1
|
Grahammer F, Dumoulin B, Gulieva RE, Wu H, Xu Y, Sulaimanov N, Arnold F, Sandner L, Cordts T, Todkar A, Moulin P, Reichardt W, Puelles VG, Kramann R, Freedman BS, Busch H, Boerries M, Walz G, Huber TB. Cyclin-dependent kinase 4 drives cystic kidney disease in the absence of mTORC1 signaling activity. Kidney Int 2024; 106:856-869. [PMID: 39218392 DOI: 10.1016/j.kint.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Progression of cystic kidney disease has been linked to activation of the mTORC1 signaling pathway. Yet the utility of mTORC1 inhibitors to treat patients with polycystic kidney disease remains controversial despite promising preclinical data. To define the cell intrinsic role of mTORC1 for cyst development, the mTORC1 subunit gene Raptor was selectively inactivated in kidney tubular cells lacking cilia due to simultaneous deletion of the kinesin family member gene Kif3A. In contrast to a rapid onset of cyst formation and kidney failure in mice with defective ciliogenesis, both kidney function, cyst formation discerned by magnetic resonance imaging and overall survival were strikingly improved in mice additionally lacking Raptor. However, these mice eventually succumbed to cystic kidney disease despite mTORC1 inactivation. In-depth transcriptome analysis revealed the rapid activation of other growth-promoting signaling pathways, overriding the effects of mTORC1 deletion and identified cyclin-dependent kinase (CDK) 4 as an alternate driver of cyst growth. Additional inhibition of CDK4-dependent signaling by the CDK4/6 inhibitor Palbociclib markedly slowed disease progression in mice and human organoid models of polycystic kidney disease and potentiated the effects of mTORC1 deletion/inhibition. Our findings indicate that cystic kidneys rapidly adopt bypass mechanisms typically observed in drug resistant cancers. Thus, future clinical trials need to consider combinatorial or sequential therapies to improve therapeutic efficacy in patients with cystic kidney disease.
Collapse
Affiliation(s)
- Florian Grahammer
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Bernhard Dumoulin
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ramila E Gulieva
- Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hui Wu
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yaoxian Xu
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nurgazy Sulaimanov
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Frederic Arnold
- Department of Medicine IV, Medical Center and Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Lukas Sandner
- Department of Medicine IV, Medical Center and Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Tomke Cordts
- Department of Medicine IV, Medical Center and Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Abhijeet Todkar
- Department of Medicine IV, Medical Center and Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Pierre Moulin
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | - Wilfried Reichardt
- Department of Diagnostic and Interventional Radiology, Division of Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Benjamin S Freedman
- Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA; Plurexa LLC, Seattle, Washington, USA
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center and Faculty of Medicine University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between Deutsches Krebs Forschungs Zentrum (DKFZ) and Medical Center-University of Freiburg, Heidelberg, Germany
| | - Gerd Walz
- Department of Medicine IV, Medical Center and Faculty of Medicine University of Freiburg, Freiburg, Germany; Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Zheng Q, Zhao J, Yuan J, Qin Y, Zhu Z, Liu J, Sun S. Delaying Renal Aging: Metformin Holds Promise as a Potential Treatment. Aging Dis 2024:AD.2024.0168. [PMID: 39012670 DOI: 10.14336/ad.2024.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/06/2024] [Indexed: 07/17/2024] Open
Abstract
Given the rapid aging of the population, age-related diseases have become an excessive burden on global health care. The kidney, a crucial metabolic organ, ages relatively quickly. While the aging process itself does not directly cause kidney damage, the physiological changes that accompany it can impair the kidney's capacity for self-repair. This makes aging kidneys more susceptible to diseases, including increased risks of chronic kidney disease and end-stage renal disease. Therefore, delaying the progression of renal aging and preserving the youthful vitality of the kidney are crucial for preventing kidney diseases. However, effective strategies against renal aging are still lacking due to the underlying mechanisms of renal aging, which have not been fully elucidated. Accumulating evidence suggests that metformin has beneficial effects in mitigating renal aging. Metformin has shown promising anti-aging results in animal models but has not been tested for this purpose yet in clinical trials. These findings indicate the potential of metformin as an anti-renal aging drug. In this review, we primarily discuss the characteristics and mechanisms of kidney aging and the potential effects of metformin against renal aging.
Collapse
Affiliation(s)
- Qiao Zheng
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhanxin Zhu
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Tsuruta H, Yamahara K, Yasuda-Yamahara M, Kume S. Emerging Pathophysiological Roles of Ketone Bodies. Physiology (Bethesda) 2024; 39:0. [PMID: 38260943 DOI: 10.1152/physiol.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.
Collapse
Affiliation(s)
- Hiroaki Tsuruta
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Mako Yasuda-Yamahara
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| |
Collapse
|
4
|
Qu L, Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023; 12:1584. [PMID: 37371054 PMCID: PMC10296595 DOI: 10.3390/cells12121584] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.
Collapse
Affiliation(s)
- Lili Qu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| | - Baihai Jiao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| |
Collapse
|
5
|
Zhou JX, Torres VE. Autosomal Dominant Polycystic Kidney Disease Therapies on the Horizon. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:245-260. [PMID: 37088527 DOI: 10.1053/j.akdh.2023.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous kidney cysts which leads to kidney failure. ADPKD is responsible for approximately 10% of patients with kidney failure. Overwhelming evidence supports that vasopressin and its downstream cyclic adenosine monophosphate signaling promote cystogenesis, and targeting vasopressin 2 receptor with tolvaptan and other antagonists ameliorates cyst growth in preclinical studies. Tolvaptan is the only drug approved by Food and Drug Administration to treat ADPKD patients at the risk of rapid disease progression. A major limitation of the widespread use of tolvaptan is aquaretic events. This review discusses the potential strategies to improve the tolerability of tolvaptan, the progress on the use of an alternative vasopressin 2 receptor antagonist lixivaptan, and somatostatin analogs. Recent advances in understanding the pathophysiology of PKD have led to new approaches of treatment via targeting different signaling pathways. We review the new pharmacotherapies and dietary interventions of ADPKD that are promising in the preclinical studies and investigated in clinical trials.
Collapse
|
6
|
Zhou JX, Torres VE. Drug repurposing in autosomal dominant polycystic kidney disease. Kidney Int 2023; 103:859-871. [PMID: 36870435 DOI: 10.1016/j.kint.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Autosomal dominant polycystic kidney disease is characterized by progressive kidney cyst formation that leads to kidney failure. Tolvaptan, a vasopressin 2 receptor antagonist, is the only drug approved to treat patients with autosomal dominant polycystic kidney disease who have rapid disease progression. The use of tolvaptan is limited by reduced tolerability from aquaretic effects and potential hepatotoxicity. Thus, the search for more effective drugs to slow down the progression of autosomal dominant polycystic kidney disease is urgent and challenging. Drug repurposing is a strategy for identifying new clinical indications for approved or investigational medications. Drug repurposing is increasingly becoming an attractive proposition because of its cost-efficiency and time-efficiency and known pharmacokinetic and safety profiles. In this review, we focus on the repurposing approaches to identify suitable drug candidates to treat autosomal dominant polycystic kidney disease and prioritization and implementation of candidates with high probability of success. Identification of drug candidates through understanding of disease pathogenesis and signaling pathways is highlighted.
Collapse
Affiliation(s)
- Julie Xia Zhou
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Rochester, Minnesota, USA.
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Rochester, Minnesota, USA.
| |
Collapse
|
7
|
Lomovsky AI, Baburina YL, Fadeev RS, Lomovskaya YV, Kobyakova MI, Krestinin RR, Sotnikova LD, Krestinina OV. Melatonin Can Enhance the Effect of Drugs Used in the Treatment of Leukemia. BIOCHEMISTRY (MOSCOW) 2023; 88:73-85. [PMID: 37068876 DOI: 10.1134/s0006297923010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MEL), secreted by the pineal gland, plays an important role in regulation of various functions in the human body. There is evidence that MEL exhibits antitumor effect in various types of cancer. We studied the combined effect of MEL and drugs from different pharmacological groups, such as cytarabine (CYT) and navitoclax (ABT-737), on the state of the pool of acute myeloid leukemia (AML) tumor cell using the MV4-11 cell line as model. The combined action of MEL with CYT or ABT-737 contributed to the decrease in proliferative activity of leukemic cells, decrease in the membrane potential of mitochondria, and increase in the production of reactive oxygen species (ROS) and cytosolic Ca2+. We have shown that introduction of MEL together with CYT or ABT-737 increases expression of the C/EBP homologous protein (CHOP) and the autophagy marker LC3A/B and decreases expression of the protein disulfide isomerase (PDI) and binding immunoglobulin protein (BIP), and, therefore, could modulate endoplasmic reticulum (ER) stress and initiate autophagy. The findings support an early suggestion that MEL is able to provide benefits for cancer treatment and be considered as an adjunct to the drugs used in cancer therapy.
Collapse
Affiliation(s)
- Alexey I Lomovsky
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Yulia L Baburina
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Yana V Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Margarita I Kobyakova
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Roman R Krestinin
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Linda D Sotnikova
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Olga V Krestinina
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
8
|
Yin F, Wei Z, Chen F, Xin C, Chen Q. Molecular targets of primary cilia defects in cancer (Review). Int J Oncol 2022; 61:98. [DOI: 10.3892/ijo.2022.5388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Fengying Yin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zihao Wei
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Fangman Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Chuan Xin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
9
|
Spitz D, Comas M, Gerstner L, Kayser S, Helmstädter M, Walz G, Hermle T. mTOR-Dependent Autophagy Regulates Slit Diaphragm Density in Podocyte-like Drosophila Nephrocytes. Cells 2022; 11:2103. [PMID: 35805186 PMCID: PMC9265458 DOI: 10.3390/cells11132103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Both mTOR signaling and autophagy are important modulators of podocyte homeostasis, regeneration, and aging and have been implicated in glomerular diseases. However, the mechanistic role of these pathways for the glomerular filtration barrier remains poorly understood. We used Drosophila nephrocytes as an established podocyte model and found that inhibition of mTOR signaling resulted in increased spacing between slit diaphragms. Gain-of-function of mTOR signaling did not affect spacing, suggesting that additional cues limit the maximal slit diaphragm density. Interestingly, both activation and inhibition of mTOR signaling led to decreased nephrocyte function, indicating that a fine balance of signaling activity is needed for proper function. Furthermore, mTOR positively controlled cell size, survival, and the extent of the subcortical actin network. We also showed that basal autophagy in nephrocytes is required for survival and limits the expression of the sns (nephrin) but does not directly affect slit diaphragm formation or endocytic activity. However, using a genetic rescue approach, we demonstrated that excessive, mTOR-dependent autophagy is primarily responsible for slit diaphragm misspacing. In conclusion, we established this invertebrate podocyte model for mechanistic studies on the role of mTOR signaling and autophagy, and we discovered a direct mTOR/autophagy-dependent regulation of the slit diaphragm architecture.
Collapse
Affiliation(s)
- Dominik Spitz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Maria Comas
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Séverine Kayser
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
- CIBSS—Centre for Integrative Biological Signalling Studies, 79106 Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| |
Collapse
|
10
|
Xu J, Shan X, Chen C, Gao Y, Zou D, Wang X, Wang T, Shi Y. Tangshenning Attenuates High Glucose-Induced Podocyte Injury via Restoring Autophagy Activity through Inhibiting mTORC1 Activation. J Diabetes Res 2022; 2022:1610416. [PMID: 35799948 PMCID: PMC9256440 DOI: 10.1155/2022/1610416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus (DM) and the most common cause of death in diabetic patients. DN progression is associated with podocyte damage due to reduced autophagy caused by mTORC1 activation. Tangshenning (TSN) has been shown to reduce proteinuria, protect renal function, and reduce podocyte damage. Still, the effect of TSN on the autophagic activity of podocytes remains unclear. Herein, in vitro experiments using a high glucose-induced podocyte injury model were performed. Results showed that TSN treatment enhanced the weakened nephrin expression and autophagic activity of podocytes and inhibited the mTORC1 pathway (p-mTOR, mTOR, p-p70S6K, p70S6K, ULK1, and 4EBP1) under high glucose conditions. Furthermore, the mTORC1 activator (siRNA-TSC2) partially inhibited the above beneficial effects of TSN, suggesting that mTORC1 was the target of TSN to regulate autophagy. In summary, TSN reduces podocyte damage induced by high glucose via inhibiting mTORC1 pathway and downstream targets and restoring podocyte autophagy.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Xiaomeng Shan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Chunwei Chen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Dawei Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Xiaolei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Tao Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yimin Shi
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
11
|
Shroff UN, Gyarmati G, Izuhara A, Deepak S, Peti-Peterdi J. A new view of macula densa cell protein synthesis. Am J Physiol Renal Physiol 2021; 321:F689-F704. [PMID: 34693742 PMCID: PMC8714974 DOI: 10.1152/ajprenal.00222.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Macula densa (MD) cells, a chief sensory cell type in the nephron, are endowed with unique microanatomic features including a high density of protein synthetic organelles and secretory vesicles in basal cell processes ("maculapodia") that suggest a so far unknown high rate of MD protein synthesis. This study aimed to explore the rate and regulation of MD protein synthesis and their effects on glomerular function using novel transgenic mouse models, newly established fluorescence cell biology techniques, and intravital microscopy. Sox2-tdTomato kidney tissue sections and an O-propargyl puromycin incorporation-based fluorescence imaging assay showed that MD cells have the highest level of protein synthesis within the kidney cortex followed by intercalated cells and podocytes. Genetic gain of function of mammalian target of rapamycin (mTOR) signaling specifically in MD cells (in MD-mTORgof mice) or their physiological activation by low-salt diet resulted in further significant increases in the synthesis of MD proteins. Specifically, these included both classic and recently identified MD-specific proteins such as cyclooxygenase 2, microsomal prostaglandin E2 synthase 1, and pappalysin 2. Intravital imaging of the kidney using multiphoton microscopy showed significant increases in afferent and efferent arteriole and glomerular capillary diameters and blood flow in MD-mTORgof mice coupled with an elevated glomerular filtration rate. The presently identified high rate of MD protein synthesis that is regulated by mTOR signaling is a novel component of the physiological activation and glomerular hemodynamic regulatory functions of MD cells that remains to be fully characterized.NEW & NOTEWORTHY This study discovered the high rate of protein synthesis in macula densa (MD) cells by applying direct imaging techniques with single cell resolution. Physiological activation and mammalian target of rapamycin signaling played important regulatory roles in this process. This new feature is a novel component of the tubuloglomerular cross talk and glomerular hemodynamic regulatory functions of MD cells. Future work is needed to elucidate the nature and (patho)physiological role of the specific proteins synthesized by MD cells.
Collapse
Affiliation(s)
- Urvi Nikhil Shroff
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Audrey Izuhara
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Sachin Deepak
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
- Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| |
Collapse
|
12
|
Wu M, Zhang M, Zhang Y, Li Z, Li X, Liu Z, Liu H, Li X. Relationship between lysosomal dyshomeostasis and progression of diabetic kidney disease. Cell Death Dis 2021; 12:958. [PMID: 34663802 PMCID: PMC8523726 DOI: 10.1038/s41419-021-04271-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
Lysosomes are organelles involved in cell metabolism, waste degradation, and cellular material circulation. They play a key role in the maintenance of cellular physiological homeostasis. Compared with the lysosomal content of other organs, that of the kidney is abundant, and lysosomal abnormalities are associated with the occurrence and development of certain renal diseases. Lysosomal structure and function in intrinsic renal cells are impaired in diabetic kidney disease (DKD). Promoting lysosomal biosynthesis and/or restoring lysosomal function can repair damaged podocytes and proximal tubular epithelial cells, and delay the progression of DKD. Lysosomal homeostasis maintenance may be advantageous in alleviating DKD. Here, we systematically reviewed the latest advances in the relationship between lysosomal dyshomeostasis and progression of DKD based on recent literature to further elucidate the mechanism of renal injury in diabetes mellitus and to highlight the application potential of lysosomal homeostasis maintenance as a new prevention and treatment strategy for DKD. However, research on screening effective interventions for lysosomal dyshomeostasis is still in its infancy, and thus should be the focus of future research studies. The screening out of cell-specific lysosomal function regulation targets according to the different stages of DKD, so as to realize the controllable targeted regulation of cell lysosomal function during DKD, is the key to the successful clinical development of this therapeutic strategy.
Collapse
Affiliation(s)
- Man Wu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Minjie Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Yaozhi Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Zixian Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xingyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Zejian Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
13
|
Kovesdi E, Ripszam R, Postyeni E, Horvath EB, Kelemen A, Fabos B, Farkas V, Hadzsiev K, Sumegi K, Magyari L, Moreno PG, Bauer P, Melegh B. Whole Exome Sequencing in a Series of Patients with a Clinical Diagnosis of Tuberous Sclerosis Not Confirmed by Targeted TSC1/TSC2 Sequencing. Genes (Basel) 2021; 12:genes12091401. [PMID: 34573383 PMCID: PMC8471884 DOI: 10.3390/genes12091401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Approximately fifteen percent of patients with tuberous sclerosis complex (TSC) phenotype do not have any genetic disease-causing mutations which could be responsible for the development of TSC. The lack of a proper diagnosis significantly affects the quality of life for these patients and their families. METHODS The aim of our study was to use Whole Exome Sequencing (WES) in order to identify the genes responsible for the phenotype of nine patients with clinical signs of TSC, but without confirmed tuberous sclerosis complex 1/ tuberous sclerosis complex 2 (TSC1/TSC2) mutations using routine molecular genetic diagnostic tools. RESULTS We found previously overlooked heterozygous nonsense mutations in TSC1, and a heterozygous intronic variant in TSC2. In one patient, two heterozygous missense variants were found in polycystic kidney and hepatic disease 1 (PKHD1), confirming polycystic kidney disease type 4. A heterozygous missense mutation in solute carrier family 12 member 5 (SLC12A5) was found in one patient, which is linked to cause susceptibility to idiopathic generalized epilepsy type 14. Heterozygous nonsense variant ring finger protein 213 (RNF213) was identified in one patient, which is associated with susceptibility to Moyamoya disease type 2. In the remaining three patients WES could not reveal any variants clinically relevant to the described phenotypes. CONCLUSION Patients without appropriate diagnosis due to the lack of sensitivity of the currently used routine diagnostic methods can significantly profit from the wider application of next generation sequencing technologies in order to identify genes and variants responsible for their symptoms.
Collapse
Affiliation(s)
- Erzsebet Kovesdi
- Department of Medical Genetics, Medical School, Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary; (R.R.); (E.P.); (K.H.); (K.S.); (L.M.); (B.M.)
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Center for Neuroscience, Szentagothai Research Center, Medical School, University of Pecs, 7624 Pecs, Hungary
- Correspondence:
| | - Reka Ripszam
- Department of Medical Genetics, Medical School, Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary; (R.R.); (E.P.); (K.H.); (K.S.); (L.M.); (B.M.)
| | - Etelka Postyeni
- Department of Medical Genetics, Medical School, Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary; (R.R.); (E.P.); (K.H.); (K.S.); (L.M.); (B.M.)
| | - Emese Beatrix Horvath
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Anna Kelemen
- National Institute of Clinical Neurosciences, 1145 Budapest, Hungary;
| | - Beata Fabos
- Somogy County Mor Kaposi Teaching Hospital, 7400 Kaposvar, Hungary;
| | - Viktor Farkas
- Department of Pediatrics, Faculty of Medicine, Semmelweis University, 1085-Budapest, Hungary;
| | - Kinga Hadzsiev
- Department of Medical Genetics, Medical School, Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary; (R.R.); (E.P.); (K.H.); (K.S.); (L.M.); (B.M.)
| | - Katalin Sumegi
- Department of Medical Genetics, Medical School, Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary; (R.R.); (E.P.); (K.H.); (K.S.); (L.M.); (B.M.)
- Departments of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Lili Magyari
- Department of Medical Genetics, Medical School, Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary; (R.R.); (E.P.); (K.H.); (K.S.); (L.M.); (B.M.)
| | | | - Peter Bauer
- CENTOGENE GmbH, 18055 Rostock, Germany; (P.B.); (P.G.M.)
| | - Bela Melegh
- Department of Medical Genetics, Medical School, Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary; (R.R.); (E.P.); (K.H.); (K.S.); (L.M.); (B.M.)
| |
Collapse
|
14
|
Granata S, Carratù P, Stallone G, Zaza G. mTOR-Inhibition and COVID-19 in Kidney Transplant Recipients: Focus on Pulmonary Fibrosis. Front Pharmacol 2021; 12:710543. [PMID: 34497515 PMCID: PMC8419255 DOI: 10.3389/fphar.2021.710543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Kidney transplant recipients are at high risk of developing severe COVID-19 due to the coexistence of several transplant-related comorbidities (e.g., cardiovascular disease, diabetes) and chronic immunosuppression. As a consequence, a large part of SARS-CoV-2 infected patients have been managed with a reduction of immunosuppression. The mTOR-I, together with antimetabolites, have been often discontinued in order to minimize the risk of pulmonary toxicity and to antagonize pharmacological interaction with antiviral/anti-inflammatory drugs. However, at our opinion, this therapeutic strategy, although justified in kidney transplant recipients with severe COVID-19, should be carefully evaluated in asymptomatic/paucisymptomatic patients in order to avoid the onset of acute allograft rejections, to potentially exploit the mTOR-I antiviral properties, to reduce proliferation of conventional T lymphocytes (which could mitigate the cytokine storm) and to preserve Treg growth/activity which could reduce the risk of progression to severe disease. In this review, we discuss the current literature regarding the therapeutic potential of mTOR-Is in kidney transplant recipients with COVID-19 with a focus on pulmonary fibrosis.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Pierluigi Carratù
- Division of Internal Medicine, Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, "Aldo Moro" University of Bari, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| |
Collapse
|
15
|
Cordido A, Vizoso-Gonzalez M, Garcia-Gonzalez MA. Molecular Pathophysiology of Autosomal Recessive Polycystic Kidney Disease. Int J Mol Sci 2021; 22:6523. [PMID: 34204582 PMCID: PMC8235086 DOI: 10.3390/ijms22126523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a rare disorder and one of the most severe forms of polycystic kidney disease, leading to end-stage renal disease (ESRD) in childhood. PKHD1 is the gene that is responsible for the vast majority of ARPKD. However, some cases have been related to a new gene that was recently identified (DZIP1L gene), as well as several ciliary genes that can mimic a ARPKD-like phenotypic spectrum. In addition, a number of molecular pathways involved in the ARPKD pathogenesis and progression were elucidated using cellular and animal models. However, the function of the ARPKD proteins and the molecular mechanism of the disease currently remain incompletely understood. Here, we review the clinics, treatment, genetics, and molecular basis of ARPKD, highlighting the most recent findings in the field.
Collapse
Affiliation(s)
- Adrian Cordido
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Marta Vizoso-Gonzalez
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Miguel A. Garcia-Gonzalez
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Fundación Publica Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
16
|
Jamalpoor A, Othman A, Levtchenko EN, Masereeuw R, Janssen MJ. Molecular Mechanisms and Treatment Options of Nephropathic Cystinosis. Trends Mol Med 2021; 27:673-686. [PMID: 33975805 DOI: 10.1016/j.molmed.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/15/2022]
Abstract
Nephropathic cystinosis is a severe, monogenic systemic disorder that presents early in life and leads to progressive organ damage, particularly affecting the kidneys. It is caused by mutations in the CTNS gene, which encodes the lysosomal transporter cystinosin, resulting in intralysosomal accumulation of cystine. Recent studies demonstrated that the loss of cystinosin is associated with disrupted autophagy dynamics, accumulation of distorted mitochondria, and increased oxidative stress, leading to abnormal proliferation and dysfunction of kidney cells. We discuss these molecular mechanisms driving nephropathic cystinosis. Further, we consider how unravelling molecular mechanisms supports the identification and development of new strategies for cystinosis by the use of small molecules, biologicals, and genetic rescue of the disease in vitro and in vivo.
Collapse
Affiliation(s)
- Amer Jamalpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Amr Othman
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, Leuven, Belgium
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| | - Manoe J Janssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Oza MJ, Laddha AP, Gaikwad AB, Mulay SR, Kulkarni YA. Role of dietary modifications in the management of type 2 diabetic complications. Pharmacol Res 2021; 168:105602. [PMID: 33838293 DOI: 10.1016/j.phrs.2021.105602] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is a chronic metabolic disorder with a high rate of morbidity and mortality. Insufficient insulin secretion and insulin action are two major causes for the development of diabetes, which is characterized by a persistent increase in blood glucose level. Diet and sedentary life style play pivotal role in development of vascular complications in type 2 diabetes. Dietary modification is associated with a reprogramming of nutrient intake, which are proven to be effective for the management of diabetes and associated complications. Dietary modifications modulate various molecular key players linked with the functions of nutrient signalling, regulation of autophagy, and energy metabolism. It activates silent mating type information regulation 2 homolog1 (SIRT1) and AMP-activated protein kinase (AMPK). AMPK mainly acts as an energy sensor and inhibits autophagy repressor Mammalian target of rapamycin (mTOR) under nutritional deprivation. Under calorie restriction (CR), SIRT1 gets activated directly or indirectly and plays a central role in autophagy via the regulation of protein acetylation. Dietary modification is also effective in controlling inflammation and apoptosis by decreasing the level of pro-inflammatory cytokines like nuclear factor kappa- beta (NF-kβ), tissue growth factor-beta (TGF-β), tissue necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). It also improves glucose homeostasis and insulin secretion through beta cell regeneration. This indicates calorie intake plays a crucial role in the pathogenesis of type 2 diabetes-associated complications. The present review, emphasizes the role of dietary modifications in diabetes and associated complications.
Collapse
Affiliation(s)
- Manisha J Oza
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
18
|
Hu X, Xu Y, Zhang Z, Tang Z, Zhang J, Luo Y, Deng W, Dong Z, Zhao Y, Na N. TSC1 Affects the Process of Renal Ischemia-Reperfusion Injury by Controlling Macrophage Polarization. Front Immunol 2021; 12:637335. [PMID: 33767704 PMCID: PMC7985265 DOI: 10.3389/fimmu.2021.637335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) contributes to acute kidney injury (AKI), increases morbidity and mortality, and is a significant risk factor for chronic kidney disease (CKD). Macrophage infiltration is a common feature after renal IRI, and infiltrating macrophages can be polarized into the following two distinct types: M1 macrophages, i.e., classically activated macrophages, which can not only inhibit infection but also accelerate renal injury, and M2 macrophages, i.e., alternatively activated macrophages, which have a repair phenotype that can promote wound healing and subsequent fibrosis. The role of TSC1, which is a negative regulator of mTOR signaling that regulates macrophage polarization in inflammation-linked diseases, has been well documented, but whether TSC1 contributes to macrophage polarization in the process of IRI is still unknown. Here, by using a mouse model of renal ischemia-reperfusion, we found that myeloid cell-specific TSC1 knockout mice (termed Lyz-TSC1 cKO mice) had higher serum creatinine levels, more severe histological damage, and greater proinflammatory cytokine production than wild-type (WT) mice during the early phase after renal ischemia-reperfusion. Furthermore, the Lyz-TSC1 cKO mice showed attenuated renal fibrosis during the repair phase of IRI with decreased levels of M2 markers on macrophages in the operated kidneys, which was further confirmed in a cell model of hypoxia-reoxygenation (H/R) in vitro. Mechanistically, by using RNA sequencing of sorted renal macrophages, we found that the expression of most M1-related genes was upregulated in the Lyz-TSC1 cKO group (Supplemental Table 1) during the early phase. However, C/EBPβ and CD206 expression was decreased during the repair phase compared to in the WT group. Overall, our findings demonstrate that the expression of TSC1 in macrophages contributes to the whole process of IRI but serves as an inflammation suppressor during the early phase and a fibrosis promoter during the repair phase.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zuofu Tang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinhua Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - You Luo
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiming Deng
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhanwen Dong
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Sun B, Zhai S, Zhang L, Sun G. The role of extracellular vesicles in podocyte autophagy in kidney disease. J Cell Commun Signal 2021; 15:299-316. [PMID: 33619681 DOI: 10.1007/s12079-020-00594-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Podocytes are the key cells involved in protein filtration in the glomerulus. Once proteins appear in the urine when podocytes fail, patients will end with renal failure due to the progression of glomerular damage if no proper treatment is applied. The injury and loss of podocytes can be attributed to diverse factors, such as genetic, immunologic, toxic, or metabolic disorders. Recently, autophagy has emerged as a key mechanism to eliminate the unwanted cytoplasmic materials and to prolong the lifespan of podocytes by alleviating cell damage and stress. Typically, the fundamental function of extracellular vesicles (EVs) is to mediate the intercellular communication. Recent studies have suggested that, EVs, especially exosomes, play a certain role in information transfer by communicating proteins, mRNAs, and microRNAs with recipient cells. Under physiological and pathological conditions, EVs assist in the bioinformation interchange between kidneys and other organs. It is suggested that EVs are related to the pathogenesis of acute kidney injury and chronic kidney disease, including glomerular disease, diabetic nephropathy, renal fibrosis and end-stage renal disease. However, the role of EVs in podocyte autophagy remains unclear so far. Here, this study integrated the existing information about the relevancy, diagnostic value and therapeutic potential of EVs in a variety of podocytes-related diseases. The accumulating evidence highlighted that autophagy played a critical role in the homeostasis of podocytes in glomerular disease.
Collapse
Affiliation(s)
- Baichao Sun
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.,Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Shubo Zhai
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Li Zhang
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Guangdong Sun
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
20
|
Qi C, Alsomali F, Zhong J, Harris RC, Kon V, Yang H, Fogo AB. Increased dishevelled associated activator of morphogenesis 2, a new podocyte-associated protein, in diabetic nephropathy. Nephrol Dial Transplant 2021; 36:1006-1016. [PMID: 33544843 DOI: 10.1093/ndt/gfab014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Previously, by using proteomic analysis and RNA sequencing in isolated glomeruli, we identified several novel differentially expressed proteins in human and mouse diabetic nephropathy (DN) versus controls, including dishevelled associated activator of morphogenesis 2 (DAAM2). DAAM2 binds the Wnt effector Dvl. We aimed to study possible contributions of DAAM2 to DN. METHODS We assessed DAAM2 by immunostaining in non-cancer regions of human nephrectomy (Nx), DN and normal donor kidney tissues. We also examined DAAM2 in DN mice (db/db eNOS-/-) and Nx mice. DN mice treated with angiotensin-converting enzyme inhibitor (ACEI), dipeptidyl peptidase 4 inhibitor (DPP4I) or vehicle were compared. DAAM2 was knocked down in primary cultured podocytes by small interfering RNA to study its effects on cell function. RESULTS In normal human glomeruli, DAAM2 was expressed only on podocytes. DAAM2 expression was increased in both Nx and DN versus normal donors. Podocyte DAAM2 expression was increased in DN and Nx mouse models. Glomerular DAAM2 expression correlated with glomerular size and was decreased significantly by ACEI while DPP4I only numerically reduced DAAM2. In primary cultured podocytes, knockdown of DAAM2 enhanced adhesion, slowed migration, activated Wnt-β-catenin signaling and downregulated mammalian target of rapamycin complex 1 (mTORC1) and Rho activity. CONCLUSIONS Podocyte DAAM2 is upregulated in both Nx and DN, which could be contributed to by glomerular hypertrophy. We hypothesize that DAAM2 regulates podocyte function through the mTORC1, Wnt/β-catenin and Rho signaling pathways.
Collapse
Affiliation(s)
- Chenyang Qi
- Department of Pathology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Faten Alsomali
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Jinyong Zhong
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valentina Kon
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
Denhez B, Rousseau M, Spino C, Dancosst DA, Dumas MÈ, Guay A, Lizotte F, Geraldes P. Saturated fatty acids induce insulin resistance in podocytes through inhibition of IRS1 via activation of both IKKβ and mTORC1. Sci Rep 2020; 10:21628. [PMID: 33303821 PMCID: PMC7728775 DOI: 10.1038/s41598-020-78376-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN), a microvascular complication of diabetes, is the leading cause of end-stage renal disease worldwide. Multiple studies have shown that podocyte dysfunction is a central event in the progression of the disease. Beside chronic hyperglycemia, dyslipidemia can induce insulin resistance and dysfunction in podocytes. However, the exact mechanisms of free fatty acid (FFA)-induced podocyte insulin unresponsiveness are poorly understood. We used a type 2 diabetic mouse model (db/db) and mouse podocytes exposed to palmitic acid for 24 h followed by an insulin stimulation. Renal function and pathology were evaluated at 25 weeks of age to confirm the DN development. Our results demonstrate that saturated FFA activated the serine/threonine kinases IκB kinase (IKK)β/IκBα and mTORC1/S6K1, but not protein kinase C and c-jun N-terminal kinase, in podocytes and glomeruli of db/db mice. Activation of both kinases promoted serine 307 phosphorylation of IRS1, a residue known to provoke IRS1 inhibition. Using IKK, mTORC1 and ceramide production inhibitors, we were able to blunt IRS1 serine 307 phosphorylation and restore insulin stimulation of Akt. In conclusion, our results indicate that FFA and diabetes contribute to insulin resistance through the activation of IKKβ and S6K1 leading to podocyte dysfunction and DN.
Collapse
Affiliation(s)
- Benoit Denhez
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Marina Rousseau
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Crysta Spino
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - David-Alexandre Dancosst
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Marie-Ève Dumas
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Andréanne Guay
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Farah Lizotte
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Pedro Geraldes
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC, J1H 5N4, Canada. .,Division of Endocrinology, Department of Medicine, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
22
|
Peintner L, Venkatraman A, Waeldin A, Hofherr A, Busch T, Voronov A, Viau A, Kuehn EW, Köttgen M, Borner C. Loss of PKD1/polycystin-1 impairs lysosomal activity in a CAPN (calpain)-dependent manner. Autophagy 2020; 17:2384-2400. [PMID: 32967521 DOI: 10.1080/15548627.2020.1826716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in the PKD1 gene result in autosomal dominant polycystic kidney disease (ADPKD), the most common monogenetic cause of end-stage renal disease (ESRD) in humans. Previous reports suggested that PKD1, together with PKD2/polycystin-2, may function as a receptor-cation channel complex at cilia and on intracellular membranes and participate in various signaling pathways to regulate cell survival, proliferation and macroautophagy/autophagy. However, the exact molecular function of PKD1 and PKD2 has remained enigmatic. Here we used Pkd1-deficient mouse inner medullary collecting duct cells (mIMCD3) genetically deleted for Pkd1, and tubular epithelial cells isolated from nephrons of doxycycline-inducible conditional pkd1fl/fl;Pax8rtTA;TetOCre+ knockout mice to show that the lack of Pkd1 caused diminished lysosomal acidification, LAMP degradation and reduced CTSB/cathepsin B processing and activity. This led to an impairment of autophagosomal-lysosomal fusion, a lower delivery of ubiquitinated cargo from multivesicular bodies (MVB)/exosomes to lysosomes and an enhanced secretion of unprocessed CTSB into the extracellular space. The TFEB-dependent lysosomal biogenesis pathway was however unaffected. Pkd1-deficient cells exhibited increased activity of the calcium-dependent CAPN (calpain) proteases, probably due to a higher calcium influx. Consistent with this notion CAPN inhibitors restored lysosomal function, CTSB processing/activity and autophagosomal-lysosomal fusion, and blocked CTSB secretion and LAMP degradation in pkd1 knockout cells. Our data reveal for the first time a lysosomal function of PKD1 which keeps CAPN activity in check and ensures lysosomal integrity and a correct autophagic flux.Abbreviations: acCal: acetyl-calpastatin peptide; ADPKD: autosomal dominant polycystic kidney disease; CI-1: calpain inhibitor-1; CQ: chloroquine; Dox: doxycycline; EV: extracellular vesicles; EXO: exosomes; LAMP1/2: lysosomal-associated membrane protein 1/2; LGALS1/GAL1/galectin-1: lectin, galactose binding, soluble 1; LMP: lysosomal membrane permeabilization; mIMCD3: mouse inner medullary collecting duct cells; MV: microvesicles; MVB: multivesicular bodies; PAX8: paired box 8; PKD1/polycystin-1: polycystin 1, transient receptor potential channel interacting; PKD2/polycystin-2: polycystin 2, transient receptor potential cation channel; Tet: tetracycline; TFEB: transcription factor EB; VFM: vesicle-free medium; WT: wild-type.
Collapse
Affiliation(s)
- Lukas Peintner
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Anusha Venkatraman
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Albert Ludwigs University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Astrid Waeldin
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Alexis Hofherr
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tilman Busch
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Voronov
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Amandine Viau
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E Wolfgang Kuehn
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Integrative Biological Signalling Studies (CIBSS), Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Michael Köttgen
- Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Integrative Biological Signalling Studies (CIBSS), Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Center for Biological Signalling Studies (BIOSS), Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Xiong Y, Song W, Shen L, Wang Y, Zhang J, Hu M, Liu Y, Li J, Musetti S, Liu R, Huang L. Oral Metformin and Polymetformin Reprogram Immunosuppressive Microenvironment and Boost Immune Checkpoint Inhibitor Therapy in Colorectal Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yang Xiong
- UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27559 USA
- College of Pharmaceutical Science Zhejiang Chinese Medical University Hangzhou Zhejiang 310053 China
| | - Wantong Song
- UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27559 USA
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Limei Shen
- UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27559 USA
| | - Ying Wang
- UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27559 USA
| | - Jing Zhang
- UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27559 USA
| | - Mengying Hu
- UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27559 USA
| | - Yun Liu
- UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27559 USA
| | - Jingjing Li
- UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27559 USA
| | - Sara Musetti
- UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27559 USA
| | - Rihe Liu
- UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27559 USA
| | - Leaf Huang
- UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27559 USA
| |
Collapse
|
24
|
Abstract
Tuberous sclerosis complex (TSC) is a genetic condition caused by a mutation in either the TSC1 or TSC2 gene. Disruption of either of these genes leads to impaired production of hamartin or tuberin proteins, leading to the manifestation of skin lesions, tumors, and seizures. TSC can manifest in multiple organ systems with the cutaneous and renal systems being the most commonly affected. These manifestations can secondarily lead to the development of hypertension, chronic kidney disease, and neurocognitive declines. The renal pathologies most commonly seen in TSC are angiomyolipoma, renal cysts, and less commonly, oncocytomas. In this review, we highlight the current understanding on the renal manifestations of TSC along with current diagnosis and treatment guidelines.
Collapse
|
25
|
Haumann S, Müller RU, Liebau MC. Metabolic Changes in Polycystic Kidney Disease as a Potential Target for Systemic Treatment. Int J Mol Sci 2020; 21:ijms21176093. [PMID: 32847032 PMCID: PMC7503958 DOI: 10.3390/ijms21176093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Autosomal recessive and autosomal dominant polycystic kidney disease (ARPKD, ADPKD) are systemic disorders with pronounced hepatorenal phenotypes. While the main underlying genetic causes of both ARPKD and ADPKD have been well-known for years, the exact molecular mechanisms resulting in the observed clinical phenotypes in the different organs, remain incompletely understood. Recent research has identified cellular metabolic changes in PKD. These findings are of major relevance as there may be an immediate translation into clinical trials and potentially clinical practice. Here, we review important results in the field regarding metabolic changes in PKD and their modulation as a potential target of systemic treatment.
Collapse
Affiliation(s)
- Sophie Haumann
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Correspondence: ; Tel.: +49-221-478-4359
| |
Collapse
|
26
|
Kim EK, Min HK, Lee SY, Kim DS, Ryu JG, Na HS, Jung KA, Choi JW, Park SH, Cho ML. Metformin rescues rapamycin-induced mitochondrial dysfunction and attenuates rheumatoid arthritis with metabolic syndrome. Arthritis Res Ther 2020; 22:77. [PMID: 32276645 PMCID: PMC7149912 DOI: 10.1186/s13075-020-02174-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Background Rapamycin, an inhibitor of the serine/threonine protein kinase mTOR, is an immunosuppressant used to treat renal transplant recipients, but it can cause endothelial and mitochondrial dysfunction. Metformin is used for the treatment of type 2 diabetes and was reported to exert therapeutic effects against rheumatoid arthritis and obesity by improving mitochondrial dysfunction via the activation of fibroblast growth factor 21. We investigated the therapeutic effects of rapamycin–metformin combination therapy in obese mice with collagen-induced arthritis (CIA). Methods Mouse embryonic fibroblasts were treated with rapamycin, metformin, or rapamycin–metformin, and their respiratory level and mitochondrial gene expression were assayed. Mice were fed a high-fat diet, immunized with type II collagen, and subsequently treated with rapamycin–metformin daily for 10 weeks. Results Rapamycin-treated cells exhibited dysfunction of mitochondrial respiration and decreased mitochondrial gene expression compared with rapamycin–metformin-treated cells. Moreover, rapamycin–metformin reduced the clinical arthritis score and the extent of histological inflammation and improved the metabolic profile in obese mice with CIA. Rapamycin–metformin enhanced the balance between T helper 17 and regulatory T cells in vitro and in vivo. Conclusions These results suggest that rapamycin–metformin is a potential therapeutic option for autoimmune arthritis.
Collapse
Affiliation(s)
- Eun Kyung Kim
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Da-Som Kim
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jun-Geol Ryu
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Kyoung Ah Jung
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jeong Won Choi
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-070, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Peña-Oyarzun D, Batista-Gonzalez A, Kretschmar C, Burgos P, Lavandero S, Morselli E, Criollo A. New emerging roles of Polycystin-2 in the regulation of autophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:165-186. [PMID: 32475472 DOI: 10.1016/bs.ircmb.2020.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystin-2 (PC2) is a calcium channel that can be found in the endoplasmic reticulum, the plasmatic membrane, and the primary cilium. The structure of PC2 is characterized by a highly ordered C-terminal tail with an EF-motif (calcium-binding domain) and a canonical coiled-coil domain (CCD; interaction domain), and its activity is regulated by interacting partners and post-translational modifications. Calcium mobilization into the cytosol by PC2 has been mainly associated with cell growth and differentiation, and therefore mutations or dysfunction of PC2 lead to renal and cardiac consequences. Interestingly, PC2-related pathologies are usually treated with rapamycin, an autophagy stimulator. Autophagy is an intracellular degradation process where recycling material is sequestered into autophagosomes and then hydrolyzed by fusion with a lysosome. Interestingly, several studies have provided evidence that PC2 may be required for autophagy, suggesting that PC2 maintains a physiologic catabolic state.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzun
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ana Batista-Gonzalez
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paulina Burgos
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eugenia Morselli
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
28
|
Bhatia D, Choi ME. Autophagy in kidney disease: Advances and therapeutic potential. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:107-133. [PMID: 32620239 DOI: 10.1016/bs.pmbts.2020.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a highly conserved intracellular catabolic process for the degradation of cytoplasmic components that has recently gained increasing attention for its importance in kidney diseases. It is indispensable for the maintenance of kidney homeostasis both in physiological and pathological conditions. Investigations utilizing various kidney cell-specific conditional autophagy-related gene knockouts have facilitated the advancement in understanding of the role of autophagy in the kidney. Recent findings are raising the possibility that defective autophagy exerts a critical role in different pathological conditions of the kidney. An emerging body of evidence reveals that autophagy exhibits cytoprotective functions in both glomerular and tubular compartments of the kidney, suggesting the upregulation of autophagy as an attractive therapeutic strategy. However, there is also accumulating evidence that autophagy could be deleterious, which presents a formidable challenge in developing therapeutic strategies targeting autophagy. Here, we review the recent advances in research on the role of autophagy during different pathological conditions, including acute kidney injury (AKI), focusing on sepsis, ischemia-reperfusion injury, cisplatin, and heavy metal-induced AKI. We also discuss the role of autophagy in chronic kidney disease (CKD) focusing on the pathogenesis of tubulointerstitial fibrosis, podocytopathies including focal segmental glomerulosclerosis, diabetic nephropathy, IgA nephropathy, membranous nephropathy, HIV-associated nephropathy, and polycystic kidney disease.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
29
|
Kou P, Wei S, Xiong F. Recent Advances of mTOR Inhibitors Use in Autosomal Dominant Polycystic Kidney Disease: Is the Road Still Open? Curr Med Chem 2019; 26:2962-2973. [PMID: 29600752 DOI: 10.2174/0929867325666180330094434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/15/2017] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most common monogenic kidney disease, is caused by mutations in the PKD1, PKD2 or, in a very limited number of families, GANAB genes. Although cellular and molecular mechanisms of this disease have been understood in the past 20 years, specific therapy approaches remain very little. Both experimental and clinical studies show that the mammalian or mechanistic target of rapamycin (mTOR) pathway plays an important role during cyst formation and enlargement in ADPKD. Studies in rodent models of ADPKD showed that mTOR inhibitors had a significant and long-lasting decrease in kidney volume and amelioration in kidney function. In the past over ten years, researchers have been devoting continuously to test mTOR inhibitors efficacy and safety in both preclinical studies and clinical trials in patients with ADPKD. In this review, we will discuss the mTOR pathway thoroughly, mainly focusing on current advances in understanding its role in ADPKD, especially the recent progress of mTOR inhibitors use in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Pei Kou
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
30
|
Stayner C, Brooke DG, Bates M, Eccles MR. Targeted Therapies for Autosomal Dominant Polycystic Kidney Disease. Curr Med Chem 2019; 26:3081-3102. [PMID: 29737248 DOI: 10.2174/0929867325666180508095654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening genetic disease in humans, affecting approximately 1 in 500 people. ADPKD is characterized by cyst growth in the kidney leading to progressive parenchymal damage and is the underlying pathology in approximately 10% of patients requiring hemodialysis or transplantation for end-stage kidney disease. The two proteins that are mutated in ADPKD, polycystin-1 and polycystin-2, form a complex located on the primary cilium and the plasma membrane to facilitate calcium ion release in the cell. There is currently no Food and Drug Administration (FDA)-approved therapy to cure or slow the progression of the disease. Rodent ADPKD models do not completely mimic the human disease, and therefore preclinical results have not always successfully translated to the clinic. Moreover, the toxicity of many of these potential therapies has led to patient withdrawals from clinical trials. RESULTS Here, we review compounds in clinical trial for treating ADPKD, and we examine the feasibility of using a kidney-targeted approach, with potential for broadening the therapeutic window, decreasing treatment-associated toxicity and increasing the efficacy of agents that have demonstrated activity in animal models. We make recommendations for integrating kidney- targeted therapies with current treatment regimes, to achieve a combined approach to treating ADPKD. CONCLUSION Many compounds are currently in clinical trial for ADPKD yet, to date, none are FDA-approved for treating this disease. Patients could benefit from efficacious pharmacotherapy, especially if it can be kidney-targeted, and intensive efforts continue to be focused on this goal.
Collapse
Affiliation(s)
- Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Darby G Brooke
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Michael Bates
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| |
Collapse
|
31
|
Lin H, Wang T, Ruan Y, Liu K, Li H, Wang S, Li M, Liu J. Rapamycin Supplementation May Ameliorate Erectile Function in Rats With Streptozotocin-Induced Type 1 Diabetes by Inducing Autophagy and Inhibiting Apoptosis, Endothelial Dysfunction, and Corporal Fibrosis. J Sex Med 2019; 15:1246-1259. [PMID: 30224017 DOI: 10.1016/j.jsxm.2018.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Erectile dysfunction (ED), which is common in patients with diabetes mellitus (DM), seriously affects quality of life. Previous studies on the treatment of DM-induced ED (DMED) involve autophagy, but the specific effect and mechanism of treatment are not yet clear. AIM To investigate the effect and mechanism of rapamycin, an autophagy inducer, in ameliorating DMED. METHODS 45 male Sprague-Dawley rats (7 weeks old) were used in the experiment. 8 rats were randomly selected as the control group; the other rats were treated with streptozotocin to induce type 1 DM. After 10 weeks, an apomorphine test was used to confirm DMED. Rats with DMED were intraperitoneally injected with rapamycin or vehicle for 3 weeks. Rats in the control group were injected with saline. Erectile function in rats was measured by electrically stimulating the cavernous nerve. The penises were then harvested for histologic examinations, ribonucleic acid (RNA), and protein levels of related factors by immunohistochemistry, immunofluorescence, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot. MAIN OUTCOME MEASURE Erectile function was evaluated by maximum intracavernous pressure and mean arterial pressure. Penile tissues were used to perform histologic examinations and to determine the RNA and protein levels. RESULTS Erectile function, which was impaired in rats with DMED, was significantly ameliorated in the DMED + rapamycin group. The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway was inhibited in the DMED group, and rapamycin significantly reduced this inhibition. The DMED group showed increased autophagy and apoptosis level compared with the non-diabetic group, and rapamycin increased the autophagy level and decreased the apoptosis level in the penis. Penile fibrosis was more severe in the DMED group than in the control group and was partially but significantly improved in the DMED + rapamycin group compared with the DMED group. The adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin kinase (mTOR) and PI3K/AKT/mTOR pathways were activated, and the mTOR (regulatory associated protein of mTOR, complex 1 [raptor])/p70 ribosomal protein S6 kinase (p70S6K) pathway was inhibited in the DMED group. Compared with DMED group, rapamycin led to lower AMPK/mTOR and AKT/mTOR pathways expression, a higher degree of mTOR (raptor)/p70S6K pathway inhibition, and no change in the mTORC2-related pathway. CLINICAL IMPLICATIONS Rapamycin was effective in restoring erectile function in type 1 DMED models. STRENGTH AND LIMITATIONS This study suggested for the first time that rapamycin, an autophagy inducer, is effective in restoring erectile function in rats with diabetes. However, the rat model might not represent the human condition. CONCLUSION Rapamycin improved erectile function in rats with DMED, likely by promoting autophagy, inhibiting apoptosis and fibrotic activity, and ameliorating endothelial function. These findings provide evidence of a potential treatment option for DMED. Lin H, Wang T, Ruan Y, et al. Rapamycin supplementation may ameliorate erectile function in rats with streptozotocin-induced type 1 diabetes by inducing autophagy and inhibiting apoptosis, endothelial dysfunction, and corporal fibrosis. J Sex Med 2018;15:1246-1259.
Collapse
Affiliation(s)
- Huang Lin
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Tao Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yajun Ruan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Kang Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Hao Li
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Shaogang Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Mingchao Li
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China.
| | - Jihong Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
32
|
Decreased Expression of Urinary Mammalian Target of Rapamycin mRNA Is Related to Chronic Renal Fibrosis in IgAN. DISEASE MARKERS 2019; 2019:2424751. [PMID: 31485275 PMCID: PMC6710774 DOI: 10.1155/2019/2424751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Background Renal fibrosis is a common outcome of all pathological types of chronic kidney disease (CKD). However, the noninvasive detection of renal fibrosis remains a challenge. Methods We collected urine samples from 154 biopsy-proven IgA nephropathy (IgAN) patients and 61 healthy controls. The expression of mTOR was measured and the correlation with renal function parameter and pathological indicators. The receiver operating characteristic (ROC) curve for the diagnosis of IgAN and renal fibrosis was calculated. Results The urinary mammalian target of rapamycin (mTOR) expression was decreased in IgAN patients. The expression of mTOR was correlated with serum creatinine, blood urea nitrogen, estimated glomerular filtration rate, 24 h proteinuria, and cystatin C. Further, the urinary mTOR expression was significantly decreased in severe renal fibrosis patients compared with mild or moderate renal fibrosis patients. Urinary mTOR expression was correlated with score of tubulointerstitial fibrosis (TIF) and score of glomerular sclerosis. The ROC curve showed that mTOR can diagnose IgAN at a cut-off value of 0.930 with the sensitivity of 90.2% and specificity of 73.8% and renal fibrosis at a cut-off value of 0.301 with the sensitivity of 71.7% and specificity of 64.8%. Conclusion Urinary mTOR mRNA expression was a potential biomarker for diagnosis of IgAN and renal fibrosis in IgAN patients.
Collapse
|
33
|
Gogulamudi VR, Mani I, Subramanian U, Pandey KN. Genetic disruption of Npr1 depletes regulatory T cells and provokes high levels of proinflammatory cytokines and fibrosis in the kidneys of female mutant mice. Am J Physiol Renal Physiol 2019; 316:F1254-F1272. [PMID: 30943067 DOI: 10.1152/ajprenal.00621.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The present study was designed to determine the effects of gene knockout of guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) on immunogenic responses affecting kidney function and blood pressure (BP) in Npr1 (coding for GC-A/NPRA)-null mutant mice. We used female Npr1 gene-disrupted (Npr1-/-, 0 copy), heterozygous (Npr1+/-, 1 copy), wild-type (Npr1+/+, 2 copy), and gene-duplicated (Npr1++/++, 4 copy) mice. Expression levels of Toll-like receptor (TLR)2/TLR4 mRNA were increased 4- to 5-fold in 1-copy mice and 6- to 10-fold in 0-copy mice; protein levels were increased 2.5- to 3-fold in 1-copy mice and 4- to 5-fold in 0-copy mice. Expression of proinflammatory cytokines and BP was significantly elevated in 1-copy and 0-copy mice compared with 2-copy and 4-copy mice. In addition, 0-copy and 1-copy mice exhibited drastic reductions in regulatory T cells (Tregs). After rapamycin treatment, Tregs were increased by 17% (P < 0.001) in 0-copy mice and 8% (P < 0.001) in 1-copy mice. Renal mRNA and protein levels of TLR2 and TLR4 were decreased by 70% in 0-copy mice and 50% in 1-copy mice. There were significantly higher levels of Tregs and very low levels of TLR2/TLR4 expression in 4-copy mice (P < 0.001). These findings indicate that the disruption of Npr1 in female mice triggers renal immunogenic pathways, which transactivate the expression of proinflammatory cytokines and renal fibrosis with elevated BP in mutant animals. The data suggest that rapamycin treatment attenuates proinflammatory cytokine expression, dramatically increases anti-inflammatory cytokines, and substantially reduces BP and renal fibrosis in mutant animals.
Collapse
Affiliation(s)
| | - Indra Mani
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine , New Orleans, Louisiana
| | - Umadevi Subramanian
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine , New Orleans, Louisiana
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine , New Orleans, Louisiana
| |
Collapse
|
34
|
Li L, Liu Y, Li S, Yang R, Zeng C, Rong W, Liang H, Zhang M, Zhu X, Kidder K, Liu Y, Liu Z, Zen K. Signal regulatory protein α protects podocytes through promoting autophagic activity. JCI Insight 2019; 5:124747. [PMID: 30888336 DOI: 10.1172/jci.insight.124747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High autophagic activity in podocytes, terminally differentiated cells which serve as main components of the kidney filtration barrier, is essential for podocyte survival under various challenges. How podocytes maintain such a high level of autophagy, however, remains unclear. Here we report that signal regulatory protein α (SIRPα) plays a key role in promoting podocyte autophagy. Unlike other glomerular cells, podocytes strongly express SIRPα, which is, however, downregulated in patients with focal segmental glomerulosclerosis and mice with experimental nephropathy. Podocyte SIRPα levels are inversely correlated with the severity of podocyte injury and proteinuria but positively with autophagy. Compared to wild-type littermates, Sirpa-deficient mice display greater age-related podocyte injury and proteinuria and develop more rapid and severe renal injury in various models of experimental nephropathy. Mechanistically, podocyte SIRPα strongly reduces Akt/GSK-3β/β-catenin signaling, leading to an increase in autophagic activity. Our findings thus demonstrate a critical protective role of SIRPα in podocyte survival via maintaining autophagic activity.
Collapse
Affiliation(s)
- Limin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Ying Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Shan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Rong Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Weiwei Rong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China.,Center for Inflammation, Immunity and Infection, Program of Cell and Molecular Immunology, Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Koby Kidder
- Center for Inflammation, Immunity and Infection, Program of Cell and Molecular Immunology, Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Yuan Liu
- Center for Inflammation, Immunity and Infection, Program of Cell and Molecular Immunology, Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| |
Collapse
|
35
|
Wu Z, Wu H, Md S, Yu G, Habib SL, Li B, Li J. Tsc1 ablation in Prx1 and Osterix lineages causes renal cystogenesis in mouse. Sci Rep 2019; 9:837. [PMID: 30696882 PMCID: PMC6351533 DOI: 10.1038/s41598-018-37139-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2018] [Indexed: 02/02/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) is caused by mutations in TSC1 or TSC2, which encode negative regulators of the mTOR signaling pathway. The renal abnormalities associated with TSC include angiomyolipoma, cysts, and renal cell carcinoma. Here we report that specific ablation of Tsc1 using the mesenchymal stem cell-osteoblast lineage markers induced cystogenesis in mice. Using Rosa-tdTomato mice, we found that Prx1- or Dermo1-labeled cells were present in the nephron including glomerulus but they were not stained by markers for podocytes, mesangial cells, endothelial cells, or proximal or loop of Henle tubular cells, while Osx is known to label tubular cells. Tsc1 deficiency in Prx1 lineage cells caused development of mild cysts that were positive only for Tamm-Horsfall protein (THP), a loop of Henle marker, while Tsc1 deficiency in Osx lineage cells caused development of cysts that were positive for Villin, a proximal tubular cell marker. On the other hand, Tsc1 deficiency in the Dermo1 lineage did not produce detectable phenotypical changes in the kidney. Cyst formation in Prx1-Cre; Tsc1f/f and Osx-Cre; Tsc1f/f mice were associated with increase in both proliferative and apoptotic cells in the affected tissue and were largely suppressed by rapamycin. These results suggest that Prx1 and Osx lineages cells may contribute to renal cystogenesis in TSC patients.
Collapse
Affiliation(s)
- Zhixiang Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongguang Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shafiquzzaman Md
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guo Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Samy L Habib
- Department of Cellular and Structural Biology, South Texas Veterans Health Care System, San Antonio, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Li
- Department of Ophthalmology, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Si Y, Chu H, Zhu W, Xiao T, Shen X, Fu Y, Xu R, Jiang H. Concentration-dependent effects of rapamycin on proliferation, migration and apoptosis of endothelial cells in human venous malformation. Exp Ther Med 2018; 16:4595-4601. [PMID: 30542410 PMCID: PMC6257489 DOI: 10.3892/etm.2018.6782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/27/2018] [Indexed: 01/21/2023] Open
Abstract
Rapamycin has been reported to be immunosuppressive and anti-proliferative towards vascular endothelial and smooth muscle cells. The purpose of the present study was to investigate the effects of rapamycin on the biological behaviors of endothelial cells that have been separated from the deformed vein in human venous malformation (VM). Cellular morphology was observed using inverted microscopy. An MTT assay was performed to measure the cell viability at different concentrations of rapamycin and different time points. Cell apoptosis and migration were detected using a terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assay and a wound-healing assay, respectively. At 48 and 72 h, rapamycin inhibited proliferation of human VM endothelial cells, with the effects becoming more pronounced with increasing concentration. Only rapamycin at a concentration of 1,000 ng/ml had a significant effect at 24 h in repressing proliferation. At 48 h, compared with the blank group, the majority of cells maintained a clear nuclear boundary and a regular shape following treatment with 1 ng/ml rapamycin; 10 and 100 ng/ml rapamycin caused desquamation and rounded shape; and 1,000 ng/ml rapamycin caused even more marked desquamation, rounded shape and necrosis. Rapamycin at concentrations of 1, 10, 100 and 1,000 ng/ml reduced cell viability, increased the number of apoptotic cells and suppressed the migration capacity of human VM endothelial cells, and the effects became more pronounced with increasing concentration, when compared with the blank group. These findings provide evidence that rapamycin induces apoptosis and inhibits proliferation and migration of human VM endothelial cells in a concentration-dependent manner.
Collapse
Affiliation(s)
- Yameng Si
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Oral and Maxillofacial Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Hanchen Chu
- College of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Weiwen Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tao Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiang Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
37
|
Therapeutic Use of mTOR Inhibitors in Renal Diseases: Advances, Drawbacks, and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3693625. [PMID: 30510618 PMCID: PMC6231362 DOI: 10.1155/2018/3693625] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has a key role in the regulation of a variety of biological processes pivotal for cellular life, aging, and death. Impaired activity of mTOR complexes (mTORC1/mTORC2), particularly mTORC1 overactivation, has been implicated in a plethora of age-related disorders, including human renal diseases. Since the discovery of rapamycin (or sirolimus), more than four decades ago, advances in our understanding of how mTOR participates in renal physiological and pathological mechanisms have grown exponentially, due to both preclinical studies in animal models with genetic modification of some mTOR components as well as due to evidence coming from the clinical experience. The main clinical indication of rapamycin is as immunosuppressive therapy for the prevention of allograft rejection, namely, in renal transplantation. However, considering the central participation of mTOR in the pathogenesis of other renal disorders, the use of rapamycin and its analogs meanwhile developed (rapalogues) everolimus and temsirolimus has been viewed as a promising pharmacological strategy. This article critically reviews the use of mTOR inhibitors in renal diseases. Firstly, we briefly overview the mTOR components and signaling as well as the pharmacological armamentarium targeting the mTOR pathway currently available or in the research and development stages. Thereafter, we revisit the mTOR pathway in renal physiology to conclude with the advances, drawbacks, and challenges regarding the use of mTOR inhibitors, in a translational perspective, in four classes of renal diseases: kidney transplantation, polycystic kidney diseases, renal carcinomas, and diabetic nephropathy.
Collapse
|
38
|
Xu Y, Ling Y, Yang F, Deng J, Rong L, Jiang M, Jiang X. The mTOR/p70S6K1 signaling pathway in renal fibrosis of children with immunoglobulin A nephropathy. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317717831. [PMID: 28685619 PMCID: PMC5843880 DOI: 10.1177/1470320317717831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: The purpose of this study was to explore whether mTOR/p70S6K1 signaling is activated in renal fibrosis of immunoglobulin A nephropathy. Methods: Seventy-two children with immunoglobulin A nephropathy were divided into three groups according to their clinical features and pathological grades. Six normal renal specimens were included in the control group. The expression levels of angiotensin II, mTOR, p70S6K1, E-cadherin, and α-smooth muscle actin in renal tissues were determined by immunohistochemistry method, the potential correlations of these indexes and relationship between these indexes and the clinicopathological indexes were analyzed. Results: Compared to the control group, the expression levels of angiotensin II, mTOR, p70S6K1, and α-smooth muscle actin were significantly higher and the expression levels of E-cadherin were lower both in glomeruli and tubulointerstitium of immunoglobulin A nephropathy children. And the most significant differences were found in the nephrotic syndrome group and pathological grade IV group. In immunoglobulin A nephropathy renal tissues, the expression levels of angiotensin II in glomeruli and tubulointerstitium were both positively correlated with the expression levels of mTOR and α- smooth muscle actin, and negatively correlated with the expression levels of E-cadherin. Conclusion: The mTOR/p70S6K1 signaling was activated in renal tissues of children with immunoglobulin A nephropathy, and future studies will need to address the mechanism of mTOR/p70S6K1 signaling in the progress of renal fibrosis in immunoglobulin A nephropathy.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Yihong Ling
- Department of Pathology, Sun Yat-sen University Cancer Center, P.R. China
| | - Fan Yang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Jiong Deng
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Liping Rong
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Mengjie Jiang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Xiaoyun Jiang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
- Xiaoyun Jiang, Department of Pediatrics, the First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2,Yuexiu District, Guangzhou, P.R. China.
| |
Collapse
|
39
|
Metabolic Phenotyping of Anks3 Depletion in mIMCD-3 cells - a Putative Nephronophthisis Candidate. Sci Rep 2018; 8:9022. [PMID: 29899363 PMCID: PMC5998149 DOI: 10.1038/s41598-018-27389-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/01/2018] [Indexed: 11/08/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive form of cystic kidney disease and the leading cause of hereditary kidney failure in children and young adults. Like other NPH proteins, the NPHP16/Anks6-interacting protein Anks3 has been identified to cause laterality defects in humans. However, the cellular functions of Anks3 remain enigmatic. We investigated the metabolic impact of Anks3 depletion in cultured murine inner medullary collecting duct cells via GC-MS profiling and LC-MS/MS analysis. Combined metabolomics successfully identified 155 metabolites; 48 metabolites were identified to be significantly altered by decreasing Anks3 levels. Especially, amino acid and purine/pyrimidine metabolism were affected by loss of Anks3. Branched-chain amino acids were identified to be significantly downregulated suggesting disrupted nutrient signalling. Tryptophan and 1-ribosyl-imidazolenicotinamide accumulated whereas NAD+ and NADP+ concentrations were diminished indicating disturbances within the tryptophan-niacin pathway. Most strikingly, nucleosides were reduced upon Anks3 depletion, while 5-methyluridine and 6-methyladenosine accumulated over time. Hence, elevated PARP1 and cleaved PARP1 levels could be detected. Furthermore, living cell number and viability was significantly declined. In combination, these results suggest that Anks3 may be involved in DNA damage responses by balancing the intracellular nucleoside pool.
Collapse
|
40
|
Liu ZQ, Lee JN, Son M, Lim JY, Dutta RK, Maharjan Y, Kwak S, Oh GT, Byun K, Choe SK, Park R. Ciliogenesis is reciprocally regulated by PPARA and NR1H4/FXR through controlling autophagy in vitro and in vivo. Autophagy 2018; 14:1011-1027. [PMID: 29771182 DOI: 10.1080/15548627.2018.1448326] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The primary cilia are evolutionarily conserved microtubule-based cellular organelles that perceive metabolic status and thus link the sensory system to cellular signaling pathways. Therefore, ciliogenesis is thought to be tightly linked to autophagy, which is also regulated by nutrient-sensing transcription factors, such as PPARA (peroxisome proliferator activated receptor alpha) and NR1H4/FXR (nuclear receptor subfamily 1, group H, member 4). However, the relationship between these factors and ciliogenesis has not been clearly demonstrated. Here, we present direct evidence for the involvement of macroautophagic/autophagic regulators in controlling ciliogenesis. We showed that activation of PPARA facilitated ciliogenesis independently of cellular nutritional states. Importantly, PPARA-induced ciliogenesis was mediated by controlling autophagy, since either pharmacological or genetic inactivation of autophagy significantly repressed ciliogenesis. Moreover, we showed that pharmacological activator of autophagy, rapamycin, recovered repressed ciliogenesis in ppara-/- cells. Conversely, activation of NR1H4 repressed cilia formation, while knockdown of NR1H4 enhanced ciliogenesis by inducing autophagy. The reciprocal activities of PPARA and NR1H4 in regulating ciliogenesis were highlighted in a condition where de-repressed ciliogenesis by NR1H4 knockdown was further enhanced by PPARA activation. The in vivo roles of PPARA and NR1H4 in regulating ciliogenesis were examined in greater detail in ppara-/- mice. In response to starvation, ciliogenesis was facilitated in wild-type mice via enhanced autophagy in kidney, while ppara-/- mice displayed impaired autophagy and kidney damage resembling ciliopathy. Furthermore, an NR1H4 agonist exacerbated kidney damage associated with starvation in ppara-/- mice. These findings indicate a previously unknown role for PPARA and NR1H4 in regulating the autophagy-ciliogenesis axis in vivo.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Joon No Lee
- b Department of Biomedical Science & Engineering , Institute of Integrated Technology, Gwangju Institute of Science & Technology , Gwangju , Korea
| | - Myeongjoo Son
- d Department of Anatomy and Cell Biology , Gachon University Graduate School of Medicine , Incheon , Korea.,e Functional Cellular Networks Laboratory , Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon , Korea
| | - Jae-Young Lim
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Raghbendra Kumar Dutta
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Yunash Maharjan
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - SeongAe Kwak
- c Zoonosis Research Center , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Goo Taeg Oh
- f Laboratory of Cardiovascular Genomics, Division of Life and Pharmaceutical Sciences , Ewha Womans University , Seoul , Korea
| | - Kyunghee Byun
- d Department of Anatomy and Cell Biology , Gachon University Graduate School of Medicine , Incheon , Korea.,e Functional Cellular Networks Laboratory , Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon , Korea
| | - Seong-Kyu Choe
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Raekil Park
- b Department of Biomedical Science & Engineering , Institute of Integrated Technology, Gwangju Institute of Science & Technology , Gwangju , Korea
| |
Collapse
|
41
|
Shi W, Xu D, Gu J, Xue C, Yang B, Fu L, Song S, Liu D, Zhou W, Lv J, Sun K, Chen M, Mei C. Saikosaponin-d inhibits proliferation by up-regulating autophagy via the CaMKKβ-AMPK-mTOR pathway in ADPKD cells. Mol Cell Biochem 2018; 449:219-226. [PMID: 29675630 DOI: 10.1007/s11010-018-3358-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/16/2018] [Indexed: 02/03/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common heritable human disease. Recently, the role of repressed autophagy in ADPKD has drawn increasing attention. Here, we investigate the mechanism underlying the effect of Saikosaponin-d (SSd), a sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump (SERCA) inhibitor. We show that SSd suppresses proliferation in ADPKD cells by up-regulating autophagy. We found that treatment with SSd results in the accumulation of intracellular calcium, which in turn activates the CaMKKβ-AMPK signalling cascade, inhibits mTOR signalling and induces autophagy. Conversely, we also found that treatment with an autophagy inhibitor (3-methyladenine), AMPK inhibitor (Compound C), CaMKKβ inhibitor (STO-609) and intracellular calcium chelator (BAPTA/AM) could reduce autophagy puncta formation mediated by SSd. Our results demonstrated that SSd induces autophagy through the CaMKKβ-AMPK-mTOR signalling pathway in ADPKD cells, indicating that SSd might be a potential therapy for ADPKD and that SERCA might be a new target for ADPKD treatment.
Collapse
Affiliation(s)
- Weiwei Shi
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Dechao Xu
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Junhui Gu
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Cheng Xue
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Bo Yang
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Lili Fu
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Shuwei Song
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Dongmei Liu
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Wei Zhou
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Jiayi Lv
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Ke Sun
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Meihan Chen
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Changlin Mei
- Kidney Institute of PLA, Department of Nephrology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
42
|
Cao W, Zhang J, Wang G, Lu J, Wang T, Chen X. Reducing-Autophagy Derived Mitochondrial Dysfunction during Resveratrol Promotes Fibroblast-Like Synovial Cell Apoptosis. Anat Rec (Hoboken) 2018; 301:1179-1188. [PMID: 29461680 DOI: 10.1002/ar.23798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022]
Abstract
In rheumatoid arthritis patients, the fibroblast-like synovial cells (FLS) growth is not controlled normally, but is similar to the tumor cells proliferation in histology. Our previous studies have shown that resveratrol inhibits the proliferation of FLS and promotes FLS apoptosis. However, the molecular mechanisms involved in resveratrol-induced FLS apoptosis have not been determined yet. Here, we showed that the FLS cell viability (following pretreatment with 5 µM H2 O2 for 24 hr) exhibited better proliferation performance than at other concentrations via the CCK-8 assay. The cell apoptotic rate increased with the increasing concentration of resveratrol (0, 40, 80, 160, 320 μM), as detected by TdT-mediated dUTP nick-end labeling (TUNEL) staining and western blotting. Furthermore, the expression level of autophagy-related proteins (LC3A/B, ATG-5) decreased with the increased concentration of resveratrol, as determined by immunofluorescence and western blot analysis. We also showed that resveratrol induced FLS mitochondrial morphology change. Moreover, mitochondrial function detection showed that the mitochondrial membrane potential was lost with the increased concentration of resveratrol as examined by the JC-1 assay. The production of ATP in cells was positively and negatively correlated with the resveratrol concentration. Simultaneously, the intracellular calcium release and calcium influx decreased gradually with the increase in resveratrol concentration. Therefore, we proposed that resveratrol can reduce the level of autophagy in FLS. The decrease in the autophagy level can lead to the accumulation of reactive oxygen species, which may result in mitochondrial dysfunction and promotion of FLS apoptosis. Anat Rec, 301:1179-1188, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei Cao
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Junqiang Zhang
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Gaoyuan Wang
- Department of Orthopaedic, the First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Jinsen Lu
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Taorong Wang
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
43
|
Yang D, Livingston MJ, Liu Z, Dong G, Zhang M, Chen JK, Dong Z. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 2018; 75:669-688. [PMID: 28871310 PMCID: PMC5771948 DOI: 10.1007/s00018-017-2639-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
Abstract
Diabetic kidney disease, a leading cause of end-stage renal disease, has become a serious public health problem worldwide and lacks effective therapies. Autophagy is a highly conserved lysosomal degradation pathway that removes protein aggregates and damaged organelles to maintain cellular homeostasis. As important stress-responsive machinery, autophagy is involved in the pathogenesis of various diseases. Emerging evidence has suggested that dysregulated autophagy may contribute to both glomerular and tubulointerstitial pathologies in kidneys under diabetic conditions. This review summarizes the recent findings regarding the role of autophagy in the pathogenesis of diabetic kidney disease and highlights the regulation of autophagy by the nutrient-sensing pathways and intracellular stress signaling in this disease. The advances in our understanding of autophagy in diabetic kidney disease will facilitate the discovery of a new therapeutic target for the prevention and treatment of this life-threatening diabetes complication.
Collapse
Affiliation(s)
- Danyi Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
44
|
Zhu P, Sieben CJ, Xu X, Harris PC, Lin X. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model. Hum Mol Genet 2017; 26:158-172. [PMID: 28007903 DOI: 10.1093/hmg/ddw376] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2. It is one of the most common heritable human diseases with eventual development of renal failure; however, effective treatment is lacking. While inhibition of mechanistic target of rapamycin (mTOR) effectively slows cyst expansions in animal models, results from clinical studies are controversial, prompting further mechanistic studies of mTOR-based therapy. Here, we aim to establish autophagy, a downstream pathway of mTOR, as a new therapeutic target for PKD. We generated zebrafish mutants for pkd1 and noted cystic kidney and mTOR activation in pkd1a mutants, suggesting a conserved ADPKD model. Further assessment of the mutants revealed impaired autophagic flux, which was conserved in kidney epithelial cells derived from both Pkd1-null mice and ADPKD patients. We found that inhibition of autophagy by knocking down the core autophagy protein Atg5 promotes cystogenesis, while activation of autophagy using a specific inducer Beclin-1 peptide ameliorates cysts in the pkd1a model. Treatment with compound autophagy activators, including mTOR-dependent rapamycin as well as mTOR-independent carbamazepine and minoxidil, markedly attenuated cyst formation and restored kidney function. Finally, we showed that combination treatment with low doses of rapamycin and carbamazepine was able to attenuate cyst formation as effectively as a single treatment with a high dose of rapamycin alone. In summary, our results suggested a modifying effect of autophagy on ADPKD, established autophagy activation as a novel therapy for ADPKD, and presented zebrafish as an efficient vertebrate model for developing PKD therapeutic strategies.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Cynthia J Sieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
45
|
Yu TM, Chuang YW, Sun KT, Yu MC, Kung SC, Lee BK, Huang ST, Chen CH, Lin CL, Kao CH. Polycystic kidney disease is significantly associated with dementia risk. Neurology 2017; 89:1457-1463. [PMID: 28855402 DOI: 10.1212/wnl.0000000000004434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/13/2017] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Data on the risk of neurodegenerative diseases, including Alzheimer disease (AD) and Parkinson disease (PD), in patients with polycystic kidney disease (PKD) are lacking. METHODS A total of 4,229 patients who were aged ≥20 years and had received a diagnosis of PKD were included in the PKD cohort. For each PKD case identified, 1 participant aged ≥20 years without a history of PKD, dementia, or PD was selected from the comparison cohort. For each patient with PKD, the corresponding controls were selected 1:1 on the basis of the nearest propensity score calculated using logistic regression. RESULTS The incidence density rates of dementia were 4.31 and 2.50 per 1,000 person-years in the PKD and control cohorts, respectively. A 2.04-fold higher risk of dementia was observed in patients with PKD than in controls (adjusted hazard ratio [aHR] 2.04; 95% confidence interval [CI] 1.46-2.85). Regarding the risk of different dementia subtypes, including AD and vascular dementia (VaD), the aHR for AD and presenile dementia was 2.71 (95% CI 1.08-6.75) and that for VaD was 0.90 (95% CI 0.43-1.87) in patients with PKD compared with controls, after adjustment for age, sex, and comorbidities. Compared with controls, the risk of PD increased by 1.78-fold (95% CI 1.14-2.79) in patients with PKD. CONCLUSIONS In clinical practice, health care professionals should be aware of the risk of neurodegenerative diseases in patients with PKD.
Collapse
Affiliation(s)
- Tung-Min Yu
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Ya-Wen Chuang
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Kuo-Ting Sun
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Mei-Ching Yu
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Shiang-Cheng Kung
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Brian K Lee
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Shih-Ting Huang
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Cheng-Hsu Chen
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Cheng-Li Lin
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Chia-Hung Kao
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan.
| |
Collapse
|
46
|
Abstract
Mechanistic target of rapamycin controls cell growth, metabolism, and aging in response to nutrients, cellular energy stage, and growth factors. In cancers including breast cancer, mechanistic target of rapamycin is frequently upregulated. Blocking mechanistic target of rapamycin with rapamycin, first-generation and second-generation mechanistic target of rapamycin inhibitors, called rapalogs, have shown potent reduction of breast cancer tumor growth in preclinical models and clinical trials. In this review, we summarize the fundamental role of the mechanistic target of rapamycin pathway in driving breast tumors. Moreover, we also review key molecules involved with aberrant mechanistic target of rapamycin pathway activation in breast cancer and current efforts to target these components for therapeutic gain. Further development of predictive biomarkers will be useful in the selection of patients who will benefit from inhibition of the mechanistic target of rapamycin pathway.
Collapse
Affiliation(s)
- Jia Liu
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Hui-Qing Li
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Fu-Xia Zhou
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Jie-Wen Yu
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Ling Sun
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Zhong-Hou Han
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| |
Collapse
|
47
|
Expression of mTOR in Primary Pterygium and its Correlation with α-Smooth Muscle Actin. Eur J Ophthalmol 2017. [PMID: 28623647 DOI: 10.5301/ejo.5000985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purpose Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that has been shown to affect many cellular functions, such as cell growth, proliferation, and metabolism. However, there has been minimal focus on the expression of mTOR in pterygium. The purpose of this study was to investigate the expression of mTOR and the correlation between the levels of mTOR and α-smooth muscle actin (α-SMA, a marker of transdifferentiation) in pterygium. Methods Primary pterygium samples from 28 patients and normal conjunctival samples from 16 patients were surgically removed and analyzed. The expression levels of mTOR and α-SMA in the excised specimens were assessed using immunohistochemistry and Western blotting. Furthermore, correlations between the mTOR and α-SMA expression levels were studied. Results The expression of mTOR and α-SMA was significantly higher in the pterygium tissues than in normal conjunctiva tissues. A significant positive correlation was detected between the number of mTOR-immunopositive fibroblasts and the number of α-SMA-immunopositive fibroblasts (ρ = 0.463, p = 0.0078). Additionally, mTOR expression was significantly correlated with α-SMA expression (ρ = 0.269, p = 0.031) in pterygium. Conclusions There was an increased expression of mTOR in pterygium samples compared to that in normal conjunctival tissues, with a positive correlation with α-SMA expression. These findings might be involved in the pathogenesis of pterygium.
Collapse
|
48
|
Diedrich B, Dengjel J. Insights into autosomal dominant polycystic kidney disease by quantitative mass spectrometry-based proteomics. Cell Tissue Res 2017; 369:41-51. [DOI: 10.1007/s00441-017-2617-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022]
|
49
|
Liu D, Liu Y, Chen G, He L, Tang C, Wang C, Yang D, Li H, Dong Z, Liu H. Rapamycin Enhances Repressed Autophagy and Attenuates Aggressive Progression in a Rat Model of IgA Nephropathy. Am J Nephrol 2017; 45:293-300. [PMID: 28237991 DOI: 10.1159/000456039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/08/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND IgA nephropathy (IgAN) has been considered to be the most frequent form of primary glomerulonephritis that occurs worldwide with a variety of factors involved in its occurrence and development. The impact of autophagy in IgAN, however, remains partially unclear. This study was designed to investigate the effects of rapamycin in an IgAN model. METHOD After establishing an IgAN rat model, SD rats were divided into 4 groups: control, control + rapamycin, IgAN, IgAN + rapamycin. Proteinuria and the pathological changes and the level of autophagy of kidney were texted. Identify the expression of phosphorylation and total mammalian target of rapamycin (mTOR) and s6k1 as well as cyclin D1 in the kidney of rats through Western blot and immunohistochemistry. RESULTS With rapamycin treatment, we observed a significant reduction in the progression of proteinuria as well as alleviation of pathological lesions in IgAN rats. Besides, autophagy was inhibited, while the mTOR/S6k1 pathway was activated and expression of cyclin D1 was increased in IgAN. Rapamycin treatment increased autophagy and decreased the expression of cyclin D1. CONCLUSION These results may suggest that mTOR-mediated autophagy inhibition may result in mesangial cell proliferation in IgAN.
Collapse
Affiliation(s)
- Di Liu
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Blood Purification Center in 2nd Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification in Hunan, Changsha, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ogawa S, Ishimura T, Miyake H, Fujisawa M. Expression profile of mammalian target of rapamycin-related proteins in graft biopsy specimens: Significance for predicting interstitial fibrosis after kidney transplantation. Int J Urol 2017; 24:223-229. [PMID: 28173612 DOI: 10.1111/iju.13287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/15/2016] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To investigate the influence of the expression profile of mammalian target of rapamycin-related proteins on the development of interstitial fibrosis after kidney transplantation. METHODS Immunohistochemical staining was carried out to evaluate the expression of five mammalian target of rapamycin-related proteins (phosphorylated-Akt, Ras homolog enriched in brain, phosphorylated-mammalian target of rapamycin, phosphorylated-p70 ribosomal S6 kinase and phosphorylated-4E binding protein 1) in graft biopsy specimens obtained from 77 patients at 3 months after kidney transplantation. The change of the estimated glomerular filtration rate and the change of the fibrosis index (defined as the change in the percent area of fibrosis on Masson's trichrome-stained sections of biopsy specimens) from 3 months to 3 years after kidney transplantation were determined. RESULTS There was a significant correlation between change of the estimated glomerular filtration and change of the fibrosis index in the 77 patients. Univariate analysis identified expression of phosphorylated-Akt, phosphorylated-mammalian target of rapamycin and phosphorylated-p70 ribosomal S6 kinase, as well as donor type and pre-transplant dialysis duration, as significant predictors of a change of the fibrosis index >10%. However, only phosphorylated-mammalian target of rapamycin expression, phosphorylated-p70 ribosomal S6 kinase expression and donor type were independently associated with a change of the fibrosis index >10% according to multivariate analysis. CONCLUSIONS These findings suggest that mammalian target of rapamycin-related proteins are involved in the development of interstitial fibrosis after kidney transplantation.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Division of Urology, Department of Surgery, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ishimura
- Division of Urology, Department of Surgery, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideaki Miyake
- Division of Urology, Department of Surgery, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Fujisawa
- Division of Urology, Department of Surgery, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|