1
|
Jensen M, Heinl ES, Federlein A, Schwartz U, Lund L, Madsen K, Jensen BL, Schweda F. Identification of natriuretic peptide receptor A-related gene expression signatures in podocytes in vivo reveals baseline control of protective pathways. Am J Physiol Renal Physiol 2024; 327:F806-F821. [PMID: 39298549 DOI: 10.1152/ajprenal.00394.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
Natriuretic peptide receptor-A (NPR-A) is the principal receptor for the natriuretic peptides atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Targeted deletion of NPR-A in mouse glomerular podocytes significantly enhances renal injury in vivo in the DOCA-salt experimental model. It was therefore hypothesized that natriuretic peptides exert a direct protective effect on glomerular barrier integrity through activation of NPR-A and modulation of gene expression patterns in podocytes. Green fluorescence-positive podocytes from mice with a conditional deletion of Npr1 encoding NPR-A were isolated by fluorescence-activated cell sorting (FACS). Differentially expressed genes (DEGs) in podocytes were identified by RNA sequencing of podocytes from wild-type and NPR-A-deleted mice. Enrichment analysis was performed on the DEGs using Gene Ontology (GO) terms. Identified transcripts were validated by real-time PCR and ELISA of cultured isolated human and mouse glomeruli. In addition, the effect of natriuretic peptides on podocyte migration was investigated by measuring the outgrowth of podocytes from cultured glomeruli. A total of 158 DEGs were identified with 81 downregulated DEGs and 77 upregulated DEGs in Npr1-deficient podocytes. Among the downregulated genes were protein S and semaphorin 3G, which are known to have protective effects in podocytes. Protein S was also expressed in and secreted from isolated human glomeruli. GO enrichment analysis revealed that the upregulated DEGs in NPR-A deficient podocytes were associated with cell migration and motility. In line, BNP significantly decreased podocyte outgrowth from cultured glomeruli. In conclusion, endogenous levels of natriuretic peptides in mice support baseline protective pathways at glomerular podocytes such as protein S and suppress podocyte migration.NEW & NOTEWORTHY A combination of fluorescence-activated cell sorting and RNA sequencing identified 158 changed gene products in adult mouse kidneys with and without podocyte-specific deletion of the natriuretic peptide receptor A. Downregulated products included protein S and semaphorin 3G, both with proven renoprotective impact, whereas upregulated products were related to mobility of podocytes. Protein S was produced and released from human and murine isolated glomeruli, and atrial natriuretic peptide (ANP) led to decreased migration of podocytes.
Collapse
Affiliation(s)
- Mia Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Elena-Sofia Heinl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Anna Federlein
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Center, Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Madsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Boye L Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Boegelein L, Schreiber P, Philipp A, Nusshag C, Essbauer S, Zeier M, Krautkrämer E. Replication kinetics of pathogenic Eurasian orthohantaviruses in human mesangial cells. Virol J 2024; 21:241. [PMID: 39354507 PMCID: PMC11446005 DOI: 10.1186/s12985-024-02517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Eurasian pathogenic orthohantaviruses cause hemorrhagic fever with renal syndrome (HFRS) characterized by acute kidney injury (AKI). The virulence of orthohantaviruses varies enormously and direct infection of different renal cell types contribute to pathogenesis. Glomerular mesangial cells play an essential role in the interplay between kidney cells and proper kidney function. Therefore, we analyzed the replication competence of different orthohantavirus species in primary mesangial cells and a mesangial cell line. METHODS We tested the suitability of the mesangial cell line CIHGM-1 (conditionally immortalized human glomerular mesangial cells) as cell culture model for orthohantavirus kidney infection by comparison with primary human renal mesangial cells (HRMCs). We analyzed infection with high pathogenic Hantaan virus (HTNV), moderate pathogenic Puumala virus (PUUV) and non-/low-pathogenic Tula virus (TULV). RESULTS Effective viral spread was observed for PUUV only, whereas infection with HTNV and TULV was abortive. However, in contrast to TULV, HTNV exhibits an initially high infection rate and declines afterwards. This replication pattern was observed in HRMCs and CIHGM-1 cells. Viability or adhesion was neither impaired for PUUV-infected CIHGM-1 nor HRMCs. A loss of migration capacity was observed in PUUV-infected CIHGM-1 cells, but not in HRMCs. CONCLUSIONS The identification of differences in the replication competence of pathogenic orthohantavirus strains in renal mesangial cells is of special interest and may provide useful insights in the virus-specific mechanisms of orthohantavirus induced AKI. The use of CIHGM-1 cells will facilitate the research in a relevant cell culture system.
Collapse
Affiliation(s)
- Lukas Boegelein
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Pamela Schreiber
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Alexandra Philipp
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Sandra Essbauer
- Department Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, German Centre for Infection Research, Munich Partner Site, D-80937, Munich, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Xu J, Hu H, Sun Y, Zhao Z, Zhang D, Yang L, Lu Q. The fate of immune complexes in membranous nephropathy. Front Immunol 2024; 15:1441017. [PMID: 39185424 PMCID: PMC11342396 DOI: 10.3389/fimmu.2024.1441017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The most characteristic feature of membranous nephropathy (MN) is the presence of subepithelial electron dense deposits and the consequential thickening of the glomerular basement membrane. There have been great advances in the understanding of the destiny of immune complexes in MN by the benefit of experimental models represented by Heymann nephritis. Subepithelial immune complexes are formed in situ by autoantibodies targeting native autoantigens or exogenous planted antigens such as the phospholipase A2 receptor (PLA2R) and cationic BSA respectively. The nascent immune complexes would not be pathogenic until they develop into immune deposits. Podocytes are the major source of autoantigens in idiopathic membranous nephropathy. They also participate in the modulation and removal of the immune complexes to a large extent. The balance between deposition and clearance is regulated by a wide range of factors such as the composition and physicochemical properties of the immune complexes and the complement system. Complement components such as C3 and C1q have been reported to be precipitated with the deposits whereas a complement regulatory protein CR1 expressed by podocytes is involved in the phagocytosis of immune complexes by podocytes. Podocytes regulate the dynamic change of immune complexes which is disturbed in membranous nephropathy. To elucidate the precise fate of the immune complexes is essential for developing more rational and novel therapies for membranous nephropathy.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhe Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Danyuan Zhang
- Qi Huang of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Yang
- Department of Nephropathy, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Piwkowska A, Rachubik P, Typiak M, Kulesza T, Audzeyenka I, Saleem MA, Gruba N, Wysocka M, Lesner A, Rogacka D. ADAM10 as a major activator of reactive oxygen species production and klotho shedding in podocytes under diabetic conditions. Biochem Pharmacol 2024; 225:116328. [PMID: 38815628 DOI: 10.1016/j.bcp.2024.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Early stages of diabetes are characterized by elevations of insulin and glucose concentrations. Both factors stimulate reactive oxygen species (ROS) production, leading to impairments in podocyte function and disruption of the glomerular filtration barrier. Podocytes were recently shown to be an important source of αKlotho (αKL) expression. Low blood Klotho concentrations are also associated with an increase in albuminuria, especially in patients with diabetes. We investigated whether ADAM10, which is known to cleave αKL, is activated in glomeruli and podocytes under diabetic conditions and the potential mechanisms by which ADAM10 mediates ROS production and disturbances of the glomerular filtration barrier. In cultured human podocytes, high glucose increased ADAM10 expression, shedding, and activity, NADPH oxidase activity, ROS production, and albumin permeability. These effects of glucose were inhibited when cells were pretreated with an ADAM10 inhibitor or transfected with short-hairpin ADAM10 (shADAM10) or after the addition soluble Klotho. We also observed increases in ADAM10 activity, NOX4 expression, NADPH oxidase activity, and ROS production in αKL-depleted podocytes. This was accompanied by an increase in albumin permeability in shKL-expressing podocytes. The protein expression and activity of ADAM10 also increased in isolated glomeruli and urine samples from diabetic rats. Altogether, these results reveal a new mechanism by which hyperglycemia in diabetes increases albumin permeability through ADAM10 activation and an increase in oxidative stress via NOX4 enzyme activation. Moreover, αKlotho downregulates ADAM10 activity and supports redox balance, consequently protecting the slit diaphragm of podocyteσ under hyperglycemic conditions.
Collapse
Affiliation(s)
- Agnieszka Piwkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdansk, Faculty of Chemistry, Gdańsk, Poland.
| | - Patrycja Rachubik
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland
| | - Marlena Typiak
- University of Gdansk, Faculty of Biology, Gdansk, Poland
| | - Tomasz Kulesza
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland
| | - Irena Audzeyenka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdansk, Faculty of Chemistry, Gdańsk, Poland
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| | - Natalia Gruba
- University of Gdansk, Faculty of Chemistry, Gdańsk, Poland
| | | | - Adam Lesner
- University of Gdansk, Faculty of Chemistry, Gdańsk, Poland
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdansk, Faculty of Chemistry, Gdańsk, Poland
| |
Collapse
|
5
|
Xu H, Yong L, Gao X, Chen Y, Wang Y, Wang F, Hou X. CaMK4: Structure, physiological functions, and therapeutic potential. Biochem Pharmacol 2024; 224:116204. [PMID: 38615920 DOI: 10.1016/j.bcp.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMK4) is a versatile serine/threonine kinase involved in various cellular functions. It regulates T-cell differentiation, podocyte function, tumor cell proliferation/apoptosis, β cell mass, and insulin sensitivity. However, the underlying molecular mechanisms are complex and remain incompletely understood. The aims of this review are to highlight the latest advances in the regulatory mechanisms of CaMK4 underlying T-cell imbalance and parenchymal cell mass in multiple diseases. The structural motifs and activation of CaMK4, as well as the potential role of CaMK4 as a novel therapeutic target are also discussed.
Collapse
Affiliation(s)
- Hao Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Liang Yong
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, PR China
| | - Xianxian Gao
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yandong Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Fuyan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China; Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, PR China
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
6
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Mendoza-Soto P, Jara C, Torres-Arévalo Á, Oyarzún C, Mardones GA, Quezada-Monrás C, San Martín R. Pharmacological Blockade of the Adenosine A 2B Receptor Is Protective of Proteinuria in Diabetic Rats, through Affecting Focal Adhesion Kinase Activation and the Adhesion Dynamics of Podocytes. Cells 2024; 13:846. [PMID: 38786068 PMCID: PMC11119713 DOI: 10.3390/cells13100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.
Collapse
Affiliation(s)
- Pablo Mendoza-Soto
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| | - Claudia Jara
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| | - Ángelo Torres-Arévalo
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| | - Carlos Oyarzún
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| | - Gonzalo A. Mardones
- Institute of Physiology, Medicine Faculty, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Claudia Quezada-Monrás
- Tumor Biology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Rody San Martín
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| |
Collapse
|
8
|
Yang C, Huang F, Fang H, Zang Y. Jiawei Shengjiangsan's Effect on Renal Injury in Diabetic Nephropathy Mice is Investigated via the PI3K/Akt/NF-κB Signaling Pathway. Diabetes Metab Syndr Obes 2024; 17:1687-1698. [PMID: 38629025 PMCID: PMC11020332 DOI: 10.2147/dmso.s456205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose This study aimed to investigate the intervention mechanism of Jiawei Shengjiangsan (JWSJS) on kidney injury in diabetic nephropathy mice. Methods Thirty 8-week-old db/db mice were randomly divided into five groups: model group, Perindopril group, and JWSJS low-, medium-, and high-dose groups (n=6 per group) based on body weight. Additionally, a blank control group was established consisting of 6 db/m mice aged 8 weeks. The blank and model groups received daily intragastric administration of 7g/kg/d pure water. The remaining groups were assigned to JWSJS low (3.5g/kg/d), medium (7g/kg/d), high (14g/kg/d) dosage groups, and perindopril positive control group (0.48mg/kg/d) for 12 weeks. Post-experiment, serum creatinine (SCr) and blood urea nitrogen (BUN) were analyzed using an automatic biochemical analyzer. Enzyme-linked immunosorbent assay (ELISA) measured 24-hour urinary albumin, neutrophil gelatinase-associated lipocalin (NGAL), TNF-α, IL-1β, VCAM-1, MCP-1, and HbA1c. Western blot assessed the protein expressions of p-PI3K, p-Akt, and p-NF-κB p65, while pathological kidney changes were observed. Results Compared to the blank group, the model group exhibited increased SCr, BUN, 24-hour urinary albumin, serum NGAL, TNF-α, IL-1β, VCAM-1, MCP-1, HbA1c, p-PI3K, and p-Akt, alongside increased p-NF-κB p65 expression, indicating significant kidney pathology. After treatment, the JWSJS group showed decreased SCr, BUN, 24-hour urinary microalbumin, NGAL, HbA1c, TNF-α, IL-1β, VCAM-1, MCP-1 levels, increased p-PI3K and p-Akt expression (P<0.05), and reduced p-NF-κB p65 content (P<0.05). Histopathological analysis revealed that JWSJS ameliorated renal tubular epithelial cell damage, glomerular capillary and basement membrane injuries, and facilitated the repair of damaged podocytes in diabetic nephropathy mice. Conclusion JWSJS demonstrated efficacy in reducing renal inflammation in diabetic nephropathy mice, with its mechanism likely associated with the inhibition of the PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chenhua Yang
- General Medicine, Bao’an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Fengling Huang
- College of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Huiqin Fang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yunhua Zang
- General Medicine, Bao’an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
9
|
Saito K, Yokawa S, Kurihara H, Yaoita E, Mizuta S, Tada K, Oda M, Hatakeyama H, Ohta Y. FilGAP controls cell-extracellular matrix adhesion and process formation of kidney podocytes. FASEB J 2024; 38:e23504. [PMID: 38421271 DOI: 10.1096/fj.202301691rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
The function of kidney podocytes is closely associated with actin cytoskeleton regulated by Rho small GTPases. Loss of actin-driven cell adhesions and processes is connected to podocyte dysfunction, proteinuria, and kidney diseases. FilGAP, a GTPase-activating protein for Rho small GTPase Rac1, is abundantly expressed in kidney podocytes, and its gene is linked to diseases in a family with focal segmental glomerulosclerosis. In this study, we have studied the role of FilGAP in podocytes in vitro. Depletion of FilGAP in cultured podocytes induced loss of actin stress fibers and increased Rac1 activity. Conversely, forced expression of FilGAP increased stress fiber formation whereas Rac1 activation significantly reduced its formation. FilGAP localizes at the focal adhesion (FA), an integrin-based protein complex closely associated with stress fibers, that mediates cell-extracellular matrix (ECM) adhesion, and FilGAP depletion decreased FA formation and impaired attachment to the ECM. Moreover, in unique podocyte cell cultures capable of inducing the formation of highly organized processes including major processes and foot process-like projections, FilGAP depletion or Rac1 activation decreased the formation of these processes. The reduction of FAs and process formations in FilGAP-depleted podocyte cells was rescued by inhibition of Rac1 or P21-activated kinase 1 (PAK1), a downstream effector of Rac1, and PAK1 activation inhibited their formations. Thus, FilGAP contributes to both cell-ECM adhesion and process formation of podocytes by suppressing Rac1/PAK1 signaling.
Collapse
Affiliation(s)
- Koji Saito
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Seiji Yokawa
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hidetake Kurihara
- Department of Physical Therapy, Faculty of Health Sciences, Aino University, Osaka, Ibaraki, Japan
| | - Eishin Yaoita
- Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Sari Mizuta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kanae Tada
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Moemi Oda
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hiroyasu Hatakeyama
- Department of Physiology, School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
10
|
Ogino S, Yoshikawa K, Nagase T, Mikami K, Nagase M. Roles of the mechanosensitive ion channel Piezo1 in the renal podocyte injury of experimental hypertensive nephropathy. Hypertens Res 2024; 47:747-759. [PMID: 38145990 DOI: 10.1038/s41440-023-01536-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/27/2023]
Abstract
Glomerular podocyte injury plays an essential role in proteinuria pathogenesis, a hallmark of chronic kidney disease, including hypertensive nephropathy. Although podocytes are susceptible to mechanical stimuli, their mechanotransduction pathways remain elusive. Piezo proteins, including Piezo1 and 2, are mechanosensing ion channels that mediate various biological phenomena. Although renal Piezo2 expression and its alteration in rodent dehydration and hypertension models have been reported, the role of Piezo1 in hypertensive nephropathy and podocyte injury is unclear. In this study, we examined Piezo1 expression and localization in the kidneys of control mice and in those of mice with hypertensive nephrosclerosis. Uninephrectomized, aldosterone-infused, salt-loaded mice developed hypertension, albuminuria, podocyte injury, and glomerulosclerosis. RNAscope in situ hybridization revealed that Piezo1 expression was enhanced in the podocytes, mesangial cells, and distal tubular cells of these mice compared to those of the uninephrectomized, vehicle-infused control group. Piezo1 upregulation in the glomeruli was accompanied by the induction of podocyte injury-related markers, plasminogen activator inhibitor-1 and serum/glucocorticoid regulated kinase 1. These changes were reversed by antihypertensive drug. Exposure of Piezo1-expressing cultured podocytes to mechanical stretch activated Rac1 and upregulated the above-mentioned markers, which was antagonized by the Piezo1 blocker grammostola mechanotoxin #4 (GsMTx4). Administration of Piezo1-specific agonist Yoda1 mimicked the effects of mechanical stretch, which was minimized by the Yoda1-specific inhibitor Dooku1 and Rac inhibitor. Rac1 was also activated in the above-mentioned hypertensive mice, and Rac inhibitor downregulated gene expression of podocyte injury-related markers in vivo. Our results suggest that Piezo1 plays a role in mechanical stress-induced podocyte injury.
Collapse
Affiliation(s)
- Satoyuki Ogino
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Japan
- Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Kei Yoshikawa
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Japan
- Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Takashi Nagase
- Kunitachi Aoyagien Tachikawa Geriatric Health Services Facility, Tachikawa, Japan
| | - Kaori Mikami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Japan
| | - Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Japan.
| |
Collapse
|
11
|
Zhao M, Yin Y, Yang B, Chang M, Ma S, Shi X, Li Q, Li P, Zhang Y. Ameliorative effects of Modified Huangqi Chifeng decoction on podocyte injury via autophagy mediated by PI3K/AKT/mTOR and AMPK/mTOR pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117520. [PMID: 38042389 DOI: 10.1016/j.jep.2023.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Proteinuria is recognized as a risk factor for the exacerbation of chronic kidney disease. Modified Huangqi Chifeng decoction (MHCD) has distinct advantages in reducing proteinuria. Our previous experimental results have shown that MHCD can inhibit excessive autophagy. However, the specific mechanism by which MHCD regulates autophagy needs to be further explored. AIM OF THE STUDY In this study, in vivo and in vitro experiments were conducted to further clarify the protective mechanism of MHCD on the kidney and podocytes by regulating autophagy based on phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK)/mTOR signaling pathways. MATERIALS AND METHODS By a single injection via the tail vein, Sprague-Dawley rats received Adriamycin (5 mg/kg) to establish a model of proteinuria nephropathy. They were divided into control, model, MHCD, 3-methyladenine (3 MA), 3 MA + MHCD, and telmisartan groups and were administered continuously for 6 weeks. The MHCD-containing serum was prepared, and a model of podocyte injury induced by Adriamycin (0.2 μg/mL) was established. RESULTS MHCD reduced the 24-h urine protein levels and relieved pathological kidney damage. During autophagy in the kidneys of rats with Adriamycin-induced nephropathy, the PI3K/AKT/mTOR signaling pathway is inhibited, while the AMPK/mTOR signaling pathway is activated. MHCD antagonized these effects, thereby inhibiting excessive autophagy. MHCD alleviated Adriamycin-induced podocyte autophagy, as demonstrated using Pik3r1 siRNA and an overexpression plasmid for Prkaa1/Prkaa2. Furthermore, MHCD could activate the PI3K/AKT/mTOR signaling pathway while suppressing the AMPK/mTOR signaling pathway. CONCLUSIONS This study demonstrated that MHCD can activate the interaction between the PI3K/AKT/mTOR and the AMPK/mTOR signaling pathways to maintain autophagy balance, inhibit excessive autophagy, and play a role in protecting the kidneys and podocytes.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yundong Yin
- Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Sijia Ma
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Peng Li
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, Beijing, 100091, China.
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
12
|
Wang H, Liu H, Cheng H, Xue X, Ge Y, Wang X, Yuan J. Klotho Stabilizes the Podocyte Actin Cytoskeleton in Idiopathic Membranous Nephropathy through Regulating the TRPC6/CatL Pathway. Am J Nephrol 2024; 55:345-360. [PMID: 38330925 PMCID: PMC11152006 DOI: 10.1159/000537732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION The aim of this study was to explore the renoprotective effects of Klotho on podocyte injury mediated by complement activation and autoantibodies in idiopathic membranous nephropathy (IMN). METHODS Rat passive Heymann nephritis (PHN) was induced as an IMN model. Urine protein levels, serum biochemistry, kidney histology, and podocyte marker levels were assessed. In vitro, sublytic podocyte injury was induced by C5b-9. The expression of Klotho, transient receptor potential channel 6 (TRPC6), and cathepsin L (CatL); its substrate synaptopodin; and the intracellular Ca2+ concentration were detected via immunofluorescence. RhoA/ROCK pathway activity was measured by an activity quantitative detection kit, and the protein expression of phosphorylated-LIMK1 (p-LIMK1) and p-cofilin in podocytes was detected via Western blotting. Klotho knockdown and overexpression were performed to evaluate its role in regulating the TRPC6/CatL pathway. RESULTS PHN rats exhibited proteinuria, podocyte foot process effacement, decreased Klotho and Synaptopodin levels, and increased TRPC6 and CatL expression. The RhoA/ROCK pathway was activated by the increased phosphorylation of LIMK1 and cofilin. Similar changes were observed in C5b-9-injured podocytes. Klotho knockdown exacerbated podocyte injury, while Klotho overexpression partially ameliorated podocyte injury. CONCLUSION Klotho may protect against podocyte injury in IMN patients by inhibiting the TRPC6/CatL pathway. Klotho is a potential target for reducing proteinuria in IMN patients.
Collapse
Affiliation(s)
- Hongyun Wang
- Hubei University of Chinese Medicine, Wuhan, China
| | - Hongyan Liu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Cheng
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xue Xue
- Hubei University of Chinese Medicine, Wuhan, China
| | - Yamei Ge
- Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoqin Wang
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Jun Yuan
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Ma S, Qiu Y, Zhang C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int J Mol Sci 2024; 25:647. [PMID: 38203817 PMCID: PMC10779434 DOI: 10.3390/ijms25010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus's key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.M.); (Y.Q.)
| |
Collapse
|
14
|
Saleh MA, Shaaban AA, Talaat IM, Elmougy A, Adra SF, Ahmad F, Qaisar R, Elmoselhi AB, Abu-Gharbieh E, El-Huneidi W, Eladl MA, Shehatou G, Kafl HE. RhoA/ROCK inhibition attenuates endothelin-1-induced elevated glomerular permeability to albumin, inflammation, and fibrosis. Life Sci 2023; 323:121687. [PMID: 37030613 DOI: 10.1016/j.lfs.2023.121687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
Endothelin-1 (ET-1) contributes to the development of kidney diseases. However, the underlying molecular mechanism is largely undefined. Here we sought to investigate the potential role of ET-1 receptors, ETA and ETB in the regulation of increased glomerular permeability and underlying signaling pathways post-ET-1 infusion. Male Sprague-Dawley rats were infused with ET-1 (2 pmol/kg per minute, i.v.) for four weeks, and the effect on glomerular permeability to albumin (Palb) and albuminuria was measured. The selective ROCK-1/2 inhibitor, Y-27632, was administered to a separate group of rats to determine its effect on ET-1-induced Palb and albuminuria. The role of ETA and ETB receptors in regulating RhoA/ROCK activity was determined by incubating isolated glomeruli from normal rats with ET-1 and with selective ETA and ETB receptor antagonists. ET-1 infusion for four weeks significantly elevated Palb and albuminuria. Y-27632 significantly reduced the elevation of Palb and albuminuria. The activities of both RhoA and ROCK-1/2 were increased by ET-1 infusion. Selective ETB receptor antagonism had no effect on the elevated activity of both RhoA and ROCK-1/2 enzymes. Selective ETA receptor and combined ETA/ETB receptors blockade restored the activity of RhoA and ROCK-1/2 to normal levels. In addition, chronic ET-1 infusion increased the levels of glomerular inflammatory and fibrotic markers. These effects were all attenuated in rats following ROCK-1/2 inhibition. These observations suggest that ET-1 contributes to increased albuminuria, inflammation, and fibrosis by modulating the activity of the ETA-RhoA/ROCK-1/2 pathway. Selective ETA receptor blockade may represent a potential therapeutic strategy to limit glomerular injury and albuminuria in kidney disease.
Collapse
Affiliation(s)
- Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 35712, Egypt
| | - Iman M Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Atef Elmougy
- Pediatric Nephrology Unit, Mansoura University Children's Hospital, Mansoura University, Mansoura 35516, Egypt
| | - Saryia F Adra
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Adel B Elmoselhi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - George Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 35712, Egypt
| | - Hoda E Kafl
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
15
|
Ahmadian E, Eftekhari A, Atakishizada S, Valiyeva M, Ardalan M, Khalilov R, Kavetskyy T. Podocytopathy: The role of actin cytoskeleton. Biomed Pharmacother 2022; 156:113920. [DOI: 10.1016/j.biopha.2022.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
|
16
|
CdGAP maintains podocyte function and modulates focal adhesions in a Src kinase-dependent manner. Sci Rep 2022; 12:18657. [PMID: 36333327 PMCID: PMC9636259 DOI: 10.1038/s41598-022-21634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are regulators of the actin cytoskeleton and their activity is modulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchanging factors (GEFs). Glomerular podocytes have numerous actin-based projections called foot processes and their alteration is characteristic of proteinuric kidney diseases. We reported previously that Rac1 hyperactivation in podocytes causes proteinuria and glomerulosclerosis in mice. However, which GAP and GEF modulate Rac1 activity in podocytes remains unknown. Here, using a proximity-based ligation assay, we identified CdGAP (ARHGAP31) and β-PIX (ARHGEF7) as the major regulatory proteins interacting with Rac1 in human podocytes. CdGAP interacted with β-PIX through its basic region, and upon EGF stimulation, they both translocated to the plasma membrane in podocytes. CdGAP-depleted podocytes had altered cell motility and increased basal Rac1 and Cdc42 activities. When stimulated with EGF, CdGAP-depleted podocytes showed impaired β-PIX membrane-translocation and tyrosine phosphorylation, and reduced activities of Src kinase, focal adhesion kinase, and paxillin. Systemic and podocyte-specific CdGAP-knockout mice developed mild but significant proteinuria, which was exacerbated by Adriamycin. Collectively, these findings show that CdGAP contributes to maintain podocyte function and protect them from injury.
Collapse
|
17
|
Guo R, Wang P, Zheng X, Cui W, Shang J, Zhao Z. SGLT2 inhibitors suppress epithelial-mesenchymal transition in podocytes under diabetic conditions via downregulating the IGF1R/PI3K pathway. Front Pharmacol 2022; 13:897167. [PMID: 36225569 PMCID: PMC9550168 DOI: 10.3389/fphar.2022.897167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023] Open
Abstract
Loss of podocyte is a characteristic pathological change of diabetic nephropathy (DN) which is associated with increased proteinuria. Many studies have shown that novel inhibitors of sodium-glucose cotransporter 2 (SGLT2-is), such as dapagliflozin, exert nephroprotective effect on delaying DN progression. However, the mechanisms underlying SGLT2-associated podocyte injury are still not fully elucidated. Here, we generated streptozotocin-induced DN models and treated them with dapagliflozin to explore the possible mechanisms underlying SGLT2 regulation. Compared to mice with DN, dapagliflozin-treated mice exhibited remission of pathological lesions, including glomerular sclerosis, thickening of the glomerular basement membrane (GBM), podocyte injury in the glomeruli, and decreased nephrotoxin levels accompanied by decreased SGLT2 expression. The mRNA expression profiles of these treated mice revealed the significance of the insulin-like growth factor-1 receptor (IGF1R)/PI3K regulatory axis in glomerular injury. KEGG analysis confirmed that the phosphatidylinositol signaling system and insulin signaling pathway were enriched. Western blotting showed that SGLT2-is inhibited the increase of mesenchymal markers (α-SMA, SNAI-1, and ZEB2) and the loss of podocyte markers (nephrin and E-cad). Additionally, SGLT2, IGF1R, phosphorylated PI3K, α-SMA, SNAI-1, and ZEB2 protein levels were increased in high glucose-stimulated human podocytes (HPC) and significantly decreased in dapagliflozin-treated (50 nM and 100 nM) or OSI-906-treated (inhibitor of IGF1R, 60 nM) groups. However, the use of both inhibitors did not enhance this protective effect. Next, we analyzed urine and plasma samples from a cohort consisting of 13 healthy people and 19 DN patients who were administered with (n = 9) or without (n = 10) SGLT2 inhibitors. ELISA results showed decreased circulating levels of IGF1 and IGF2 in SGLT2-is-treated DN patients compared with DN patients. Taken together, our study reported the key role of SGLT2/IGF1R/PI3K signaling in regulating podocyte epithelial-mesenchymal transition (EMT). Modulating IGF1R expression may be a novel approach for DN therapy.
Collapse
Affiliation(s)
- Ruixue Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Zhengzhou University, Zhengzhou, China
| | - Peipei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Zhengzhou University, Zhengzhou, China
| | - Xuejun Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Zhengzhou University, Zhengzhou, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Zhengzhou University, Zhengzhou, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China,*Correspondence: Zhanzheng Zhao, ; Jin Shang,
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China,*Correspondence: Zhanzheng Zhao, ; Jin Shang,
| |
Collapse
|
18
|
Protective effects of rituximab on puromycin-induced apoptosis, loss of adhesion and cytoskeletal alterations in human podocytes. Sci Rep 2022; 12:12297. [PMID: 35853959 PMCID: PMC9296604 DOI: 10.1038/s41598-022-16333-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/08/2022] [Indexed: 11/08/2022] Open
Abstract
Podocytes are highly specialized cells playing a key role in the filtration function of the kidney. A damaged podocyte ultrastructure is associated with a reorganization of the actin cytoskeleton and accompanied with a loss of adhesion to the glomerular basement membrane leading to proteinuria in many forms of glomerular diseases, e.g. nephrotic syndrome. If the first-line therapy with glucocorticoids fails, alternative immunosuppressive agents are used, which are known to have the potential to stabilize the actin cytoskeleton. A new option for preventing relapses in steroid dependent nephrotic syndrome is the monoclonal antibody rituximab, which, in addition to its B-cell depleting effect, is assumed to have direct effects on podocytes. We here provide data on the non-immunological off-target effects of the immunosuppressant rituximab on podocyte structure and dynamics in an in vitro puromycin aminonucleoside model of podocyte injury. A conditionally immortalized human podocyte cell line was used. Differentiated podocytes were treated with puromycin aminonucleoside and rituximab. Our studies focussed on analyzing the structure of the actin cytoskeleton, cellular adhesion and apoptosis using immunofluorescence staining and protein biochemistry methods. Treatment with rituximab resulted in a stabilization of podocyte actin stress fibers in the puromycin aminonucleoside model, leading to an improvement in cell adhesion. A lower apoptosis rate was observed after parallel treatment with puromycin aminonucleoside and rituximab visualized by reduced nuclear fragmentation. Consistent with this data, Western-blot analyses demonstrated that rituximab directly affects the caspase pathways by inhibiting the activation of Caspases-8, -9 and -3, suggesting that rituximab may inhibit apoptosis. In conclusion, our results indicate an important role of the immunosuppressant rituximab in terms of stability and morphogenesis of podocytes, involving apoptosis pathways. This could help to improve therapeutical concepts for patients with proteinuria mediated by diseased podocytes.
Collapse
|
19
|
Liu F, Chen J, Luo C, Meng X. Pathogenic Role of MicroRNA Dysregulation in Podocytopathies. Front Physiol 2022; 13:948094. [PMID: 35845986 PMCID: PMC9277480 DOI: 10.3389/fphys.2022.948094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) participate in the regulation of various important biological processes by regulating the expression of various genes at the post-transcriptional level. Podocytopathies are a series of renal diseases in which direct or indirect damage of podocytes results in proteinuria or nephrotic syndrome. Despite decades of research, the exact pathogenesis of podocytopathies remains incompletely understood and effective therapies are still lacking. An increasing body of evidence has revealed a critical role of miRNAs dysregulation in the onset and progression of podocytopathies. Moreover, several lines of research aimed at improving common podocytopathies diagnostic tools and avoiding invasive kidney biopsies have also identified circulating and urine miRNAs as possible diagnostic and prognostic biomarkers for podocytopathies. The present review mainly aims to provide an updated overview of the recent achievements in research on the potential applicability of miRNAs involved in renal disorders related to podocyte dysfunction by laying particular emphasis on focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous nephropathy (MN), diabetic kidney disease (DKD) and IgA nephropathy (IgAN). Further investigation into these dysregulated miRNAs will not only generate novel insights into the mechanisms of podocytopathies, but also might yield novel strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changqing Luo
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Changqing Luo, ; Xianfang Meng,
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Changqing Luo, ; Xianfang Meng,
| |
Collapse
|
20
|
Kostovska I, Trajkovska KT, Topuzovska S, Cekovska S, Labudovic D, Kostovski O, Spasovski G. Nephrinuria and podocytopathies. Adv Clin Chem 2022; 108:1-36. [PMID: 35659057 DOI: 10.1016/bs.acc.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The discovery of nephrin in 1998 has launched a new era in glomerular diseases research, emphasizing its crucial role in the structure and function of the glomerular filtration barrier. In the past 20 years, substantial advances have been made in understanding podocyte structure and function as well as the discovery of several podocyte-related proteins including nephrin. The glomerular filtration barrier is comprised of podocytes, the glomerular basement membrane and endothelial cells. Podocytes, with their specialized slit diaphragm, form the essential backbone of the glomerular filtration barrier. Nephrin is a crucial structural and functional feature of the slit diaphragm that prevents plasma protein, blood cell and macromolecule leakage into the urine. Podocyte damage results in nephrin release. Podocytopathies are kidney diseases in which podocyte damage drives proteinuria, i.e., nephrotic syndrome. Many kidney diseases involve podocytopathy including congenital nephrotic syndrome of Finnish type, diffuse mesangial sclerosis, minimal change disease, focal segmental glomerulosclerosis, collapsing glomerulonephropathy, diabetic nephropathy, lupus nephropathy, hypertensive nephropathy and preeclampsia. Recently, urinary nephrin measurement has become important in the early detection of podocytopathies. In this chapter, we elaborate the main structural and functional features of nephrin as a podocyte-specific protein, pathomechanisms of podocytopathies which result in nephrinuria, highlight the most commonly used methods for detecting urinary nephrin and investigate the diagnostic, prognostic and potential therapeutic relevance of urinary nephrin in primary and secondary proteinuric kidney diseases.
Collapse
Affiliation(s)
- Irena Kostovska
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia.
| | - Katerina Tosheska Trajkovska
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Sonja Topuzovska
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Svetlana Cekovska
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Danica Labudovic
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Ognen Kostovski
- University Clinic of Abdominal Surgery, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Goce Spasovski
- University Clinic of Nephrology, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| |
Collapse
|
21
|
Novel Markers in Diabetic Kidney Disease—Current State and Perspectives. Diagnostics (Basel) 2022; 12:diagnostics12051205. [PMID: 35626360 PMCID: PMC9140176 DOI: 10.3390/diagnostics12051205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease. Along with the increasing prevalence of diabetes, DKD is expected to affect a higher number of patients. Despite the major progress in the therapy of DKD and diabetes mellitus (DM), the classic clinical diagnostic tools in DKD remain insufficient, delaying proper diagnosis and therapeutic interventions. We put forward a thesis that there is a need for novel markers that will be early, specific, and non-invasively obtained. The ongoing investigations uncover new molecules that may potentially become new markers of DKD—among those are: soluble α-Klotho and proteases (ADAM10, ADAM17, cathepsin, dipeptidyl peptidase 4, caspase, thrombin, and circulating microRNAs). This review summarizes the current clinical state-of-the-art in the diagnosis of DKD and a selection of potential novel markers, based on up-to-date literature.
Collapse
|
22
|
Atmis B, K Bayazit A, Cevizli D, Kor D, Fidan HB, Bisgin A, Kilavuz S, Unal I, Erdogan KE, Melek E, Gonlusen G, Anarat A, Onenli Mungan N. More than tubular dysfunction: cystinosis and kidney outcomes. J Nephrol 2022; 35:831-840. [PMID: 34097292 DOI: 10.1007/s40620-021-01078-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cystinosis is a lysosomal storage disease that affects many tissues. Its prognosis depends predominantly on kidney involvement. Cystinosis has three clinical forms: nephropathic infantile, nephropathic juvenile and non-nephropathic adult. Proximal tubular dysfunction is prominent in the infantile form, whereas a combination of glomerular and tubular alterations are observed in the juvenile form. METHODS Thirty-six children with nephropathic cystinosis were included in the study. Clinical features, molecular genetic diagnoses, and kidney outcomes of the patients were evaluated. RESULTS Twenty-one children (58.3%) were male. The median age at diagnosis was 18.5 months. Twenty-eight patients (77.8%) had infantile nephropathic cystinosis, while eight (22.2%) had juvenile nephropathic cystinosis. An acute rapid deterioration of the kidney function with proteinuria, hypoalbuminemia, and nephrotic syndrome, was observed in 37.5% of patients with the juvenile form. The mean estimated glomerular filtration rate (eGFR) was 82.31 ± 37.45 ml/min/1.73m2 at diagnosis and 63.10 ± 54.60 ml/min/1.73m2 at the last visit (p = 0.01). Six patients (16.6%) had kidney replacement therapy (KRT) at the last visit. The median age of patients with kidney failure was 122 months. Patients with a spot urine protein/creatinine ratio < 6 mg/mg at the time of diagnosis had better kidney outcomes (p = 0.01). The most common allele was c.451A>G (32.6%). The patients with the most common mutation tended to have higher mean eGFR and lower leukocyte cystine levels than patients with other mutations. CONCLUSION Glomerulonephritis may be a frequent finding in addition to the well-known tubular dysfunction in patients with cystinosis. Furthermore, our results highlight that the presence of severe proteinuria at the time of diagnosis is a relevant prognostic factor for kidney survival.
Collapse
Affiliation(s)
- Bahriye Atmis
- Department of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey.
| | - Aysun K Bayazit
- Department of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Derya Cevizli
- Department of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Deniz Kor
- Department of Pediatric Metabolism and Nutrition, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Hatice Busra Fidan
- Department of Pediatrics, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Atil Bisgin
- Department of Medical Genetics, Cukurova University Faculty of Medicine, Adana, Turkey
- Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Adana, Turkey
- Medical Genetics Department of Balcali Clinics and Hospital, Faculty of Medicine, Adana, Turkey
| | - Sebile Kilavuz
- Department of Pediatric Metabolism and Nutrition, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Ilker Unal
- Department of Biostatistics, Cukurova University Faculty of Medicine, Adana, Turkey
| | | | - Engin Melek
- Department of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Gulfiliz Gonlusen
- Department of Pathology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Ali Anarat
- Department of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Neslihan Onenli Mungan
- Department of Pediatric Metabolism and Nutrition, Cukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
23
|
Zhang H, Zhu B, Chang L, Ye X, Tian R, He L, Yu D, Chen H, Wang Y. Efficacy and safety of a low-sodium diet and spironolactone in patients with stage 1-3a chronic kidney disease: a pilot study. BMC Nephrol 2022; 23:95. [PMID: 35247964 PMCID: PMC8897863 DOI: 10.1186/s12882-022-02711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background Excessive salt intake is associated with the deterioration of chronic kidney disease (CKD). Aldosterone is also known as an independent risk factor for kidney injury. Dietary sodium intake acts as a main stimulator in aldosterone-mediated kidney injury. Hence, this study aimed to further investigate the renal protective effects and safety of a low-sodium diet in combination with spironolactone (SPL) in stage 1-3a CKD. Methods This single-center, SPL-blinded randomized controlled trial recruited patients with stage 1-3a CKD, randomized into three groups, low-sodium (3 g/d salt) + placebo, medium-sodium (5 g/d salt) + SPL, and low-sodium (3 g/d salt) + SPL. Patients received 12 weeks of intervention. The primary and secondary endpoints were 24-h urine protein and estimated glomerular filtration rate (eGFR) at the end of the intervention, respectively. Results A total of 74 patients were analyzed eventually. Significantly decreased 24-h urine protein was found in all three groups, from 0.37 to 0.23 g/d (P = 0.004) in the low-sodium+placebo group, from 0.44 to 0.29 g/d (P = 0.020) in the medium-sodium+SPL group, and from 0.35 to 0.31 g/d (P = 0.013) in the low-sodium +SPL group. There were no significant differences among the three groups in 24-h urine protein amount change after intervention from pre-treatment values (P = 0.760, ITT set). The results of the 24-h urine protein by using PP set analysis was similar to the ITT set. No significant differences in eGFR, nutritional, metabolic, inflammatory, and other biomarkers were observed across all three groups (P > 0.05). No safety signal was observed. Conclusion No additional benefit was observed when SPL was prescribed to patients already on a low-sodium diet (3.0 g/d). Still, small doses of SPL may benefit patients with poor sodium restriction. A combination of short-term low-dose SPL and ARB is safe for patients with stage 1-3a CKD, but blood potassium must be regularly monitored. Trial registration Name of the registry: Chinese clinical trial registry. Trial registration number: ChiCTR1900026991. Date of registration: Retrospectively registered 28 October 2019. URL of trial registry record: http://www.chictr.org.cn/searchproj.aspx?title=&officialname=&subjectid=&secondaryid=&applier=&studyleader=ðicalcommitteesanction=&spo Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02711-z.
Collapse
|
24
|
van de Leemput J, Wen P, Han Z. Using Drosophila Nephrocytes to Understand the Formation and Maintenance of the Podocyte Slit Diaphragm. Front Cell Dev Biol 2022; 10:837828. [PMID: 35265622 PMCID: PMC8898902 DOI: 10.3389/fcell.2022.837828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
The podocyte slit diaphragm (SD) is an essential component of the glomerular filtration barrier and its disruption is a common cause of proteinuria and many types of kidney disease. Therefore, better understanding of the pathways and proteins that play key roles in SD formation and maintenance has been of great interest. Podocyte and SD biology have been mainly studied using mouse and other vertebrate models. However, vertebrates are limited by inherent properties and technically challenging in vivo access to the podocytes. Drosophila is a relatively new alternative model system but it has already made great strides. Past the initial obvious differences, mammalian podocytes and fly nephrocytes are remarkably similar at the genetic, molecular and functional levels. This review discusses SD formation and maintenance, and their dependence on cell polarity, the cytoskeleton, and endo- and exocytosis, as learned from studies in fly nephrocytes and mammalian podocytes. In addition, it reflects on the remaining gaps in our knowledge, the physiological implications for glomerular diseases and how we can leverage the advantages Drosophila has to offer to further our understanding.
Collapse
Affiliation(s)
- Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Pei Wen
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
25
|
Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases 2022; 13:141-161. [PMID: 34138686 PMCID: PMC9707548 DOI: 10.1080/21541248.2021.1932402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
| | | | - Thierry Hauet
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
| | - Nicolas Bourmeyster
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
- Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers Cédex, France
| |
Collapse
|
26
|
Bayomy NR, Abo Alfottoh WM, Ali Eldeep SA, Ibrahim Mabrouk Mersal AMS, Abd El-Bary HMA, Abd El Gayed EM. Mir-142-5p as an indicator of autoimmune processes in childhood idiopathic nephrotic syndrome and as a part of MicroRNAs expression panels for its diagnosis and prediction of response to steroid treatment. Mol Immunol 2021; 141:21-32. [PMID: 34785326 DOI: 10.1016/j.molimm.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nephrotic syndrome (NS) is the most frequent glomerular disease among children. Renal biopsy is the most precise procedure for diagnosing and following childhood NS; however, it is an invasive procedure with potential complications. As a result, early non-invasive diagnostic and prognostic indicators and new treatment targets are urgently needed for this disease. PURPOSE To assess the miR-142-5p expression in peripheral blood as an indicator of the autoimmune processes in children with NS and the role of differential microRNAs (miR) expression and expression panels in diagnosing and predicting the response to steroid treatment in children with NS. METHODS Eighty (80) children with NS and 100 subjects matched for age and gender used as controls constitute the study sample in this case-control study. MiR-142-5p, miR-191, miR-181-5p, miR-30a-5p and miR-50a-5p expression are measured in all enrolled children by real-time PCR. We assessed the sensitivity and accuracy of different MicroRNAs panels. RESULTS miR-142-5p, miR-191, miR-181-5p, miR-30a-5p and miR-150a-5p expressions were significantly increased in the children with NS than controls. There was a significant difference in the five mRNAs differential expressions between steroid-resistant and steroid-sensitive children with NS. Of the selected five microRNAs, miR-142a-5p was the best to allow very good discrimination of the children with NS and predict steroid resistance (AUC = 0.965 and 1.00, respectively), suggesting the possible autoimmunity processes' role in the pathogenesis of NS and the resistance to steroids. The (miR-142a-5p with miR-181a-5p and miR-30a-5p) was the best expression panel to diagnose new NS cases and predict steroid resistance. CONCLUSIONS microRNAs expressions, either differential or as a panel, are important for early diagnosing childhood NS and may provide a non-invasive clue for the response to steroid treatment in these patients. The (miR-142a-5p, miR-181-5p, and miR-30a-5p) panel was the best one to cover both the diagnosis of the new cases and prediction of response to steroid treatment. Autoimmunity has an important role in NS pathogenesis and resistance to steroid treatment.
Collapse
Affiliation(s)
- Noha Rabie Bayomy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt.
| | | | | | | | | | - Eman Masoud Abd El Gayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
27
|
Chen L, Tang YL, Liu ZH, Pan Y, Jiao RQ, Kong LD. Atractylodin inhibits fructose-induced human podocyte hypermotility via anti-oxidant to down-regulate TRPC6/p-CaMK4 signaling. Eur J Pharmacol 2021; 913:174616. [PMID: 34780752 DOI: 10.1016/j.ejphar.2021.174616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023]
Abstract
High fructose has been reported to drive glomerular podocyte oxidative stress and then induce podocyte foot process effacement in vivo, which could be partly regarded as podocyte hypermotility in vitro. Atractylodin possesses anti-oxidative effect. The aim of this study was to explore whether atractylodin prevented against fructose-induced podocyte hypermotility via anti-oxidative property. In fructose-exposed conditionally immortalized human podocytes, we found that atractylodin inhibited podocyte hypermotility, and up-regulated slit diaphragm proteins podocin and nephrin, and cytoskeleton protein CD2-associated protein (CD2AP), α-Actinin-4 and synaptopodin expression, which were consistent with its anti-oxidative activity evidenced by up-regulation of catalase (CAT) and superoxide dismutase (SOD) 1 expression, and reduction of reactive oxygen species (ROS) production. Atractylodin also significantly suppressed expression of transient receptor potential channels 6 (TRPC6) and phosphorylated Ca2+/calmodulin-dependent protein kinase IV (CaMK4) in cultured podocytes with fructose exposure. Additionally, in fructose-exposed podocytes, CaMK4 siRNA up-regulated synaptopodin and reduced podocyte hypermotility, whereas, silencing of TRPC6 by siRNA decreased p-CaMK4 expression, inhibited podocyte hypermotility, showing TRPC6/p-CaMK4 signaling activation in podocyte hypermotility under fructose condition. Just like atractylodin, antioxidant N-acetyl-L-cysteine (NAC) could inhibit TRPC6/p-CaMK4 signaling activation to reduce fructose-induced podocytes hypermotility. These results first demonstrated that the anti-oxidative property of atractylodin may contribute to the suppression of podocyte hypermotility via inhibiting TRPC6/p-CaMK4 signaling and restoring synaptopodin expression abnormality.
Collapse
Affiliation(s)
- Li Chen
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ya-Li Tang
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Zhi-Hong Liu
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ying Pan
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Rui-Qing Jiao
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ling-Dong Kong
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
28
|
Abstract
Renal injury resulting from obesity is a growing concern caused by the global obesity epidemic. We discuss the glomerular structure, obesity-related glomerular changes, and diagnostic pathologic criteria for obesity-related glomerulopathy. The three main hypothesized mechanisms of podocyte injury are mechanical stress on the podocytes, metabolic derangement, and genetic/molecular factors. Weight loss, renin-angiotensin-aldosterone system inhibitors, and improved insulin resistance may slow the progression. A more comprehensive understanding of obesity-related glomerulopathy will help in developing more effective therapies.
Collapse
Affiliation(s)
- Gabriel Giannini
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD; Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
29
|
Nakatani K, Asai O, Konishi N, Iwano M. Role of fibroblast specific protein 1 expression in the progression of adriamycin-induced glomerulosclerosis. Biochem Biophys Res Commun 2021; 567:148-153. [PMID: 34153685 DOI: 10.1016/j.bbrc.2021.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a commonly occurring cause of steroid-resistant nephrotic syndrome and frequently progresses to renal failure. Podocyte epithelial-mesenchymal transition (EMT) is thought to induce podocyte detachment in glomerular diseases, and severe degeneration and shedding of glomerular podocytes plays a major role in the progression of FSGS. We showed that fibroblast specific protein 1 (FSP1), an EMT marker, is strongly expressed in podocytes of FSGS patients, but the significance of podocyte expression of FSP1 to the pathophysiology of FSGS remained unclear. Here, we investigated FSP1 expression in podocytes from mice with adriamycin (ADR)-induced nephropathy, a murine model of FSGS. The number of FSP1-positive (FSP1+) podocytes was increased in ADR-treated mice and positively correlated with the degree of proteinuria and glomerulosclerosis in ADR-treated mice. ADR-induced FSGS and the attendant proteinuria were significantly ameliorated in FSP1 knockout mice as compared to wild type mice. These findings indicate that podocyte expression of FSP1 plays a crucial role in the pathogenesis of FSGS, which makes FSP1 a potential target for treatment of FSGS.
Collapse
Affiliation(s)
- Kimihiko Nakatani
- Department of Nephrology, Yamashiro General Medical Center, Kizugawa, Kyoto, Japan; Department of Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Osamu Asai
- Department of Nephrology, Yamashiro General Medical Center, Kizugawa, Kyoto, Japan; Department of Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Noboru Konishi
- Department of Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan.
| |
Collapse
|
30
|
Abstract
TRPC3 is a Ca2+-permeable cation channel commonly activated by the G-protein coupled receptors (GPCR) and mechanical distortion of the plasma membrane. TRPC3-mediated Ca2+ influx has been implicated in a variety of signaling processes in both excitable and non-excitable cells. Kidneys play a commanding role in maintaining whole-body homeostasis and setting blood pressure. TRPC3 is expressed abundantly in the renal vasculature and in epithelial cells, where it is well positioned to mediate signaling and transport functions in response to GPCR-dependent endocrine stimuli. In addition, TRPC3 could be activated by mechanical forces resulting from dynamic changes in the renal tubule fluid flow and osmolarity. This review critically analyzes the available published evidence of the physiological roles of TRPC3 in different parts of the kidney and describes the pathophysiological ramifications of TRPC3 ablation. We also speculate how this evidence could be further translated into the clinic.
Collapse
Affiliation(s)
- Naghmeh Hassanzadeh Khayyat
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Viktor N Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston , Houston, TX, USA
| |
Collapse
|
31
|
Nakata M, Shimada M, Narita-Kinjo I, Nagawa D, Kitayama K, Hamadate M, Miura N, Nozaka M, Kawamura Y, Fujita T, Murakami R, Imaizumi T, Nakamura N, Tomita H. PolyIC Induces Retinoic Acid-inducible Gene-I and Melanoma Differentiation-associated Gene 5 and Modulates Inflammation in Podocytes. In Vivo 2021; 35:147-153. [PMID: 33402460 DOI: 10.21873/invivo.12242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Viral infection often exacerbates proteinuria, which has been suggested to be due to antiviral responses of podocytes. We examined the effect of polyinosinic-polycytidylic acid (polyIC) on the expression of retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) in differentiated human podocytes in culture. MATERIALS AND METHODS The podocytes were treated with 2 ng/ml to 500 μg/ml of polyIC for 3 to 36 h, and also transfected with siRNA against RIG-I and MDA5. F-actin staining was performed to assess actin reorganization. RESULTS PolyIC induced the expression of RIG-I and MDA5 in dose- and time-dependent manner, accompanied with interferon-β (IFN-β) and interleukin-6 (IL-6) up-regulation and actin reorganization. Temporal knockdown of RIG-I by siRNA decreased IFN-β expression, while MDA5 siRNA inhibited IFN-β and IL-6 expression. Actin reorganization was attenuated by RIG-I and MDA5 knockdown. CONCLUSION RIG-I and MDA5 may play a role in the antiviral responses of podocytes.
Collapse
Affiliation(s)
- Masamichi Nakata
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Michiko Shimada
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan;
| | - Ikuyo Narita-Kinjo
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Daiki Nagawa
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazutaka Kitayama
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Misato Hamadate
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Naotake Miura
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masashi Nozaka
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yosuke Kawamura
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takeshi Fujita
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Reiichi Murakami
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Norio Nakamura
- Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hirofumi Tomita
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
32
|
Rachubik P, Szrejder M, Audzeyenka I, Rogacka D, Rychłowski M, Angielski S, Piwkowska A. The PKGIα/VASP pathway is involved in insulin- and high glucose-dependent regulation of albumin permeability in cultured rat podocytes. J Biochem 2021; 168:575-588. [PMID: 32484874 PMCID: PMC7763511 DOI: 10.1093/jb/mvaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022] Open
Abstract
Podocytes, the principal component of the glomerular filtration barrier, regulate glomerular permeability to albumin via their contractile properties. Both insulin- and high glucose (HG)-dependent activation of protein kinase G type Iα (PKGIα) cause reorganization of the actin cytoskeleton and podocyte disruption. Vasodilator-stimulated phosphoprotein (VASP) is a substrate for PKGIα and involved in the regulation of actin cytoskeleton dynamics. We investigated the role of the PKGIα/VASP pathway in the regulation of podocyte permeability to albumin. We evaluated changes in high insulin- and/or HG-induced transepithelial albumin flux in cultured rat podocyte monolayers. Expression of PKGIα and downstream proteins was confirmed by western blot and immunofluorescence. We demonstrate that insulin and HG induce changes in the podocyte contractile apparatus via PKGIα-dependent regulation of the VASP phosphorylation state, increase VASP colocalization with PKGIα, and alter the subcellular localization of these proteins in podocytes. Moreover, VASP was implicated in the insulin- and HG-dependent dynamic remodelling of the actin cytoskeleton and, consequently, increased podocyte permeability to albumin under hyperinsulinaemic and hyperglycaemic conditions. These results indicate that insulin- and HG-dependent regulation of albumin permeability is mediated by the PKGIα/VASP pathway in cultured rat podocytes. This molecular mechanism may explain podocytopathy and albuminuria in diabetes.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
33
|
Burcsár S, Toldi G, Kovács L, Szalay B, Vásárhelyi B, Balog A. Urine soluble urokinase plasminogen activator receptor as a potential biomarker of lupus nephritis activity. Biomarkers 2021; 26:443-449. [PMID: 33825610 DOI: 10.1080/1354750x.2021.1910343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a lack of non-invasive biomarkers to identify lupus nephritis (LN). Soluble urokinase plasminogen activator receptor (suPAR) is a sensitive biomarker of ongoing inflammation and a potential marker of podocyte dysfunction. The aim of this study was to assess urine and plasma suPAR in LN. 14 systemic lupus erythematosus (SLE) patients with newly diagnosed LN, 8 active SLE patients (SLEDAI >8) without LN and 31 healthy individuals were enrolled. Urine and plasma samples were taken before the initiation of LN induction therapy, and monthly thereafter. Global and renal disease activity were defined using the SLEDAI-2K and the SLEDAI-2K renal domain score, respectively. suPAR concentrations were measured with the suPARnostic Flex ELISA assay. Urine and plasma suPAR levels were elevated in SLE patients with active LN compared with resolved LN and healthy controls. Urine suPAR levels were comparable to healthy controls in active SLE without LN. Urine and plasma suPAR levels were higher before than after the initiation of LN induction therapy. Prospective follow-up measurements also suggested that urine suPAR levels raised again in patients with a relapse of LN according to SLEDAI-2K renal domain score, whereas plasma suPAR levels did not correlate with renal disease activity. Urine suPAR is a promising LN activity biomarker, given its isolated elevation in urine in active LN and pronounced decrease with LN improvement.
Collapse
Affiliation(s)
- Szilárd Burcsár
- Department of Rheumatology and Immunology, University of Szeged, Szeged, Hungary
| | - Gergely Toldi
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - László Kovács
- Department of Rheumatology and Immunology, University of Szeged, Szeged, Hungary
| | - Balázs Szalay
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Barna Vásárhelyi
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Balog
- Department of Rheumatology and Immunology, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Xuan C, Xi YM, Zhang YD, Tao CH, Zhang LY, Cao WF. Yiqi Jiedu Huayu Decoction Alleviates Renal Injury in Rats With Diabetic Nephropathy by Promoting Autophagy. Front Pharmacol 2021; 12:624404. [PMID: 33912044 PMCID: PMC8072057 DOI: 10.3389/fphar.2021.624404] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy (DN), a common microvascular complication of diabetes, is one of the main causes of end-stage renal failure (ESRD) and imposes a heavy medical burden on the world. Yiqi Jiedu Huayu decoction (YJHD) is a traditional Chinese medicine formula, which has been widely used in the treatment of DN and has achieved stable and reliable therapeutic effects. However, the mechanism of YJHD in the treatment of DN remains unclear. This study aimed to investigate the mechanism of YJHD in the treatment of DN. Sprague-Dawley rats were randomly divided into a normal control group, a diabetic group, an irbesartan group, and three groups receiving different doses of YJHD. Animal models were constructed using streptozotocin and then treated with YJHD for 12 consecutive weeks. Blood and urine samples were collected during this period, and metabolic and renal function was assessed. Pathological kidney injury was evaluated according to the kidney appearance, hematoxylin-eosin staining, Masson staining, periodic-acid Schiff staining, periodic-acid Schiff methenamine staining, and transmission electron microscopy. The expression levels of proteins and genes were detected by immunohistochemistry, western blotting, and real-time qPCR. Our results indicate that YJHD can effectively improve renal function and alleviate renal pathological injury, including mesangial matrix hyperplasia, basement membrane thickening, and fibrosis. In addition, YJHD exhibited podocyte protection by alleviating podocyte depletion and morphological damage, which may be key in improving renal function and reducing renal fibrosis. Further study revealed that YJHD upregulated the expression of the autophagy-related proteins LC3II and Beclin-1 while downregulating p62 expression, suggesting that YJHD can promote autophagy. In addition, we evaluated the activity of the mTOR pathway, the major signaling pathway regulating the level of autophagy, and the upstream PI3K/Akt and AMPK pathways. YJHD activated the AMPK pathway while inhibiting the PI3K/Akt and mTOR pathways, which may be crucial to its promotion of autophagy. In conclusion, our study shows that YJHD further inhibits the mTOR pathway and promotes autophagy by regulating the activity of the PI3K/Akt and AMPK pathways, thereby improving podocyte injury, protecting renal function, and reducing renal fibrosis. This study provides support for the application of and further research into YJHD.
Collapse
Affiliation(s)
- Chen Xuan
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Yu-Meng Xi
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.,College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yu-Di Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.,College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Chun-He Tao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.,College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Lan-Yue Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.,College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Wen-Fu Cao
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.,College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Li Z, Lian Z, Ma J, Zhang L, Lian X, Liu S, Xie J, Feng Z, Lin T, Zhang H, Liang X. Integrin β3 overexpression contributes to podocyte injury through inhibiting RhoA/YAP signaling pathway. Bioengineered 2021; 12:1138-1149. [PMID: 33818281 PMCID: PMC8806314 DOI: 10.1080/21655979.2021.1906097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Axis formed by integrin β3 (ITGβ3)-Ras homolog gene family, member A (RhoA), and Yes-associated protein (YAP) plays an important role in atherosclerosis. In addition, ITGβ3 overexpression was noted in high-glucose (HG) exposure podocytes. However, the ITGβ3–RhoA–YAP axis on HG-induced podocyte injury remains unclear. This study aimed to investigate whether ITGβ3 regulates podocyte injury by regulating the RhoA–YAP axis. The function and potential mechanism of ITGβ3 were observed through in vitro wound-healing assays, flow cytometry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blot assay. Results showed that HG treatment increased the ability of wound closure and apoptosis; however, in spite of HG treatment, ITGβ3 inhibition mitigated the ability of wound closure and apoptosis in podocytes. By contrast, overexpression of ITGβ3 increased the wound closure and apoptosis abilities of podocytes. Under HG treatment, ITGβ3 knockdown is associated with upregulation of RhoA, total YAP1, and nucleus YAP1, whereas ITGβ3 overexpression has opposite effect. In addition, RhoA overexpression in podocytes reverses the effect of ITGβ3 overexpression on the wound closure and apoptosis abilities of podocytes, rescue the expression of YAP in ITGβ3 overexpression podocytes. Taken together, ITGβ3 overexpression promotes podocytes injury by inhibiting RhoA-YAP axis. This will provide a new clue for preventing podocyte from damage.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiwen Lian
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jianchao Ma
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingji Lian
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jianteng Xie
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhonglin Feng
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ting Lin
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
36
|
Pereira BMV, Katakia YT, Majumder S, Thieme K. Unraveling the epigenetic landscape of glomerular cells in kidney disease. J Mol Med (Berl) 2021; 99:785-803. [PMID: 33763722 DOI: 10.1007/s00109-021-02066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern and its prevalence and incidence are rising quickly. It is a non-communicable disease primarily caused by diabetes and/or hypertension and is associated with high morbidity and mortality. Despite decades of research efforts, the pathogenesis of CKD remains a puzzle with missing pieces. Understanding the cellular and molecular mechanisms that govern the loss of kidney function is crucial. Abrupt regulation of gene expression in kidney cells is apparent in CKD and shown to be responsible for disease onset and progression. Gene expression regulation extends beyond DNA sequence and involves epigenetic mechanisms including changes in DNA methylation and post-translational modifications of histones, driven by the activity of specific enzymes. Recent advances demonstrate the essential participation of epigenetics in kidney (patho)physiology, as its actions regulate both the integrity of cells but also triggers deleterious signaling pathways. Here, we review the known epigenetic processes regulating the complex filtration unit of the kidney, the glomeruli. The review will elaborate on novel insights into how epigenetics contributes to cell injury in the CKD setting majorly focusing on kidney glomerular cells: the glomerular endothelial cells, the mesangial cells, and the specialized and terminally differentiated podocyte cells.
Collapse
Affiliation(s)
- Beatriz Maria Veloso Pereira
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Yash T Katakia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Karina Thieme
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
37
|
Wang L, Wang P, Li X, Dong Y, Wu S, Xu M, Chen X, Wang S, Zheng C, Zou C. Combination CTLA-4 immunoglobulin treatment and ultrasound microbubble-mediated exposure improve renal function in a rat model of diabetic nephropathy. Aging (Albany NY) 2021; 13:8524-8540. [PMID: 33714204 PMCID: PMC8034886 DOI: 10.18632/aging.202664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study explored the therapeutic impact of combined cytotoxic T lymphocyte-associated antigen 4 immunoglobulin (CTLA-4-Ig) treatment and microbubble-mediated exposure in a rat model of diabetic nephropathy (DN). METHOD We treated rats using CTLA-4-Ig and/or microbubble exposure. At 8 weeks post-intervention, key parameters were evaluated including blood biochemistry, damage to renal tissue, renal parenchymal elasticity, ultrastructural changes in podocytes, and renal parenchymal expression of CD31, CD34, IL-6, Fn, Collagen I, Talin, Paxillin, α3β1, podocin, nephrin, and B7-1. RESULT We found that renal function in the rat model of DN can be significantly improved by CTLA-4-Ig and CTLA-4-Ig + ultrasound microbubble treatment. Treatment efficacy was associated with reductions in renal parenchymal hardness, decreases in podocyte reduction, decreased IL-6, Fn and Collagen I expression, increased Talin, Paxillin and α3β1 expression, elevated podocin and nephrin expression, and decreased B7-1 expression. In contrast, these treatments did not impact CD31 or CD34 expression within the renal parenchyma. CONCLUSION These findings clearly emphasize that CTLA-4-Ig can effectively prevent podocyte damage, inhibiting inflammation and fibrosis, and thereby treating and preventing DN. In addition, ultrasound microbubble exposure can improve the ability of CTLA-4-Ig to pass through the glomerular basement membrane in order to access podocytes such that combination CTLA-4-Ig + microbubble exposure treatment is superior to treatment with CTLA-4-Ig only.
Collapse
Affiliation(s)
- Liang Wang
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Pengfei Wang
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiuyun Li
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yanyan Dong
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Senmin Wu
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Maosheng Xu
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiu Chen
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shijia Wang
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Chao Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Chunpeng Zou
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
38
|
Wunderlich LCS, Ströhl F, Ströhl S, Vanderpoorten O, Mascheroni L, Kaminski CF. Superresolving the kidney-a practical comparison of fluorescence nanoscopy of the glomerular filtration barrier. Anal Bioanal Chem 2021; 413:1203-1214. [PMID: 33277998 PMCID: PMC7813708 DOI: 10.1007/s00216-020-03084-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/31/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023]
Abstract
Immunofluorescence microscopy is routinely used in the diagnosis of and research on renal impairments. However, this highly specific technique is restricted in its maximum resolution to about 250 nm in the lateral and 700 nm in the axial directions and thus not sufficient to investigate the fine subcellular structure of the kidney's glomerular filtration barrier. In contrast, electron microscopy offers high resolution, but this comes at the cost of poor preservation of immunogenic epitopes and antibody penetration alongside a low throughput. Many of these drawbacks were overcome with the advent of super-resolution microscopy methods. So far, four different super-resolution approaches have been used to study the kidney: single-molecule localization microscopy (SMLM), stimulated emission depletion (STED) microscopy, structured illumination microscopy (SIM), and expansion microscopy (ExM), however, using different preservation methods and widely varying labelling strategies. In this work, all four methods were applied and critically compared on kidney slices obtained from samples treated with the most commonly used preservation technique: fixation by formalin and embedding in paraffin (FFPE). Strengths and weaknesses, as well as the practicalities of each method, are discussed to enable users of super-resolution microscopy in renal research make an informed decision on the best choice of technique. The methods discussed enable the efficient investigation of biopsies stored in kidney banks around the world. Graphical abstract.
Collapse
Affiliation(s)
- Lucia C S Wunderlich
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Florian Ströhl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Stefan Ströhl
- Department of Nephrology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Oliver Vanderpoorten
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Luca Mascheroni
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK.
| |
Collapse
|
39
|
Thieme K, Pereira BMV, da Silva KS, Fabre NT, Catanozi S, Passarelli M, Correa-Giannella ML. Chronic advanced-glycation end products treatment induces TXNIP expression and epigenetic changes in glomerular podocytes in vivo and in vitro. Life Sci 2021; 270:118997. [PMID: 33453249 DOI: 10.1016/j.lfs.2020.118997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022]
Abstract
Advanced glycation end products (AGEs) play an important role in oxidative stress and inflammation, processes implicated in the development and progression of kidney dysfunction. In the present study, we investigated the participation of the pro-oxidant protein thioredoxin-interacting protein (TXNIP) and of epigenetic mechanisms on kidney tissue (in vivo, in non-diabetic rats) and on terminally differentiated glomerular podocytes (in vitro) chronically exposed to AGEs. AGEs induced total kidney and glomerular TXNIP expression and decreased H3K27me3 content. Concomitant treatment with the antioxidant N-acetyl-cysteine (NAC) reversed only the increased TXNIP expression. TXNIP expression positively correlated with proteinuria and negatively correlated with H3K27me3 content. In vitro studies in podocytes showed that 72 h exposure to AGEs decreased nephrin expression and increased Txnip, Nox4, Col4a1, and epithelial-to-mesenchymal transition (EMT) markers (Acta2, Snail1, and Tgfb1). Podocytes treatment with NAC reversed Nox4, Col4a1, Acta2, and Tgfb1 increased expression but did not abrogate the reduced expression of nephrin. MiR-29a expression was downregulated by AGEs in vivo, but not in vitro. In conclusion, treatment of non-diabetic rats with AGEs induced TXNIP expression and decreased the contents of the repressive epigenetic mark H3K27me3 and of miR-29a, potentially driving injury to glomerular filtration barrier and podocytes dysfunction.
Collapse
Affiliation(s)
- Karina Thieme
- Laboratorio de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Beatriz Maria Veloso Pereira
- Laboratorio de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karolline S da Silva
- Laboratorio de Lipides (LIM-10) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nelly T Fabre
- Laboratorio de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sérgio Catanozi
- Laboratorio de Lipides (LIM-10) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marisa Passarelli
- Laboratorio de Lipides (LIM-10) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Programa de Pos-Graduaçao em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratorio de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Programa de Pos-Graduaçao em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil.
| |
Collapse
|
40
|
Kim JJ, David JM, Wilbon SS, Santos JV, Patel DM, Ahmad A, Mitrofanova A, Liu X, Mallela SK, Ducasa GM, Ge M, Sloan AJ, Al-Ali H, Boulina M, Mendez AJ, Contreras GN, Prunotto M, Sohail A, Fridman R, Miner JH, Merscher S, Fornoni A. Discoidin domain receptor 1 activation links extracellular matrix to podocyte lipotoxicity in Alport syndrome. EBioMedicine 2020; 63:103162. [PMID: 33340991 PMCID: PMC7750578 DOI: 10.1016/j.ebiom.2020.103162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is activated by collagens that is involved in the pathogenesis of fibrotic disorders. Interestingly, de novo production of the collagen type I (Col I) has been observed in Col4a3 knockout mice, a mouse model of Alport Syndrome (AS mice). Deletion of the DDR1 in AS mice was shown to improve survival and renal function. However, the mechanisms driving DDR1-dependent fibrosis remain largely unknown. Methods Podocyte pDDR1 levels, Collagen and cluster of differentiation 36 (CD36) expression was analyzed by Real-time PCR and Western blot. Lipid droplet accumulation and content was determined using Bodipy staining and enzymatic analysis. CD36 and DDR1 interaction was determined by co-immunoprecipitation. Creatinine, BUN, albuminuria, lipid content, and histological and morphological assessment of kidneys harvested from AS mice treated with Ezetimibe and/or Ramipril or vehicle was performed. Findings We demonstrate that Col I-mediated DDR1 activation induces CD36-mediated podocyte lipotoxic injury. We show that Ezetimibe interferes with the CD36/DDR1 interaction in vitro and prevents lipotoxicity in AS mice thus preserving renal function similarly to ramipril. Interpretation Our study suggests that Col I/DDR1-mediated lipotoxicity contributes to renal failure in AS and that targeting this pathway may represent a new therapeutic strategy for patients with AS and with chronic kidney diseases (CKD) associated with Col4 mutations. Funding This study is supported by the NIH grants R01DK117599, R01DK104753, R01CA227493, U54DK083912, UM1DK100846, U01DK116101, UL1TR000460 (Miami Clinical Translational Science Institute, National Center for Advancing Translational Sciences and the National Institute on Minority Health and Health Disparities), F32DK115109, Hoffmann-La Roche and Alport Syndrome Foundation.
Collapse
Affiliation(s)
- Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States.
| | - Judith M David
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Sydney S Wilbon
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Javier V Santos
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Devang M Patel
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Anis Ahmad
- Department of Radiation Oncology, University of Miami, FL 33136, United States
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Xiaochen Liu
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Shamroop K Mallela
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Gloria M Ducasa
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Alexis J Sloan
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Hassan Al-Ali
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Marcia Boulina
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Armando J Mendez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Gabriel N Contreras
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Marco Prunotto
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Anjum Sohail
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Rafael Fridman
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States.
| |
Collapse
|
41
|
Bovée DM, Cuevas CA, Zietse R, Danser AHJ, Mirabito Colafella KM, Hoorn EJ. Salt-sensitive hypertension in chronic kidney disease: distal tubular mechanisms. Am J Physiol Renal Physiol 2020; 319:F729-F745. [DOI: 10.1152/ajprenal.00407.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) causes salt-sensitive hypertension that is often resistant to treatment and contributes to the progression of kidney injury and cardiovascular disease. A better understanding of the mechanisms contributing to salt-sensitive hypertension in CKD is essential to improve these outcomes. This review critically explores these mechanisms by focusing on how CKD affects distal nephron Na+ reabsorption. CKD causes glomerulotubular imbalance with reduced proximal Na+ reabsorption and increased distal Na+ delivery and reabsorption. Aldosterone secretion further contributes to distal Na+ reabsorption in CKD and is not only mediated by renin and K+ but also by metabolic acidosis, endothelin-1, and vasopressin. CKD also activates the intrarenal renin-angiotensin system, generating intratubular angiotensin II to promote distal Na+ reabsorption. High dietary Na+ intake in CKD contributes to Na+ retention by aldosterone-independent activation of the mineralocorticoid receptor mediated through Rac1. High dietary Na+ also produces an inflammatory response mediated by T helper 17 cells and cytokines increasing distal Na+ transport. CKD is often accompanied by proteinuria, which contains plasmin capable of activating the epithelial Na+ channel. Thus, CKD causes both local and systemic changes that together promote distal nephron Na+ reabsorption and salt-sensitive hypertension. Future studies should address remaining knowledge gaps, including the relative contribution of each mechanism, the influence of sex, differences between stages and etiologies of CKD, and the clinical relevance of experimentally identified mechanisms. Several pathways offer opportunities for intervention, including with dietary Na+ reduction, distal diuretics, renin-angiotensin system inhibitors, mineralocorticoid receptor antagonists, and K+ or H+ binders.
Collapse
Affiliation(s)
- Dominique M. Bovée
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Catharina A. Cuevas
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert Zietse
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katrina M. Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Kim JJ, Fornoni A. Bedside to bench Alport syndrome research: are human urine-derived podocytes the answer? †. J Pathol 2020; 253:11-13. [PMID: 33009821 DOI: 10.1002/path.5564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 11/08/2022]
Abstract
In a recent issue of The Journal of Pathology, Iampietro et al isolated and characterized several clones of urine-derived podocytes from three patients with Alport syndrome (AS) and proteinuria and one age-matched non-proteinuric control. They reported differential expression of genes involved in cell motility, adhesion, survival, and angiogenesis. The authors found AS podocytes to be less motile and to have significantly higher permeability to albumin compared to control podocytes, highlighting that AS podocytes may retain their phenotype even when losing contact with the glomerular basement membrane. The establishment of urine-derived podocyte cell lines from patients with different genetic forms of AS may represent a valuable and minimally invasive tool to investigate the cellular mechanisms contributing to kidney disease progression in AS and may allow for the establishment of patient-specific drug screening opportunities. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
43
|
Wang C, Jiang Y, Yu K, Liu K, Wang H. Anhuienoside C Attenuates Podocyte Injury in Diabetic Nephropathy Rats. Dose Response 2020; 18:1559325820939010. [PMID: 33013249 PMCID: PMC7513418 DOI: 10.1177/1559325820939010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/17/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Objective: The present study evaluated the nephroprotective effects of anhuienoside C
(AC) against diabetic nephropathy (DN) in rats. Material and Methods: Diabetic nephropathy was induced by administration of a high-fat diet (HFD)
for 8 weeks and intraperitoneal administration of streptozotocin (STZ; 30
mg/kg) at the end of the fourth week of this protocol. Effects of AC on
blood glucose levels, renal function markers, and mediators of inflammation
in the serum of DN rats were assessed. Results: Anhuienoside C treatment reduced the blood glucose levels and attenuated the
increased levels of renal injury markers in DN rats. Anhuienoside C also
increased podocyte counts; alleviated the changes in podocin, desmin, and
nephrin protein levels; and ameliorated the altered pathophysiology in the
kidney tissues induced by DN. Compared with the DN group, the levels of
inflammatory markers and mediators of oxidative stress were reduced in the
serum and kidney tissues of the AC-treated groups. Moreover, treatment with
AC ameliorates the altered expression of podocin, nephrin, and desmin
proteins in the renal tissue of HFD/STZ-induced kidney-injured rats. Conclusion: In conclusion, AC protected against podocyte injury by regulating nuclear
factor kappa-light-chain-enhancer of activated B cells/protein kinase B
pathway in a rat model of DN.
Collapse
Affiliation(s)
- Chengjian Wang
- Department of Endocrinology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yingsong Jiang
- Department of Nephrology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Keping Yu
- Department of Endocrinology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Ke Liu
- Department of Endocrinology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Hao Wang
- Department of Endocrinology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
44
|
Infante B, Rossini M, Leo S, Troise D, Netti GS, Ranieri E, Gesualdo L, Castellano G, Stallone G. Recurrent Glomerulonephritis after Renal Transplantation: The Clinical Problem. Int J Mol Sci 2020; 21:ijms21175954. [PMID: 32824988 PMCID: PMC7504691 DOI: 10.3390/ijms21175954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Glomerulonephritis (GN) continues to be one of the main causes of end-stage kidney disease (ESKD) with an incidence rating from 10.5% to 38.2%. Therefore, recurrent GN, previously considered to be a minor contributor to graft loss, is the third most common cause of graft failure 10 years after renal transplantation. However, the incidence, pathogenesis, and natural course of recurrences are still not completely understood. This review focuses on the most frequent diseases that recur after renal transplantation, analyzing rate of recurrence, epidemiology and risk factors, pathogenesis and bimolecular mechanisms, clinical presentation, diagnosis, and therapy, taking into consideration the limited data available in the literature. First of all, the risk for recurrence depends on the type of glomerulonephritis. For example, recipient patients with anti-glomerular basement membrane (GBM) disease present recurrence rarely, but often exhibit rapid graft loss. On the other hand, recipient patients with C3 glomerulonephritis present recurrence in more than 50% of cases, although the disease is generally slowly progressive. It should not be forgotten that every condition that can lead to chronic graft dysfunction should be considered in the differential diagnosis of recurrence. Therefore, a complete workup of renal biopsy, including light, immunofluorescence and electron microscopy study, is essential to provide the diagnosis, excluding alternative diagnosis that may require different treatment. We will examine in detail the biomolecular mechanisms of both native and transplanted kidney diseases, monitoring the risk of recurrence and optimizing the available treatment options.
Collapse
Affiliation(s)
- Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
| | - Michele Rossini
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (M.R.); (G.S.N.); (E.R.)
| | - Serena Leo
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
| | - Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (M.R.); (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (M.R.); (G.S.N.); (E.R.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy;
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
- Correspondence: ; Tel.: +39-0881732610; Fax: +39-0881736001
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
| |
Collapse
|
45
|
Wang X, Liu Q, Kong D, Long Z, Guo Y, Wang S, Liu R, Hai C. Down-regulation of SETD6 protects podocyte against high glucose and palmitic acid-induced apoptosis, and mitochondrial dysfunction via activating Nrf2-Keap1 signaling pathway in diabetic nephropathy. J Mol Histol 2020; 51:549-558. [PMID: 32803470 DOI: 10.1007/s10735-020-09904-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN), a serious complication of hyperglycemia, is one of the most common causes of end-stage renal disease (ESRD). Glomerular podocyte injury is a major mechanism that leads to DN. However, the mechanisms underlying podocyte injury are ambiguous. In this study, we sought to investigate the contribution of SET domain-containing protein 6 (SETD6) to the pathogenesis of podocyte injury induced by glucose (GLU) and palmitic acid (PA), as well as the underlying mechanisms. Our results showed that GLU and PA treatment significantly decreased SETD6 expression in mouse podocytes. Besides, Cell Counting Kit-8 (CCK-8) and flow cytometry assay demonstrated that silencing of SETD6 silence obviously enhanced cell viability, and suppressed apoptosis in GLU and PA-induced podocytes. We also discovered that downregulation of SETD6 suppressed GLU and PA-induced ROS generation and podocyte mitochondrial dysfunction. Nrf2-Keap1 signaling pathway was involved in the effect of SETD6 on mitochondrial dysfunction. Taken together, silencing of SETD6 protected mouse podocyte against apoptosis and mitochondrial dysfunction through activating Nrf2-Keap1 signaling pathway. Therefore these data provide new insights into new potential therapeutic targets for DN treatment.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Air Force Medical University (Fourth Military Medical University), 127 Changle Western Road, Xi'an, 710032, Shaanxi, People's Republic of China
- Department of Physiopathology, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Qiling Liu
- Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Air Force Medical University (Fourth Military Medical University), 127 Changle Western Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Deqin Kong
- Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Air Force Medical University (Fourth Military Medical University), 127 Changle Western Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zi Long
- Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Air Force Medical University (Fourth Military Medical University), 127 Changle Western Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - YuFang Guo
- Department of Physiopathology, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Shuang Wang
- Department of Physiopathology, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Rui Liu
- Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Air Force Medical University (Fourth Military Medical University), 127 Changle Western Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Chunxu Hai
- Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Air Force Medical University (Fourth Military Medical University), 127 Changle Western Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
46
|
Riaz S, Abdulrahman N, Uddin S, Jabeen A, Gadeau AP, Fliegel L, Mraiche F. Anti-hypertrophic effect of Na +/H + exchanger-1 inhibition is mediated by reduced cathepsin B. Eur J Pharmacol 2020; 888:173420. [PMID: 32781168 DOI: 10.1016/j.ejphar.2020.173420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Previous studies have established the role of Na+/H+ exchanger isoform-1 (NHE1) and cathepsin B (Cat B) in the development of cardiomyocyte hypertrophy (CH). Both NHE1 and Cat B are activated under acidic conditions suggesting that their activities might be interrelated. The inhibition of NHE1 has been demonstrated to reduce cardiac hypertrophy but the mechanism that contributes to the anti-hypertrophic effect of NHE1 inhibition still remains unclear. H9c2 cardiomyoblasts were stimulated with Angiotensin (Ang) II in the presence and absence of N-[2-methyl-4,5-bis(methylsulphonyl)-benzoyl]-guanidine, hydrochloride (EMD, EMD 87580), an NHE1 inhibitor or CA-074Me, a Cat B inhibitor, and various cardiac hypertrophic parameters, namely cell surface area, protein content and atrial natriuretic peptide (ANP) mRNA were analyzed. EMD significantly suppressed markers of cardiomyocyte hypertrophy and inhibited Ang II stimulated Cat B protein and gene expression. Cat B is located within the acidic environment of lysosomes. Cat B proteases are released into the cytoplasm upon disintegration of the lysosomes. EMD or CA-074Me prevented the dispersal of the lysosomes induced by Ang II and reduced the ratio of LC3-II to LC3-I, a marker of autophagy. Moreover, Cat B protein expression and MMP-9 activity in the extracellular space were significantly attenuated in the presence of EMD or CA-074Me. Our study demonstrates a novel mechanism for attenuation of the hypertrophic phenotype by NHE1 inhibition that is mediated by a regression in Cat B. The inhibition of Cat B via EMD or CA-074Me attenuates the autosomal-lysosomal pathway and MMP-9 activation.
Collapse
Affiliation(s)
- Sadaf Riaz
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Hamad Medical Corporation, Doha, Qatar
| | - Nabeel Abdulrahman
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ayesha Jabeen
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | | | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
47
|
Blaine J, Dylewski J. Regulation of the Actin Cytoskeleton in Podocytes. Cells 2020; 9:cells9071700. [PMID: 32708597 PMCID: PMC7408282 DOI: 10.3390/cells9071700] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Podocytes are an integral part of the glomerular filtration barrier, a structure that prevents filtration of large proteins and macromolecules into the urine. Podocyte function is dependent on actin cytoskeleton regulation within the foot processes, structures that link podocytes to the glomerular basement membrane. Actin cytoskeleton dynamics in podocyte foot processes are complex and regulated by multiple proteins and other factors. There are two key signal integration and structural hubs within foot processes that regulate the actin cytoskeleton: the slit diaphragm and focal adhesions. Both modulate actin filament extension as well as foot process mobility. No matter what the initial cause, the final common pathway of podocyte damage is dysregulation of the actin cytoskeleton leading to foot process retraction and proteinuria. Disruption of the actin cytoskeleton can be due to acquired causes or to genetic mutations in key actin regulatory and signaling proteins. Here, we describe the major structural and signaling components that regulate the actin cytoskeleton in podocytes as well as acquired and genetic causes of actin dysregulation.
Collapse
Affiliation(s)
- Judith Blaine
- Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - James Dylewski
- Renal Division, University of Colorado Anschutz Medical Campus and Denver Health Medical Center, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +303-724-4841
| |
Collapse
|
48
|
Yang F, Qu Q, Zhao C, Liu X, Yang P, Li Z, Han L, Shi X. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice. Biomed Pharmacother 2020; 129:110479. [PMID: 32768963 DOI: 10.1016/j.biopha.2020.110479] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/28/2022] Open
Abstract
Radix astragali, a medicinal material for tonifying Chinese Qi, has widely been used for the treatment of Kidney disease in China and East Asia, especially in reducing the apoptosis of glomerular podocytes. Paecilomyces Cicadidae is a medicinal and edible fungus. In recent years, the application of traditional Chinese medicine (TCM) in solid-state fermentation of edible and medicinal fungi has become a hot issue. Fermentation is a special method to change the properties of TCM. Therefore, the potential roles and molecular mechanisms on podocytes of solid-state fermentation products of Radix astragali and Paecilomyces cicadidae (RPF) in diabetic nephropathy (DN) were studied. In vivo, the effect of RPF and Radix astragali on DN in mice was evaluated by detecting the biochemical indexes of blood and urine, renal function and podocyte integrity. In vitro, the expression of podocyte marker protein, autophagy marker protein and PI3K/AKT/mTOR signaling pathway protein were detected by Western blotting using a high glucose-induced podocyte injury model. The results showed that RPF had a significant alleviative effect on DN mice. RPF can significantly reduce urine protein, serum creatinine, and blood nitrogen urea in DN mice. Morphological analysis showed that RPF could improve kidney structure of DN and reduce the apoptosis of podocytes, and the effect was better than Radix astragali. In vitro results indicated that RPF could enhance autophagy and protect podocytes by inhibiting the PI3K/AKT/mTOR signaling pathway. In summary, RPF has better effect on delaying the development of DN than Radix astragali. RPF enhances autophagy in podocytes and delays DN probably by inhibiting the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Fang Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China
| | - Qingsong Qu
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China
| | - Chongyan Zhao
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China
| | - Xing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China
| | - Pengshuo Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China
| | - Zhixun Li
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China
| | - Lu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| |
Collapse
|
49
|
Chen Y, Wang Z, Li Q, Yu L, Zhu Y, Wang J, Sun S. oxLDL promotes podocyte migration by regulating CXCL16, ADAM10 and ACTN4. Mol Med Rep 2020; 22:1976-1984. [PMID: 32705248 PMCID: PMC7411416 DOI: 10.3892/mmr.2020.11292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 05/22/2020] [Indexed: 01/19/2023] Open
Abstract
Nephrotic syndrome (NS) is one of the most common causes of chronic kidney disease in the pediatric population. Hyperlipidemia is one of the main features of NS. The present study investigated the role of CXC motif chemokine ligand 16 (CXCL16) and ADAM metallopeptidase domain 10 (ADAM10) in oxidized low-density lipoprotein (oxLDL)-stimualted podocytes and the underlying mechanisms. CXCL16 and ADAM10 expression levels in oxLDL-treated podocytes were measured via reverse transcription-quantitative PCR and western blotting. Cell migration assays were conducted to assess the migration of oxLDL-treated podocytes. CXCL16 or ADAM10 overexpression and knockdown assays were conducted. The results indicated that oxLDL stimulation increased ADAM10 and CXCL16 expression levels, and enhanced podocyte migration compared with the control group. Moreover, CXCL16 and ADAM10 overexpression significantly increased podocyte migration and the expression of actinin-α4 (ACTN4) compared with the control groups. By contrast, CXCL16 and ADAM10 knockdown significantly reduced podocyte migration and the expression of ACTN4 compared with the control groups. The results suggested that oxLDL promoted podocyte migration by regulating CXCL16 and ADAM10 expression, as well as by modulating the actin cytoskeleton. Therefore, CXCL16 and ADAM10 may serve as novel therapeutic targets for primary nephrotic syndrome in children.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhiyi Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qian Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Lichun Yu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yanji Zhu
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Jing Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Shuzhen Sun
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
50
|
Audzeyenka I, Rachubik P, Rogacka D, Typiak M, Kulesza T, Angielski S, Rychłowski M, Wysocka M, Gruba N, Lesner A, Saleem MA, Piwkowska A. Cathepsin C is a novel mediator of podocyte and renal injury induced by hyperglycemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118723. [PMID: 32302668 DOI: 10.1016/j.bbamcr.2020.118723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
A growing body of evidence suggests a role of proteolytic enzymes in the development of diabetic nephropathy. Cathepsin C (CatC) is a well-known regulator of inflammatory responses, but its involvement in podocyte and renal injury remains obscure. We used Zucker rats, a genetic model of metabolic syndrome and insulin resistance, to determine the presence, quantity, and activity of CatC in the urine. In addition to the animal study, we used two cellular models, immortalized human podocytes and primary rat podocytes, to determine mRNA and protein expression levels via RT-PCR, Western blot, and confocal microscopy, and to evaluate CatC activity. The role of CatC was analyzed in CatC-depleted podocytes using siRNA and glycolytic flux parameters were obtained from extracellular acidification rate (ECAR) measurements. In functional analyses, podocyte and glomerular permeability to albumin was determined. We found that podocytes express and secrete CatC, and a hyperglycemic environment increases CatC levels and activity. Both high glucose and non-specific activator of CatC phorbol 12-myristate 13-acetate (PMA) diminished nephrin, cofilin, and GLUT4 levels and induced cytoskeletal rearrangements, increasing albumin permeability in podocytes. These negative effects were completely reversed in CatC-depleted podocytes. Moreover, PMA, but not high glucose, increased glycolytic flux in podocytes. Finally, we demonstrated that CatC expression and activity are increased in the urine of diabetic Zucker rats. We propose a novel mechanism of podocyte injury in diabetes, providing deeper insight into the role of CatC in podocyte biology.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland
| | - Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Michał Rychłowski
- Intercollegiate Faculty of Biotechnology, University of Gdansk - Medical University of Gdansk, Poland
| | | | | | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Poland
| | - Moin A Saleem
- Bristol Renal, University of Bristol, United Kingdom
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland
| |
Collapse
|