1
|
Groll T, Aupperle-Lellbach H, Mogler C, Steiger K. [Comparative pathology in oncology-Best practice]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:190-197. [PMID: 38602524 DOI: 10.1007/s00292-024-01327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Comparative experimental pathology is a research field at the interface of human and veterinary medicine. It is focused on the comparative study of similarities and differences between spontaneous and experimentally induced diseases in animals (animal models) compared to human diseases. The use of animal models for studying human diseases is an essential component of biomedical research. Interdisciplinary teams with species-specific expertise should collaborate wherever possible and maintain close communication. Mutual openness, cooperation, and willingness to learn form the basis for a fruitful collaboration. Research projects jointly led by or involving both animal and human pathologists make a significant contribution to high-quality biomedical research. Such approaches are promising not only in oncological research, as outlined in this article, but also in other research areas where animal models are regularly used, such as infectiology, neurology, and developmental biology.
Collapse
Affiliation(s)
- Tanja Groll
- Institut für Pathologie und Pathologische Anatomie, School of Medicine and Health, Technische Universität München, Trogerstraße 18, 81675, München, Deutschland
- Comparative Experimental Pathology (CEP), School of Medicine and Health, Technische Universität München, München, Deutschland
| | - Heike Aupperle-Lellbach
- Institut für Pathologie und Pathologische Anatomie, School of Medicine and Health, Technische Universität München, Trogerstraße 18, 81675, München, Deutschland
- Comparative Experimental Pathology (CEP), School of Medicine and Health, Technische Universität München, München, Deutschland
- LABOKLIN GmbH & Co. KG, Bad Kissingen, Deutschland
| | - Carolin Mogler
- Institut für Pathologie und Pathologische Anatomie, School of Medicine and Health, Technische Universität München, Trogerstraße 18, 81675, München, Deutschland
- Comparative Experimental Pathology (CEP), School of Medicine and Health, Technische Universität München, München, Deutschland
| | - Katja Steiger
- Institut für Pathologie und Pathologische Anatomie, School of Medicine and Health, Technische Universität München, Trogerstraße 18, 81675, München, Deutschland.
- Comparative Experimental Pathology (CEP), School of Medicine and Health, Technische Universität München, München, Deutschland.
| |
Collapse
|
2
|
Cordier P, Sangouard F, Fang J, Kabore C, Desdouets C, Celton-Morizur S. Diethylnitrosamine-Induced Liver Tumorigenesis in Mice Under High-Hat High-Sucrose Diet: Stepwise High-Resolution Ultrasound Imaging and Histopathological Correlations. Methods Mol Biol 2024; 2769:27-55. [PMID: 38315387 DOI: 10.1007/978-1-0716-3694-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The hepatotoxic N-nitroso compound diethylnitrosamine (DEN) administered intraperitoneally (i.p.) induces liver neoplasms in rodents that reproducibly recapitulate some aspects of human hepatocarcinogenesis. In particular, DEN drives the stepwise formation of pre-neoplastic and neoplastic (benign or malignant) hepatocellular lesions reminiscent of the initiation-promotion-progression sequence typical of chemical carcinogenesis. In humans, the development of hepatocellular carcinoma (HCC) is also a multi-step process triggered by continuous hepatocellular injury, chronic inflammation, and compensatory hyperplasia that fuel the emergence of dysplastic liver lesions followed by the formation of early HCC. The DEN-induced liver tumorigenesis model represents a versatile preclinical tool that enables the study of many tumor development modifiers (genetic background, gene knockout or overexpression, diets, pollutants, or drugs) with a thorough follow-up of the multistage process on live animals by means of high-resolution imaging. Here, we provide a comprehensive protocol for the induction of hepatocellular neoplasms in wild-type C57BL/6J male mice following i.p. DEN injection (25 mg/kg) at 14 days of age and 36 weeks feeding of a high-fat high-sucrose (HFHS) diet. We emphasize the use of ultrasound liver imaging to follow tumor development and provide histopathological correlations. We also discuss the extrinsic and intrinsic factors known to modify the course of liver tumorigenesis in this model.
Collapse
Affiliation(s)
- Pierre Cordier
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Flora Sangouard
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Jing Fang
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Christelle Kabore
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Séverine Celton-Morizur
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France.
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
3
|
Gifford AJ. A Primer for Research Scientists on Assessing Mouse Gross and Histopathology Images in the Biomedical Literature. Curr Protoc 2023; 3:e891. [PMID: 37712877 DOI: 10.1002/cpz1.891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Advances in genomic technologies have enabled the development of abundant mouse models of human disease, requiring accurate phenotyping to elucidate the consequences of genetic manipulation. Anatomic pathology, an important component of the mouse phenotyping pipeline, is ideally performed by human or veterinary pathologists; however, due to insufficient numbers of pathologists qualified to assess these mouse models morphologically, research scientists may perform "do-it-yourself" pathology, resulting in diagnostic error. In the biomedical literature, pathology data is commonly presented as images of tissue sections, stained with either hematoxylin and eosin or antibodies via immunohistochemistry, accompanied by a figure legend. Data presented in such images and figure legends may contain inaccuracies. Furthermore, there is limited guidance for non-pathologist research scientists concerning the elements required in an ideal pathology image and figure legend in a research publication. In this overview, the components of an ideal pathology image and figure legend are outlined and comprise image quality, image composition, and image interpretation. Background knowledge is important for producing accurate pathology images and critically assessing these images in the literature. This foundational knowledge includes understanding relevant human and mouse anatomy and histology and, for cancer researchers, an understanding of human and mouse tumor classification and morphology, mouse stain background lesions, and tissue processing artifacts. Accurate interpretation of immunohistochemistry is also vitally important and is detailed with emphasis on the requirement for tissue controls and the distribution, intensity, and intracellular location of staining. Common pitfalls in immunohistochemistry interpretation are outlined, and a checklist of questions is provided by which any pathology image may be critically examined. Collaboration with pathologist colleagues is encouraged. This overview aims to equip researchers to critically assess the quality and accuracy of pathology images in the literature to improve the reliability and reproducibility of published pathology data. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
McInnes EF, Meyerholz DK, Arends MJ. Concerns about pathology expertise and data quality. J Pathol 2023; 259:468. [PMID: 36715663 DOI: 10.1002/path.6058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - Mark J Arends
- The Pathological Society of Great Britain and Ireland, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Gabrielson K, Myers S, Yi J, Gabrielson E, Jimenez IA. Comparison of Cardiovascular Pathology In Animal Models of SARS-CoV-2 Infection: Recommendations Regarding Standardization of Research Methods. Comp Med 2023; 73:58-71. [PMID: 36731878 PMCID: PMC9948900 DOI: 10.30802/aalas-cm-22-000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the viral pathogen that led to the global COVID-19 pandemic that began in late 2019. Because SARS-CoV-2 primarily causes a respiratory disease, much research conducted to date has focused on the respiratory system. However, SARS-CoV-2 infection also affects other organ systems, including the cardiovascular system. In this critical analysis of published data, we evaluate the evidence of cardiovascular pathology in human patients and animals. Overall, we find that the presence or absence of cardiovascular pathology is reported infrequently in both human autopsy studies and animal models of SARS-CoV-2 infection. Moreover, in those studies that have reported cardiovascular pathology, we identified issues in their design and execution that reduce confidence in the conclusions regarding SARS-CoV-2 infection as a cause of significant cardiovascular pathology. Throughout this overview, we expand on these limitations and provide recommendations to ensure a high level of scientific rigor and reproducibility.
Collapse
Affiliation(s)
- Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephanie Myers
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas; and
| | - Jena Yi
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward Gabrielson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Isabel A Jimenez
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Green TRF, Murphy SM, Rowe RK. Comparisons of quantitative approaches for assessing microglial morphology reveal inconsistencies, ecological fallacy, and a need for standardization. Sci Rep 2022; 12:18196. [PMID: 36307475 PMCID: PMC9616881 DOI: 10.1038/s41598-022-23091-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
Microglial morphology is used to measure neuroinflammation and pathology. For reliable inference, it is critical that microglial morphology is accurately quantified and that results can be easily interpreted and compared across studies and laboratories. The process through which microglial morphology is quantified is a key methodological choice and little is known about how this choice may bias conclusions. We applied five of the most commonly used ImageJ-based methods for quantifying the microglial morphological response to a stimulus to identical photomicrographs and individual microglial cells isolated from these photomicrographs, which allowed for direct comparisons of results generated using these approaches. We found a lack of comparability across methods that analyzed full photomicrographs, with significant discrepancies in results among the five methods. Quantitative methods to analyze microglial morphology should be selected based on several criteria, and combinations of these methods may give the most biologically accurate representation of microglial morphology.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- grid.134563.60000 0001 2168 186XDepartment of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA ,grid.266190.a0000000096214564Department of Integrative Physiology, University of Colorado, 2860 Wilderness Place, Boulder, CO 80301 USA
| | - Sean M. Murphy
- grid.134563.60000 0001 2168 186XDepartment of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
| | - Rachel K. Rowe
- grid.134563.60000 0001 2168 186XDepartment of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA ,grid.266190.a0000000096214564Department of Integrative Physiology, University of Colorado, 2860 Wilderness Place, Boulder, CO 80301 USA
| |
Collapse
|
7
|
Bankhead P. Developing image analysis methods for digital pathology. J Pathol 2022; 257:391-402. [PMID: 35481680 PMCID: PMC9324951 DOI: 10.1002/path.5921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022]
Abstract
The potential to use quantitative image analysis and artificial intelligence is one of the driving forces behind digital pathology. However, despite novel image analysis methods for pathology being described across many publications, few become widely adopted and many are not applied in more than a single study. The explanation is often straightforward: software implementing the method is simply not available, or is too complex, incomplete, or dataset‐dependent for others to use. The result is a disconnect between what seems already possible in digital pathology based upon the literature, and what actually is possible for anyone wishing to apply it using currently available software. This review begins by introducing the main approaches and techniques involved in analysing pathology images. I then examine the practical challenges inherent in taking algorithms beyond proof‐of‐concept, from both a user and developer perspective. I describe the need for a collaborative and multidisciplinary approach to developing and validating meaningful new algorithms, and argue that openness, implementation, and usability deserve more attention among digital pathology researchers. The review ends with a discussion about how digital pathology could benefit from interacting with and learning from the wider bioimage analysis community, particularly with regard to sharing data, software, and ideas. © 2022 The Author. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Peter Bankhead
- Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Teranikar T, Lim J, Ijaseun T, Lee J. Development of Planar Illumination Strategies for Solving Mysteries in the Sub-Cellular Realm. Int J Mol Sci 2022; 23:1643. [PMID: 35163562 PMCID: PMC8835835 DOI: 10.3390/ijms23031643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Optical microscopy has vastly expanded the frontiers of structural and functional biology, due to the non-invasive probing of dynamic volumes in vivo. However, traditional widefield microscopy illuminating the entire field of view (FOV) is adversely affected by out-of-focus light scatter. Consequently, standard upright or inverted microscopes are inept in sampling diffraction-limited volumes smaller than the optical system's point spread function (PSF). Over the last few decades, several planar and structured (sinusoidal) illumination modalities have offered unprecedented access to sub-cellular organelles and 4D (3D + time) image acquisition. Furthermore, these optical sectioning systems remain unaffected by the size of biological samples, providing high signal-to-noise (SNR) ratios for objective lenses (OLs) with long working distances (WDs). This review aims to guide biologists regarding planar illumination strategies, capable of harnessing sub-micron spatial resolution with a millimeter depth of penetration.
Collapse
Affiliation(s)
| | | | | | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 75022, USA; (T.T.); (J.L.); (T.I.)
| |
Collapse
|
9
|
Teixeira da Silva JA. Issues and challenges to reproducibility of cancer research: a commentary. Future Oncol 2022; 18:1417-1422. [DOI: 10.2217/fon-2021-1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Cooper TK, Meyerholz DK, Beck AP, Delaney MA, Piersigilli A, Southard TL, Brayton CF. Research-Relevant Conditions and Pathology of Laboratory Mice, Rats, Gerbils, Guinea Pigs, Hamsters, Naked Mole Rats, and Rabbits. ILAR J 2022; 62:77-132. [PMID: 34979559 DOI: 10.1093/ilar/ilab022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Animals are valuable resources in biomedical research in investigations of biological processes, disease pathogenesis, therapeutic interventions, safety, toxicity, and carcinogenicity. Interpretation of data from animals requires knowledge not only of the processes or diseases (pathophysiology) under study but also recognition of spontaneous conditions and background lesions (pathology) that can influence or confound the study results. Species, strain/stock, sex, age, anatomy, physiology, spontaneous diseases (noninfectious and infectious), and neoplasia impact experimental results and interpretation as well as animal welfare. This review and the references selected aim to provide a pathology resource for researchers, pathologists, and veterinary personnel who strive to achieve research rigor and validity and must understand the spectrum of "normal" and expected conditions to accurately identify research-relevant experimental phenotypes as well as unusual illness, pathology, or other conditions that can compromise studies involving laboratory mice, rats, gerbils, guinea pigs, hamsters, naked mole rats, and rabbits.
Collapse
Affiliation(s)
- Timothy K Cooper
- Department of Comparative Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Martha A Delaney
- Zoological Pathology Program, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana-Champaign, Illinois, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology and the Genetically Modified Animal Phenotyping Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Ballke S, Heid I, Mogler C, Braren R, Schwaiger M, Weichert W, Steiger K. Correlation of in vivo imaging to morphomolecular pathology in translational research: challenge accepted. EJNMMI Res 2021; 11:83. [PMID: 34453623 PMCID: PMC8401369 DOI: 10.1186/s13550-021-00826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/15/2021] [Indexed: 12/26/2022] Open
Abstract
Correlation of in vivo imaging to histomorphological pathology in animal models requires comparative interdisciplinary expertise of different fields of medicine. From the morphological point of view, there is an urgent need to improve histopathological evaluation in animal model-based research to expedite translation into clinical applications. While different other fields of translational science were standardized over the last years, little was done to improve the pipeline of experimental pathology to ensure reproducibility based on pathological expertise in experimental animal models with respect to defined guidelines and classifications. Additionally, longitudinal analyses of preclinical models often use a variety of imaging methods and much more attention should be drawn to enable for proper co-registration of in vivo imaging methods with the ex vivo morphological read-outs. Here we present the development of the Comparative Experimental Pathology (CEP) unit embedded in the Institute of Pathology of the Technical University of Munich during the Collaborative Research Center 824 (CRC824) funding period together with selected approaches of histomorphological techniques for correlation of in vivo imaging to morphomolecular pathology.
Collapse
Affiliation(s)
- Simone Ballke
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Irina Heid
- School of Medicine, Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carolin Mogler
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Rickmer Braren
- School of Medicine, Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Schwaiger
- School of Medicine, Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wilko Weichert
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
12
|
Paul Friedman K, Gagne M, Loo LH, Karamertzanis P, Netzeva T, Sobanski T, Franzosa JA, Richard AM, Lougee RR, Gissi A, Lee JYJ, Angrish M, Dorne JL, Foster S, Raffaele K, Bahadori T, Gwinn MR, Lambert J, Whelan M, Rasenberg M, Barton-Maclaren T, Thomas RS. Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization. Toxicol Sci 2021; 173:202-225. [PMID: 31532525 DOI: 10.1093/toxsci/kfz201] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Use of high-throughput, in vitro bioactivity data in setting a point-of-departure (POD) has the potential to accelerate the pace of human health safety evaluation by informing screening-level assessments. The primary objective of this work was to compare PODs based on high-throughput predictions of bioactivity, exposure predictions, and traditional hazard information for 448 chemicals. PODs derived from new approach methodologies (NAMs) were obtained for this comparison using the 50th (PODNAM, 50) and the 95th (PODNAM, 95) percentile credible interval estimates for the steady-state plasma concentration used in in vitro to in vivo extrapolation of administered equivalent doses. Of the 448 substances, 89% had a PODNAM, 95 that was less than the traditional POD (PODtraditional) value. For the 48 substances for which PODtraditional < PODNAM, 95, the PODNAM and PODtraditional were typically within a factor of 10 of each other, and there was an enrichment of chemical structural features associated with organophosphate and carbamate insecticides. When PODtraditional < PODNAM, 95, it did not appear to result from an enrichment of PODtraditional based on a particular study type (eg, developmental, reproductive, and chronic studies). Bioactivity:exposure ratios, useful for identification of substances with potential priority, demonstrated that high-throughput exposure predictions were greater than the PODNAM, 95 for 11 substances. When compared with threshold of toxicological concern (TTC) values, the PODNAM, 95 was greater than the corresponding TTC value 90% of the time. This work demonstrates the feasibility, and continuing challenges, of using in vitro bioactivity as a protective estimate of POD in screening-level assessments via a case study.
Collapse
Affiliation(s)
- Katie Paul Friedman
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Matthew Gagne
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada, K1A0K9
| | - Lit-Hsin Loo
- Innovations in Food and Chemical Safety Programme and Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, 138671, Singapore
| | - Panagiotis Karamertzanis
- Computational Assessment Unit, European Chemicals Agency, European Chemicals Agency Annankatu 18, P.O. Box 400, FI-00121 Helsinki, Uusimaa, Finland
| | - Tatiana Netzeva
- Computational Assessment Unit, European Chemicals Agency, European Chemicals Agency Annankatu 18, P.O. Box 400, FI-00121 Helsinki, Uusimaa, Finland
| | - Tomasz Sobanski
- Computational Assessment Unit, European Chemicals Agency, European Chemicals Agency Annankatu 18, P.O. Box 400, FI-00121 Helsinki, Uusimaa, Finland
| | - Jill A Franzosa
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Ann M Richard
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Ryan R Lougee
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711.,Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA
| | - Andrea Gissi
- Computational Assessment Unit, European Chemicals Agency, European Chemicals Agency Annankatu 18, P.O. Box 400, FI-00121 Helsinki, Uusimaa, Finland
| | - Jia-Ying Joey Lee
- Innovations in Food and Chemical Safety Programme and Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, 138671, Singapore
| | - Michelle Angrish
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Washington, DC, 20004 and Research Triangle Park, NC 27711
| | - Jean Lou Dorne
- Scientific Committee and Emerging Risks Unit Department of Risk Assessment and Scientific Assistance, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Stiven Foster
- Office of Land and Emergency Management, U.S. Environmental Protection Agency, Washington, DC, 20004
| | - Kathleen Raffaele
- Office of Land and Emergency Management, U.S. Environmental Protection Agency, Washington, DC, 20004
| | - Tina Bahadori
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA
| | - Maureen R Gwinn
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Jason Lambert
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, I - 21027 Ispra, Italy
| | - Mike Rasenberg
- Computational Assessment Unit, European Chemicals Agency, European Chemicals Agency Annankatu 18, P.O. Box 400, FI-00121 Helsinki, Uusimaa, Finland
| | - Tara Barton-Maclaren
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada, K1A0K9
| | - Russell S Thomas
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711
| |
Collapse
|
13
|
Meyerholz DK, Adissu HA, Carvalho T, Atkins HM, Rissi DR, Beck AP, Ward JM, Piersigilli A. Exclusion of Expert Contributors From Authorship Limits the Quality of Scientific Articles. Vet Pathol 2021; 58:650-654. [PMID: 33906549 DOI: 10.1177/03009858211011943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Veterinary pathologists are key contributors to multidisciplinary biomedical research. However, they are occasionally excluded from authorship in published articles despite their substantial intellectual and data contributions. To better understand the potential origins and implications of this practice, we identified and analyzed 29 scientific publications where the contributing pathologist was excluded as an author. The amount of pathologist-generated data contributions were similar to the calculated average contributions for authors, suggesting that the amount of data contributed by the pathologist was not a valid factor for their exclusion from authorship. We then studied publications with pathologist-generated contributions to compare the effects of inclusion or exclusion of the pathologist as an author. Exclusion of the pathologist from authorship was associated with significantly lower markers of rigor and reproducibility compared to articles in which the pathologist was included as author. Although this study did not find justification for the exclusion of pathologists from authorship, potential consequences of their exclusion on data quality were readily detectable.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alessandra Piersigilli
- Weill Cornell Medical College, New York, NY, USA.,Current address:Alessandra Piersigilli, Takeda Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|
14
|
Helke KL, Meyerholz DK, Beck AP, Burrough ER, Derscheid RJ, Löhr C, McInnes EF, Scudamore CL, Brayton CF. Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats. ILAR J 2021; 62:133-168. [PMID: 33712827 DOI: 10.1093/ilar/ilab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Collapse
Affiliation(s)
- Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Rachel J Derscheid
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Christiane Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth F McInnes
- Toxicologic Pathology, Toxicology Section, Human Safety at Syngenta, in Jealott's Hill, Bracknell, United Kingdom
| | - Cheryl L Scudamore
- ExePathology, Pathologist at ExePathology, Exmouth, Devon, United Kingdom
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Bonfiglio R, Galli F, Varani M, Scimeca M, Borri F, Fazi S, Cicconi R, Mattei M, Campagna G, Schönberger T, Raymond E, Wunder A, Signore A, Bonanno E. Extensive Histopathological Characterization of Inflamed Bowel in the Dextran Sulfate Sodium Mouse Model with Emphasis on Clinically Relevant Biomarkers and Targets for Drug Development. Int J Mol Sci 2021; 22:2028. [PMID: 33670766 PMCID: PMC7923003 DOI: 10.3390/ijms22042028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
This study aims to develop a reliable and reproducible inflammatory bowel disease (IBD) murine model based on a careful spatial-temporal histological characterization. Secondary aims included extensive preclinical studies focused on the in situ expression of clinically relevant biomarkers and targets involved in IBD. C57BL/6 female mice were used to establish the IBD model. Colitis was induced by the oral administration of 2% Dextran Sulfate Sodium (DSS) for 5 days, followed by 2, 4 or 9 days of water. Histological analysis was performed by sectioning the whole colon into rings of 5 mm each. Immunohistochemical analyses were performed for molecular targets of interest for monitoring disease activity, treatment response and predicting outcome. Data reported here allowed us to develop an original scoring method useful as a tool for the histological assessment of preclinical models of DSS-induced IBD. Immunohistochemical data showed a significant increase in TNF-α, α4β7, VEGFRII, GR-1, CD25, CD3 and IL-12p40 expression in DSS mice if compared to controls. No difference was observed for IL-17, IL-23R, IL-36R or F480. Knowledge of the spatial-temporal pattern distribution of the pathological lesions of a well-characterized disease model lays the foundation for the study of the tissue expression of meaningful predictive biomarkers, thereby improving translational success rates of preclinical studies for a personalized management of IBD patients.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, University “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.S.); (S.F.)
| | - Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00161 Rome, Italy; (F.G.); (M.V.); (G.C.); (A.S.)
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00161 Rome, Italy; (F.G.); (M.V.); (G.C.); (A.S.)
| | - Manuel Scimeca
- Department of Experimental Medicine, University “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.S.); (S.F.)
- San Raffaele University, via di Val Cannuta 247, 00166 Rome, Italy
- Saint Camillus International University of Health Sciences, via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Filippo Borri
- UOC Anatomia Patologica, Department of Oncology, USL Toscana Sud-Est, San Donato Hospital, 52100 Arezzo, Italy;
| | - Sara Fazi
- Department of Experimental Medicine, University “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.S.); (S.F.)
| | - Rosella Cicconi
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.C.); (M.M.)
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.C.); (M.M.)
- Department of Biology, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Giuseppe Campagna
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00161 Rome, Italy; (F.G.); (M.V.); (G.C.); (A.S.)
| | - Tanja Schönberger
- Divison of Target Discovery Research and Target Validation Technologies, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
| | - Ernest Raymond
- Immunology and Respiratory Department, Boehringer Ingelheim Pharma GmbH & Co. KG, Ridgefield, CT 06877, USA;
| | - Andreas Wunder
- Division of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00161 Rome, Italy; (F.G.); (M.V.); (G.C.); (A.S.)
| | - Elena Bonanno
- Department of Experimental Medicine, University “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.S.); (S.F.)
- “Diagnostica Medica” and “Villa dei Platani”, Neuromed Group, 83100 Avellino, Italy
| |
Collapse
|
16
|
Lanigan LG, Hildreth BE, Dirksen WP, Simmons JK, Martin CK, Werbeck JL, Thudi NK, Papenfuss TL, Boyaka PN, Toribio RE, Ward JM, Weilbaecher KN, Rosol TJ. In Vivo Tumorigenesis, Osteolytic Sarcomas, and Tumorigenic Cell Lines from Transgenic Mice Expressing the Human T-Lymphotropic Virus Type 1 (HTLV-1) Tax Viral Oncogene. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:335-352. [PMID: 33181139 PMCID: PMC7863134 DOI: 10.1016/j.ajpath.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia, a disease commonly associated with hypercalcemia and osteolysis. There is no effective treatment for HTLV-1, and the osteolytic mechanisms are not fully understood. Mice expressing the HTLV-1 oncogene Tax, driven by the human granzyme B promoter (Tax+), develop osteolytic tumors. To investigate the progression of the bone-invasive malignancies, wild-type, Tax+, and Tax+/interferon-γ-/- mice were assessed using necropsy, histologic examination, IHC analysis, flow cytometry, and advanced imaging. Tax+ and Tax+/interferon-γ-/- malignancies of the ear, tail, and foot comprised poorly differentiated, round to spindle-shaped cells with prominent neutrophilic infiltrates. Tail tumors originated from muscle, nerve, and/or tendon sheaths, with frequent invasion into adjacent bone. F4/80+ and anti-mouse CD11b (Mac-1)+ histiocytic cells predominated within the tumors. Three Tax+/interferon-γ-/- cell lines were generated for in vivo allografts, in vitro gene expression and bone resorption assays. Two cell lines were of monocyte/macrophage origin, and tumors formed in vivo in all three. Differences in Pthrp, Il6, Il1a, Il1b, and Csf3 expression in vitro were correlated with differences in in vivo plasma calcium levels, tumor growth, metastasis, and neutrophilic inflammation. Tax+ mouse tumors were classified as bone-invasive histiocytic sarcomas. The cell lines are ideal for further examination of the role of HTLV-1 Tax in osteolytic tumor formation and the development of hypercalcemia and tumor-associated inflammation.
Collapse
Affiliation(s)
- Lisa G Lanigan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; Tox Path Specialists, a StageBio Company, Fredrick, Maryland
| | - Blake E Hildreth
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wessel P Dirksen
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Jessica K Simmons
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Chelsea K Martin
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; Department of Pathology and Microbiology, University of Prince Edward Island, Atlantic Veterinary College, Prince Edward Island, Canada
| | - Jillian L Werbeck
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Nandu K Thudi
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Tracey L Papenfuss
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Ramiro E Toribio
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | | | - Katherine N Weilbaecher
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Thomas J Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio.
| |
Collapse
|
17
|
Hoenerhoff MJ, Meyerholz DK, Brayton C, Beck AP. Challenges and Opportunities for the Veterinary Pathologist in Biomedical Research. Vet Pathol 2020; 58:258-265. [PMID: 33327888 DOI: 10.1177/0300985820974005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Animal models have critical roles in biomedical research in promoting understanding of human disease and facilitating development of new therapies and diagnostic techniques to improve human and animal health. In the study of myriad human conditions, each model requires in-depth characterization of its assets and limitations in order for it to be used to greatest advantage. Veterinary pathology expertise is critical in understanding the relevance and translational validity of animal models to conditions under study, assessing morbidity and mortality, and validating outcomes as relevant or not to the study interventions. Clear communication with investigators and education of research personnel on the use and interpretation of pathology endpoints in animal models are critical to the success of any research program. The veterinary pathologist is underutilized in biomedical research due to many factors including misconceptions about high fiscal costs, lack of perceived value, limited recognition of their expertise, and the generally low number of veterinary pathologists currently employed in biomedical research. As members of the multidisciplinary research team, veterinary pathologists have an important role to educate scientists, ensure accurate interpretation of pathology data, maximize rigor, and ensure reproducibility to provide the most reliable data for animal models in biomedical research.
Collapse
|
18
|
Genetically Engineered Mouse Models of Liver Tumorigenesis Reveal a Wide Histological Spectrum of Neoplastic and Non-Neoplastic Liver Lesions. Cancers (Basel) 2020; 12:cancers12082265. [PMID: 32823526 PMCID: PMC7465606 DOI: 10.3390/cancers12082265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Genetically engineered mouse models (GEMM) are an elegant tool to study liver carcinogenesis in vivo. Newly designed mouse models need detailed (histopathological) phenotyping when described for the first time to avoid misinterpretation and misconclusions. Many chemically induced models for hepatocarcinogenesis comprise a huge variety of histologically benign and malignant neoplastic, as well as non-neoplastic, lesions. Such comprehensive categorization data for GEMM are still missing. In this study, 874 microscopically categorized liver lesions from 369 macroscopically detected liver "tumors" from five different GEMM for liver tumorigenesis were included. The histologic spectrum of diagnosis included a wide range of both benign and malignant neoplastic (approx. 82%) and non-neoplastic (approx. 18%) lesions including hyperplasia, reactive bile duct changes or oval cell proliferations with huge variations among the various models and genetic backgrounds. Our study therefore critically demonstrates that models of liver tumorigenesis can harbor a huge variety of histopathologically distinct diagnosis and, depending on the genotype, notable variations are expectable. These findings are extremely important to warrant the correct application of GEMM in liver cancer research and clearly emphasize the role of basic histopathology as still being a crucial tool in modern biomedical research.
Collapse
|
19
|
Cranston AL, Wysocka A, Steczkowska M, Zadrożny M, Palasz E, Harrington CR, Theuring F, Wischik CM, Riedel G, Niewiadomska G. Cholinergic and inflammatory phenotypes in transgenic tau mouse models of Alzheimer's disease and frontotemporal lobar degeneration. Brain Commun 2020; 2:fcaa033. [PMID: 32954291 PMCID: PMC7425524 DOI: 10.1093/braincomms/fcaa033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023] Open
Abstract
An early and sizeable loss of basal forebrain cholinergic neurons is a well-characterized feature associated with measurable deficits in spatial learning and cognitive impairment in patients with Alzheimer’s disease. In addition, pro-inflammatory glial cells such as astrocytes and microglia may play a key role in the neurodegenerative cascade of Alzheimer’s disease and tauopathies. We recently presented two mouse models: Line 1, expressing the truncated tau fragment identified as the core of the Alzheimer’s paired helical filament, and Line 66, expressing full-length human tau carrying a double mutation (P301S and G335D). Line 1 mice have a pathology that is akin to Alzheimer’s, whilst Line 66 resembles frontotemporal lobar degeneration. However, their cholinergic and inflammatory phenotypes remain elusive. We performed histological evaluation of choline acetyltransferase, acetylcholinesterase, p75 neurotrophin receptor, microglial ionized calcium binding adaptor molecule 1 and astrocytic glial fibrillary acidic protein in the basal forebrain, hippocampus and cortex of these models. A significant lowering of choline acetyltransferase-positive neurons and p75-positive neurons in the basal forebrain of Line 1 at 3, 6 and 9 months was observed in two independent studies, alongside a significant decrease in acetylcholinesterase staining in the cortex and hippocampus. The reductions in choline acetyltransferase positivity varied between 30% and 50% at an age when Line 1 mice show spatial learning impairments. Furthermore, an increase in microglial ionized calcium binding adaptor molecule 1 staining was observed in the basal forebrain, hippocampus and entorhinal cortex of Line 1 at 6 months. Line 66 mice displayed an intact cholinergic basal forebrain, and no difference in p75-positive neurons at 3 or 9 months. In addition, Line 66 exhibited significant microglial ionized calcium binding adaptor molecule 1 increase in the basal forebrain and hippocampus, suggesting a prominent neuroinflammatory profile. Increased concentrations of microglial interleukin-1β and astrocytic complement 3 were also seen in the hippocampus of both Line 1 and Line 66. The cholinergic deficit in Line 1 mice confirms the Alzheimer’s disease-like phenotype in Line 1 mice, whilst Line 66 revealed no measurable change in total cholinergic expression, a phenotypic trait of frontotemporal lobar degeneration. These two transgenic lines are therefore suitable for discriminating mechanistic underpinnings between the Alzheimer’s and frontotemporal lobar degeneration-like phenotypes of these mice.
Collapse
Affiliation(s)
- Anna L Cranston
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Adrianna Wysocka
- Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw 02-093, Poland
| | | | | | - Ewelina Palasz
- Mossakowski Medical Research Centre, Warsaw 02-106, Poland
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.,TauRx Therapeutics Ltd, Foresterhill, Aberdeen AB25 2ZP, UK
| | - Franz Theuring
- Institute of Pharmacology, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.,TauRx Therapeutics Ltd, Aberdeen AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw 02-093, Poland
| |
Collapse
|
20
|
Abstract
Emergent coronaviruses such as MERS-CoV and SARS-CoV can cause significant morbidity and mortality in infected individuals. Lung infection is a common clinical feature and contributes to disease severity as well as viral transmission. Animal models are often required to study viral infections and therapies, especially during an initial outbreak. Histopathology studies allow for identification of lesions and affected cell types to better understand viral pathogenesis and clarify effective therapies. Use of immunostaining allows detection of presumed viral receptors and viral tropism for cells can be evaluated to correlate with lesions. In the lung, lesions and immunostaining can be qualitatively described to define the cell types, microanatomic location, and type of changes seen. These features are important and necessary, but this approach can have limitations when comparing treatment groups. Semiquantitative and quantitative tissue scores are more rigorous as these provide the ability to statistically compare groups and increase the reproducibility and rigor of the study. This review describes principles, approaches, and resources that can be useful to evaluate coronavirus lung infection, focusing on MER-CoV infection as the principal example.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
21
|
Knoblaugh SE, Hohl TM, La Perle KMD. Pathology Principles and Practices for Analysis of Animal Models. ILAR J 2019; 59:40-50. [PMID: 31053847 DOI: 10.1093/ilar/ilz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Over 60% of NIH extramural funding involves animal models, and approximately 80% to 90% of these are mouse models of human disease. It is critical to translational research that animal models are accurately characterized and validated as models of human disease. Pathology analysis, including histopathology, is essential to animal model studies by providing morphologic context to in vivo, molecular, and biochemical data; however, there are many considerations when incorporating pathology endpoints into an animal study. Mice, and in particular genetically modified models, present unique considerations because these modifications are affected by background strain genetics, husbandry, and experimental conditions. Comparative pathologists recognize normal pathobiology and unique phenotypes that animals, including genetically modified models, may present. Beyond pathology, comparative pathologists with research experience offer expertise in animal model development, experimental design, optimal specimen collection and handling, data interpretation, and reporting. Critical pathology considerations in the design and use of translational studies involving animals are discussed, with an emphasis on mouse models.
Collapse
Affiliation(s)
- Sue E Knoblaugh
- Department of Veterinary Biosciences, and Comparative Pathology & Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio
| | - Tobias M Hohl
- Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Krista M D La Perle
- Department of Veterinary Biosciences, and Comparative Pathology & Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio
| |
Collapse
|
22
|
Meyerholz DK, Beck AP. Fundamental Concepts for Semiquantitative Tissue Scoring in Translational Research. ILAR J 2019; 59:13-17. [PMID: 30715381 PMCID: PMC6927897 DOI: 10.1093/ilar/ily025] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
Failure to reproduce results from some scientific studies has raised awareness of the critical need for reproducibility in translational studies. Macroscopic and microscopic examination is a common approach to determine changes in tissues, but text descriptions and visual images have limitations for group comparisons. Semiquantitative scoring is a way of transforming qualitative tissue data into numerical data that allow more robust group comparisons. Semiquantitative scoring has broad uses in preclinical and clinical studies for evaluation of tissue lesions. Reproducibility can be improved by constraining bias through appropriate experimental design, randomization of tissues, effective use of multidisciplinary collaborations, and valid masking procedures. Scoring can be applied to tissue lesions (eg, size, distribution, characteristics) and also to tissues through evaluation of staining distribution and intensity. Semiquantitative scores should be validated to demonstrate relevance to biological data and to demonstrate observer reproducibility. Statistical analysis should make use of appropriate tests to give robust confidence in the results and interpretations. Following key principles of semiquantitative scoring will not only enhance descriptive tissue evaluation but also improve quality, reproducibility, and rigor of tissue studies.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
23
|
Watford S, Ly Pham L, Wignall J, Shin R, Martin MT, Friedman KP. ToxRefDB version 2.0: Improved utility for predictive and retrospective toxicology analyses. Reprod Toxicol 2019; 89:145-158. [PMID: 31340180 PMCID: PMC6944327 DOI: 10.1016/j.reprotox.2019.07.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/31/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023]
Abstract
The Toxicity Reference Database (ToxRefDB) structures information from over 5000 in vivo toxicity studies, conducted largely to guidelines or specifications from the US Environmental Protection Agency and the National Toxicology Program, into a public resource for training and validation of predictive models. Herein, ToxRefDB version 2.0 (ToxRefDBv2) development is described. Endpoints were annotated (e.g. required, not required) according to guidelines for subacute, subchronic, chronic, developmental, and multigenerational reproductive designs, distinguishing negative responses from untested. Quantitative data were extracted, and dose-response modeling for nearly 28,000 datasets from nearly 400 endpoints using Benchmark Dose (BMD) Modeling Software were generated and stored. Implementation of controlled vocabulary improved data quality; standardization to guideline requirements and cross-referencing with United Medical Language System (UMLS) connects ToxRefDBv2 observations to vocabularies linked to UMLS, including PubMed medical subject headings. ToxRefDBv2 allows for increased connections to other resources and has greatly enhanced quantitative and qualitative utility for predictive toxicology.
Collapse
Affiliation(s)
- Sean Watford
- ORAU, Contractor to U.S. Environmental Protection Agency through the National Student Services Contract, United States; National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, United States
| | - Ly Ly Pham
- ORAU, Contractor to U.S. Environmental Protection Agency through the National Student Services Contract, United States; ORISE Postdoctoral Research Participant, United States
| | | | | | - Matthew T Martin
- ORAU, Contractor to U.S. Environmental Protection Agency through the National Student Services Contract, United States; Currently at Drug Safety Research and Development, Global Investigative Toxicology, Pfizer, Groton, CT, United States
| | - Katie Paul Friedman
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, United States.
| |
Collapse
|
24
|
Minimum Information in In Vivo Research. Handb Exp Pharmacol 2019; 257:197-222. [PMID: 31541320 DOI: 10.1007/164_2019_285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Data quality, reproducibility and reliability are a matter of concern in many scientific fields including biomedical research. Robust, reproducible data and scientific rigour form the foundation on which future studies are built and determine the pace of knowledge gain and the time needed to develop new and innovative drugs that provide benefit to patients. Critical to the attainment of this is the precise and transparent reporting of data. In the current chapter, we will describe literature highlighting factors that constitute the minimum information that is needed to be included in the reporting of in vivo research. The main part of the chapter will focus on the minimum information that is essential for reporting in a scientific publication. In addition, we will present a table distinguishing information necessary to be recorded in a laboratory notebook or another form of internal protocols versus information that should be reported in a paper. We will use examples from the behavioural literature, in vivo studies where the use of anaesthetics and analgesics are used and finally ex vivo studies including histological evaluations and biochemical assays.
Collapse
|
25
|
Steiger K, Ballke S, Yen HY, Seelbach O, Alkhamas A, Boxberg M, Schwamborn K, Knolle PA, Weichert W, Mogler C. [Histopathological research laboratories in translational research : Conception and integration into the infrastructure of pathological institutes]. DER PATHOLOGE 2019; 40:172-178. [PMID: 30027333 DOI: 10.1007/s00292-018-0458-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A systematic review of histopathology from experimental animal systems is an essential part of up-to-date biomedical research. Pathologists at university hospitals are especially and increasingly challenged by these specialized and time-consuming duties. This article presents and analyzes a new laboratory structure of comparative experimental pathology-jointly lead by veterinary and human pathologists-which might solve this problem. The focus is on the establishment and full integration of this laboratory structure into a local, regional, and nationwide biomedical research cluster. A detailed comparison with an established structure of routine histopathology laboratories discusses merits and benefits as well as disadvantages.
Collapse
Affiliation(s)
- K Steiger
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland. .,Comparative Experimental Pathology, Technische Universität München, München, Deutschland. .,Vergleichende Experimentelle Pathologie, Institut für Pathologie, Technische Universität München, Trogerstraße 18, 81675, München, Deutschland.
| | - S Ballke
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland
| | - H-Y Yen
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland.,Partnerstandort München, Deutsches Konsortium für Translationale Krebsforschung, München, Deutschland
| | - O Seelbach
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland
| | - A Alkhamas
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland.,Partnerstandort München, Deutsches Konsortium für Translationale Krebsforschung, München, Deutschland
| | - M Boxberg
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland
| | - K Schwamborn
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland
| | - P A Knolle
- Institut für Molekulare Immunologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - W Weichert
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland.,Partnerstandort München, Deutsches Konsortium für Translationale Krebsforschung, München, Deutschland
| | - C Mogler
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland
| |
Collapse
|
26
|
Everitt JI, Treuting PM, Scudamore C, Sellers R, Turner PV, Ward JM, Zeiss CJ. Pathology Study Design, Conduct, and Reporting to Achieve Rigor and Reproducibility in Translational Research Using Animal Models. ILAR J 2019; 59:4-12. [DOI: 10.1093/ilar/ily020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
AbstractIn translational research, animal models are an important tool to aid in decision-making when taking potential therapies into human clinical trials. Recently, there have been a number of papers that have suggested limited concordance of preclinical animal experiments with subsequent human clinical experience. Assessments of preclinical animal studies have led to concerns about the reproducibility of data and have highlighted the need for an emphasis on rigor and quality in the planning, conduct, analysis, and reporting of such studies. The incorporation of a wider role for the comparative pathologist using pathology best practices in the planning and conduct of animal model-based research is one way to increase the quality and reproducibility of data. The use of optimal design and planning of tissue collection, incorporation of pathology methods into written protocols, conduct of pathology procedures using accepted best practices, and the use of optimal pathology analysis and reporting methods enhance the quality of the data acquired from many types of preclinical animal models and studies. Many of these pathology practices are well established in the discipline of toxicologic pathology and have a proven and useful track record in enhancing the data from animal-based studies used in safety assessment of human therapeutics. Some of this experience can be adopted by the wider community of preclinical investigators to increase the reproducibility of animal study data.
Collapse
Affiliation(s)
| | | | | | | | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Caroline J Zeiss
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
27
|
Moore BA, Leonard BC, Sebbag L, Edwards SG, Cooper A, Imai DM, Straiton E, Santos L, Reilly C, Griffey SM, Bower L, Clary D, Mason J, Roux MJ, Meziane H, Herault Y, McKerlie C, Flenniken AM, Nutter LMJ, Berberovic Z, Owen C, Newbigging S, Adissu H, Eskandarian M, Hsu CW, Kalaga S, Udensi U, Asomugha C, Bohat R, Gallegos JJ, Seavitt JR, Heaney JD, Beaudet AL, Dickinson ME, Justice MJ, Philip V, Kumar V, Svenson KL, Braun RE, Wells S, Cater H, Stewart M, Clementson-Mobbs S, Joynson R, Gao X, Suzuki T, Wakana S, Smedley D, Seong JK, Tocchini-Valentini G, Moore M, Fletcher C, Karp N, Ramirez-Solis R, White JK, de Angelis MH, Wurst W, Thomasy SM, Flicek P, Parkinson H, Brown SDM, Meehan TF, Nishina PM, Murray SA, Krebs MP, Mallon AM, Lloyd KCK, Murphy CJ, Moshiri A. Identification of genes required for eye development by high-throughput screening of mouse knockouts. Commun Biol 2018; 1:236. [PMID: 30588515 PMCID: PMC6303268 DOI: 10.1038/s42003-018-0226-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Despite advances in next generation sequencing technologies, determining the genetic basis of ocular disease remains a major challenge due to the limited access and prohibitive cost of human forward genetics. Thus, less than 4,000 genes currently have available phenotype information for any organ system. Here we report the ophthalmic findings from the International Mouse Phenotyping Consortium, a large-scale functional genetic screen with the goal of generating and phenotyping a null mutant for every mouse gene. Of 4364 genes evaluated, 347 were identified to influence ocular phenotypes, 75% of which are entirely novel in ocular pathology. This discovery greatly increases the current number of genes known to contribute to ophthalmic disease, and it is likely that many of the genes will subsequently prove to be important in human ocular development and disease. Bret Moore et al. from the International Mouse Phenotyping Consortium report the identification of 347 mouse genes that influence ocular phenotypes when knocked out. 75% of the identified genes have not previously been associated with any ocular pathology.
Collapse
Affiliation(s)
- Bret A Moore
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Lionel Sebbag
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Sydney G Edwards
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Ann Cooper
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Ewan Straiton
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Luis Santos
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Christopher Reilly
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Stephen M Griffey
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Lynette Bower
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - David Clary
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - Jeremy Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Hamid Meziane
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | | | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Zorana Berberovic
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Celeste Owen
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Susan Newbigging
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Hibret Adissu
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Mohammed Eskandarian
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sowmya Kalaga
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Uchechukwu Udensi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chinwe Asomugha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ritu Bohat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juan J Gallegos
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Monica J Justice
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vivek Philip
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | | | - Sara Wells
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Heather Cater
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Michelle Stewart
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Sharon Clementson-Mobbs
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Russell Joynson
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
| | | | | | - Damian Smedley
- Clinical Pharmacology, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - J K Seong
- Korea Mouse Phenotyping Consortium (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Glauco Tocchini-Valentini
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Adriano Buzzati-Traverso Campus, Via Ramarini, I-00015, Monterotondo Scalo, Italy
| | - Mark Moore
- International Mouse Phenotyping Consortium, San Anselmo, CA, 94960, USA
| | | | - Natasha Karp
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ramiro Ramirez-Solis
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jacqueline K White
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.,The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Wolfgang Wurst
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Steve D M Brown
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Terrence F Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | | | | | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Ann-Marie Mallon
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - K C Kent Lloyd
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA. .,Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA.
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
28
|
Knoblaugh SE, Himmel LE. Keeping Score: Semiquantitative and Quantitative Scoring Approaches to Genetically Engineered and Xenograft Mouse Models of Cancer. Vet Pathol 2018; 56:24-32. [PMID: 30381015 DOI: 10.1177/0300985818808526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is a growing need to quantitate or "score" lesions in mouse models of human disease, for correlation with human disease and to establish their clinical relevance. Several standard semiquantitative scoring schemes have been adapted for nonneoplastic lesions; similarly, the pathologist must carefully select an approach to score mouse models of cancer. Genetically engineered mouse models with a continuum of precancerous and cancerous lesions and xenogeneic models of various derivations present unique challenges for the pathologist. Important considerations include experimental design, understanding of the human disease being modeled, standardized classification of lesions, and approaches for semiquantitative and/or quantitative scoring in the model being evaluated. Quantification should be considered for measuring the extent of neoplasia and expression of tumor biomarkers. Semiquantitative scoring schemes have been devised that include severity, frequency, and distribution of lesions. Although labor-intensive, scoring mouse models of cancer provides numerical data that enable statistical analysis and greater translational impact.
Collapse
Affiliation(s)
- Sue E Knoblaugh
- 1 Department of Veterinary Biosciences, Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Lauren E Himmel
- 2 Department of Pathology, Microbiology and Immunology, Translational Pathology Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
29
|
Eaton K, Pirani A, Snitkin ES. Replication Study: Intestinal inflammation targets cancer-inducing activity of the microbiota. eLife 2018; 7:e34364. [PMID: 30295289 PMCID: PMC6175580 DOI: 10.7554/elife.34364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 09/19/2018] [Indexed: 01/16/2023] Open
Abstract
As part of the Reproducibility Project: Cancer Biology we published a Registered Report (Eaton et al., 2015) that described how we intended to replicate selected experiments from the paper "Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota" (Arthur et al., 2012). Here we report the results. We observed no impact on bacterial growth or colonization capacity when the polyketide synthase (pks) genotoxic island was deleted from E. coli NC101, similar to the original study (Supplementary Figure 7; Arthur et al., 2012). However, for the experiment that compared inflammation, invasion, and neoplasia in azoxymethane (AOM)-treated interleukin-10-deficient mice mono-associated with NC101 or NC101[Formula: see text] pks the experimental timing of the replication attempt was longer than that of the original study. This difference was because in the original study the methodology was not clearly stated and likely led to the increased mortality and severity of inflammation observed in this replication attempt. Additionally, early death occurred during AOM treatment with higher mortality observed in NC101[Formula: see text] pks mono-associated mice compared to NC101, which was in the same direction, but more severe than the original study (Suppleme1ntal Figure 10; Arthur et al., 2012). A meta-analysis suggests that mice mono-associated with NC101[Formula: see text] pks have higher mortality compared to NC101. While these data were unable to address whether, under the conditions of the original study, NC101 and NC101[Formula: see text] pks differ in inflammation, invasion, and neoplasia this replication attempt demonstrates that clear description of experimental methods is essential to ensure accurate reproduction of experimental studies.
Collapse
Affiliation(s)
- Kathryn Eaton
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, United States
| | - Ali Pirani
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, United States
| | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
30
|
Wolf JC. Comparing apples and oranges and pears and kumquats: The misuse of index systems for processing histopathology data in fish toxicological bioassays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1688-1695. [PMID: 29473694 DOI: 10.1002/etc.4117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/02/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Histopathology index systems involve the application of weighted scores to various diagnostic findings for the purpose of calculating overall organ and/or whole-animal health measurements. Such systems were originally developed as tools for monitoring the general health of fish populations. More recently, index systems have been applied to hypothesis-based toxicological studies, the goal of which is to investigate whether a cause-and-effect relationship exists between exposure to a particular test substance or environmental contaminant and morphologic effects in fish tissues. However, the application of index systems in that context is problematic for various reasons: a dependency on untested assumptions of toxicological importance for different types of histopathologic findings; organ scores that combine mechanistically unrelated and potentially contradictory diagnoses; calculations that include excessive numbers of findings, some of which may be incidental to the study outcome; failure to incorporate additional relevant results into the data interpretation, such as clinical observations, macroscopic findings, organ/body weights, clinical pathology data, and the results of hormonal or other biochemical assays; the inappropriate mathematical manipulation of ordinal categorical data (e.g., severity scores and "importance factors"); and a tendency of these systems to amplify, mask, and divert attention from methodological weaknesses and inaccurate diagnoses. The purpose of the present article is to demonstrate why the use of index systems is a misguided approach for handling histopathology data in studies of potential fish toxicants. Environ Toxicol Chem 2018;37:1688-1695. © 2018 SETAC.
Collapse
Affiliation(s)
- Jeffrey C Wolf
- Experimental Pathology Laboratories, Sterling, Virginia, USA
| |
Collapse
|
31
|
Sundberg JP, Dadras SS, Silva KA, Kennedy VE, Garland G, Murray SA, Sundberg BA, Schofield PN, Pratt CH. Systematic screening for skin, hair, and nail abnormalities in a large-scale knockout mouse program. PLoS One 2017; 12:e0180682. [PMID: 28700664 PMCID: PMC5503261 DOI: 10.1371/journal.pone.0180682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
The International Knockout Mouse Consortium was formed in 2007 to inactivate (“knockout”) all protein-coding genes in the mouse genome in embryonic stem cells. Production and characterization of these mice, now underway, has generated and phenotyped 3,100 strains with knockout alleles. Skin and adnexa diseases are best defined at the gross clinical level and by histopathology. Representative retired breeders had skin collected from the back, abdomen, eyelids, muzzle, ears, tail, and lower limbs including the nails. To date, 169 novel mutant lines were reviewed and of these, only one was found to have a relatively minor sebaceous gland abnormality associated with follicular dystrophy. The B6N(Cg)-Far2tm2b(KOMP)Wtsi/2J strain, had lesions affecting sebaceous glands with what appeared to be a secondary follicular dystrophy. A second line, B6N(Cg)-Ppp1r9btm1.1(KOMP)Vlcg/J, had follicular dystrophy limited to many but not all mystacial vibrissae in heterozygous but not homozygous mutant mice, suggesting that this was a nonspecific background lesion. We discuss potential reasons for the low frequency of skin and adnexal phenotypes in mice from this project in comparison to those seen in human Mendelian diseases, and suggest alternative approaches to identification of human disease-relevant models.
Collapse
Affiliation(s)
- John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| | - Soheil S. Dadras
- Departments of Dermatology and Pathology, University of Connecticut, Farmington, Connecticut, United States of America
| | | | | | - Gaven Garland
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Beth A. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Paul N. Schofield
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - C. Herbert Pratt
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|