally been used as a conceptual framework for understanding mineral metabolism. Recently, the fundamental regulator of phosphate homeostasis, fibroblast growth factor 23 (FGF23), which is produced by osteocytes and is involved in the hormonal bone-parathyroid-kidney axis, has attracted more attention. The secretion of FGF23 is controlled by diet, serum phosphate levels, PTH, and 1,25(OH)2 vitamin D. FGF-23, the FGF receptors and the obligate co-receptor α-Klotho work in concert to affect FGF-23 actions on targeted organs. Despite all efforts to investigate pleotropic effects of FGF23 in various endocrine organs, many aspects of the regulation and functions of FGF23 and the exact crosstalk among FGF23, serum phosphate, calcium, PTH, and vitamin D in the regulation of mineral homeostasis remain unclear; much efforts need to be established before it can be moved toward therapeutic applications. In this regard, we provide a brief overview of the novel findings in the regulation and function of FGF23 and refer to related questions and hypotheses not answered yet, which can be a window for future projects. We also focus on the current knowledge about the role of FGF23 obtained from our researches in recent years.
Collapse
|
11
|
Gupta M, Orozco G, Rao M, Gedaly R, Malluche HH, Neyra JA. The Role of Alterations in Alpha-Klotho and FGF-23 in Kidney Transplantation and Kidney Donation. Front Med (Lausanne) 2022; 9:803016. [PMID: 35602513 PMCID: PMC9121872 DOI: 10.3389/fmed.2022.803016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease and mineral bone disorders are major contributors to morbidity and mortality among patients with chronic kidney disease and often persist after renal transplantation. Ongoing hormonal imbalances after kidney transplant (KT) are associated with loss of graft function and poor outcomes. Fibroblast growth factor 23 (FGF-23) and its co-receptor, α-Klotho, are key factors in the underlying mechanisms that integrate accelerated atherosclerosis, vascular calcification, mineral disorders, and osteodystrophy. On the other hand, kidney donation is also associated with endocrine and metabolic adaptations that include transient increases in circulating FGF-23 and decreases in α-Klotho levels. However, the long-term impact of these alterations and their clinical relevance have not yet been determined. This manuscript aims to review and summarize current data on the role of FGF-23 and α-Klotho in the endocrine response to KT and living kidney donation, and importantly, underscore specific areas of research that may enhance diagnostics and therapeutics in the growing population of KT recipients and kidney donors.
Collapse
Affiliation(s)
- Meera Gupta
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
- *Correspondence: Meera Gupta
| | - Gabriel Orozco
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Madhumati Rao
- Department of Internal Medicine - Nephrology, Bone and Mineral Metabolism Division, University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Roberto Gedaly
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Hartmut H. Malluche
- Department of Internal Medicine - Nephrology, Bone and Mineral Metabolism Division, University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Javier A. Neyra
- Department of Internal Medicine - Nephrology, Bone and Mineral Metabolism Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Javier A. Neyra
| |
Collapse
|
12
|
Zhao M, Murakami S, Matsumaru D, Kawauchi T, Nabeshima YI, Motohashi H. NRF2 Pathway Activation Attenuates Aging-Related Renal Phenotypes due to α-Klotho Deficiency. J Biochem 2022; 171:579-589. [DOI: 10.1093/jb/mvac014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Summary
Oxidative stress is one of the major causes of the age-related functional decline in cells and tissues. The KEAP1-NRF2 system plays a central role in the regulation of redox balance, and NRF2 activation exerts antiaging effects by controlling oxidative stress in aged tissues. α-Klotho was identified as an aging suppressor protein based on the premature aging phenotypes of its mutant mice, and its expression is known to gradually decrease during aging. Because α-Klotho has been shown to possess antioxidant function, aging-related phenotypes of α-Klotho mutant mice seem to be attributable to increased oxidative stress at least in part. To examine whether NRF2 activation antagonizes aging-related phenotypes caused by α-Klotho deficiency, we crossed α-Klotho-deficient (Kl–/–) mice with a Keap1-knockdown background, in which the NRF2 pathway is constitutively activated in the whole body. NRF2 pathway activation in Kl–/– mice extended the lifespan and dramatically improved aging-related renal phenotypes. With elevated expression of antioxidant genes accompanied by an oxidative stress decrease, the antioxidant effects of NRF2 seem to make a major contribution to the attenuation of aging-related renal phenotypes of Kl–/– mice. Thus, NRF2 is expected to exert an antiaging function by partly compensating for the functional decline of α-Klotho during physiological aging.
Collapse
Affiliation(s)
- Mingyue Zhao
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Shohei Murakami
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Daisuke Matsumaru
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Yo-ichi Nabeshima
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| |
Collapse
|
13
|
Razzaque MS. Salivary phosphate as a biomarker for human diseases. FASEB Bioadv 2022; 4:102-108. [PMID: 35141474 PMCID: PMC8814558 DOI: 10.1096/fba.2021-00104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Phosphate is a common ingredient of the daily consumed foods and is absorbed in the intestine and is excreted in the urine through the kidney to maintain the homeostatic balance. For adults, the Recommended Dietary Allowance (RDA) for phosphorus is around 700 mg/day. The change in dietary habits resulted in far more phosphate consumption (almost double) than the RDA, contributing to increased cardiovascular diseases, kidney diseases, and tumor formation. Due to a lack of clinical appreciation for the long-term consequences of chronic phosphate burden on non-communicable disorders, it is rapidly becoming a global health concern. The possible association between dysregulated phosphate metabolism and obesity is not studied in-depth, mainly because such an association is believed to be nonexistent. However, in the animal model of obesity, serum phosphate level was higher than their non-obese controls. In a similar observation line, significantly higher salivary phosphate levels were detected in obese children compared to normal-weight children. Of clinical importance, despite the significant increase of salivary phosphate levels in obese children, the plasma phosphate levels did not change in samples collected from the same group of children. Such disparity between plasma and saliva raised the possibility that human salivary phosphate levels may be an early biomarker of childhood obesity.
Collapse
Affiliation(s)
- Mohammed S. Razzaque
- Department of PathologyLake Erie College of Osteopathic MedicineEriePennsylvaniaUSA
| |
Collapse
|
14
|
Phosphate Metabolism: From Physiology to Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:1-6. [DOI: 10.1007/978-3-030-91623-7_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Lyu P, Li B, Li P, Bi R, Cui C, Zhao Z, Zhou X, Fan Y. Parathyroid Hormone 1 Receptor Signaling in Dental Mesenchymal Stem Cells: Basic and Clinical Implications. Front Cell Dev Biol 2021; 9:654715. [PMID: 34760881 PMCID: PMC8573197 DOI: 10.3389/fcell.2021.654715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) are two peptides that regulate mineral ion homeostasis, skeletal development, and bone turnover by activating parathyroid hormone 1 receptor (PTH1R). PTH1R signaling is of profound clinical interest for its potential to stimulate bone formation and regeneration. Recent pre-clinical animal studies and clinical trials have investigated the effects of PTH and PTHrP analogs in the orofacial region. Dental mesenchymal stem cells (MSCs) are targets of PTH1R signaling and have long been known as major factors in tissue repair and regeneration. Previous studies have begun to reveal important roles for PTH1R signaling in modulating the proliferation and differentiation of MSCs in the orofacial region. A better understanding of the molecular networks and underlying mechanisms for modulating MSCs in dental diseases will pave the way for the therapeutic applications of PTH and PTHrP in the future. Here we review recent studies involving dental MSCs, focusing on relationships with PTH1R. We also summarize recent basic and clinical observations of PTH and PTHrP treatment to help understand their use in MSCs-based dental and bone regeneration.
Collapse
Affiliation(s)
- Ping Lyu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Morevati M, Mace ML, Egstrand S, Nordholm A, Doganli C, Strand J, Rukov JL, Torsetnes SB, Gorbunova V, Olgaard K, Lewin E. Extrarenal expression of α-klotho, the kidney related longevity gene, in Heterocephalus glaber, the long living Naked Mole Rat. Sci Rep 2021; 11:15375. [PMID: 34321565 PMCID: PMC8319335 DOI: 10.1038/s41598-021-94972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
The Naked Mole Rat (NMR), Heterocephalus glaber, provides an interesting model for studying biomarkers of longevity due to its long lifespan of more than 30 years, almost ten times longer than that of mice and rats. α-Klotho (klotho) is an aging-suppressor gene, and overexpression of klotho is associated with extended lifespan in mice. Klotho is predominantly expressed in the kidney. The expression profile of klotho in the NMR has not previously been reported. The present investigation studied the expression of klotho in the kidney of NMR with that of Rattus Norvegicus (RN) and demonstrated that klotho was expressed in the kidney of NMR at the same level as found in RN. Besides, a significant expression of Kl mRNA was found in the liver of NMR, in contrast to RN, where no hepatic expression was detected. The Klotho expression was further confirmed at the protein level. Thus, the results of the present comparative study indicate a differential tissue expression of klotho between different species. Besides its important function in the kidney, Klotho might also be of significance in the liver of NMR. It is suggested that the hepatic extrarenal expression of klotho may function as a further longevity-related factor in supplement to the Klotho in the kidney.
Collapse
Affiliation(s)
- M Morevati
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark.
| | - M L Mace
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
| | - S Egstrand
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
- Nephrological Department B, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - A Nordholm
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
- Nephrological Department B, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - C Doganli
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Strand
- Randers Regnskov, Randers, Denmark
| | - J L Rukov
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
| | - S B Torsetnes
- Department of Neurology, Akershus University Hospital, Oslo, Norway
| | - V Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - K Olgaard
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
| | - E Lewin
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
- Nephrological Department B, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Kuro-O M. Phosphate as a Pathogen of Arteriosclerosis and Aging. J Atheroscler Thromb 2021; 28:203-213. [PMID: 33028781 PMCID: PMC8048948 DOI: 10.5551/jat.rv17045] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
During the evolution of skeletons, terrestrial vertebrates acquired strong bones made of calcium-phosphate. By keeping the extracellular fluid in a supersaturated condition regarding calcium and phosphate ions, they created the bone when and where they wanted simply by providing a cue for precipitation. To secure this strategy, they acquired a novel endocrine system to strictly control the extracellular phosphate concentration. In response to phosphate intake, fibroblast growth factor-23 (FGF23) is secreted from the bone and acts on the kidney through binding to its receptor Klotho to increase urinary phosphate excretion, thereby maintaining phosphate homeostasis. The FGF23-Klotho endocrine system, when disrupted in mice, results in hyperphosphatemia and vascular calcification. Besides, mice lacking Klotho or FGF23 suffer from complex aging-like phenotypes, which are alleviated by placing them on a low- phosphate diet, indicating that phosphate is primarily responsible for the accelerated aging. Phosphate acquires the ability to induce cell damage and inflammation when precipitated with calcium. In the blood, calcium-phosphate crystals are adsorbed by serum protein fetuin-A and prevented from growing into large precipitates. Consequently, nanoparticles that comprised calcium-phosphate crystals and fetuin-A, termed calciprotein particles (CPPs), are generated and dispersed as colloids. CPPs increase in the blood with an increase in serum phosphate and age. Circulating CPP levels correlate positively with vascular stiffness and chronic non-infectious inflammation, raising the possibility that CPPs may be an endogenous pro-aging factor. Terrestrial vertebrates with the bone made of calcium- phosphate may be destined to age due to calcium-phosphate in the blood.
Collapse
Affiliation(s)
- Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University
| |
Collapse
|
18
|
Ewendt F, Feger M, Föller M. Role of Fibroblast Growth Factor 23 (FGF23) and αKlotho in Cancer. Front Cell Dev Biol 2021; 8:601006. [PMID: 33520985 PMCID: PMC7841205 DOI: 10.3389/fcell.2020.601006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Together with fibroblast growth factors (FGFs) 19 and 21, FGF23 is an endocrine member of the family of FGFs. Mainly secreted by bone cells, FGF23 acts as a hormone on the kidney, stimulating phosphate excretion and suppressing formation of 1,25(OH)2D3, active vitamin D. These effects are dependent on transmembrane protein αKlotho, which enhances the binding affinity of FGF23 for FGF receptors (FGFR). Locally produced FGF23 in other tissues including liver or heart exerts further paracrine effects without involvement of αKlotho. Soluble Klotho (sKL) is an endocrine factor that is cleaved off of transmembrane Klotho or generated by alternative splicing and regulates membrane channels, transporters, and intracellular signaling including insulin growth factor 1 (IGF-1) and Wnt pathways, signaling cascades highly relevant for tumor progression. In mice, lack of FGF23 or αKlotho results in derangement of phosphate metabolism and a syndrome of rapid aging with abnormalities affecting most organs and a very short life span. Conversely, overexpression of anti-aging factor αKlotho results in a profound elongation of life span. Accumulating evidence suggests a major role of αKlotho as a tumor suppressor, at least in part by inhibiting IGF-1 and Wnt/β-catenin signaling. Hence, in many malignancies, higher αKlotho expression or activity is associated with a more favorable outcome. Moreover, also FGF23 and phosphate have been revealed to be factors relevant in cancer. FGF23 is particularly significant for those forms of cancer primarily affecting bone (e.g., multiple myeloma) or characterized by bone metastasis. This review summarizes the current knowledge of the significance of FGF23 and αKlotho for tumor cell signaling, biology, and clinically relevant parameters in different forms of cancer.
Collapse
Affiliation(s)
- Franz Ewendt
- Department of Nutritional Physiology, Institute of Agricultural and Nutritional Sciences, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
19
|
Neyra JA, Hu MC, Moe OW. Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications. Clin J Am Soc Nephrol 2020; 16:162-176. [PMID: 32699047 PMCID: PMC7792642 DOI: 10.2215/cjn.02840320] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
αKlotho (called Klotho here) is a membrane protein that serves as the coreceptor for the circulating hormone fibroblast growth factor 23 (FGF23). Klotho is also cleaved and released as a circulating substance originating primarily from the kidney and exerts a myriad of housekeeping functions in just about every organ. The vital role of Klotho is shown by the multiorgan failure with genetic deletion in rodents, with certain features reminiscent of human disease. The most common causes of systemic Klotho deficiency are AKI and CKD. Preclinical data on Klotho biology have advanced considerably and demonstrated its potential diagnostic and therapeutic value; however, multiple knowledge gaps exist in the regulation of Klotho expression, release, and metabolism; its target organs; and mechanisms of action. In the translational and clinical fronts, progress has been more modest. Nonetheless, Klotho has potential clinical applications in the diagnosis of AKI and CKD, in prognosis of progression and extrarenal complications, and finally, as replacement therapy for systemic Klotho deficiency. The overall effect of Klotho in clinical nephrology requires further technical advances and additional large prospective human studies.
Collapse
Affiliation(s)
- Javier A. Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
20
|
Liu AQ, Zhang LS, Guo H, Wu ML, Li TY, Xuan K, Wei KW. Long-term dental intervention and laboratory examination in a patient with Vitamin D-dependent rickets type I: A case report. Medicine (Baltimore) 2020; 99:e22508. [PMID: 33031289 PMCID: PMC7544169 DOI: 10.1097/md.0000000000022508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Vitamin D-dependent rickets type I (VDDR-I) is a rare form of rickets, which is an autosomal recessive disease caused by 1α-hydroxylase enzyme deficiency. However, long-term dental management and microscopic morphology of teeth remain largely unclear. PATIENT CONCERNS We report the case of a 10-year-old Chinese boy complaining of yellowish-brown teeth with extensive caries. DIAGNOSES Clinical and laboratory examinations were performed, and VDDR-I was confirmed. Scanning electron microscopy confirmed amelogenesis imperfecta. INTERVENTIONS The patient had been taking drugs intervention for VDDR-I from the age of 3 years. The decayed teeth were treated, and metal-preformed crowns were placed to prevent further impairment. Sequence tooth extraction and remineralization therapy were also performed. OUTCOMES After 3 years of follow-up, the patient exhibited normal tooth replacement and an acceptable oral hygiene status. However, the new erupted teeth had amelogenesis imperfecta. LESSONS This case is the first to confirm amelogenesis imperfecta in a patient with VDDR-I that was not prevented by drug intervention. Importantly, it provides evidence that long-term dental intervention in patients with VDDR-I can result in an acceptable oral hygiene status. Therefore, early and long-term dental intervention is necessary in VDDR-I patients.
Collapse
Affiliation(s)
- An-Qi Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology
| | - Li-Shu Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology
| | - Hao Guo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology
| | - Mei-Ling Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology
| | - Tian-Yi Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology
| | - Ke-Wen Wei
- Department of Dentistry, Hospital of Tangdu, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
21
|
Agoro R, Ni P, Noonan ML, White KE. Osteocytic FGF23 and Its Kidney Function. Front Endocrinol (Lausanne) 2020; 11:592. [PMID: 32982979 PMCID: PMC7485387 DOI: 10.3389/fendo.2020.00592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Osteocytes, which represent up to 95% of adult skeletal cells, are deeply embedded in bone. These cells exhibit important interactive abilities with other bone cells such as osteoblasts and osteoclasts to control skeletal formation and resorption. Beyond this local role, osteocytes can also influence the function of distant organs due to the presence of their sophisticated lacunocanalicular system, which connects osteocyte dendrites directly to the vasculature. Through these networks, osteocytes sense changes in circulating metabolites and respond by producing endocrine factors to control homeostasis. One critical function of osteocytes is to respond to increased blood phosphate and 1,25(OH)2 vitamin D (1,25D) by producing fibroblast growth factor-23 (FGF23). FGF23 acts on the kidneys through partner fibroblast growth factor receptors (FGFRs) and the co-receptor Klotho to promote phosphaturia via a downregulation of phosphate transporters, as well as the control of vitamin D metabolizing enzymes to reduce blood 1,25D. In the first part of this review, we will explore the signals involved in the positive and negative regulation of FGF23 in osteocytes. In the second portion, we will bridge bone responses with the review of current knowledge on FGF23 endocrine functions in the kidneys.
Collapse
Affiliation(s)
- Rafiou Agoro
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pu Ni
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Megan L. Noonan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
22
|
Bi X, Yang K, Zhang B, Zhao J. The Protective Role of Klotho in CKD-Associated Cardiovascular Disease. KIDNEY DISEASES 2020; 6:395-406. [PMID: 33313060 DOI: 10.1159/000509369] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Background Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in advanced CKD. The major pathological changes of CKD-associated CVD are severe vascular media calcification, aberrant cardiac remodeling such as hypertrophy and fibrosis, as well as accelerated atherosclerosis. α-Klotho is proposed as an anti-aging gene, which is primarily expressed in the kidney. Recent studies reveal that α-Klotho deficiency is associated with profound cardiovascular dysfunction. Of note, CKD represents extremely declined α-Klotho levels, hinting that α-Klotho deficiency may be implicated in the pathogenesis of CKD-associated CVD. Summary Based on the pathogenic mechanism of α-Klotho deficiency and decreased Klotho levels in the circulation even early in stage 1 of CKD, α-Klotho serves as a sensitive biomarker for renal insufficiency and also a novel predictor of risk of overall mortality of CVD events in CKD. Meanwhile, loss of Klotho resulted from kidney dysfunction markedly contributes to the progressive development of CKD and CVD. By contrast, prevention of Klotho decline using exogenous supplementation or genetically activated ways by several mechanisms can dramatically mitigate cardiac dysfunction, prevent vascular calcification, and retard the progression of CKD-accelerated atherosclerosis. Key Messages Klotho deficiency is proposed as a novel predictive biomarker as well as a pathogenic contributor to CVD events in CKD. In the future, Klotho may be a crucial potential therapeutic strategy to decrease the burden of CVD comorbidity with CKD in clinics.
Collapse
Affiliation(s)
- Xianjin Bi
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
23
|
Moor MB, Ramakrishnan SK, Legrand F, Bachtler M, Koesters R, Hynes NE, Pasch A, Bonny O. Elevated serum magnesium lowers calcification propensity in Memo1-deficient mice. PLoS One 2020; 15:e0236361. [PMID: 32706793 PMCID: PMC7380890 DOI: 10.1371/journal.pone.0236361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/03/2020] [Indexed: 11/18/2022] Open
Abstract
MEdiator of cell MOtility1 (MEMO1) is a ubiquitously expressed redox protein involved in extracellular ligand-induced cell signaling. We previously reported that inducible whole-body Memo1 KO (cKO) mice displayed a syndrome of premature aging and disturbed mineral metabolism partially recapitulating the phenotype observed in Klotho or Fgf23-deficient mouse models. Here, we aimed at delineating the contribution of systemic mineral load on the Memo1 cKO mouse phenotype. We attempted to rescue the Memo1 cKO phenotype by depleting phosphate or vitamin D from the diet, but did not observe any effect on survival. However, we noticed that, by contrast to Klotho or Fgf23-deficient mouse models, Memo1 cKO mice did not present any soft-tissue calcifications and displayed even a decreased serum calcification propensity. We identified higher serum magnesium levels as the main cause of protection against calcifications. Expression of genes encoding intestinal and renal magnesium channels and the regulator epidermal growth factor were increased in Memo1 cKO. In order to check whether magnesium reabsorption in the kidney alone was driving the higher magnesemia, we generated a kidney-specific Memo1 KO (kKO) mouse model. Memo1 kKO mice also displayed higher magnesemia and increased renal magnesium channel gene expression. Collectively, these data identify MEMO1 as a novel regulator of magnesium homeostasis and systemic calcification propensity, by regulating expression of the main magnesium channels.
Collapse
Affiliation(s)
- Matthias B. Moor
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
- The National Centre of Competence in Research (NCCR) "Kidney.CH - Kidney Control of Homeostasis", Zürich, Switzerland
| | - Suresh K. Ramakrishnan
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
- The National Centre of Competence in Research (NCCR) "Kidney.CH - Kidney Control of Homeostasis", Zürich, Switzerland
| | - Finola Legrand
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
| | - Matthias Bachtler
- Calciscon AG, Nidau, Switzerland and Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Robert Koesters
- Department of Nephrology, Hôpital Tenon, Université Pierre et Marie Curie, Paris, France
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research and University of Basel, Basel, Switzerland
| | - Andreas Pasch
- Calciscon AG, Nidau, Switzerland and Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Olivier Bonny
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
- The National Centre of Competence in Research (NCCR) "Kidney.CH - Kidney Control of Homeostasis", Zürich, Switzerland
- Department of Medicine, Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Research Models for Studying Vascular Calcification. Int J Mol Sci 2020; 21:ijms21062204. [PMID: 32210002 PMCID: PMC7139511 DOI: 10.3390/ijms21062204] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Calcification of the vessel wall contributes to high cardiovascular morbidity and mortality. Vascular calcification (VC) is a systemic disease with multifaceted contributing and inhibiting factors in an actively regulated process. The exact underlying mechanisms are not fully elucidated and reliable treatment options are lacking. Due to the complex pathophysiology, various research models exist evaluating different aspects of VC. This review aims to give an overview of the cell and animal models used so far to study the molecular processes of VC. Here, in vitro cell culture models of different origins, ex vivo settings using aortic tissue and various in vivo disease-induced animal models are summarized. They reflect different aspects and depict the (patho)physiologic mechanisms within the VC process.
Collapse
|
25
|
Hanazaki A, Ikuta K, Sasaki S, Sasaki S, Koike M, Tanifuji K, Arima Y, Kaneko I, Shiozaki Y, Tatsumi S, Hasegawa T, Amizuka N, Miyamoto K, Segawa H. Role of sodium-dependent Pi transporter/Npt2c on Pi homeostasis in klotho knockout mice different properties between juvenile and adult stages. Physiol Rep 2020; 8:e14324. [PMID: 32026654 PMCID: PMC7002534 DOI: 10.14814/phy2.14324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SLC34A3/NPT2c/NaPi-2c/Npt2c is a growth-related NaPi cotransporter that mediates the uptake of renal sodium-dependent phosphate (Pi). Mutation of human NPT2c causes hereditary hypophosphatemic rickets with hypercalciuria. Mice with Npt2c knockout, however, exhibit normal Pi metabolism. To investigate the role of Npt2c in Pi homeostasis, we generated α-klotho-/- /Npt2c-/- (KL2cDKO) mice and analyzed Pi homeostasis. α-Klotho-/- (KLKO) mice exhibit hyperphosphatemia and markedly increased kidney Npt2c protein levels. Genetic disruption of Npt2c extended the lifespan of KLKO mice similar to that of α-Klotho-/- /Npt2a-/- mice. Adult KL2cDKO mice had hyperphosphatemia, but analysis of Pi metabolism revealed significantly decreased intestinal and renal Pi (re)absorption compared with KLKO mice. The 1,25-dihydroxy vitamin D3 concentration was not reduced in KL2cDKO mice compared with that in KLKO mice. The KL2cDKO mice had less severe soft tissue and vascular calcification compared with KLKO mice. Juvenile KL2cDKO mice had significantly reduced plasma Pi levels, but Pi metabolism was not changed. In Npt2cKO mice, plasma Pi levels began to decrease around the age of 15 days and significant hypophosphatemia developed within 21 days. The findings of the present study suggest that Npt2c contributes to regulating plasma Pi levels in the juvenile stage and affects Pi retention in the soft and vascular tissues in KLKO mice.
Collapse
Affiliation(s)
- Ai Hanazaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Kayo Ikuta
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Shohei Sasaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Sumire Sasaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Megumi Koike
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Kazuya Tanifuji
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Yuki Arima
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Ichiro Kaneko
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Yuji Shiozaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Sawako Tatsumi
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Tomoka Hasegawa
- Developmental Biology of Hard TissueHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Norio Amizuka
- Developmental Biology of Hard TissueHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Ken‐ichi Miyamoto
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Hiroko Segawa
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| |
Collapse
|
26
|
Mencke R, Umbach AT, Wiggenhauser LM, Voelkl J, Olauson H, Harms G, Bulthuis M, Krenning G, Quintanilla-Martinez L, van Goor H, Lang F, Hillebrands JL. Klotho Deficiency Induces Arteriolar Hyalinosis in a Trade-Off with Vascular Calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2503-2515. [DOI: 10.1016/j.ajpath.2019.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
|
27
|
Zhu WS, Naler L, Maul RW, Sallin MA, Sen JM. Immune system development and age-dependent maintenance in Klotho-hypomorphic mice. Aging (Albany NY) 2019; 11:5246-5257. [PMID: 31386628 PMCID: PMC6682518 DOI: 10.18632/aging.102121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022]
Abstract
Circulating Klotho peptide hormone has anti-aging activity and affects tissue maintenance. Hypomorphic mutant Klotho [kl/kl] mice on C57BL/6xC3H, BALB/c and 129 genetic backgrounds, show decreased Klotho expression that correlate with accelerated aging including pre-mature death due to abnormally high levels of serum vitamin D. These mice also show multiple impairments in the immune system. However, it remains unresolved if the defects in the immune system stem from decreased Klotho expression or high vitamin D levels in the serum. Transfer of the kl/kl allele to pure C57BL/6 genetic background [B6-kl/kl] significantly reduced expression of Klotho at all ages. Surprisingly, B6-kl/kl mice showed normalized serum vitamin D levels, amelioration of severe aging-related phenotypes and normal lifespan. This paper reports a detailed analysis of the immune system in B6-kl/kl mice in the absence of detrimental levels of serum vitamin D. Remarkably, the data reveal that in the absence of overt systemic stress, such as abnormally high vitamin D levels, reduced expression of Klotho does not have a major effect on the generation and maintenance of the immune system.
Collapse
Affiliation(s)
- Wandi Sandra Zhu
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Current address: Department of Immunology and Microbiology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lynette Naler
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Current address: Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Robert W Maul
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michelle A Sallin
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jyoti Misra Sen
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
28
|
Abstract
Acute kidney injury (AKI) is associated with many of the same mineral metabolite abnormalities that are observed in chronic kidney disease. These include increased circulating levels of the osteocyte-derived, vitamin D-regulating hormone, fibroblast growth factor 23 (FGF23), and decreased renal expression of klotho, the co-receptor for FGF23. Recent data have indicated that increased FGF23 and decreased klotho levels in the blood and urine could serve as novel predictive biomarkers of incident AKI, or as novel prognostic biomarkers of adverse outcomes in patients with established AKI. In addition, because FGF23 and klotho exert numerous classic as well as off-target effects on a variety of organ systems, targeting their dysregulation in AKI may represent a unique opportunity for therapeutic intervention. We review the pathophysiology, kinetics, and regulation of FGF23 and klotho in animal and human studies of AKI, and we discuss the challenges and opportunities involved in targeting FGF23 and klotho therapeutically.
Collapse
Affiliation(s)
- Marta Christov
- Department of Medicine, New York Medical College, Valhalla, NY.
| | - Javier A Neyra
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, KY; Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX
| | - Sanjeev Gupta
- Department of Medicine, New York Medical College, Valhalla, NY
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
29
|
Sanchis P, Ho CY, Liu Y, Beltran LE, Ahmad S, Jacob AP, Furmanik M, Laycock J, Long DA, Shroff R, Shanahan CM. Arterial "inflammaging" drives vascular calcification in children on dialysis. Kidney Int 2019; 95:958-972. [PMID: 30827513 PMCID: PMC6684370 DOI: 10.1016/j.kint.2018.12.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/28/2018] [Accepted: 12/06/2018] [Indexed: 01/23/2023]
Abstract
Children on dialysis have a cardiovascular mortality risk equivalent to older adults in the general population, and rapidly develop medial vascular calcification, an age-associated pathology. We hypothesized that premature vascular ageing contributes to calcification in children with advanced chronic kidney disease (CKD). Vessels from children with Stage 5 CKD with and without dialysis had evidence of increased oxidative DNA damage. The senescence markers p16 and p21 were also increased in vessels from children on dialysis. Treatment of vessel rings ex vivo with calcifying media increased oxidative DNA damage in vessels from children with Stage 5 CKD, but not in those from healthy controls. Vascular smooth muscle cells cultured from children on dialysis exhibited persistent DNA damage, impaired DNA damage repair, and accelerated senescence. Under calcifying conditions vascular smooth muscle cells from children on dialysis showed increased osteogenic differentiation and calcification. These changes correlated with activation of the senescence-associated secretory phenotype (SASP), an inflammatory phenotype characterized by the secretion of proinflammatory cytokines and growth factors. Blockade of ataxia-telangiectasia mutated (ATM)-mediated DNA damage signaling reduced both inflammation and calcification. Clinically, children on dialysis had elevated circulating levels of osteogenic SASP factors that correlated with increased vascular stiffness and coronary artery calcification. These data imply that dysregulated mineral metabolism drives vascular "inflammaging" by promoting oxidative DNA damage, premature senescence, and activation of a pro-inflammatory SASP. Drugs that target DNA damage signaling or eliminate senescent cells may have the potential to prevent vascular calcification in patients with advanced CKD.
Collapse
Affiliation(s)
- Pilar Sanchis
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Chin Yee Ho
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Yiwen Liu
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Leilani E Beltran
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Sadia Ahmad
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Anne P Jacob
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Malgorzata Furmanik
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Joanne Laycock
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - David A Long
- Developmental Biology and Cancer Programme, Great Ormond Street Hospital and University College London Institute of Child Health, London, UK
| | - Rukshana Shroff
- Nephrology Unit, Great Ormond Street Hospital and University College London Institute of Child Health, London, UK
| | - Catherine M Shanahan
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK.
| |
Collapse
|
30
|
Xing Y, Smith MJ, Goetz CA, McElmurry RT, Parker SL, Min D, Hollander GA, Weinberg KI, Tolar J, Stefanski HE, Blazar BR. Thymic Epithelial Cell Support of Thymopoiesis Does Not Require Klotho. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3320-3328. [PMID: 30373854 PMCID: PMC6275142 DOI: 10.4049/jimmunol.1800670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022]
Abstract
Age-related thymic involution is characterized by a decrease in thymic epithelial cell (TEC) number and function parallel to a disruption in their spatial organization, resulting in defective thymocyte development and proliferation as well as peripheral T cell dysfunction. Deficiency of Klotho, an antiaging gene and modifier of fibroblast growth factor signaling, causes premature aging. To investigate the role of Klotho in accelerated age-dependent thymic involution, we conducted a comprehensive analysis of thymopoiesis and peripheral T cell homeostasis using Klotho-deficient (Kl/Kl) mice. At 8 wk of age, Kl/Kl mice displayed a severe reduction in the number of thymocytes (10-100-fold reduction), especially CD4 and CD8 double-positive cells, and a reduction of both cortical and medullary TECs. To address a cell-autonomous role for Klotho in TEC biology, we implanted neonatal thymi from Klotho-deficient and -sufficient mice into athymic hosts. Kl/Kl thymus grafts supported thymopoiesis equivalently to Klotho-sufficient thymus transplants, indicating that Klotho is not intrinsically essential for TEC support of thymopoiesis. Moreover, lethally irradiated hosts given Kl/Kl or wild-type bone marrow had normal thymocyte development and comparably reconstituted T cells, indicating that Klotho is not inherently essential for peripheral T cell reconstitution. Because Kl/Kl mice have higher levels of serum phosphorus, calcium, and vitamin D, we evaluated thymus function in Kl/Kl mice fed with a vitamin D-deprived diet. We observed that a vitamin D-deprived diet abrogated thymic involution and T cell lymphopenia in 8-wk-old Kl/Kl mice. Taken together, our data suggest that Klotho deficiency causes thymic involution via systemic effects that include high active vitamin D levels.
Collapse
Affiliation(s)
- Yan Xing
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Michelle J Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Christine A Goetz
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Ron T McElmurry
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Sarah L Parker
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Dullei Min
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medicine, Stanford University, Palo Alto, CA 94304
| | - Georg A Hollander
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland; and
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Kenneth I Weinberg
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medicine, Stanford University, Palo Alto, CA 94304
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Heather E Stefanski
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455;
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
31
|
Takashi Y, Fukumoto S. FGF23 beyond Phosphotropic Hormone. Trends Endocrinol Metab 2018; 29:755-767. [PMID: 30217676 DOI: 10.1016/j.tem.2018.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factor (FGF) 23 is a bone-derived phosphotropic hormone that regulates phosphate and vitamin D metabolism. FGF23 mainly affects kidney function via the FGF receptor (FGFR)/α-Klotho complex. The physiological roles of FGF23 and α-Klotho in the regulation of mineral homeostasis have been well established. In addition, recent studies have reported that FGF23 has various effects on many other tissues, sometimes in an α-Klotho-independent manner, especially under pathological conditions. However, how FGF23 works in these tissues without α-Klotho is not entirely clear. Here we review the recent reports concerning the actions of FGF23 on various tissues and discuss the remaining questions about FGF23.
Collapse
Affiliation(s)
- Yuichi Takashi
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, Tokushima 7708503, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, Tokushima 7708503, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, Tokushima 7708503, Japan.
| |
Collapse
|
32
|
Erem S, Razzaque MS. Dietary phosphate toxicity: an emerging global health concern. Histochem Cell Biol 2018; 150:711-719. [PMID: 30159784 DOI: 10.1007/s00418-018-1711-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
Phosphate is a common ingredient in many healthy foods but, it is also present in foods containing additives and preservatives. When found in foods, phosphate is absorbed in the intestines and filtered from the blood by the kidneys. Generally, any excess is excreted in the urine. In renal pathologies, however, such as chronic kidney disease, a reduced renal ability to excrete phosphate can result in excess accumulation in the body. This accumulation can be a catalyst for widespread damage to the cellular components, bones, and cardiovascular structures. This in turn can reduce mortality. Because of an incomplete understanding of the mechanism for phosphate homeostasis, and the multiple organ systems that can modulate it, treatment strategies designed to minimize phosphate burden are limited. The Recommended Dietary Allowance (RDA) for phosphorous is around 700 mg/day for adults, but the majority of healthy adult individuals consume far more phosphate (almost double) than the RDA. Studies suggest that low-income populations are particularly at risk for dietary phosphate overload because of the higher amounts of phosphate found in inexpensive, processed foods. Education in nutrition, as well as access to inexpensive healthy food options may reduce risks for excess consumption as well as a wide-range of disorders, ranging from cardiovascular diseases to kidney diseases to tumor formation. Pre-clinical and clinical studies suggest that dietary phosphate overload has toxic and prolonged adverse health effects. Improved regulations for reporting of phosphate concentrations on food labels are necessary so that people can make more informed choices about their diets and phosphate consumption. This is especially the case given the lack of treatments available to mitigate the short and long-term effects of dietary phosphate overload-related toxicity. Phosphate toxicity is quickly becoming a global health concern. Without measures in place to reduce dietary phosphate intake, the conditions associated with phosphate toxicity will likely to cause untold damage to the wellbeing of individuals around the world.
Collapse
Affiliation(s)
- Sarah Erem
- Department of Pathology, Saba University School of Medicine, Saba, Dutch Caribbean, The Netherlands
| | - Mohammed S Razzaque
- Department of Pathology, Saba University School of Medicine, Saba, Dutch Caribbean, The Netherlands.
- Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, USA.
- Department of Preventive and Community Dentistry, School of Dentistry, University of Rwanda College of Medicine & Health Sciences, Kigali, Rwanda.
- Department of Pathology, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Boulevard, Room: B2-306, Erie, PA, 16509, USA.
| |
Collapse
|
33
|
Moor MB, Haenzi B, Legrand F, Koesters R, Hynes NE, Bonny O. Renal Memo1 Differentially Regulates the Expression of Vitamin D-Dependent Distal Renal Tubular Calcium Transporters. Front Physiol 2018; 9:874. [PMID: 30038585 PMCID: PMC6046545 DOI: 10.3389/fphys.2018.00874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/19/2018] [Indexed: 01/11/2023] Open
Abstract
Ablation of the Mediator of ErbB2-driven Cell Motility 1 (Memo1) in mice altered calcium homeostasis and renal calcium transporter abundance by an unknown mechanism. Here, we investigated the role of intrarenal Memo in renal calcium handling. We have generated a mouse model of inducible kidney-specific Memo1 deletion. The Memo-deficient mice showed normal serum concentration and urinary excretion of calcium and phosphate, but elevated serum FGF23 concentration. They displayed elevated gene expression and protein abundance of the distal renal calcium transporters NCX1, TRPV5, and calbindin D28k. In addition, Claudin 14 gene expression was increased. When the mice were challenged by a vitamin D deficient diet, serum FGF23 concentration and TRPV5 membrane abundance were decreased, but NCX1 abundance remained increased. Collectively, renal distal calcium transport proteins (TRPV5 and Calbindin-D28k) in this model were altered by Memo- and vitamin-D dependent mechanisms, except for NCX1 which was vitamin D-independent. These findings highlight the existence of distinct regulatory mechanisms affecting TRPV5 and NCX1 membrane expression in vivo.
Collapse
Affiliation(s)
- Matthias B. Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Haenzi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Finola Legrand
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Robert Koesters
- Department of Nephrology, Hôpital Tenon, Université Pierre et Marie Curie, Paris, France
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
- Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
34
|
|
35
|
Yoshikawa R, Yamamoto H, Nakahashi O, Kagawa T, Tajiri M, Nakao M, Fukuda S, Arai H, Masuda M, Iwano M, Takeda E, Taketani Y. The age-related changes of dietary phosphate responsiveness in plasma 1,25-dihydroxyvitamin D levels and renal Cyp27b1 and Cyp24a1 gene expression is associated with renal α-Klotho gene expression in mice. J Clin Biochem Nutr 2017; 62:68-74. [PMID: 29371756 PMCID: PMC5773827 DOI: 10.3164/jcbn.17-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
In this study, we investigated the relationship between age-related changes in renal α-Klotho gene expression, vitamin D metabolism and the responsiveness of dietary phosphate in 1, 2 and 13 month-old mice fed a high phosphate (phosphate 1.2%) diet or low phosphate (phosphate 0.02%) diet for 5 days. We found that 1,25-dihydroxyvitamin D levels in plasma were significantly lower in the high phosphate group than the low phosphate group for 1 and 2 month-old mice, but not 13 month-old mice. In addition, in the high phosphate group plasma 1,25-dihydroxyvitamin D levels were decreased in 2 month-old mice relative to 1 month-old mice, but 13 month-old mice had higher levels than 2 month-old mice. In fact, plasma 1,25-dihydroxyvitamin D levels showed a significant correlation with vitamin D metabolism gene Cyp27b1 and Cyp24a1 mRNA expression in the high phosphate group. Interestingly, renal α-Klotho mRNA and protein levels were significant change with age. Furthermore, α-Klotho mRNA expression showed a significant negative correlation with plasma 1,25-dihydroxyvitamin D levels in the high phosphate group. Our results suggest that age-related alterations in renal α-Klotho expression could affect the responsiveness of dietary phosphate to vitamin D metabolism.
Collapse
Affiliation(s)
- Ryouhei Yoshikawa
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hironori Yamamoto
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.,Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, 3-1-1 Ohde-cho, Echizen-city, Fukui 915-8586, Japan.,Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Otoki Nakahashi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.,Division of Functional Food Chemistry, Institute for Health Science, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Tomohiro Kagawa
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mari Tajiri
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mari Nakao
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shiori Fukuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hidekazu Arai
- Laboratory of Clinical Nutrition and Management, Graduate School of Nutritional and Environmental Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Eiji Takeda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
36
|
Krishnasamy R, Tan SJ, Hawley CM, Johnson DW, Stanton T, Lee K, Mudge DW, Campbell S, Elder GJ, Toussaint ND, Isbel NM. Progression of arterial stiffness is associated with changes in bone mineral markers in advanced CKD. BMC Nephrol 2017; 18:281. [PMID: 28870151 PMCID: PMC5584006 DOI: 10.1186/s12882-017-0705-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Background Arterial stiffness is an independent predictor of all-cause and cardiovascular mortality in patients with chronic kidney disease (CKD). There are limited prospective data however on progression of arterial stiffness in CKD, including evaluating associations with bone mineral markers such as fibroblast growth factor 23 (FGF23) and soluble α-klotho (sKl). Methods In this prospective, single-center, observational study, arterial stiffness [measured by pulse wave velocity (PWV)] and hormones influencing mineral homeostasis, including serum FGF23 and sKl, were compared between non-dialysis CKD stages 4/5 and healthy controls at baseline and 12 months (12 m). Abdominal aortic calcification (AAC) was quantitated using lateral lumbar radiography at baseline. Results Forty patients with CKD [mean estimated glomerular filtration rate (eGFR) 19.5 ± 6.7 mL/min/1.73m2] and 42 controls (mean eGFR 88.6 ± 12.9 mL/min/1.73m2) completed follow-up. There were no differences in age, gender and body mass index between groups. A significant increase in FGF23 [240.6 (141.9–1129.8) to 396.8 (160.3–997.7) pg/mL, p = 0.001] was observed in the CKD group but serum phosphate, corrected calcium, parathyroid hormone and sKl did not change significantly over 12 m. At baseline, CKD subjects had higher AAC prevalence [83.8% versus (vs.) 43.6%, p = 0.002] and higher aortic PWV [9.7(7.6–11.7) vs. 8.1 (7.2–9.7) m/s, p = 0.047] compared to controls. At 12 m, aortic PWV increased by 1.3 m/s (95% confidence interval, 0.56 to 2.08, p < 0.001) in the CKD cohort, with 30% of subjects showing progression from normal aortic elasticity to stiffening (PWV > 10 m/s). Serum FGF23 was associated with AAC, abnormal PWV and progression of PWV at 12 m. Conclusions Arterial stiffness and serum FGF23, both of which are associated with increased cardiovascular risk, increased over one year in individuals with CKD. Additionally, a significant association was found between serum FGF23 and arterial calcification and stiffness. Larger clinical studies and further experimental work are warranted to delineate the temporal relationship as well as the pathological mechanisms linking FGF23 and vascular disease. Electronic supplementary material The online version of this article (10.1186/s12882-017-0705-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rathika Krishnasamy
- Department of Nephrology, Sunshine Coast University Hospital, PO Box 5340, Sunshine Coast, Birtinya, MC QLD, 4560, Australia. .,Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital (RMH), Melbourne, VIC, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, VIC, Australia
| | - Carmel M Hawley
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia.,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - David W Johnson
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia.,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Tony Stanton
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Cardiology, Sunshine Coast University Hospital, Birtinya, Australia
| | - Kevin Lee
- Department of Radiology, Princess Alexandra Hospital, Brisbane, Australia
| | - David W Mudge
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Scott Campbell
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Grahame J Elder
- Department of Renal Medicine, Westmead Hospital, Sydney, Australia.,Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital (RMH), Melbourne, VIC, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, VIC, Australia
| | - Nicole M Isbel
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
37
|
Econs MJ. Genetic diseases resulting from disordered FGF23/klotho biology. Bone 2017; 100:56-61. [PMID: 27746322 DOI: 10.1016/j.bone.2016.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Michael J Econs
- Indiana University School of Medicine, 1120 W. Michigan Street, Gatch Clinical Building 459, Indianapolis, Indiana 46202-5111, United States.
| |
Collapse
|
38
|
Mencke R, Hillebrands JL. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev 2017; 35:124-146. [PMID: 27693241 DOI: 10.1016/j.arr.2016.09.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
Abstract
Klotho is an anti-ageing protein that functions in many pathways that govern ageing, like regulation of phosphate homeostasis, insulin signaling, and Wnt signaling. Klotho expression levels and levels in blood decline during ageing. The vascular phenotype of Klotho deficiency features medial calcification, intima hyperplasia, endothelial dysfunction, arterial stiffening, hypertension, and impaired angiogenesis and vasculogenesis, with characteristics similar to aged human arteries. Klotho-deficient phenotypes can be prevented and rescued by Klotho gene expression or protein supplementation. High phosphate levels are likely to be directly pathogenic and are a prerequisite for medial calcification, but more important determinants are pathways that regulate cellular senescence, suggesting that deficiency of Klotho renders cells susceptible to phosphate toxicity. Overexpression of Klotho is shown to ameliorate medial calcification, endothelial dysfunction, and hypertension. Endogenous vascular Klotho expression is a controversial subject and, currently, no compelling evidence exists that supports the existence of vascular membrane-bound Klotho expression, as expressed in kidney. In vitro, Klotho has been shown to decrease oxidative stress and apoptosis in both SMCs and ECs, to reduce SMC calcification, to maintain the contractile SMC phenotype, and to prevent μ-calpain overactivation in ECs. Klotho has many protective effects with regard to the vasculature and constitutes a very promising therapeutic target. The purpose of this review is to explore the etiology of the vascular phenotype of Klotho deficiency and the therapeutic potential of Klotho in vascular disease.
Collapse
|
39
|
Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney Int 2017; 92:599-611. [PMID: 28396120 DOI: 10.1016/j.kint.2017.02.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 10/19/2022]
Abstract
Osteocytes within the mineralized bone matrix control bone remodeling by regulating osteoblast and osteoclast activity. Osteocytes express the aging suppressor Klotho, but the functional role of this protein in skeletal homeostasis is unknown. Here we identify Klotho expression in osteocytes as a potent regulator of bone formation and bone mass. Targeted deletion of Klotho from osteocytes led to a striking increase in bone formation and bone volume coupled with enhanced osteoblast activity, in sharp contrast to what is observed in Klotho hypomorphic (kl/kl) mice. Conversely, overexpression of Klotho in cultured osteoblastic cells inhibited mineralization and osteogenic activity during osteocyte differentiation. Further, the induction of chronic kidney disease with high-turnover renal osteodystrophy led to downregulation of Klotho in bone cells. This appeared to offset the skeletal impact of osteocyte-targeted Klotho deletion. Thus, our findings establish a key role of osteocyte-expressed Klotho in regulating bone metabolism and indicate a new mechanism by which osteocytes control bone formation.
Collapse
|
40
|
Shiels PG, Stenvinkel P, Kooman JP, McGuinness D. Circulating markers of ageing and allostatic load: A slow train coming. Pract Lab Med 2017; 7:49-54. [PMID: 28856219 PMCID: PMC5574864 DOI: 10.1016/j.plabm.2016.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 12/15/2022] Open
Abstract
Dealing with the growing burden of age-related morbidities is one of the greatest challenges facing modern society. How we age across the lifecourse and how psychosocial and lifestyle factors interplay with the biology of ageing remains to be fully elucidated. Sensitive and specific biomarkers with which to interrogate the biology of the ageing process are sparse. Recent evidence suggests that non-coding RNAs are key determinants of such processes and that these can be used as potential circulatory bio-markers of ageing. They may also provide a mechanism which mediates the spread of allostatic load across the body over time, ultimately reflecting the immunological health and physiological status of tissues and organs. The interplay between exosomal microRNAs and ageing processes is still relatively unexplored, although circulating microRNAs have been linked to the regulation of a range of physiological and pathological processes and offer insight into mechanistic determinants of healthspan.
Collapse
Affiliation(s)
- Paul G. Shiels
- University of Glasgow, Institute of Cancer Sciences, Wolfson-Wohl Translational Cancer Research Centre, Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Huddinge, Sweden
| | - Jeroen P. Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Dagmara McGuinness
- University of Glasgow, Institute of Cancer Sciences, Wolfson-Wohl Translational Cancer Research Centre, Glasgow, UK
| |
Collapse
|
41
|
Kaludjerovic J, Komaba H, Sato T, Erben RG, Baron R, Olauson H, Larsson TE, Lanske B. Klotho expression in long bones regulates FGF23 production during renal failure. FASEB J 2017; 31:2050-2064. [PMID: 28183805 DOI: 10.1096/fj.201601036r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/17/2017] [Indexed: 12/24/2022]
Abstract
Circulating levels of bone-derived fibroblast growth factor 23 (FGF23) increase early during acute and chronic kidney disease and are associated with adverse outcomes. Membrane-bound Klotho acts as a permissive coreceptor for FGF23, and its expression was recently found in osteoblasts/osteocytes. We hypothesized that Klotho in bone cells is part of an autocrine feedback loop that regulates FGF23 expression during renal failure. Thus, we induced renal failure in mice with targeted deletion of Klotho in long bones. Uremic wild-type (KLfl/fl ) and knockout (Prx1-Cre;KLfl/fl ) mice both responded with reduced body weight, kidney atrophy, hyperphosphatemia, and increased bone turnover. Importantly, long bones of Prx1-Cre;KLfl/fl mice but not their axial skeleton failed to increase FGF23 expression as observed in uremic KLfl/fl mice. Consequently, Prx1-Cre;KLfl/fl mice had significantly lower serum FGF23 and parathyroid hormone levels, and higher renal 1-α-hydroxylase expression, serum 1,25-dihydroxyvitamin D, and calcium levels than KLfl/fl mice. These results were confirmed in two independent models of renal failure, adenine diet induced and 5/6 nephrectomy. Moreover, FGF23-treated bone cells required Klotho to increase FGF23 mRNA and ERK phosphorylation. In summary, our novel findings show that Klotho in bone is crucial for inducing FGF23 production upon renal failure. We propose the presence of an autocrine feedback loop in which Klotho senses the need for FGF23.-Kaludjerovic, J., Komaba, H., Sato, T., Erben, R. G., Baron, R., Olauson, H., Larsson, T. E., Lanske, B. Klotho expression in long bones regulates FGF23 production during renal failure.
Collapse
Affiliation(s)
- Jovana Kaludjerovic
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Hirotaka Komaba
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Tadatoshi Sato
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Reinhold G Erben
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA.,Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hannes Olauson
- Division of Renal Medicine, Department of Clinical Sciences, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Tobias E Larsson
- Division of Renal Medicine, Department of Clinical Sciences, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Beate Lanske
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; .,Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Shamsuzzaman S, Onal M, St John HC, Jeffery JJ, Pike JW. Absence of the Vitamin D Receptor Inhibits Atherosclerotic Plaque Calcification in Female Hypercholesterolemic Mice. J Cell Biochem 2017; 118:1050-1064. [PMID: 27567005 DOI: 10.1002/jcb.25679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/06/2023]
Abstract
Epidemiological and clinical data suggest adverse cardiovascular outcomes with respect to vitamin D deficiency. Here, we explored the effects of vitamin D in atherosclerotic plaque calcification in vivo by utilizing vitamin D receptor (Vdr)-deficient mice in an Apoe-/- background. Animals were fed a high-fat diet (HFD) for either 12 or 18 weeks and then examined for atherosclerotic plaque development. In order to prevent calcium deficiency, Vdr-/- and Apoe-/- ;Vdr-/- animals were fed a high-calcium rescue diet prior to initiation of the HFD feeding and supplemented with high-calcium water during HFD feeding. Although calcium supplementation improved bone mass in Vdr-/- and Apoe-/- ;Vdr-/- mice, neither strain was fully rescued. Systemic inflammatory responses observed in the absence of VDR were exaggerated in Apoe-/- mice. Whereas, hyperlipidemic profiles seen in Apoe-/- mice were ameliorated in the absence of VDR. Micro-computed tomography (µCT) analysis revealed that six out of eight Apoe-/- animals developed atherosclerotic plaque calcification following 12 weeks of HFD feeding and 100% of the mice developed plaque calcification after 18 weeks. In contrast, although atherosclerotic lesions were evident in Apoe-/- ;Vdr-/- mice at 12 and 18 weeks of HFD challenge, none of these animals developed plaque calcification at either time point. The active vitamin D hormone, 1,25(OH)2 D3 likely increased calcification in aortic smooth muscle cells perhaps by directly modulating expression of Alpl, Rankl, and Opg. Our data suggest that the absence of VDR inhibits atherosclerotic plaque calcification in hypercholesterolemic Apoe-/- mice, providing additional insight into the role of vitamin D in atherosclerotic plaque calcification. J. Cell. Biochem. 118: 1050-1064, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sohel Shamsuzzaman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Melda Onal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Hillary C St John
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Justin J Jeffery
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - John W Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
43
|
Chen W, Melamed ML, Hostetter TH, Bauer C, Raff AC, Almudevar AL, Lalonde A, Messing S, Abramowitz MK. Effect of oral sodium bicarbonate on fibroblast growth factor-23 in patients with chronic kidney disease: a pilot study. BMC Nephrol 2016; 17:114. [PMID: 27495287 PMCID: PMC4974735 DOI: 10.1186/s12882-016-0331-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/02/2016] [Indexed: 12/16/2022] Open
Abstract
Background The regulation of fibroblast growth factor-23 (FGF23) secretion in patients with chronic kidney disease (CKD) is incompletely understood. An in vitro study showed that metabolic acidosis increased FGF23 in mouse bone. The objective of this study is to evaluate the effect of oral sodium bicarbonate on circulating FGF23 levels in patients with CKD. Methods This was a single-blind pilot study. Twenty adults with estimated glomerular filtration rate between 15–45 mL/min/1.73 m2 and serum bicarbonate between 20–24 mEq/L were treated with placebo for 2 weeks, followed by increasing doses of oral sodium bicarbonate (0.3, 0.6 and 1.0 mEq/kg/day) in 2 week intervals for a total of 6 weeks. C-terminal FGF23 levels were measured at the initial visit, after 2 weeks of placebo and after 6 weeks of bicarbonate therapy. Wilcoxon matched-pairs signed-rank test was used to compare FGF23 before and after sodium bicarbonate. Results After 6 weeks of oral sodium bicarbonate, the median FGF23 increased significantly from 150.9 RU/mL (IQR 107.7–267.43) to 191.4 RU/mL (IQR 132.6–316.9) (p = 0.048) and this persisted after excluding participants who received activated vitamin D. Conclusions FGF23 increased after short-term oral sodium bicarbonate therapy in patients with CKD and mild metabolic acidosis. It is unclear whether this was due to the alkalinizing effect of sodium bicarbonate or other factors. Trial registration The study was registered at ClinicalTrials.gov (NCT00888290) on April 23, 2009.
Collapse
Affiliation(s)
- Wei Chen
- Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 675, Rochester, NY, 14642, USA.
| | - Michal L Melamed
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas H Hostetter
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Carolyn Bauer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amanda C Raff
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anthony L Almudevar
- Department of Biostatistics & Computation Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Amy Lalonde
- Department of Biostatistics & Computation Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Susan Messing
- Department of Biostatistics & Computation Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Matthew K Abramowitz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
44
|
Ide N, Olauson H, Sato T, Densmore MJ, Wang H, Hanai JI, Larsson TE, Lanske B. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int 2016; 90:348-362. [DOI: 10.1016/j.kint.2016.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/29/2016] [Accepted: 04/14/2016] [Indexed: 01/11/2023]
|
45
|
Li Y, Wang L, Zhou J, Li F. Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho (KL) gene. PeerJ 2016; 4:e2186. [PMID: 27478698 PMCID: PMC4950547 DOI: 10.7717/peerj.2186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/07/2016] [Indexed: 01/22/2023] Open
Abstract
Klotho (KL), originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp) as the porcine KL core promoter. MARC0022311SNP (A or G) in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1), which was confirmed using electrophoretic mobility shift assays (EMSA) and chromatin immune-precipitation (ChIP). Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Lei Wang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Jiawei Zhou
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Fenge Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
46
|
Kalaitzidis RG, Duni A, Siamopoulos KC. Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease. Int Urol Nephrol 2016; 48:1657-66. [PMID: 27215557 DOI: 10.1007/s11255-016-1325-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
The Klotho gene displays an extremely shortened life span with loss of function missense mutations leading to premature multiple organ failure, thus resembling human premature aging syndromes. The transmembrane form of Klotho protein functions as an obligatory co-receptor for FGF23. Klotho and FGF23 are crucial components for the regulation of vitamin D metabolism and subsequently blood phosphate levels. The secreted Klotho protein has multiple regulatory functions, including effects on electrolyte homeostasis, on growth factor pathways as well as on oxidative stress, which are currently the object of extensive research. Klotho protein deficiency is observed in many experimental and clinical disease models. Genetic polymorphisms such as the G-395A polymorphism in the promoter region of the Klotho gene have been associated with the development of essential hypertension. The kidneys are the primary site of Klotho production, and renal Klotho is decreased in CKD, followed by a reduction in plasma Klotho. Klotho deficiency has been both associated with progression of CKD as well as with its cardinal systemic manifestations, including cardiovascular disease. Thus, Klotho has been suggested both as a risk biomarker for early detection of CKD and additionally as a potential therapeutic tool in the future.
Collapse
Affiliation(s)
- Rigas G Kalaitzidis
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece.
| | - Anila Duni
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | | |
Collapse
|
47
|
Abstract
Alpha-Klotho (αKlotho) protein is encoded by the gene, Klotho, and functions as a coreceptor for endocrine fibroblast growth factor-23. The extracellular domain of αKlotho is cleaved by secretases and released into the circulation where it is called soluble αKlotho. Soluble αKlotho in the circulation starts to decline in chronic kidney disease (CKD) stage 2 and urinary αKlotho in even earlier CKD stage 1. Therefore soluble αKlotho is an early and sensitive marker of decline in kidney function. Preclinical data from numerous animal experiments support αKlotho deficiency as a pathogenic factor for CKD progression and extrarenal CKD complications including cardiac and vascular disease, hyperparathyroidism, and disturbed mineral metabolism. αKlotho deficiency induces cell senescence and renders cells susceptible to apoptosis induced by a variety of cellular insults including oxidative stress. αKlotho deficiency also leads to defective autophagy and angiogenesis and promotes fibrosis in the kidney and heart. Most importantly, prevention of αKlotho decline, upregulation of endogenous αKlotho production, or direct supplementation of soluble αKlotho are all associated with attenuation of renal fibrosis, retardation of CKD progression, improvement of mineral metabolism, amelioration of cardiac function and morphometry, and alleviation of vascular calcification in CKD. Therefore in rodents, αKlotho is not only a diagnostic and prognostic marker for CKD but the enhancement of endogenous or supplement of exogenous αKlotho are promising therapeutic strategies to prevent, retard, and decrease the comorbidity burden of CKD.
Collapse
Affiliation(s)
- J A Neyra
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - M C Hu
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
48
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
49
|
Abstract
The α-Klotho mouse is an animal model that prematurely shows phenotypes resembling human aging, such as osteoporosis, arteriosclerosis, pulmonary emphysema, and kidney damage. Interestingly, these abnormalities are triggered by a deficiency of a single protein, α-Klotho. The kidney is an organ that highly expresses α-Klotho, suggesting that α-Klotho is important for kidney function. Recent studies suggest that α-Klotho is associated with phosphate, vitamin D, and calcium homeostasis. The calcium imbalance in α-Klotho mice may induce calpain overactivation, leading to cell death and tissue destruction. α-Klotho is predicted to have glycosidase activity, capable of modifying the N-glycans of channels and transporters and regulating transmembrane movement of several ions, including calcium. Interestingly, N-glycan changes are observed in the kidney of α-Klotho mice and normal aged mice in association with decreased α-Klotho levels. These results imply that glycobiology and α-Klotho function are interesting targets for future studies.
Collapse
|
50
|
Kinoshita S, Kawai M. The FGF23/KLOTHO Regulatory Network and Its Roles in Human Disorders. VITAMINS AND HORMONES 2016; 101:151-74. [PMID: 27125741 DOI: 10.1016/bs.vh.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The functions of Klotho (KL) are multifaceted and include the regulation of aging and mineral metabolism. It was originally identified as the gene responsible for premature aging-like symptoms in mice and was subsequently shown to function as a coreceptor in the fibroblast growth factor (FGF) 23 signaling pathway. The discovery of KL as a partner for FGF23 led to significant advances in understanding of the molecular mechanisms underlying phosphate and vitamin D metabolism, and simultaneously clarified the pathogenic roles of the FGF23 signaling pathway in human diseases. These novel insights led to the development of new strategies to combat disorders associated with the dysregulated metabolism of phosphate and vitamin D, and clinical trials on the blockade of FGF23 signaling in X-linked hypophosphatemic rickets are ongoing. Molecular and functional insights on KL and FGF23 have been discussed in this review and were extended to how dysregulation of the FGF23/KL axis causes human disorders associated with abnormal mineral metabolism.
Collapse
Affiliation(s)
- S Kinoshita
- Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan
| | - M Kawai
- Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan.
| |
Collapse
|