1
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Bile Acids-Based Therapies for Primary Sclerosing Cholangitis: Current Landscape and Future Developments. Cells 2024; 13:1650. [PMID: 39404413 PMCID: PMC11475195 DOI: 10.3390/cells13191650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare, chronic liver disease with no approved therapies. The ursodeoxycholic acid (UDCA) has been widely used, although there is no evidence that the use of UDCA delays the time to liver transplant or increases survival. Several candidate drugs are currently being developed. The largest group of these new agents is represented by FXR agonists, including obeticholic acid, cilofexor, and tropifexor. Other agents that target bile acid metabolism are ASTB/IBAP inhibitors and fibroblasts growth factor (FGF)19 analogues. Cholangiocytes, the epithelial bile duct cells, play a role in PSC development. Recent studies have revealed that these cells undergo a downregulation of GPBAR1 (TGR5), a bile acid receptor involved in bicarbonate secretion and immune regulation. Additional agents under evaluation are PPARs (elafibranor and seladelpar), anti-itching agents such as MAS-related G-protein-coupled receptors antagonists, and anti-fibrotic and immunosuppressive agents. Drugs targeting gut bacteria and bile acid pathways are also under investigation, given the strong link between PSC and gut microbiota.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
2
|
Frank AK, Chung BK, De Novales MLL, Engesæter LK, Hoyle HW, Øgaard J, Heslop J, Karlsen TH, Tysoe O, Brevini T, Tchorz JS, Vallier L, Mohorianu I, Sampaziotis F, Melum E. Single-Cell Transcriptomic Profiling of Cholangiocyte Organoids Derived from Bile Ducts of Primary Sclerosing Cholangitis Patients. Dig Dis Sci 2024; 69:3810-3823. [PMID: 39160386 PMCID: PMC11489200 DOI: 10.1007/s10620-024-08570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disorder without effective medical treatment which is characterized by inflammation and fibrotic structures around the bile ducts. Biliary epithelial cells (cholangiocytes) are the target and potential disease drivers in PSC, yet little is known if cholangiocytes from PSC patients differ from non-PSC controls. To characterize cholangiocytes at early rather than end-stage disease, cholangiocyte organoids (COs) were derived from diseased bile ducts of PSC patients and compared to organoids generated from disease controls. METHODS Cholangiocytes were obtained during endoscopic retrograde cholangiopancreatography (ERCP) brushing of diseased bile duct areas and expanded as organoids using previously established culture methods. Stable CO lines were analyzed for cell type identity, basic cholangiocyte function, and transcriptomic signature. RESULTS We demonstrate that cholangiocytes, derived from the damaged area within the bile ducts of PSC patients, can be expanded in culture without displaying functional or genetic disease-related features. We further show that COs from patients who later were diagnosed with dysplasia exhibit higher expression of the cancer-associated genes PGC, FXYD2, MIR4435-2HG, and HES1. CONCLUSIONS Our results demonstrate that PSC organoids are largely similar to control organoids after culture and highlight the significance of COs as a tool for regenerative medicine approaches as well as their potential for discovering new potential biomarkers for diagnosing cholangiocarcinoma.
Collapse
Affiliation(s)
- Anna Katharina Frank
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Hybrid Technology Hub, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Brian K Chung
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Miguel Larraz Lopez De Novales
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Lise Katrine Engesæter
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Henry William Hoyle
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Hybrid Technology Hub, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Jonas Øgaard
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - James Heslop
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Olivia Tysoe
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Teresa Brevini
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ludovic Vallier
- Berlin Institute of Health, Center for Regenerative Therapies at Charité Universitätsmedizin, Berlin, Germany
- Max Plank Institute for Molecular Genetics, Berlin, Germany
| | - Irina Mohorianu
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Fotios Sampaziotis
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Hybrid Technology Hub, Institute of Basic Medical Science, University of Oslo, Oslo, Norway.
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| |
Collapse
|
3
|
Kellerer M, Javed S, Casar C, Will N, Berkhout LK, Schwinge D, Krebs CF, Schramm C, Neumann K, Tiegs G. Antagonistic effects of the cytotoxic molecules granzyme B and TRAIL in the immunopathogenesis of sclerosing cholangitis. Hepatology 2024; 80:844-858. [PMID: 38441998 PMCID: PMC11407778 DOI: 10.1097/hep.0000000000000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by biliary inflammation and fibrosis. We showed an elevated interferon γ response in patients with primary sclerosing cholangitis and in multidrug resistance protein 2-deficient ( Mdr2-/- ) mice developing sclerosing cholangitis. Interferon γ induced expression of the cytotoxic molecules granzyme B (GzmB) and TRAIL in hepatic lymphocytes and mediated liver fibrosis in sclerosing cholangitis. APPROACH AND RESULTS In patient samples and Mdr2-/- mice, we identified lymphocyte clusters with a cytotoxic gene expression profile using single-cell RNA-seq and cellular indexing of transcriptomes and epitopes by sequencing analyses combined with multi-parameter flow cytometry. CD8 + T cells and NK cells showed increased expression of GzmB and TRAIL in sclerosing cholangitis. Depletion of CD8 + T cells ameliorated disease severity in Mdr2-/- mice. By using Mdr2-/- × Gzmb-/- and Mdr2-/- × Tnfsf10-/- mice, we investigated the significance of GzmB and TRAIL for disease progression in sclerosing cholangitis. Interestingly, the lack of GzmB resulted in reduced cholangiocyte apoptosis, liver injury, and fibrosis. In contrast, sclerosing cholangitis was aggravated in the absence of TRAIL. This correlated with elevated GzmB and interferon γ expression by CD8 + T cells and NK cells enhanced T-cell survival, and increased apoptosis and expansion of cholangiocytes. CONCLUSIONS GzmB induces apoptosis and fibrosis in sclerosing cholangitis, whereas TRAIL regulates inflammatory and cytotoxic immune responses, subsequently leading to reduced liver injury and fibrosis.
Collapse
Affiliation(s)
- Mareike Kellerer
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sana Javed
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pharmacy, The University of Faisalabad, Pakistan
| | - Christian Casar
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico Will
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura K. Berkhout
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorothee Schwinge
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Moreno-Gonzalez M, Hampton K, Ruiz P, Beasy G, Nagies FSP, Parker A, Lazenby J, Bone C, Alava-Arteaga A, Patel M, Hellmich C, Luri-Martin P, Silan E, Philo M, Baker D, Rushbrook SM, Hildebrand F, Rushworth SA, Beraza N. Regulation of intestinal senescence during cholestatic liver disease modulates barrier function and liver disease progression. JHEP Rep 2024; 6:101159. [PMID: 39314550 PMCID: PMC11418120 DOI: 10.1016/j.jhepr.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 09/25/2024] Open
Abstract
Background & Aims Senescence has been reported to have differential functions in cholangiocytes and hepatic stellate cells (HSCs) during human and murine cholestatic disease, being detrimental in biliary cells and anti-fibrotic in HSCs. Cholestatic liver disease is associated with loss of intestinal barrier function and changes in the microbiome, the mechanistic cause of which is undetermined. Methods Intestinal samples were analysed from controls and patients with primary sclerosing cholangitis, as well as wild-type (WT) and p16-3MR transgenic mice. Cholestatic liver disease was induced by bile duct ligation (BDL) and DDC diet feeding. Fexaramine was used as an intestinal-restricted FXR agonist and antibiotics were given to eliminate the intestinal microbiome. Senescent cells were eliminated in p16-3MR mice with ganciclovir and in WT mice with the senolytic drug ABT-263. In vitro studies were done in intestinal CaCo-2 cells and organoids were generated from intestinal crypts isolated from mice. Results Herein, we show increased senescence in intestinal epithelial cells (IECs) in patients with primary sclerosing cholangitis and in mice after BDL and DDC diet feeding. Intestinal senescence was increased in response to reduced exposure to bile acids and increased presence of lipopolysaccharide in vitro and in vivo during cholestatic liver disease. Senescence of IECs was associated with lower proliferation but increased intestinal stem cell activation, as supported by increased organoid growth from intestinal stem cells. Elimination of senescent cells with genetic and pharmacological approaches exacerbated liver injury and fibrosis during cholestatic liver disease, which was associated with increased IEC apoptosis and permeability. Conclusions Senescence occurs in IECs during cholestatic disease and the elimination of senescent cells has a detrimental impact on the gut-liver axis. Our results point to cell-specific rather than systemic targeting of senescence as a therapeutic approach to treat cholestatic liver disease. Impact and implications Cholestatic liver disease associates with the dysregulation of intestinal barrier function, while the mechanisms mediating the disruption of the gut-liver axis remain largely undefined. Here, we demonstrate that senescence, a cellular response to stress, is activated in intestinal cells during cholestatic liver disease in humans and mice. Mechanistically, we demonstrate that the reduction of bile acids and the increased presence of bacterial products mediate the activation of intestinal senescence during cholestatic liver disease. Importantly, the elimination of these senescent cells promotes further damage to the intestine that aggravates liver disease, with increased tissue damage and fibrosis. Our results provide evidence that therapeutic strategies to treat cholestatic liver disease by eliminating senescent cells may have unwanted effects in the intestine and support the need to develop cell/organ-specific approaches.
Collapse
Affiliation(s)
- Mar Moreno-Gonzalez
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Katherine Hampton
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Paula Ruiz
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Gemma Beasy
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Falk SP. Nagies
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Aimee Parker
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - James Lazenby
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Caitlin Bone
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ane Alava-Arteaga
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Meha Patel
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Charlotte Hellmich
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Haematology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Pablo Luri-Martin
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ece Silan
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Mark Philo
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - David Baker
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Simon M. Rushbrook
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Falk Hildebrand
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Stuart A. Rushworth
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
5
|
Pham HN, Pham L, Sato K. Deconvolution analysis identified altered hepatic cell landscape in primary sclerosing cholangitis and primary biliary cholangitis. Front Med (Lausanne) 2024; 11:1327973. [PMID: 38818402 PMCID: PMC11138208 DOI: 10.3389/fmed.2024.1327973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are characterized by ductular reaction, hepatic inflammation, and liver fibrosis. Hepatic cells are heterogeneous, and functional roles of different hepatic cell phenotypes are still not defined in the pathophysiology of cholangiopathies. Cell deconvolution analysis estimates cell fractions of different cell phenotypes in bulk transcriptome data, and CIBERSORTx is a powerful deconvolution method to estimate cell composition in microarray data. CIBERSORTx performs estimation based on the reference file, which is referred to as signature matrix, and allows users to create custom signature matrix to identify specific phenotypes. In the current study, we created two custom signature matrices using two single cell RNA sequencing data of hepatic cells and performed deconvolution for bulk microarray data of liver tissues including PSC and PBC patients. Methods Custom signature matrix files were created using single-cell RNA sequencing data downloaded from GSE185477 and GSE115469. Custom signature matrices were validated for their deconvolution performance using validation data sets. Cell composition of each hepatic cell phenotype in the liver, which was identified in custom signature matrices, was calculated by CIBERSORTx and bulk RNA sequencing data of GSE159676. Deconvolution results were validated by analyzing marker expression for the cell phenotype in GSE159676 data. Results CIBERSORTx and custom signature matrices showed comprehensive performance in estimation of population of various hepatic cell phenotypes. We identified increased population of large cholangiocytes in PSC and PBC livers, which is in agreement with previous studies referred to as ductular reaction, supporting the effectiveness and reliability of deconvolution analysis in this study. Interestingly, we identified decreased population of small cholangiocytes, periportal hepatocytes, and interzonal hepatocytes in PSC and PBC liver tissues compared to healthy livers. Discussion Although further studies are required to elucidate the roles of these hepatic cell phenotypes in cholestatic liver injury, our approach provides important implications that cell functions may differ depending on phenotypes, even in the same cell type during liver injury. Deconvolution analysis using CIBERSORTx could provide a novel approach for studies of specific hepatic cell phenotypes in liver diseases.
Collapse
Affiliation(s)
- Hoang Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Pham
- Department of Science and Mathematics, Texas A&M University—Central Texas, Killeen, TX, United States
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Maki K, Katsumi T, Hanatani T, Uchiyama F, Suzuki F, Hoshikawa K, Haga H, Saito T, Ueno Y. Elucidation of pericholangitis and periductal fibrosis in cholestatic liver diseases via extracellular vesicles released by polarized biliary epithelial cells. Am J Physiol Cell Physiol 2024; 326:C1094-C1105. [PMID: 38344767 DOI: 10.1152/ajpcell.00655.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/23/2024]
Abstract
Cholestatic liver diseases causes inflammation and fibrosis around bile ducts. However, the pathological mechanism has not been elucidated. Extracellular vesicles (EVs) are released from both the basolateral and apical sides of polarized biliary epithelial cells. We aimed to investigate the possibility that EVs released from the basolateral sides of biliary epithelial cells by bile acid stimulation induce inflammatory cells and fibrosis around bile ducts, and they may be involved in the pathogenesis of cholestatic liver disease. Human biliary epithelial cells (H69) were grown on cell culture inserts and stimulated with chenodeoxycholic acid + IFN-γ. Human THP-1-derived M1-macrophages, LX-2 cells, and KMST-6 cells were treated with the extracted basolateral EVs, and inflammatory cytokines and fibrosis markers were detected by RT-PCR. Highly expressed proteins from stimulated EVs were identified, and M1-macrophages, LX-2, KMST-6 were treated with these recombinant proteins. Stimulated EVs increased the expression of TNF, IL-1β, and IL-6 in M1-macrophages, TGF-β in LX-2 and KMST-6 compared with the corresponding expression levels in unstimulated EVs. Nucleophosmin, nucleolin, and midkine levels were increased in EVs from stimulated cells compared with protein expression in EVs from unstimulated cells. Leukocyte cell-derived chemotaxin-2 (LECT2) is highly expressed only in EVs from stimulated cells. Stimulation of M1-macrophages with recombinant nucleophosmin, nucleolin, and midkine significantly increased the expression of inflammatory cytokines. Stimulation of LX-2 and KMST-6 with recombinant LECT2 significantly increased the expression of fibrotic markers. These results suggest that basolateral EVs are related to the development of pericholangitis and periductal fibrosis in cholestatic liver diseases.NEW & NOTEWORTHY Our research elucidated that the composition of basolateral EVs from the biliary epithelial cells changed under bile acid exposure and the basolateral EVs contained the novel inflammation-inducing proteins NPM, NCL, and MK and the fibrosis-inducing protein LECT2. We report that these new results are possible to lead to the potential therapeutic target of cholestatic liver diseases in the future.
Collapse
Affiliation(s)
- Keita Maki
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tomohiro Katsumi
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takumi Hanatani
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Fumi Uchiyama
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Fumiya Suzuki
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kyoko Hoshikawa
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takafumi Saito
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
7
|
Islam D, Israr I, Taleb MAB, Rao A, Yosief R, Sultana R, Sampaziotis F, Tysoe OC, Trauner M, Karpen SJ, Ghanekar A, Kamath BM. A novel model to study mechanisms of cholestasis in human cholangiocytes reveals a role for the SIPR2 pathway. Hepatol Commun 2024; 8:e0389. [PMID: 38407207 PMCID: PMC10898671 DOI: 10.1097/hc9.0000000000000389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/09/2023] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Ductular reactivity is central to the pathophysiology of cholangiopathies. Mechanisms underlying the reactive phenotype activation by exogenous inflammatory mediators and bile acids are poorly understood. METHODS Using human extrahepatic cholangiocyte organoids (ECOs) we developed an injury model emulating the cholestatic microenvironment with exposure to inflammatory mediators and various pathogenic bile acids. Moreover, we explored roles for the bile acid activated Sphingosine-1-phosphate receptor 2 (S1PR2) and potential beneficial effects of therapeutic bile acids UDCA and norUDCA. RESULTS Synergistic exposure to bile acids (taurocholic acid, glycocholic acid, glycochenodeoxycholic acid) and TNF-α for 24 hours induced a reactive state as measured by ECO diameter, proliferation, lactate dehydrogenase activity and reactive phenotype markers. While NorUDCA and UDCA treatments given 8 hours after injury induction both suppressed reactive phenotype activation and most injury parameters, proliferation was improved by NorUDCA only. Extrahepatic cholangiocyte organoid stimulation with S1PR2 agonist sphingosine-1-phosphate reproduced the cholangiocyte reactive state and upregulated S1PR2 downstream mediators; these effects were suppressed by S1PR2 antagonist JET-013 (JET), downstream mediator extracellular signal-regulated kinase 1/2 inhibitor, and by norUDCA or UDCA treatments. JET also partially suppressed reactive phenotype after bile acid injury. CONCLUSIONS We developed a novel model to study the reactive cholangiocyte state in response to pathological stimuli in cholestasis and demonstrated a contributory role of S1PR2 signaling in both injury and NorUDCA/UDCA treatments. This model is a valuable tool to further explore the pathophysiology of human cholangiopathies.
Collapse
Affiliation(s)
- Diana Islam
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Izza Israr
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mohamed A. B. Taleb
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aditya Rao
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robel Yosief
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rukhsar Sultana
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fotios Sampaziotis
- Wellcome–MRC Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Olivia C. Tysoe
- Wellcome–MRC Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Saul J. Karpen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anand Ghanekar
- Division of General Surgery, Department of Surgery, University Health Network & The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Binita M. Kamath
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Ortiz K, Cetin Z, Sun Y, Hu Z, Kurihara T, Tafaleng EN, Florentino RM, Ostrowska A, Soto-Gutierrez A, Faccioli LA. Human Hepatocellular response in Cholestatic Liver Diseases. Organogenesis 2023; 19:2247576. [PMID: 37598346 PMCID: PMC10444014 DOI: 10.1080/15476278.2023.2247576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), the most common types of cholestatic liver disease (CLD), result in enterohepatic obstruction, bile acid accumulation, and hepatotoxicity. The mechanisms by which hepatocytes respond to and cope with CLD remain largely unexplored. This study includes the characterization of hepatocytes isolated from explanted livers of patients with PBC and PSC. We examined the expression of hepatocyte-specific genes, intracellular bile acid (BA) levels, and oxidative stress in primary-human-hepatocytes (PHHs) isolated from explanted livers of patients with PBC and PSC and compared them with control normal human hepatocytes. Our findings provide valuable initial insights into the hepatocellular response to cholestasis in CLD and help support the use of PHHs as an experimental tool for these diseases.
Collapse
Affiliation(s)
- Kimberly Ortiz
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zeliha Cetin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yiyue Sun
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhiping Hu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Takeshi Kurihara
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edgar N. Tafaleng
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rodrigo M. Florentino
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Lanuza A.P. Faccioli
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Jalan-Sakrikar N, Anwar A, Yaqoob U, Gan C, Lagnado AB, Wixom AQ, Jurk D, Huebert RC. Telomere dysfunction promotes cholangiocyte senescence and biliary fibrosis in primary sclerosing cholangitis. JCI Insight 2023; 8:e170320. [PMID: 37707950 PMCID: PMC10619490 DOI: 10.1172/jci.insight.170320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Cellular senescence and biliary fibrosis are prototypical features of obliterative cholangiopathies, such as primary sclerosing cholangitis (PSC). Telomere dysfunction can lead to senescence either through telomere erosion or damaged telomeres. Our goal was to investigate a mechanistic relationship between telomere damage and biliary fibrosis in PSC. Telomere attrition was observed in the bile ducts of patients with PSC along with a reduction in telomerase reverse transcriptase (TERT) expression, compared with that in normal livers. Similarly, liver tissue from mouse models of biliary fibrosis showed telomere attrition with increased damage at telomeres measured as telomere-associated foci (TAF). Cellular models of senescence induction increased the TAF in cholangiocytes. This coincided with decreased TERT expression and increased senescence, which was rescued by modulating TERT levels. Epigenetic analysis revealed increased acquisition of repressive histone methylation at the TERT promoter, which correlated with decreased TERT transcription. Cholangiocyte-selective deletion of TERT in mice exacerbated fibrosis, whereas androgen therapy toward telomerase rescued liver fibrosis and liver function in a genetic mouse model of PSC. Our results demonstrate a mechanistic role for telomere dysfunction in cellular senescence and fibrosis that characterize PSC. This suggests that PSC may be, in part, a telomere biology disorder, and identifies TERT as a potential therapeutic target.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology
- Gastroenterology Research Unit
- Center for Cell Signaling in Gastroenterology, and
| | - Abid Anwar
- Division of Gastroenterology and Hepatology
- Gastroenterology Research Unit
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology
- Gastroenterology Research Unit
| | - Can Gan
- Division of Gastroenterology and Hepatology
- Gastroenterology Research Unit
| | - Anthony B. Lagnado
- Physiology and Biomedical Engineering, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | | | - Diana Jurk
- Center for Cell Signaling in Gastroenterology, and
- Physiology and Biomedical Engineering, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology
- Gastroenterology Research Unit
- Center for Cell Signaling in Gastroenterology, and
| |
Collapse
|
10
|
Zhang W, Kyritsi K, Isidan A, Park Y, Li P, Cross-Najafi AA, Lopez K, Kennedy L, Sato K, Glaser S, Francis H, Alpini G, Ekser B. Development of Scaffold-Free Three-Dimensional Cholangiocyte Organoids to Study the Progression of Primary Sclerosing Cholangitis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1156-1169. [PMID: 37263345 DOI: 10.1016/j.ajpath.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Organoids are novel in vitro models to study intercellular cross talk between the different types of cells in disease pathophysiology. To better understand the underlying mechanisms driving the progression of primary sclerosing cholangitis (PSC), scaffold-free multicellular three-dimensional cholangiocyte organoids (3D-CHOs) were developed using primary liver cells derived from normal subjects and patients with PSC. Human liver samples from healthy donors and patients with PSC were used to isolate primary cholangiocytes [epithelial cell adhesion molecule (EpCam)+/ cytokeratin-19+], liver endothelial cells (CD31+), and hepatic stellate cells (HSCs; CD31-/CD68-/desmin+/vitamin A+). 3D-CHOs were formed using cholangiocytes, HSCs, and liver endothelial cells, and kept viable for up to 1 month. Isolated primary cell lines and 3D-CHOs were further characterized by immunofluorescence, quantitative RT-PCR, and transmission electron microscopy. Transcription profiles for cholangiocytes (SOX9, CFTR, EpCAM, AE, SCT, and SCTR), fibrosis (ACTA2, COL1A1, DESMIN, and TGFβ1), angiogenesis (PECAM, VEGF, CDH5, and vWF), and inflammation (IL-6 and TNF-α) confirmed PSC phenotypes of 3D-CHOs. Because cholangiocytes develop a neuroendocrine phenotype and express neuromodulators, confocal immunofluorescence was used to demonstrate localization of the neurokinin-1 receptor within cytokeratin-19+ cholangiocytes and desmin+ HSCs. Moreover, 3D-CHOs from patients with PSC confirmed PSC phenotypes with up-regulated neurokinin-1 receptor, tachykinin precursor 1, and down-regulated membrane metalloendopeptidase. Scaffold-free multicellular 3D-CHOs showed superiority as an in vitro model in mimicking PSC in vivo phenotypes compared with two-dimensional cell culture, which can be used in PSC disease-related research.
Collapse
Affiliation(s)
- Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indianapolis, Indiana
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Abdulkadir Isidan
- Division of Transplant Surgery, Department of Surgery, Indianapolis, Indiana
| | - Yujin Park
- Division of Transplant Surgery, Department of Surgery, Indianapolis, Indiana
| | - Ping Li
- Division of Transplant Surgery, Department of Surgery, Indianapolis, Indiana
| | | | - Kevin Lopez
- Division of Transplant Surgery, Department of Surgery, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indianapolis, Indiana.
| |
Collapse
|
11
|
Kang JH, Splinter PL, Trussoni CE, Pirius NE, Gores GJ, LaRusso NF, O'Hara SP. The Epigenetic Reader, Bromodomain Containing 2, Mediates Cholangiocyte Senescence via Interaction With ETS Proto-Oncogene 1. Gastroenterology 2023; 165:228-243.e2. [PMID: 37059338 PMCID: PMC10330214 DOI: 10.1053/j.gastro.2023.03.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/03/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND & AIMS We reported that cholangiocyte senescence, regulated by the transcription factor ETS proto-oncogene 1 (ETS1), is a pathogenic feature of primary sclerosing cholangitis (PSC). Furthermore, histone 3 lysine 27 is acetylated at senescence-associated loci. The epigenetic readers, bromodomain and extra-terminal domain (BET) proteins, bind acetylated histones, recruit transcription factors, and drive gene expression. Thus, we tested the hypothesis that BET proteins interact with ETS1 to drive gene expression and cholangiocyte senescence. METHODS We performed immunofluorescence for BET proteins (BRD2 and 4) in liver tissue from liver tissue from PSC patients and a mouse PSC model. Using normal human cholangiocytes (NHCs), NHCs experimentally induced to senescence (NHCsen), and PSC patient-derived cholangiocytes (PSCDCs), we assessed senescence, fibroinflammatory secretome, and apoptosis after BET inhibition or RNA interference depletion. We assessed BET interaction with ETS1 in NHCsen and tissues from PSC patient, and the effects of BET inhibitors on liver fibrosis, senescence, and inflammatory gene expression in mouse models. RESULTS Tissue from patients with PSC and a mouse PSC model exhibited increased cholangiocyte BRD2 and 4 protein (∼5×) compared with controls without disease. NHCsen exhibited increased BRD2 and 4 (∼2×), whereas PSCDCs exhibited increased BRD2 protein (∼2×) relative to NHC. BET inhibition in NHCsen and PSCDCs reduced senescence markers and inhibited the fibroinflammatory secretome. ETS1 interacted with BRD2 in NHCsen, and BRD2 depletion diminished NHCsen p21 expression. BET inhibitors reduced senescence, fibroinflammatory gene expression, and fibrosis in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine-fed and Mdr2-/- mouse models. CONCLUSION Our data suggest that BRD2 is an essential mediator of the senescent cholangiocyte phenotype and is a potential therapeutic target for patients with PSC.
Collapse
Affiliation(s)
- Jeong-Han Kang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Patrick L Splinter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Christy E Trussoni
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Nicholas E Pirius
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
12
|
Wu N, Zhou T, Carpino G, Baiocchi L, Kyritsi K, Kennedy L, Ceci L, Chen L, Wu C, Kundu D, Barupala N, Franchitto A, Onori P, Ekser B, Gaudio E, Francis H, Glaser S, Alpini G. Prolonged administration of a secretin receptor antagonist inhibits biliary senescence and liver fibrosis in Mdr2 -/- mice. Hepatology 2023; 77:1849-1865. [PMID: 36799446 DOI: 10.1097/hep.0000000000000310] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/02/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND AND AIMS Secretin (SCT) and secretin receptor (SR, only expressed on cholangiocytes within the liver) play key roles in modulating liver phenotypes. Forkhead box A2 (FoxA2) is required for normal bile duct homeostasis by preventing the excess of cholangiocyte proliferation. Short-term administration of the SR antagonist (SCT 5-27) decreased ductular reaction and liver fibrosis in bile duct ligated and Mdr2 -/- [primary sclerosing cholangitis (PSC), model] mice. We aimed to evaluate the effectiveness and risks of long-term SCT 5-27 treatment in Mdr2 -/- mice. APPROACH AND RESULTS In vivo studies were performed in male wild-type and Mdr2 -/- mice treated with saline or SCT 5-27 for 3 months and human samples from late-stage PSC patients and healthy controls. Compared with controls, biliary SCT/SR expression and SCT serum levels increased in Mdr2 -/- mice and late-stage PSC patients. There was a significant increase in ductular reaction, biliary senescence, liver inflammation, angiogenesis, fibrosis, biliary expression of TGF-β1/VEGF-A axis, and biliary phosphorylation of protein kinase A and ERK1/2 in Mdr2 -/- mice. The biliary expression of miR-125b and FoxA2 decreased in Mdr2 -/- compared with wild-type mice, which was reversed by long-term SCT 5-27 treatment. In vitro , SCT 5-27 treatment of a human biliary PSC cell line decreased proliferation and senescence and SR/TGF-β1/VEGF-A axis but increased the expression of miR-125b and FoxA2. Downregulation of FoxA2 prevented SCT 5-27-induced reduction in biliary damage, whereas overexpression of FoxA2 reduced proliferation and senescence in the human PSC cell line. CONCLUSIONS Modulating the SCT/SR axis may be critical for managing PSC.
Collapse
Affiliation(s)
- Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, University Sapienza of Rome, Rome, Italy
| | | | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, University Sapienza of Rome, Rome, Italy
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nipuni Barupala
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Antonio Franchitto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, University Sapienza of Rome, Rome, Italy
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, University Sapienza of Rome, Rome, Italy
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Cai X, Tacke F, Guillot A, Liu H. Cholangiokines: undervalued modulators in the hepatic microenvironment. Front Immunol 2023; 14:1192840. [PMID: 37261338 PMCID: PMC10229055 DOI: 10.3389/fimmu.2023.1192840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.
Collapse
Affiliation(s)
- Xiurong Cai
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hanyang Liu
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Center of Gastrointestinal Diseases, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
14
|
Kim M, Rizvi F, Shin D, Gouon-Evans V. Update on Hepatobiliary Plasticity. Semin Liver Dis 2023; 43:13-23. [PMID: 36764306 PMCID: PMC10005859 DOI: 10.1055/s-0042-1760306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The liver field has been debating for decades the contribution of the plasticity of the two epithelial compartments in the liver, hepatocytes and biliary epithelial cells (BECs), to derive each other as a repair mechanism. The hepatobiliary plasticity has been first observed in diseased human livers by the presence of biphenotypic cells expressing hepatocyte and BEC markers within bile ducts and regenerative nodules or budding from strings of proliferative BECs in septa. These observations are not surprising as hepatocytes and BECs derive from a common fetal progenitor, the hepatoblast, and, as such, they are expected to compensate for each other's loss in adults. To investigate the cell origin of regenerated cell compartments and associated molecular mechanisms, numerous murine and zebrafish models with ability to trace cell fates have been extensively developed. This short review summarizes the clinical and preclinical studies illustrating the hepatobiliary plasticity and its potential therapeutic application.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fatima Rizvi
- Department of Medicine, Gastroenterology Section, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Valerie Gouon-Evans
- Department of Medicine, Gastroenterology Section, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
15
|
Huang Y, Zhang S, Weng JF, Huang D, Gu WL. Recent discoveries in microbiota dysbiosis, cholangiocytic factors, and models for studying the pathogenesis of primary sclerosing cholangitis. Open Med (Wars) 2022; 17:915-929. [PMID: 35647306 PMCID: PMC9106112 DOI: 10.1515/med-2022-0481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a cholangiopathy caused by genetic and microenvironmental changes, such as bile homeostasis disorders and microbiota dysbiosis. Therapeutic options are limited, and proven surveillance strategies are currently lacking. Clinically, PSC presents as alternating strictures and dilatations of biliary ducts, resulting in the typical “beaded” appearance seen on cholangiography. The pathogenesis of PSC is still unclear, but cholangiocytes play an essential role in disease development, wherein a reactive phenotype is caused by the secretion of neuroendocrine factors. The liver–gut axis is implicated in the pathogenesis of PSC owing to the dysbiosis of microbiota, but the underlying mechanism is still poorly understood. Alterations in cholangiocyte responses and related signalling pathways during PSC progression were elucidated by recent research, providing novel therapeutic targets. In this review, we summarise the currently known underlying mechanisms of PSC pathogenesis caused by the dysbiosis of microbiota and newly reported information regarding cholangiocytes in PSC. We also summarise recently reported in vitro and in vivo models for studying the pathogenesis of PSC.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Guangzhou First People's Hospital, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 510180, People's Republic of China
| | - Shuai Zhang
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Jie-Feng Weng
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Di Huang
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Wei-Li Gu
- Department of Surgery, Guangzhou First People's Hospital, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 510180, People's Republic of China
| |
Collapse
|
16
|
Trussoni CE, O'Hara SP, LaRusso NF. Cellular senescence in the cholangiopathies: a driver of immunopathology and a novel therapeutic target. Semin Immunopathol 2022; 44:527-544. [PMID: 35178659 DOI: 10.1007/s00281-022-00909-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
The cholangiopathies are a group of liver diseases that affect cholangiocytes, the epithelial cells that line the bile ducts. Biliary atresia (BA), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are three cholangiopathies with significant immune-mediated pathogenesis where chronic inflammation and fibrosis lead to obliteration of bile ducts and eventual liver cirrhosis. Cellular senescence is a state of cell cycle arrest in which cells become resistant to apoptosis and profusely secrete a bioactive secretome. Recent evidence indicates that cholangiocyte senescence contributes to the pathogenesis of BA, PBC, and PSC. This review explores the role of cholangiocyte senescence in BA, PBC, and PSC, ascertains how cholangiocyte senescence may promote a senescence-associated immunopathology in these cholangiopathies, and provides the rationale for therapeutically targeting senescence as a treatment option for BA, PBC, and PSC.
Collapse
Affiliation(s)
- Christy E Trussoni
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA. .,Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN, 55905, USA.
| |
Collapse
|
17
|
Meadows V, Baiocchi L, Kundu D, Sato K, Fuentes Y, Wu C, Chakraborty S, Glaser S, Alpini G, Kennedy L, Francis H. Biliary Epithelial Senescence in Liver Disease: There Will Be SASP. Front Mol Biosci 2022; 8:803098. [PMID: 34993234 PMCID: PMC8724525 DOI: 10.3389/fmolb.2021.803098] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a pathophysiological phenomenon in which proliferative cells enter cell cycle arrest following DNA damage and other stress signals. Natural, permanent DNA damage can occur after repetitive cell division; however, acute stress or other injuries can push cells into premature senescence and eventually a senescence-associated secretory phenotype (SASP). In recent years, there has been increased evidence for the role of premature senescence in disease progression including diabetes, cardiac diseases, and end-stage liver diseases including cholestasis. Liver size and function change with aging, and presumably with increasing cellular senescence, so it is important to understand the mechanisms by which cellular senescence affects the functional nature of the liver in health and disease. As well, cells in a SASP state secrete a multitude of inflammatory and pro-fibrogenic factors that modulate the microenvironment. Cellular SASP and the associated, secreted factors have been implicated in the progression of liver diseases, such as cholestatic injury that target the biliary epithelial cells (i.e., cholangiocytes) lining the bile ducts. Indeed, cholangiocyte senescence/SASP is proposed to be a driver of disease phenotypes in a variety of liver injuries. Within this review, we will discuss the impact of cholangiocyte senescence and SASP in the pathogenesis of cholestatic disorders.
Collapse
Affiliation(s)
- Vik Meadows
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | | | - Debjyoti Kundu
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | - Yessenia Fuentes
- Clinical and Translational Sciences Institute, STEM GEHCS Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| |
Collapse
|
18
|
Smith Q, Bays J, Li L, Shareef H, Chen CS, Bhatia SN. Directing Cholangiocyte Morphogenesis in Natural Biomaterial Scaffolds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102698. [PMID: 34786888 PMCID: PMC8787431 DOI: 10.1002/advs.202102698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Patients with Alagille syndrome carry monogenic mutations in the Notch signaling pathway and face complications such as jaundice and cholestasis. Given the presence of intrahepatic ductopenia in these patients, Notch2 receptor signaling is implicated in driving normal biliary development and downstream branching morphogenesis. As a result, in vitro model systems of liver epithelium are needed to further mechanistic insight of biliary tissue assembly. Here, primary human intrahepatic cholangiocytes as a candidate population for such a platform are systematically evaluated, and conditions that direct their branching morphogenesis are described. It is found that extracellular matrix presentation, coupled with mitogen stimulation, promotes biliary branching in a Notch-dependent manner. These results demonstrate the utility of using 3D scaffolds for mechanistic investigation of cholangiocyte branching and provide a gateway to integrate biliary architecture in additional in vitro models of liver tissue.
Collapse
Affiliation(s)
- Quinton Smith
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jennifer Bays
- Department of Bioengineering, Boston University, Boston, MA, 02215, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Linqing Li
- Department of Bioengineering, Boston University, Boston, MA, 02215, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Haniyah Shareef
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Christopher S Chen
- Department of Bioengineering, Boston University, Boston, MA, 02215, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sangeeta N Bhatia
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| |
Collapse
|
19
|
Mechanism of cholangiocellular damage and repair during cholestasis. Ann Hepatol 2021; 26:100530. [PMID: 34509686 DOI: 10.1016/j.aohep.2021.100530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
The mechanism of damage of the biliary epithelium remains partially unexplored. However, recently many works have offered new evidence regarding the cholangiocytes' damage process, which is the main target in a broad spectrum of pathologies ranging from acute cholestasis, cholangiopathies to cholangiocarcinoma. This is encouraging since some works addressed this epithelium's relevance in health and disease until a few years ago. The biliary tree in the liver, comprised of cholangiocytes, is a pipeline for bile flow and regulates key hepatic processes such as proliferation, regeneration, immune response, and signaling. This review aimed to compile the most recent advances on the mechanisms of cholangiocellular damage during cholestasis, which, although it is present in many cholangiopathies, is not necessarily a common or conserved process in all of them, having a relevant role cAMP and PKA during obstructive cholestasis, as well as Ca2+-dependent PKC in functional cholestasis. Cholangiocellular damage could vary according to the type of cholestasis, the aggressor, or the bile ducts' location where it develops and what kind of damage can favor cholangiocellular carcinoma development.
Collapse
|
20
|
Reich M, Spomer L, Klindt C, Fuchs K, Stindt J, Deutschmann K, Höhne J, Liaskou E, Hov JR, Karlsen TH, Beuers U, Verheij J, Ferreira-Gonzalez S, Hirschfield G, Forbes SJ, Schramm C, Esposito I, Nierhoff D, Fickert P, Fuchs CD, Trauner M, García-Beccaria M, Gabernet G, Nahnsen S, Mallm JP, Vogel M, Schoonjans K, Lautwein T, Köhrer K, Häussinger D, Luedde T, Heikenwalder M, Keitel V. Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis. J Hepatol 2021; 75:634-646. [PMID: 33872692 DOI: 10.1016/j.jhep.2021.03.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) is characterized by chronic inflammation and progressive fibrosis of the biliary tree. The bile acid receptor TGR5 (GPBAR1) is found on biliary epithelial cells (BECs), where it promotes secretion, proliferation and tight junction integrity. Thus, we speculated that changes in TGR5-expression in BECs may contribute to PSC pathogenesis. METHODS TGR5-expression and -localization were analyzed in PSC livers and liver tissue, isolated bile ducts and BECs from Abcb4-/-, Abcb4-/-/Tgr5Tg and ursodeoxycholic acid (UDCA)- or 24-norursodeoxycholic acid (norUDCA)-fed Abcb4-/- mice. The effects of IL8/IL8 homologues on TGR5 mRNA and protein levels were studied. BEC gene expression was analyzed by single-cell transcriptomics (scRNA-seq) from distinct mouse models. RESULTS TGR5 mRNA expression and immunofluorescence staining intensity were reduced in BECs of PSC and Abcb4-/- livers, in Abcb4-/- extrahepatic bile ducts, but not in intrahepatic macrophages. No changes in TGR5 BEC fluorescence intensity were detected in liver tissue of other liver diseases, including primary biliary cholangitis. Incubation of BECs with IL8/IL8 homologues, but not with other cytokines, reduced TGR5 mRNA and protein levels. BECs from Abcb4-/- mice had lower levels of phosphorylated Erk and higher expression levels of Icam1, Vcam1 and Tgfβ2. Overexpression of Tgr5 abolished the activated inflammatory phenotype characteristic of Abcb4-/- BECs. NorUDCA-feeding restored TGR5-expression levels in BECs in Abcb4-/- livers. CONCLUSIONS Reduced TGR5 levels in BECs from patients with PSC and Abcb4-/- mice promote development of a reactive BEC phenotype, aggravate biliary injury and thus contribute to the pathogenesis of sclerosing cholangitis. Restoration of biliary TGR5-expression levels represents a previously unknown mechanism of action of norUDCA. LAY SUMMARY Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease-associated with progressive inflammation of the bile duct, leading to fibrosis and end-stage liver disease. Bile acid (BA) toxicity may contribute to the development and disease progression of PSC. TGR5 is a membrane-bound receptor for BAs, which is found on bile ducts and protects bile ducts from BA toxicity. In this study, we show that TGR5 levels were reduced in bile ducts from PSC livers and in bile ducts from a genetic mouse model of PSC. Our investigations indicate that lower levels of TGR5 in bile ducts may contribute to PSC development and progression. Furthermore, treatment with norUDCA, a drug currently being tested in a phase III trial for PSC, restored TGR5 levels in biliary epithelial cells.
Collapse
Affiliation(s)
- Maria Reich
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Lina Spomer
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Caroline Klindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Katharina Fuchs
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Kathleen Deutschmann
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Johanna Höhne
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Evaggelia Liaskou
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Johannes R Hov
- Norwegian PSC Research Centre and Section of Gastroenterology at the Department of Transplantation Medicine, and Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom H Karlsen
- Norwegian PSC Research Centre and Section of Gastroenterology at the Department of Transplantation Medicine, and Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research and Department of Pathology, Amsterdam University Medical Centers, Location AMC, AGEM Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research and Department of Pathology, Amsterdam University Medical Centers, Location AMC, AGEM Amsterdam, The Netherlands
| | | | - Gideon Hirschfield
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Canada
| | - Stuart J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, UK
| | - Christoph Schramm
- I. Department of Medicine and Martin Zeitz Centre for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Claudia Daniela Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - María García-Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Gisela Gabernet
- Quantitative Biology Center (QBiC), Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Jan-Philipp Mallm
- Single Cell Open Lab, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Marina Vogel
- DKFZ Genomics and Proteomics Core Facility, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Lautwein
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches-Forschungszentrum (BMFZ), Heinrich Heine University Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches-Forschungszentrum (BMFZ), Heinrich Heine University Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
21
|
Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol 2021; 22:608-624. [PMID: 34079104 DOI: 10.1038/s41580-021-00373-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Liver regeneration is a complex process involving the crosstalk of multiple cell types, including hepatocytes, hepatic stellate cells, endothelial cells and inflammatory cells. The healthy liver is mitotically quiescent, but following toxic damage or resection the cells can rapidly enter the cell cycle to restore liver mass and function. During this process of regeneration, epithelial and non-parenchymal cells respond in a tightly coordinated fashion. Recent studies have described the interaction between inflammatory cells and a number of other cell types in the liver. In particular, macrophages can support biliary regeneration, contribute to fibrosis remodelling by repressing hepatic stellate cell activation and improve liver regeneration by scavenging dead or dying cells in situ. In this Review, we describe the mechanisms of tissue repair following damage, highlighting the close relationship between inflammation and liver regeneration, and discuss how recent findings can help design novel therapeutic approaches.
Collapse
Affiliation(s)
- Lara Campana
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Hannah Esser
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stuart Forbes
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
22
|
Jalan-Sakrikar N, De Assuncao TM, Navarro-Corcuera A, Hamdan FH, Loarca L, Kirkeby LA, Resch ZT, O'Hara SP, Juran BD, Lazaridis KN, Rosen CB, Heimbach JK, Taner T, Shah VH, LaRusso NF, Huebert RC. Induced Pluripotent Stem Cells From Subjects With Primary Sclerosing Cholangitis Develop a Senescence Phenotype Following Biliary Differentiation. Hepatol Commun 2021; 6:345-360. [PMID: 34519176 PMCID: PMC8793999 DOI: 10.1002/hep4.1809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a chronic fibroinflammatory disease of the biliary tract characterized by cellular senescence and periportal fibrogenesis. Specific disease features that are cell intrinsic and either genetically or epigenetically mediated remain unclear due in part to a lack of appropriate, patient-specific, in vitro models. Recently, our group developed systems to create induced pluripotent stem cell (iPSC)-derived cholangiocytes (iDCs) and biliary epithelial organoids (cholangioids). We use these models to investigate whether PSC cholangiocytes are intrinsically predisposed to cellular senescence. Skin fibroblasts from healthy controls and subjects with PSC were reprogrammed to pluripotency, differentiated to cholangiocytes, and subsequently grown in three-dimensional matrigel-based culture to induce formation of cholangioids. RNA sequencing (RNA-seq) on iDCs showed significant differences in gene expression patterns, including enrichment of pathways associated with cell cycle, senescence, and hepatic fibrosis, that correlate with PSC. These pathways also overlapped with RNA-seq analysis on isolated cholangiocytes from subjects with PSC. Exome sequencing on the subjects with PSC revealed genetic variants of unknown significance in the genes identified in these pathways. Three-dimensional culture revealed smaller size, lack of a central lumen, and increased cellular senescence in PSC-derived cholangioids. Congruent with this, PSC-derived iDCs showed increased secretion of the extracellular matrix molecule fibronectin as well as the inflammatory cytokines interleukin-6, and chemokine (C-C motif) ligand 2. Conditioned media (CM) from PSC-derived iDCs more potently activated hepatic stellate cells compared to control CM. Conclusion: We demonstrated efficient generation of iDCs and cholangioids from patients with PSC that show disease-specific features. PSC cholangiocytes are intrinsically predisposed to cellular senescence. These features are unmasked following biliary differentiation of pluripotent stem cells and have functional consequences in epithelial organoids.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, USA.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Thiago M De Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, USA.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Amaia Navarro-Corcuera
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, USA.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Feda H Hamdan
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, USA.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Lorena Loarca
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, USA.,Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Lindsey A Kirkeby
- Center for Regenerative Medicine, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Zachary T Resch
- Center for Regenerative Medicine, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, USA.,Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN, USA.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Brian D Juran
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, USA.,Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Konstantinos N Lazaridis
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, USA.,Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN, USA.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Charles B Rosen
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Julie K Heimbach
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Timucin Taner
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, USA.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN, USA.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, MN, USA.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, USA.,Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN, USA.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, MN, USA.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, USA.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN, USA.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, MN, USA.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic and Foundation, Rochester, MN, USA
| |
Collapse
|
23
|
Sato K, Zhang W, Safarikia S, Isidan A, Chen AM, Li P, Francis H, Kennedy L, Baiocchi L, Alvaro D, Glaser S, Ekser B, Alpini G. Organoids and Spheroids as Models for Studying Cholestatic Liver Injury and Cholangiocarcinoma. Hepatology 2021; 74:491-502. [PMID: 33222247 PMCID: PMC8529583 DOI: 10.1002/hep.31653] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Cholangiopathies, such as primary sclerosing cholangitis, biliary atresia, and cholangiocarcinoma, have limited experimental models. Not only cholangiocytes but also other hepatic cells including hepatic stellate cells and macrophages are involved in the pathophysiology of cholangiopathies, and these hepatic cells orchestrate the coordinated response against diseased conditions. Classic two-dimensional monolayer cell cultures do not resemble intercellular cell-to-cell interaction and communication; however, three-dimensional cell culture systems, such as organoids and spheroids, can mimic cellular interaction and architecture between hepatic cells. Previous studies have demonstrated the generation of hepatic or biliary organoids/spheroids using various cell sources including pluripotent stem cells, hepatic progenitor cells, primary cells from liver biopsies, and immortalized cell lines. Gene manipulation, such as transfection and transduction can be performed in organoids, and established organoids have functional characteristics which can be suitable for drug screening. This review summarizes current methodologies for organoid/spheroid formation and a potential for three-dimensional hepatic cell cultures as in vitro models of cholangiopathies.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Abdulkadir Isidan
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Angela M. Chen
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Ping Li
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
24
|
Baiocchi L, Glaser S, Francis H, Kennedy L, Felli E, Alpini G, Gracia-Sancho J. Impact of Aging on Liver Cells and Liver Disease: Focus on the Biliary and Vascular Compartments. Hepatol Commun 2021; 5:1125-1137. [PMID: 34278165 PMCID: PMC8279468 DOI: 10.1002/hep4.1725] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The aging process is represented by the time-dependent decay in physiologic functions of living beings. Major interest has been focused in recent years on the determinants of this progressive condition due to its correlative relationship with the onset of diseases. Several hallmark features have been observed in aging, such as genetic alterations, mitochondrial impairment, and telomere shortening. At the cellular level, a senescent phenotype has been identified in response to aging that is characterized by a flat appearance, proliferative arrest, and production of specific molecules. The net effect of these cells in the course of diseases is an argument of debate. In fact, while the onset of a senescent phenotype may prevent tumor spreading, these cells appear to support pathological processes in some conditions. Several studies are now focused on clarifying the specific molecular pathways of aging/senescence in different cells, tissues, or organs. Biliary and vascular components, within the liver, have emerged as important determinants of some form of liver disease. In this review we summarize the most recent achievements on aging/senescence, focusing on the biliary and vascular liver system. Conclusion: Several findings, in both preclinical animal models and on human liver specimens, converge in supporting the presence of specific aging hallmarks in the diseases involving these hepatic compartments.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Hepatology UnitDepartment of MedicineUniversity of Tor VergataRomeItaly
| | - Shannon Glaser
- Medical PhysiologyTexas A&M College of MedicineBryanTXUSA
| | - Heather Francis
- Hepatology and MedicineIndiana UniversityIndianapolisINUSA.,Richard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Lindsey Kennedy
- Hepatology and MedicineIndiana UniversityIndianapolisINUSA.,Richard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Eric Felli
- HepatologyDepartment of Biomedical ResearchInselspitalBernSwitzerland
| | - Gianfranco Alpini
- Hepatology and MedicineIndiana UniversityIndianapolisINUSA.,Richard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Jordi Gracia-Sancho
- Liver Vascular BiologyIDIBAPS Biomedical Research Institute and CIBEREHDBarcelonaSpain.,HepatologyDepartment of Biomedical ResearchInselspitalBernSwitzerland
| |
Collapse
|
25
|
Chen L, Zhou T, White T, O’Brien A, Chakraborty S, Liangpunsakul S, Yang Z, Kennedy L, Saxena R, Wu C, Meng F, Huang Q, Francis H, Alpini G, Glaser S. The Apelin-Apelin Receptor Axis Triggers Cholangiocyte Proliferation and Liver Fibrosis During Mouse Models of Cholestasis. Hepatology 2021; 73:2411-2428. [PMID: 32964473 PMCID: PMC9288669 DOI: 10.1002/hep.31545] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Apelin (APLN) is the endogenous ligand of its G protein-coupled receptor, apelin receptor (APJ). APLN serum levels are increased in human liver diseases. We evaluated whether the APLN-APJ axis regulates ductular reaction and liver fibrosis during cholestasis. APPROACH AND RESULTS We measured the expression of APLN and APJ and serum APLN levels in human primary sclerosing cholangitis (PSC) samples. Following bile duct ligation (BDL) or sham surgery, male wild-type (WT) mice were treated with ML221 (APJ antagonist) or saline for 1 week. WT and APLN-/- mice underwent BDL or sham surgery for 1 week. Multidrug resistance gene 2 knockout (Mdr2-/- ) mice were treated with ML221 for 1 week. APLN levels were measured in serum and cholangiocyte supernatants, and cholangiocyte proliferation/senescence and liver inflammation, fibrosis, and angiogenesis were measured in liver tissues. The regulatory mechanisms of APLN-APJ in (1) biliary damage and liver fibrosis were examined in human intrahepatic biliary epithelial cells (HIBEpiCs) treated with APLN and (2) hepatic stellate cell (HSC) activation in APLN-treated human HSC lines (HHSteCs). APLN serum levels and biliary expression of APLN and APJ increased in PSC samples. APLN levels were higher in serum and cholangiocyte supernatants from BDL and Mdr2-/- mice. ML221 treatment or APLN-/- reduced BDL-induced and Mdr2-/- -induced cholangiocyte proliferation/senescence, liver inflammation, fibrosis, and angiogenesis. In vitro, APLN induced HIBEpiC proliferation, increased nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, reactive oxygen species (ROS) generation, and extracellular signal-regulated kinase (ERK) phosphorylation. Pretreatment of HIBEpiCs with ML221, diphenyleneiodonium chloride (Nox4 inhibitor), N-acetyl-cysteine (NAC, ROS inhibitor), or PD98059 (ERK inhibitor) reduced APLN-induced cholangiocyte proliferation. Activation of HHSteCs was induced by APLN but reduced by NAC. CONCLUSIONS The APLN-APJ axis induces cholangiocyte proliferation through Nox4/ROS/ERK-dependent signaling and HSC activation through intracellular ROS. Modulation of the APLN-APJ axis may be important for managing cholangiopathies.
Collapse
Affiliation(s)
- Lixian Chen
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| | - Tori White
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| | - April O’Brien
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| | - Suthat Liangpunsakul
- Research, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX
| | - Fanyin Meng
- Research, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Lab of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Heather Francis
- Research, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Gianfranco Alpini
- Research, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| |
Collapse
|
26
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Cazzagon N, Sarcognato S, Floreani A, Corrà G, De Martin S, Guzzardo V, Russo FP, Guido M. Cholangiocyte senescence in primary sclerosing cholangitis is associated with disease severity and prognosis. JHEP Rep 2021; 3:100286. [PMID: 34041468 PMCID: PMC8141934 DOI: 10.1016/j.jhepr.2021.100286] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Background & Aims Primary sclerosing cholangitis (PSC) is a rare cholangiopathy of unknown aetiopathogenesis. The aim of this study was to evaluate cellular senescence (CS) marker expression in cholangiocytes of patients with PSC and their correlation with clinical–pathological features and prognosis. Methods Thirty-five patients with PSC with at least 1 available liver sampling were included. Clinical laboratory data at the time of liver sampling were collected. The endpoints were survival without liver transplantation (LT), time to LT, and survival without LT or cirrhosis decompensation. Histological grading and staging were assessed according to Nakanuma. Immunohistochemical stains for CS markers, p16INK4A (p16) and p21WAF1/Cip1 (p21), were performed and scored by a 3-tier scale based on positivity extent in native bile duct (NBD) and ductular reaction (DR). Results: p16 expression in NBD and DR was directly correlated with fibrosis (p ≤0.001 for both) and stage (p = 0.006 and p <0.001, respectively). Moreover, p16 in NBD was positively correlated with hepatitis activity (HA) (p = 0.026), whereas p16 in DR was directly correlated with bile duct loss (BDL) (p = 0.005) and metaplastic hepatocytes (MH) (p <0.01). p21 expression in NBD and DR was directly correlated with HA (p = 0.004 and p = 0.043, respectively), fibrosis (p = 0.006 and p <0.001, respectively), stage (p = 0.006 and p = 0.001, respectively), BDL (p = 0.002 and p = 0.03, respectively), and DR and MH (p ≤0.004 for all). By multivariate analysis, p16 expression in DR was independently associated with stage (p = 0.001), fibrosis (p = 0.001), and BDL (p = 0.011). p21 expression in NBD was independently associated with HA (p = 0.012), BDL (p = 0.04), and DR (p = 0.014). Finally, p21 expression in DR was independently associated with LT-free survival, time to LT, and adverse outcome-free survival (p = 0.001, p = 0.017, and p = 0.001, respectively). Conclusions Cholangiocyte senescence is detectable in all stages of PSC and is associated with histological and clinical disease severity, potentially representing a new prognostic and therapeutic target. Lay summary In this study, we showed that cholangiocyte senescence (CS), previously demonstrated in liver of patients with end-stage primary sclerosing cholangitis (PSC), is an early event and is detectable in all disease stages. Moreover, we observed that CS is associated with histological and clinical disease severity and patients’ outcome. Thus, we suggest that CS may represent a new prognostic tool and a potential therapeutic target in PSC. Clinical trial number Protocol number 0034435, 08/06/2020. Cholangiocyte senescence was previously described in end-stage PSC. Cholangiocyte senescence is present in all stages of PSC and may represent an early pathogenic event. Cholangiocyte senescence is associated with histological and clinical severity in patients with PSC. Cholangiocyte senescence is independently associated with patients’ outcome in PSC.
Collapse
Key Words
- AIH, autoimmune hepatitis
- ALP, alkaline phosphatase
- ALT, alanine transaminase
- BDL, bile duct loss
- CA, cholangitis activity
- CCA, cholangiocarcinoma
- CK7, cytokeratin 7
- CS, cellular senescence
- DR, ductular reaction
- Fibrosing cholangiopathy
- GBCA, gallbladder carcinoma
- HA, hepatitis activity
- HCC, hepatocellular carcinoma
- HR, hazard ratio
- IBD, inflammatory bowel disease
- IHC, immunohistochemical
- INR, international normalized ratio
- LT, liver transplantation
- MH, metaplastic hepatocytes
- NBD, native bile duct
- OR, odds ratio
- PBC, primary biliary cholangitis
- PSC
- PSC, primary sclerosing cholangitis
- PT, portal tract
- Prognosis
- SASP, senescence-associated secretory phenotype
- SMA, smooth muscle actin
- Senescent cholangiocytes
- TGFβ, transforming growth factor beta
- UDCA, ursodeoxycholic acid
- p16
- p16, p16INK4A
- p21
- p21, p21WAF1/Cip1
- γGT, γ-glutamyltranspeptidase
Collapse
Affiliation(s)
- Nora Cazzagon
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- Corresponding authors. Address: Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Via N. Giustiniani 2, 35128 Padua, Italy. Tel.: +39-049-8212894.
| | - Samantha Sarcognato
- Department of Medicine – DIMED, University of Padova, Padua, Italy
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | | | - Giorgia Corrà
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | | | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- Corresponding authors. Address: Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Via N. Giustiniani 2, 35128 Padua, Italy. Tel.: +39-049-8212894.
| | - Maria Guido
- Department of Medicine – DIMED, University of Padova, Padua, Italy
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| |
Collapse
|
28
|
Pieters A, Gijbels E, Cogliati B, Annaert P, Devisscher L, Vinken M. Biomarkers of cholestasis. Biomark Med 2021; 15:437-454. [PMID: 33709780 DOI: 10.2217/bmm-2020-0691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is a major pathological manifestation, often resulting in detrimental liver conditions, which occurs in a variety of indications collectively termed cholestatic liver diseases. The frequent asymptomatic character and complexity of cholestasis, together with the lack of a straightforward biomarker, hampers early detection and treatment of the condition. The 'omics' era, however, has resulted in a plethora of cholestatic indicators, yet a single clinically applicable biomarker for a given cholestatic disease remains missing. The criteria to fulfil as an ideal biomarker as well as the challenging molecular pathways in cholestatic liver diseases advocate for a scenario in which multiple biomarkers, originating from different domains, will be assessed concomitantly. This review gives an overview of classical clinical and novel molecular biomarkers in cholestasis, focusing on their benefits and drawbacks.
Collapse
Affiliation(s)
- Alanah Pieters
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine & Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, SP, 05508-270, Brazil
| | - Pieter Annaert
- Drug Delivery & Disposition, Department of Pharmaceutical & Pharmacological Sciences, Katholieke Universiteit Leuven, ON II Herestraat 49, Box 921, Leuven, 3000, Belgium
| | - Lindsey Devisscher
- Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine & Health Sciences, Ghent University, C Heymanslaan 10, Ghent, 9000, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| |
Collapse
|
29
|
Alsuraih M, O'Hara SP, Woodrum JE, Pirius NE, LaRusso NF. Genetic or pharmacological reduction of cholangiocyte senescence improves inflammation and fibrosis in the Mdr2 -/- mouse. JHEP Rep 2021; 3:100250. [PMID: 33870156 PMCID: PMC8044431 DOI: 10.1016/j.jhepr.2021.100250] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/10/2023] Open
Abstract
Background & Aims Cholangiocyte senescence is important in the pathogenesis of primary sclerosing cholangitis (PSC). We found that CDKN2A (p16), a cyclin-dependent kinase inhibitor and mediator of senescence, was increased in cholangiocytes of patients with PSC and from a PSC mouse model (multidrug resistance 2; Mdr2-/-). Given that recent data suggest that a reduction of senescent cells is beneficial in different diseases, we hypothesised that inhibition of cholangiocyte senescence would ameliorate disease in Mdr2-/- mice. Methods We used 2 novel genetic murine models to reduce cholangiocyte senescence: (i) p16Ink4a apoptosis through targeted activation of caspase (INK-ATTAC)xMdr2-/-, in which the dimerizing molecule AP20187 promotes selective apoptotic removal of p16-expressing cells; and (ii) mice deficient in both p16 and Mdr2. Mdr2-/- mice were also treated with fisetin, a flavonoid molecule that selectively kills senescent cells. p16, p21, and inflammatory markers (tumour necrosis factor [TNF]-α, IL-1β, and monocyte chemoattractant protein-1 [MCP-1]) were measured by PCR, and hepatic fibrosis via a hydroxyproline assay and Sirius red staining. Results AP20187 treatment reduced p16 and p21 expression by ~35% and ~70% (p >0.05), respectively. Expression of inflammatory markers (TNF-α, IL-1β, and MCP-1) decreased (by 60%, 40%, and 60%, respectively), and fibrosis was reduced by ~60% (p >0.05). Similarly, p16-/-xMdr2-/- mice exhibited reduced p21 expression (70%), decreased expression of TNF-α, IL-1β (60%), and MCP-1 (65%) and reduced fibrosis (~50%) (p >0.05) compared with Mdr2-/- mice. Fisetin treatment reduced expression of p16 and p21 (80% and 90%, respectively), TNF-α (50%), IL-1β (50%), MCP-1 (70%), and fibrosis (60%) (p >0.05). Conclusions Our data support a pathophysiological role of cholangiocyte senescence in the progression of PSC, and that targeted removal of senescent cholangiocytes is a plausible therapeutic approach. Lay summary Primary sclerosing cholangitis is a fibroinflammatory, incurable biliary disease. We previously reported that biliary epithelial cell senescence (cell-cycle arrest and hypersecretion of profibrotic molecules) is an important phenotype in primary sclerosing cholangitis. Herein, we demonstrate that reducing the number of senescent cholangiocytes leads to a reduction in the expression of inflammatory, fibrotic, and senescence markers associated with the disease. p16 and p21 are major mediators of cellular senescence and are highly expressed in cholangiocytes in a Mdr2-/- murine model of PSC. The senescence-associated secretory phenotype markers are all increased in cholangiocytes of Mdr2-/- mice. Genetic and pharmacological elimination of senescent cholangiocytes reduces peribiliary inflammation and fibrosis in Mdr2-/- mice. Preclinical work suggests that fisetin, a naturally occurring and safe senolytic flavonoid, has the potential to be tested in patients with PSC.
Collapse
Key Words
- ALP, alkaline phosphatase
- AP, AP20187
- Apoptosis resistance
- BCL2, B cell lymphoma 2
- Bcl-xL, B-cell lymphoma-extra large
- Biliary epithelial cell
- CCA, cholangiocarcinoma
- CKI, cyclin-dependent kinase inhibitor
- Cellular senescence
- Cholestatic liver disease
- Col.1A, collagen 1A
- D, dasatinib
- EVs, extracellular vesicles
- FKBP-Casp8, FK506-binding-protein-caspase 8
- IF, immunofluorescence
- INK-ATTAC, p16Ink4a apoptosis through targeted activation of caspase
- IR, irradiation
- MCL1, myeloid cell leukemia 1
- MCP-1, monocyte chemoattractant protein-1
- MMP, matrix metalloproteinase
- NHC, normal human cholangiocyte
- PSC, primary sclerosing cholangitis
- Primary sclerosing cholangitis
- Q, quercetin
- RT, reverse transcription
- SA-β-gal, senescence-associated β-gal
- SASP, senescence-associated secretory phenotype
- Senescence-associated secretory phenotype
- Senolytics
- TNF, tumour necrosis factor
- WT, wild-type
- mdr2, multidrug-resistance 2
- qPCR, quantitative PCR
- α-SMA, α-smooth muscle actin
- β-Gal, β-galactosidase
Collapse
Affiliation(s)
- Mohammed Alsuraih
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Julie E Woodrum
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nicholas E Pirius
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
30
|
Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis. Cancers (Basel) 2020; 12:cancers12123748. [PMID: 33322158 PMCID: PMC7763137 DOI: 10.3390/cancers12123748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic liver injury and inflammation leads to excessive deposition of extracellular matrix, known as liver fibrosis, and the distortion of the hepatic parenchyma. Liver fibrosis may progress to cirrhosis, a condition in which hepatic function is impaired and most cases of liver tumors occur. Currently, there are no effective therapies to inhibit and reverse the progression of liver fibrosis, and therefore, chronic liver disease remains a global health problem. In this study we have tested the efficacy of a new class of molecules that simultaneously target two molecular pathways known to be involved in the pathogenesis of hepatic fibrosis. In a clinically relevant mouse model of liver injury and inflammation we show that the combined inhibition of histones deacetylases and the cyclic guanosine monophosphate (cGMP) phosphodiesterase phosphodiesterase 5 (PDE5) results in potent anti-inflammatory and anti-fibrotic effects. Our findings open new avenues for the treatment of liver fibrosis and therefore, the prevention of hepatic carcinogenesis. Abstract Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor β (TGFβ). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strategy.
Collapse
|
31
|
Willemse J, Roos FJM, Voogt IJ, Schurink IJ, Bijvelds M, de Jonge HR, van der Laan LJW, de Jonge J, Verstegen MMA. Scaffolds obtained from decellularized human extrahepatic bile ducts support organoids to establish functional biliary tissue in a dish. Biotechnol Bioeng 2020; 118:836-851. [PMID: 33118611 PMCID: PMC7894321 DOI: 10.1002/bit.27613] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Biliary disorders can lead to life‐threatening disease and are also a challenging complication of liver transplantation. As there are limited treatment options, tissue engineered bile ducts could be employed to replace or repair damaged bile ducts. We explored how these constructs can be created by seeding hepatobiliary LGR5+ organoids onto tissue‐specific scaffold. For this, we decellularized discarded human extrahepatic bile ducts (EBD) that we recellularized with organoids of different origin, that is, liver biopsies, extrahepatic bile duct biopsies, and bile samples. Here, we demonstrate efficient decellularization of EBD tissue. Recellularization of the EBD extracellular matrix (ECM) with the organoids of extrahepatic origin (EBD tissue and bile derived organoids) showed more profound repopulation of the ductal ECM when compared with liver tissue (intrahepatic bile duct) derived organoids. The bile duct constructs that were repopulated with extrahepatic organoids expressed mature cholangiocyte‐markers and had increased electrical resistance, indicating restoration of the barrier function. Therefore, the organoids of extrahepatic sources are identified to be the optimal candidate for the development of personalized tissue engineered EBD constructs.
Collapse
Affiliation(s)
- Jorke Willemse
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Floris J M Roos
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Iris J Voogt
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Ivo J Schurink
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Marcel Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Al Suraih MS, Trussoni CE, Splinter PL, LaRusso NF, O’Hara SP. Senescent cholangiocytes release extracellular vesicles that alter target cell phenotype via the epidermal growth factor receptor. Liver Int 2020; 40:2455-2468. [PMID: 32558183 PMCID: PMC7669612 DOI: 10.1111/liv.14569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by peribiliary inflammation and fibrosis. Cholangiocyte senescence is a prominent feature of PSC. Here, we hypothesize that extracellular vesicles (EVs) from senescent cholangiocytes influence the phenotype of target cells. METHODS EVs were isolated from normal human cholangiocytes (NHCs), cholangiocytes from PSC patients and NHCs experimentally induced to senescence. NHCs, malignant human cholangiocytes (MHCs) and monocytes were exposed to 108 EVs from each donor cell population and assessed for proliferation, MAPK activation and migration. Additionally, we isolated EVs from plasma of wild-type and Mdr2-/- mice (a murine model of PSC), and assessed mouse monocyte activation. RESULTS EVs exhibited the size and protein markers of exosomes. The number of EVs released from senescent human cholangiocytes was increased; similarly, the EVs in plasma from Mdr2-/- mice were increased. Additionally, EVs from senescent cholangiocytes were enriched in multiple growth factors, including EGF. NHCs exposed to EVs from senescent cholangiocytes showed increased NRAS and ERK1/2 activation. Moreover, EVs from senescent cholangiocytes promoted proliferation of NHCs and MHCs, findings that were blocked by erlotinib, an EGF receptor inhibitor. Furthermore, EVs from senescent cholangiocytes induced EGF-dependent Interleukin 1-beta and Tumour necrosis factor expression and migration of human monocytes; similarly, Mdr2-/- mouse plasma EVs induced activation of mouse monocytes. CONCLUSIONS The data continue to support the importance of cholangiocyte senescence in PSC pathogenesis, directly implicate EVs in cholangiocyte proliferation, malignant progression and immune cell activation and migration, and identify novel therapeutic approaches for PSC.
Collapse
Affiliation(s)
- Mohammed S. Al Suraih
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota. 55905.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota. 55905
| | - Christy E. Trussoni
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota. 55905
| | - Patrick L. Splinter
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota. 55905
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota. 55905
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota. 55905
| |
Collapse
|
33
|
Michalik M, Gładyś A, Czekaj P. Differentiation of Cells Isolated from Afterbirth Tissues into Hepatocyte-Like Cells and Their Potential Clinical Application in Liver Regeneration. Stem Cell Rev Rep 2020; 17:581-603. [PMID: 32974851 PMCID: PMC8036182 DOI: 10.1007/s12015-020-10045-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Toxic, viral and surgical injuries can pose medical indications for liver transplantation. The number of patients waiting for a liver transplant still increases, but the number of organ donors is insufficient. Hepatocyte transplantation was suggested as a promising alternative to liver transplantation, however, this method has some significant limitations. Currently, afterbirth tissues seem to be an interesting source of cells for the regenerative medicine, because of their unique biological and immunological properties. It has been proven in experimental animal models, that the native stem cells, and to a greater extent, hepatocyte-like cells derived from them and transplanted, can accelerate regenerative processes and restore organ functioning. The effective protocol for obtaining functional mature hepatocytes in vitro is still not defined, but some studies resulted in obtaining functionally active hepatocyte-like cells. In this review, we focused on human stem cells isolated from placenta and umbilical cord, as potent precursors of hepatocyte-like cells for regenerative medicine. We summarized the results of preclinical and clinical studies dealing with the introduction of epithelial and mesenchymal stem cells of the afterbirth origin to the liver failure therapy. It was concluded that the use of native afterbirth epithelial and mesenchymal cells in the treatment of liver failure could support liver function and regeneration. This effect would be enhanced by the use of hepatocyte-like cells obtained from placental and/or umbilical stem cells. Graphical abstract ![]()
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Aleksandra Gładyś
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
34
|
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Ilyas SI, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17:557-588. [PMID: 32606456 PMCID: PMC7447603 DOI: 10.1038/s41575-020-0310-z] [Citation(s) in RCA: 1234] [Impact Index Per Article: 308.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Luke Boulter
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rocio I R Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Eugenio Gaudio
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Mario Strazzabosco
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | | | - Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | | | - Jordi Bruix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
35
|
Zhao X, Lorent K, Escobar-Zarate D, Rajagopalan R, Loomes KM, Gillespie K, Mesaros C, Estrada MA, Blair I, Winkler JD, Spinner NB, Devoto M, Pack M. Impaired Redox and Protein Homeostasis as Risk Factors and Therapeutic Targets in Toxin-Induced Biliary Atresia. Gastroenterology 2020; 159:1068-1084.e2. [PMID: 32505743 PMCID: PMC7856536 DOI: 10.1053/j.gastro.2020.05.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Extrahepatic biliary atresia (BA) is a pediatric liver disease with no approved medical therapy. Recent studies using human samples and experimental modeling suggest that glutathione redox metabolism and heterogeneity play a role in disease pathogenesis. We sought to dissect the mechanistic basis of liver redox variation and explore how other stress responses affect cholangiocyte injury in BA. METHODS We performed quantitative in situ hepatic glutathione redox mapping in zebrafish larvae carrying targeted mutations in glutathione metabolism genes and correlated these findings with sensitivity to the plant-derived BA-linked toxin biliatresone. We also determined whether genetic disruption of HSP90 protein quality control pathway genes implicated in human BA altered biliatresone toxicity in zebrafish and human cholangiocytes. An in vivo screening of a known drug library was performed to identify novel modifiers of cholangiocyte injury in the zebrafish experimental BA model, with subsequent validation. RESULTS Glutathione metabolism gene mutations caused regionally distinct changes in the redox potential of cholangiocytes that differentially sensitized them to biliatresone. Disruption of human BA-implicated HSP90 pathway genes sensitized zebrafish and human cholangiocytes to biliatresone-induced injury independent of glutathione. Phosphodiesterase-5 inhibitors and other cyclic guanosine monophosphate signaling activators worked synergistically with the glutathione precursor N-acetylcysteine in preventing biliatresone-induced injury in zebrafish and human cholangiocytes. Phosphodiesterase-5 inhibitors enhanced proteasomal degradation and required intact HSP90 chaperone. CONCLUSION Regional variation in glutathione metabolism underlies sensitivity to the biliary toxin biliatresone and may account for the reported association between BA transplant-free survival and glutathione metabolism gene expression. Human BA can be causatively linked to genetic modulation of protein quality control. Combined treatment with N-acetylcysteine and cyclic guanosine monophosphate signaling enhancers warrants further investigation as therapy for BA.
Collapse
Affiliation(s)
- Xiao Zhao
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin Lorent
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Diana Escobar-Zarate
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kathleen M. Loomes
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kevin Gillespie
- Department of System Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Department of System Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ian Blair
- Department of System Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey D. Winkler
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy B. Spinner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marcella Devoto
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA.,Departments of Pediatrics and of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Translational and Precision Medicine, University La Sapienza, Rome, Italy
| | - Michael Pack
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
36
|
Davies BA, Morton LO, Jefferson JR, Rozeveld CN, Doskey LC, LaRusso NF, Katzmann DJ. Polarized human cholangiocytes release distinct populations of apical and basolateral small extracellular vesicles. Mol Biol Cell 2020; 31:2463-2474. [PMID: 32845745 PMCID: PMC7851850 DOI: 10.1091/mbc.e19-03-0133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intercellular communication is critical for organismal homeostasis, and defects can contribute to human disease states. Polarized epithelial cells execute distinct signaling agendas via apical and basolateral surfaces to communicate with different cell types. Small extracellular vesicles (sEVs), including exosomes and small microvesicles, represent an understudied form of intercellular communication in polarized cells. Human cholangiocytes, epithelial cells lining bile ducts, were cultured as polarized epithelia in a Transwell system as a model with which to study polarized sEV communication. Characterization of isolated apically and basolaterally released EVs revealed enrichment in sEVs. However, differences in apical and basolateral sEV composition and numbers were observed. Genetic or pharmacological perturbation of cellular machinery involved in the biogenesis of intralumenal vesicles at endosomes (the source of exosomes) revealed general and domain-specific effects on sEV biogenesis/release. Additionally, analyses of signaling revealed distinct profiles of activation depending on sEV population, target cell, and the function of the endosomal sorting complex required for transport (ESCRT)-associated factor ALG-2–interacting protein X (ALIX) within the donor cells. These results support the conclusion that polarized cholangiocytes release distinct sEV pools to mediate communication via their apical and basolateral domains and suggest that defective ESCRT function may contribute to disease states through altered sEV signaling.
Collapse
Affiliation(s)
- Brian A Davies
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905
| | - Leslie O Morton
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - John R Jefferson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905.,Chemistry Department, Luther College, Decorah, IA 52101
| | - Cody N Rozeveld
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905.,Mayo Clinic Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN 55905
| | - Luke C Doskey
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905.,Mayo Clinic Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN 55905
| | - Nicholas F LaRusso
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - David J Katzmann
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905.,Mayo Clinic Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
37
|
Abstract
Primary sclerosing cholangitis (PSC) is a rare, immune-mediated, chronic cholestatic liver disease associated with a unique phenotype of inflammatory bowel disease that frequently manifests as pancolitis with right-sided predominance. Available data suggest a bidirectional interplay of the gut-liver axis with critical roles for the gastrointestinal microbiome and circulating bile acids (BAs) in the pathophysiology of PSC. BAs shape the gut microbiome, whereas gut microbes have the potential to alter BAs, and there are emerging data that alterations of BAs and the microbiome are not simply a consequence but the cause of PSC. Clustering of PSC in families may suggest that PSC occurs in genetically susceptible individuals. After exposure to an environmental trigger (e.g., microbial byproducts or BAs), an aberrant or exaggerated cholangiocyte-induced immune cascade occurs, ultimately leading to bile duct damage and progressive fibrosis. The pathophysiology can be conceptualized as a triad of (1) gut dysbiosis, (2) altered BA metabolism, and (3) immune-mediated biliary injury. Immune activation seems to be central to the disease process, but immunosuppression does not improve clinical outcomes or alter the natural history of PSC. Currently, orthoptic liver transplantation is the only established life-saving treatment, whereas antimicrobial therapy or fecal transplantation is an emerging therapeutic option for PSC. The beneficial effects of these microbiome-based therapies are likely mediated by a shift of the gut microbiome with favorable effects on BA metabolism. In the future, personalized approaches will allow to better target the interdependence between microbiome, immune function, and BA metabolism and potentially cure patients with PSC.
Collapse
|
38
|
Guicciardi ME, Trussoni CE, LaRusso NF, Gores GJ. The Spectrum of Reactive Cholangiocytes in Primary Sclerosing Cholangitis. Hepatology 2020; 71:741-748. [PMID: 31833071 PMCID: PMC7012677 DOI: 10.1002/hep.31067] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Cholangiocytes are the target of a group of chronic liver diseases termed the "cholangiopathies," in which cholangiocytes react to exogenous and endogenous insults, leading to disease initiation and progression. In primary sclerosing cholangitis (PSC), the focus of this review, the cholangiocyte response to genetic or environmental insults can lead to a heterogeneous response; that is, a subpopulation acquires a ductular reactive and proliferative phenotype, while another subpopulation undergoes senescence and growth arrest. Both ductular reactive cholangiocytes and senescent cholangiocytes can modify the periductal microenvironment through their ability to secrete various cytokines, chemokines, and growth factors, initiating and perpetuating inflammatory and profibrotic responses. This review discusses the similarities and differences, the interrelationships, and the potential pathogenic roles of these reactive proliferative and senescent cholangiocyte subpopulations in PSC.
Collapse
Affiliation(s)
| | | | | | - Gregory J. Gores
- Corresponding author: Gregory J. Gores, MD., Professor of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, Tel: (507) 284-0686; Fax: (507) 284 0762;
| |
Collapse
|
39
|
Effects of Pristine C 60 Fullerenes on Liver and Pancreas in α-Naphthylisothiocyanate-Induced Cholangitis. Dig Dis Sci 2020; 65:215-224. [PMID: 31312992 DOI: 10.1007/s10620-019-05730-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/09/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND A significant role in pathogenesis of cholangitis is attributed to excessive reactive oxygen species production and oxidative stress. Therefore, antioxidants could be promising therapeutics. AIMS The effects of powerful free radical scavenger C60 fullerene on hepatic and pancreatic manifestations of acute and chronic cholangitis in rats were aimed to be discovered. METHODS Acute (AC, 3 days) and chronic (CC, 28 days) cholangitis models were simulated by single (AC) and 4 weekly (CC) α-naphthylisothiocyanate per os administrations. Pristine C60 fullerene aqueous colloid solution (C60FAS, 0.15 mg/ml, size of aggregates 1.2-100 nm) was administered either per os or intraperitoneally at a dose of 0.5 mg/kg C60 fullerene daily (AC) and every other day (CC). Prednisolone was used as a reference. Liver and pancreas autopsies were analyzed, and blood serum biochemical markers were measured. Pan-cytokeratin expression in HepG2 cells was assessed after 48-h incubation with C60FAS. RESULTS On AC, C60FAS normalized elevated bilirubin, alkaline phosphatase, and triglycerides, diminished fibrotic alterations in liver, and improved pancreas state when applied by both ways. Additionally, C60FAS per os significantly reduced the signs of inflammation in liver and pancreas. On CC, C60FAS also mitigated liver fibrosis and inflammation, improved pancreas state, and normalized alkaline phosphatase and triglycerides. The remedy effect of C60FAS was more expressed compared to that of prednisolone on both models. Furthermore, C60FAS inhibited pan-cytokeratin expression in HepG2 cells in a dose-dependent manner. CONCLUSION Pristine C60 fullerene inhibits liver inflammation and fibrogenesis and partially improved liver and pancreas state under acute and chronic cholangitis.
Collapse
|
40
|
Morgan K, Gamal W, Samuel K, Morley SD, Hayes PC, Bagnaninchi P, Plevris JN. Application of Impedance-Based Techniques in Hepatology Research. J Clin Med 2019; 9:jcm9010050. [PMID: 31878354 PMCID: PMC7019217 DOI: 10.3390/jcm9010050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
There are a variety of end-point assays and techniques available to monitor hepatic cell cultures and study toxicity within in vitro models. These commonly focus on one aspect of cell metabolism and are often destructive to cells. Impedance-based cellular assays (IBCAs) assess biological functions of cell populations in real-time by measuring electrical impedance, which is the resistance to alternating current caused by the dielectric properties of proliferating of cells. While the uses of IBCA have been widely reported for a number of tissues, specific uses in the study of hepatic cell cultures have not been reported to date. IBCA monitors cellular behaviour throughout experimentation non-invasively without labelling or damage to cell cultures. The data extrapolated from IBCA can be correlated to biological events happening within the cell and therefore may inform drug toxicity studies or other applications within hepatic research. Because tight junctions comprise the blood/biliary barrier in hepatocytes, there are major consequences when these junctions are disrupted, as many pathologies centre around the bile canaliculi and flow of bile out of the liver. The application of IBCA in hepatology provides a unique opportunity to assess cellular polarity and patency of tight junctions, vital to maintaining normal hepatic function. Here, we describe how IBCAs have been applied to measuring the effect of viral infection, drug toxicity /IC50, cholangiopathies, cancer metastasis and monitoring of the gut-liver axis. We also highlight key areas of research where IBCAs could be used in future applications within the field of hepatology.
Collapse
Affiliation(s)
- Katie Morgan
- The University of Edinburgh Hepatology Laboratory, Division of Heath Sciences, University of Edinburgh Medical School, Chancellor’s Building, Edinburgh BioQuarter, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (S.D.M.); (P.C.H.); (J.N.P.)
- Correspondence:
| | - Wesam Gamal
- James Nasmyth Building, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University School of Engineering and Physical Sciences, Edinburgh EH14 4AS, UK;
| | - Kay Samuel
- The Jack Copland Centre, Advanced Therapeutics, Scottish National Blood Transfusion Service, 52 Research Avenue North, Edinburgh EH14 4BE, UK;
| | - Steven D. Morley
- The University of Edinburgh Hepatology Laboratory, Division of Heath Sciences, University of Edinburgh Medical School, Chancellor’s Building, Edinburgh BioQuarter, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (S.D.M.); (P.C.H.); (J.N.P.)
| | - Peter C. Hayes
- The University of Edinburgh Hepatology Laboratory, Division of Heath Sciences, University of Edinburgh Medical School, Chancellor’s Building, Edinburgh BioQuarter, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (S.D.M.); (P.C.H.); (J.N.P.)
| | - Pierre Bagnaninchi
- MRC Centre for Regenerative Medicine 5 Little France Drive, Edinburgh EH16 4UU, UK;
| | - John N. Plevris
- The University of Edinburgh Hepatology Laboratory, Division of Heath Sciences, University of Edinburgh Medical School, Chancellor’s Building, Edinburgh BioQuarter, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (S.D.M.); (P.C.H.); (J.N.P.)
| |
Collapse
|
41
|
Zhou T, Kyritsi K, Wu N, Francis H, Yang Z, Chen L, O'Brien A, Kennedy L, Ceci L, Meadows V, Kusumanchi P, Wu C, Baiocchi L, Skill NJ, Saxena R, Sybenga A, Xie L, Liangpunsakul S, Meng F, Alpini G, Glaser S. Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2 -/- mouse model of primary sclerosing cholangitis (PSC). EBioMedicine 2019; 48:130-142. [PMID: 31522982 PMCID: PMC6838376 DOI: 10.1016/j.ebiom.2019.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholangiocytes are the target cells of cholangiopathies including primary sclerosing cholangitis (PSC). Vimentin is an intermediate filament protein that has been found in various types of mesenchymal cells. The aim of this study is to evaluate the role of vimentin in the progression of biliary damage/liver fibrosis and whether there is a mesenchymal phenotype of cholangiocytes in the Mdr2-/- model of PSC. METHODS In vivo studies were performed in 12 wk. Mdr2-/- male mice with or without vimentin Vivo-Morpholino treatment and their corresponding control groups. Liver specimens from human PSC patients, human intrahepatic biliary epithelial cells (HIBEpiC) and human hepatic stellate cell lines (HHSteCs) were used to measure changes in epithelial-to-mesenchymal transition (EMT). FINDINGS There was increased mesenchymal phenotype of cholangiocytes in Mdr2-/- mice, which was reduced by treatment of vimentin Vivo-Morpholino. Concomitant with reduced vimentin expression, there was decreased liver damage, ductular reaction, biliary senescence, liver fibrosis and TGF-β1 secretion in Mdr2-/- mice treated with vimentin Vivo-Morpholino. Human PSC patients and derived cell lines had increased expression of vimentin and other mesenchymal markers compared to healthy controls and HIBEpiC, respectively. In vitro silencing of vimentin in HIBEpiC suppressed TGF-β1-induced EMT and fibrotic reaction. HHSteCs had decreased fibrotic reaction and increased cellular senescence after stimulation with cholangiocyte supernatant with reduced vimentin levels. INTERPRETATION Our study demonstrated that knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes, which leads to decreased biliary senescence and liver fibrosis. Inhibition of vimentin may be a key therapeutic target in the treatment of cholangiopathies including PSC. FUND: National Institutes of Health (NIH) awards, VA Merit awards.
Collapse
Affiliation(s)
- Tianhao Zhou
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Konstantina Kyritsi
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Nan Wu
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Lixian Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - April O'Brien
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Lindsey Kennedy
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Ludovica Ceci
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Vik Meadows
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Praveen Kusumanchi
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Chaodong Wu
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | | | - Nicholas J Skill
- Department of Surgery, Indiana University, Indianapolis, IN, United States of America
| | - Romil Saxena
- Department of Pathology, Indiana University, Indianapolis, IN, United States of America
| | - Amelia Sybenga
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America.
| | - Shannon Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America.
| |
Collapse
|
42
|
Maroni L, Pinto C, Giordano DM, Saccomanno S, Banales JM, Spallacci D, Albertini MC, Orlando F, Provinciali M, Milkiewicz M, Melum E, Labiano I, Milkiewicz P, Rychlicki C, Trozzi L, Scarpelli M, Benedetti A, Svegliati Baroni G, Marzioni M. Aging-Related Expression of Twinfilin-1 Regulates Cholangiocyte Biological Response to Injury. Hepatology 2019; 70:883-898. [PMID: 30561764 DOI: 10.1002/hep.30466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022]
Abstract
Disorders of the biliary tree develop and progress differently according to patient age. It is currently not known whether the aging process affects the response to injury of cholangiocytes. The aim of this study was to identify molecular pathways associated with cholangiocyte aging and to determine their effects in the biological response to injury of biliary cells. A panel of microRNAs (miRs) involved in aging processes was evaluated in cholangiocytes of young and old mice (2 months and 22 months of age, respectively) and subjected to a model of sclerosing cholangitis. Intracellular pathways that are common to elevated miRs were identified by in silico analysis. Cell proliferation and senescence were evaluated in Twinfilin-1 (Twf1) knocked-down cells. In vivo, senescence-accelerated prone mice (Samp8, a model for accelerated aging), Twf1-/- , or their respective controls were subjected to DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine). Cholangiocytes from DDC-treated mice showed up-regulation of a panel of aging-related miRs. Twf1 was identified by in silico analysis as a common target of the up-regulated miRs. Twf1 expression was increased both in aged and diseased cholangiocytes, and in human cholangiopathies. Knock-down of Twf1 in cholangiocytes reduced cell proliferation. Senescence and senescence-associated secretory phenotype marker expression increased in Twf1 knocked-down cholangiocytes following pro-proliferative and pro-senescent (10-day lipopolysaccharide) stimulation. In vivo, Samp8 mice showed increased biliary proliferation, fibrosis, and Twf1 protein expression level, whereas Twf1-/- had a tendency toward lower biliary proliferation and fibrosis following DDC administration compared with control animals. Conclusion: We identified Twf1 as an important mediator of both cholangiocyte adaptation to aging processes and response to injury. Our data suggest that disease and aging might share common intracellular pathways.
Collapse
Affiliation(s)
- Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Debora Maria Giordano
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Saccomanno
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy.,Institute of Pathological Anatomy and Histopathology, Università Politecnica delle Marche, Ancona, Italy
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, Ikerbasque, CIBERehd, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Daniele Spallacci
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | | | - Fiorenza Orlando
- Advanced Technology Center for Aging Research, Experimental Animal Models for Aging Unit, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Experimental Animal Models for Aging Unit, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | | | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, Ikerbasque, CIBERehd, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and L Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Chiara Rychlicki
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Luciano Trozzi
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Marina Scarpelli
- Institute of Pathological Anatomy and Histopathology, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | | | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
43
|
Li WK, Wang GF, Wang TM, Li YY, Li YF, Lu XY, Wang YH, Zhang H, Liu P, Wu JS, Ma YM. Protective effect of herbal medicine Huangqi decoction against chronic cholestatic liver injury by inhibiting bile acid-stimulated inflammation in DDC-induced mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152948. [PMID: 31129431 DOI: 10.1016/j.phymed.2019.152948] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Huangqi decoction (HQD), a classic traditional herbal medicine, has been used for liver fibrosis, but its effect on intrahepatic chronic cholestatic liver injury remains unknown. PURPOSE In the present study, we investigated the hepatoprotective effect of HQD and the underlying molecular mechanisms in 3, 5-diethoxycarbonyl-1, 4-dihydroxychollidine (DDC)-induced chronic cholestatic mice. METHODS The DDC-induced cholestatic mice were administrated HQD for 4 or 8 weeks. Serum biochemistry and morphology were investigated. The serum and liver bile acid (BA) levels were detected by ultra performance liquid chromatography-tandem mass spectrometry. The liver expression of BA metabolizing enzymes and transporters, and inflammatory and fibrotic markers was measured by real-time polymerase chain reaction, western blotting, and immunohistochemistry. RESULTS HQD treatment for 4 or 8 weeks ameliorated DDC-induced liver injury by improving impaired hepatic function and tissue damage. HQD treatment for 8 weeks further decreased the liver expression of cytokeratin 19, tumor growth factor (TGF)-β, collagen I, and α-smooth muscle actin, and ameliorated ductular reaction and liver fibrosis. HQD markedly decreased the accumulation of serum and liver BA. The expression of BA-metabolizing enzymes, cytochrome P450 2b10 and UDP glucuronosyltransferase 1 A1, and multidrug resistance-associated protein 2, Mrp3, and Mrp4 involved in BA homeostasis was increased by 4 weeks of HQD treatment. The expression of BA uptake transporter Na+-taurocholate cotransporting polypeptide was decreased and that of Mrp4 was increased after 8 weeks of HQD treatment. Nuclear factor-E2-related factor-2 (Nrf2) was remarkably induced by HQD treatment. Additionally, HQD treatment for 8 weeks decreased the liver expression of inflammatory factors, interleukin (IL)-6, IL-1β, tumor necrosis factor-α, monocyte chemoattractant protein-1, and intracellular adhesion molecule-1. HQD suppressed the nuclear factor (NF)-κB pathway. CONCLUSION HQD protected mice against chronic cholestatic liver injury and biliary fibrosis, which may be associated with the induction of the Nrf2 pathway and inhibition of the NF-κB pathway, ameliorating BA-stimulated inflammation.
Collapse
Affiliation(s)
- Wen-Kai Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Feng Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Ming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan-Yuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Fei Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Yi Lu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya-Hang Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201204, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201204, China
| | - Jia-Sheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue-Ming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
44
|
Soroka CJ, Assis DN, Alrabadi LS, Roberts S, Cusack L, Jaffe AB, Boyer JL. Bile-Derived Organoids From Patients With Primary Sclerosing Cholangitis Recapitulate Their Inflammatory Immune Profile. Hepatology 2019; 70:871-882. [PMID: 30561836 DOI: 10.1002/hep.30470] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022]
Abstract
Primary sclerosing cholangitis (PSC) is a heterogeneous and progressive fibroinflammatory cholangiopathy with no known etiology or effective treatment. Studies of PSC are limited due to difficulty in accessing the cholangiocyte, the small percentage of these cells in the liver, instability of in vitro culture systems, and reliance on samples from end-stage disease. Here, we demonstrate that stem cells can be isolated from the bile of PSC patients undergoing endoscopic retrograde cholangiopancreatography earlier in their clinical course and maintained long term in vitro as three-dimensional (3D) organoids that express a biliary genetic phenotype. Additionally, bile-derived organoids (BDOs) can be biobanked and samples obtained longitudinally over the course of the disease. These BDOs express known cholangiocyte markers including gamma glutamyl transferase, cytokeratin 19, epithelial cellular adhesion molecule, cystic fibrosis transmembrane conductance regulator, and anion exchanger 2. RNA sequence analysis identified 39 genes whose expression differed in organoids from PSC patients compared to non-PSC controls, including human leukocyte antigen DM alpha chain and chemokine (C-C motif) ligand 20 (CCL20), immune-related genes previously described in genome-wide association studies of PSC. Incubation of these BDOs with interleukin 17A or tumor necrosis factor alpha led to an immune-reactive phenotype with a significant increase in secretion of proinflammatory mediators, including CCL20, a T-cell chemoattractant. Conclusion: This study demonstrates that bile can be used as a source of biliary-like cells that can be maintained long term in vitro as 3D organoids; these BDOs retain features of cholangiopathies, including the ability to react to inflammatory stimuli by secreting chemokines and propagating an immune-reactive phenotype reflective of the pathogenesis of these diseases; thus, BDOs represent a platform for the study of the pathogenesis and therapy of cholangiopathies, particularly PSC.
Collapse
Affiliation(s)
- Carol J Soroka
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT
| | - David N Assis
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT
| | - Leina S Alrabadi
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, & Nutrition, University of California-San Francisco, San Francisco, CA
| | - Scott Roberts
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT
| | - Laura Cusack
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT
| | - Ariel B Jaffe
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT
| | - James L Boyer
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
45
|
Knockout of α-calcitonin gene-related peptide attenuates cholestatic liver injury by differentially regulating cellular senescence of hepatic stellate cells and cholangiocytes. J Transl Med 2019; 99:764-776. [PMID: 30700848 PMCID: PMC6570540 DOI: 10.1038/s41374-018-0178-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/22/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
α-Calcitonin gene-related peptide (α-CGRP) is a 37-amino acid neuropeptide involved in several pathophysiological processes. α-CGRP is involved in the regulation of cholangiocyte proliferation during cholestasis. In this study, we aimed to evaluate if α-CGRP regulates bile duct ligation (BDL)-induced liver fibrosis by using a α-CGRP knockout (α-CGRP-/-) mouse model. α-CGRP-/- and wild-type (WT) mice were subjected to sham surgery or BDL for 7 days. Then, liver fibrosis and cellular senescence as well as the expression of kinase such as p38 and C-Jun N-terminal protein kinase (JNK) in mitogen-activated protein kinases (MAPK) signaling pathway were evaluated in total liver, together with measurement of cellular senescence in cholangiocytes or hepatic stellate cells (HSCs). There was enhanced hepatic expression of Calca (coding α-CGRP) and the CGRP receptor components (CRLR, RAMP-1 and RCP) in BDL and in both WT α-CGRP-/- and BDL α-CGRP-/- mice, respectively. Moreover, there was increased CGRP serum levels and hepatic mRNA expression of CALCA and CGRP receptor components in late-stage PSC samples compared to healthy control samples. Depletion of α-CGRP reduced liver injury and fibrosis in BDL mice that was associated with enhanced cellular senescence of hepatic stellate cells and reduced senescence of cholangiocytes as well as decreased activation of p38 and JNK MAPK signaling pathway. Cholangiocyte supernatant from BDL α-CGRP-/- mice inhibited the activation and increased cellular senescence of cultured human HSCs (HHSCs) compared to HHSCs stimulated with BDL cholangiocyte supernatant. Taken together, endogenous α-CGRP promoted BDL-induced cholestatic liver fibrosis through differential changes in senescence of HSCs and cholangiocytes and activation of p38 and JNK signaling. Modulation of α-CGRP/CGRP receptor signaling may be key for the management of biliary senescence and liver fibrosis in cholangiopathies.
Collapse
|
46
|
Sato K, Kennedy L, Liangpunsakul S, Kusumanchi P, Yang Z, Meng F, Glaser S, Francis H, Alpini G. Intercellular Communication between Hepatic Cells in Liver Diseases. Int J Mol Sci 2019; 20:ijms20092180. [PMID: 31052525 PMCID: PMC6540342 DOI: 10.3390/ijms20092180] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are perpetuated by the orchestration of hepatocytes and other hepatic non-parenchymal cells. These cells communicate and regulate with each other by secreting mediators such as peptides, hormones, and cytokines. Extracellular vesicles (EVs), small particles secreted from cells, contain proteins, DNAs, and RNAs as cargos. EVs have attracted recent research interests since they can communicate information from donor cells to recipient cells thereby regulating physiological events via delivering of specific cargo mediators. Previous studies have demonstrated that liver cells secrete elevated numbers of EVs during diseased conditions, and those EVs are internalized into other liver cells inducing disease-related reactions such as inflammation, angiogenesis, and fibrogenesis. Reactions in recipient cells are caused by proteins and RNAs carried in disease-derived EVs. This review summarizes cell-to-cell communication especially via EVs in the pathogenesis of liver diseases and their potential as a novel therapeutic target.
Collapse
Grants
- R01 DK110035 NIDDK NIH HHS
- I01 BX000574 BLRD VA
- IK6 BX004601 BLRD VA
- R01 DK108959 NIDDK NIH HHS
- K01 AA026385 NIAAA NIH HHS
- I01 BX001724 BLRD VA
- DK054811, DK076898, DK107310, DK110035, DK062975, AA025997, DK108959, AA025208, DK107682, AA026917, AA026903, AA025157, and AA026385 NIH HHS
Collapse
Affiliation(s)
- Keisaku Sato
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Lindsey Kennedy
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Praveen Kusumanchi
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Temple, TX 76504, USA.
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
47
|
Abstract
Cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, are highly specialized cells residing in a complex anatomic niche where they participate in bile production and homeostasis. Cholangiocytes are damaged in a variety of human diseases termed cholangiopathies, often causing advanced liver failure. The regulation of cholangiocyte transport properties is increasingly understood, as is their anatomical and functional heterogeneity along the biliary tract. Furthermore, cholangiocytes are pivotal in liver regeneration, especially when hepatocyte regeneration is compromised. The role of cholangiocytes in innate and adaptive immune responses, a critical subject relevant to immune-mediated cholangiopathies, is also emerging. Finally, reactive ductular cells are present in many cholestatic and other liver diseases. In chronic disease states, this repair response contributes to liver inflammation, fibrosis and carcinogenesis and is a subject of intense investigation. This Review highlights advances in cholangiocyte research, especially their role in development and liver regeneration, their functional and biochemical heterogeneity, their activation and involvement in inflammation and fibrosis and their engagement with the immune system. We aim to focus further attention on cholangiocyte pathobiology and the search for new disease-modifying therapies targeting the cholangiopathies.
Collapse
|
48
|
Sato K, Glaser S, Kennedy L, Liangpunsakul S, Meng F, Francis H, Alpini G. Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:461-472. [PMID: 30990740 DOI: 10.1080/14728222.2019.1608950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The common predominant clinical features of cholangiopathies such as primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and biliary atresia (BA) are biliary damage/senescence and liver fibrosis. Curative therapies are lacking, and liver transplantation is the only option. An understanding of the mechanisms and pathogenesis is needed to develop novel therapies. Previous studies have developed various disease-based research models and have identified candidate therapeutic targets. Areas covered: This review summarizes recent studies performed in preclinical models of cholangiopathies and the current understanding of the pathophysiology representing potential targets for novel therapies. A literature search was conducted in PubMed using the combination of the searched term 'cholangiopathies' with one or two keywords including 'model', 'cholangiocyte', 'animal', or 'fibrosis'. Papers published within five years were obtained. Expert opinion: Access to appropriate research models is a key challenge in cholangiopathy research; establishing more appropriate models for PBC is an important goal. Several preclinical studies have demonstrated promising results and have led to novel therapeutic approaches, especially for PSC. Further studies on the pathophysiology of PBC and BA are necessary to identify candidate targets. Innovative therapeutic approaches such as stem cell transplantation have been introduced, and those therapies could be applied to PSC, PBC, and BA.
Collapse
Affiliation(s)
- Keisaku Sato
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Shannon Glaser
- c Department of Medical Physiology , Texas A&M University Collage of Medicine , Temple , TX , USA
| | - Lindsey Kennedy
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Suthat Liangpunsakul
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Fanyin Meng
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Heather Francis
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Gianfranco Alpini
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| |
Collapse
|
49
|
Chen L, Zhou T, Wu N, O'Brien A, Venter J, Ceci L, Kyritsi K, Onori P, Gaudio E, Sybenga A, Xie L, Wu C, Fabris L, Invernizzi P, Zawieja D, Liangpunsakul S, Meng F, Francis H, Alpini G, Huang Q, Glaser S. Pinealectomy or light exposure exacerbates biliary damage and liver fibrosis in cholestatic rats through decreased melatonin synthesis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1525-1539. [PMID: 30890428 DOI: 10.1016/j.bbadis.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
Melatonin, a neuroendocrine hormone synthesized by the pineal gland and cholangiocytes, decreases biliary hyperplasia and liver fibrosis during cholestasis-induced biliary injury via melatonin-dependent autocrine signaling through increased biliary arylalkylamine N-acetyltransferase (AANAT) expression and melatonin secretion, downregulation of miR-200b and specific circadian clock genes. Melatonin synthesis is decreased by pinealectomy (PINX) or chronic exposure to light. We evaluated the effect of PINX or prolonged light exposure on melatonin-dependent modulation of biliary damage/ductular reaction/liver fibrosis. Studies were performed in male rats with/without BDL for 1 week with 12:12 h dark/light cycles, continuous light or after 1 week of PINX. The expression of AANAT and melatonin levels in serum and cholangiocyte supernatant were increased in BDL rats, while decreased in BDL rats following PINX or continuous light exposure. BDL-induced increase in serum chemistry, ductular reaction, liver fibrosis, inflammation, angiogenesis and ROS generation were significantly enhanced by PINX or light exposure. Concomitant with enhanced liver fibrosis, we observed increased biliary senescence and enhanced clock genes and miR-200b expression in total liver and cholangiocytes. In vitro, the expression of AANAT, clock genes and miR-200b was increased in PSC human cholangiocyte cell lines (hPSCL). The proliferation and activation of HHStecs (human hepatic stellate cell lines) were increased after stimulating with BDL cholangiocyte supernatant and further enhanced when stimulated with BDL rats following PINX or continuous light exposure cholangiocyte supernatant via intracellular ROS generation. Conclusion: Melatonin plays an important role in the protection of liver against cholestasis-induced damage and ductular reaction.
Collapse
Affiliation(s)
- Lixian Chen
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America; Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, PR China
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Nan Wu
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - April O'Brien
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Julie Venter
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Ludovica Ceci
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Konstantina Kyritsi
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Amelia Sybenga
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States of America
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States of America
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy; Digestive Disease Section, Yale University School of Medicine, New Haven, CT, United States of America
| | | | - David Zawieja
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Research, United States of America; Indiana University, Gastroenterology, Medicine, United States of America
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Qiaobing Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, PR China
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America.
| |
Collapse
|
50
|
Carpino G, Cardinale V, Folseraas T, Overi D, Grzyb K, Costantini D, Berloco PB, Di Matteo S, Karlsen TH, Alvaro D, Gaudio E. Neoplastic Transformation of the Peribiliary Stem Cell Niche in Cholangiocarcinoma Arisen in Primary Sclerosing Cholangitis. Hepatology 2019; 69:622-638. [PMID: 30102768 DOI: 10.1002/hep.30210] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory cholangiopathy frequently complicated by cholangiocarcinoma (CCA). Massive proliferation of biliary tree stem/progenitor cells (BTSCs), expansion of peribiliary glands (PBGs), and dysplasia were observed in PSC. The aims of the present study were to evaluate the involvement of PBGs and BTSCs in CCA which emerged in PSC patients. Specimens from normal liver (n = 5), PSC (n = 20), and PSC-associated CCA (n = 20) were included. Samples were processed for histology, immunohistochemistry, and immunofluorescence. In vitro experiments were performed on human BTSCs, human mucinous primary CCA cell cultures, and human cholangiocyte cell lines (H69). Our results indicated that all CCAs emerging in PSC patients were mucin-producing tumors characterized by PBG involvement and a high expression of stem/progenitor cell markers. Ducts with neoplastic lesions showed higher inflammation, wall thickness, and PBG activation compared to nonneoplastic PSC-affected ducts. CCA showed higher microvascular density and higher expression of nuclear factor kappa B, interleukin-6, interleukin-8, transforming growth factor β, and vascular endothelial growth factor-1 compared to nonneoplastic ducts. CCA cells were characterized by a higher expression of epithelial-to-mesenchymal transition (EMT) traits and by the absence of primary cilia compared to bile ducts and PBG cells in controls and patients with PSC. Our in vitro study demonstrated that lipopolysaccharide and oxysterols (PSC-related stressors) induced the expression of EMT traits, the nuclear factor kappa B pathway, autophagy, and the loss of primary cilia in human BTSCs. Conclusion: CCA arising in patients with PSC is characterized by extensive PBG involvement and by activation of the BTSC niche in these patients, the presence of duct lesions at different stages suggests a progressive tumorigenesis.
Collapse
Affiliation(s)
- Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Krzysztof Grzyb
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Daniele Costantini
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Sabina Di Matteo
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Tom Hemming Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|