1
|
Hu R, Li G, Hu P, Niu H, Li W, Jiang S, Guan G, Xu Q, Liu M, Chen L. bmp10 maintains cardiac function by regulating iron homeostasis. J Genet Genomics 2024:S1673-8527(24)00263-7. [PMID: 39414074 DOI: 10.1016/j.jgg.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Heart disease remains the leading cause of death worldwide. Iron imbalance, whether deficiency or overload, contributes to heart failure. However, the molecular mechanisms governing iron homeostasis in the heart are poorly understood. Here, we demonstrate that mutation of bmp10, a heart-born morphogen crucial for embryonic heart development, results in severe anemia and cardiac hypertrophy in zebrafish. Initially, bmp10 deficiency causes cardiac iron deficiency, which later progresses to iron overload due to the dysregulated hepcidin/ferroportin axis in cardiac cells, leading to ferroptosis and heart failure. Early iron supplementation in bmp10-/- mutants rescues erythropoiesis, while iron chelation in juvenile fishes significantly alleviates cardiac hypertrophy. We further demonstrate that the interplay between HIF1α-driven hypoxic signaling and the IL6/p-STAT3 inflammatory pathways is critical for regulating cardiac iron metabolism. Our findings reveal BMP10 as a key regulator of iron homeostasis in the vertebrate heart and highlight the potential of targeting the BMP10-hepcidin-iron axis as a therapeutic strategy for iron-related cardiomyopathy.
Collapse
Affiliation(s)
- Ruiqin Hu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Genfang Li
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Peng Hu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Hongbo Niu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Wenhao Li
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Shouwen Jiang
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Guijun Guan
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Qianghua Xu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mingli Liu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Zhang L, Li Y, Yang L, Luo Z, Wu Z, Wang J, Qin S, Ren F, Hu T. Inverse association between serum iron levels and Hashimoto's thyroiditis in United States females of reproductive age: analysis of the NHANES 2007-2012. Front Nutr 2024; 11:1410538. [PMID: 39416653 PMCID: PMC11482472 DOI: 10.3389/fnut.2024.1410538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose Hashimoto's thyroiditis (HT) is a significant public health concern, particularly among females. While existing studies have explored the correlation between serum iron levels and HT, limited research has specifically focused on this association in reproductive-age females. Our study aims to investigate the relationship between serum iron and HT. Methods Using data from the National Health and Nutrition Examination Survey (NHANES) database (2007-2012), we employed weighted multivariate logistic regression models, an XGBoost model, and smooth curve fitting. We assessed the correlation between serum iron and HT and examined linear and non-linear relationships with thyroid peroxidase antibodies (TPOAb) and thyroglobulin antibodies (TgAb). Results Among 2,356 participants, each unit increase in serum iron was associated with a 43% reduced risk of HT (Odds Ratios (OR) 0.574; 95% Confidence Interval (CI) 0.572, 0.576). Quartile analysis confirmed these effects. The XGBoost model identified serum iron as the most significant variable correlated with HT. Smooth curves revealed a linear association between log2-transformed serum iron and HT. Additionally, log2-transformed serum iron inversely correlated with TPOAb levels (β -15.47; 95% CI -25.01, -5.92), while a non-linear relationship was observed with TgAb. Conclusion Our study reveals that in reproductive-age women, every unit increase in serum iron is associated with a 43% lower risk of HT, demonstrating an inverse relationship. Additionally, serum iron exhibits a negative correlation with TPOAb and a non-linear association with TgAb.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tianyuan Hu
- Department of Nuclear Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Packer M, Anker SD, Butler J, Cleland JGF, Kalra PR, Mentz RJ, Ponikowski P, Talha KM. Critical re-evaluation of the identification of iron deficiency states and effective iron repletion strategies in patients with chronic heart failure. Eur J Heart Fail 2024; 26:1298-1312. [PMID: 38727791 DOI: 10.1002/ejhf.3237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 06/28/2024] Open
Abstract
According to current guidelines, iron deficiency is defined by a serum ferritin level <100 ng/ml or a transferrin saturation (TSAT) <20% if the serum ferritin level is 100-299 μg/L. These criteria were developed to encourage the use of intravenous iron as an adjunct to erythropoiesis-stimulating agents in the treatment of renal anaemia. However, in patients with heart failure, these criteria are not supported by any pathophysiological or clinical evidence that they identify an absolute or functional iron deficiency state. A low baseline TSAT-but not serum ferritin level-appears to be a reliable indicator of the effect of intravenous iron to reduce major heart failure events. In randomized controlled trials, intravenous iron decreased the risk of cardiovascular death or total heart failure hospitalization in patients with a TSAT <20% (risk ratio 0.67 [0.49-0.92]) but not in patients with a TSAT ≥20% (risk ratio 0.99 [0.74-1.30]), with the magnitude of the risk reduction being proportional to the severity of hypoferraemia. Patients who were enrolled in clinical trials solely because they had a serum ferritin level <100 μg/L showed no significant benefit on heart failure outcomes, and it is noteworthy that serum ferritin levels of 20-300 μg/L lie entirely within the range of normal values for healthy adults. Current guidelines reflect the eligibility criteria of clinical trials, which inadvertently adopted unvalidated criteria to define iron deficiency. Reliance on these guidelines would lead to the treatment of many patients who are not iron deficient (serum ferritin level <100 μg/L but normal TSAT) and ignores the possibility of iron deficiency in patients with a low TSAT but with serum ferritin level of >300 μg/L. Importantly, analyses of benefit based on trial eligibility-driven guidelines substantially underestimate the magnitude of heart-failure-event risk reduction with intravenous iron in patients who are truly iron deficient. Based on all available data, we recommend a new mechanism-based and trial-tested approach that reflects the totality of evidence more faithfully than the historical process adopted by clinical investigators and by the guidelines. Until additional evidence is forthcoming, an iron deficiency state in patients with heart failure should be defined by a TSAT <20% (as long as the serum ferritin level is <400 μg/L), and furthermore, the use of a serum ferritin level <100 μg/L alone as a diagnostic criterion should be discarded.
Collapse
Affiliation(s)
- Milton Packer
- Baylor University Medical Center, Dallas, TX, USA
- Imperial College, London, UK
| | - Stefan D Anker
- Department of Cardiology of German Heart Center Charité, Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research, Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Javed Butler
- Baylor Scott and White Research Institute, Baylor University Medical Center, Dallas, TX, USA
- University of Mississippi Medical Center, Jackson, MS, USA
| | - John G F Cleland
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Paul R Kalra
- Department of Cardiology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
- Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Robert J Mentz
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, and Duke Clinical Research Institute, Durham, NC, USA
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | | |
Collapse
|
4
|
Kluknavsky M, Micurova A, Skratek M, Balis P, Okuliarova M, Manka J, Bernatova I. A Single Infusion of Polyethylene Glycol-Coated Superparamagnetic Magnetite Nanoparticles Alters Differently the Expressions of Genes Involved in Iron Metabolism in the Liver and Heart of Rats. Pharmaceutics 2023; 15:pharmaceutics15051475. [PMID: 37242717 DOI: 10.3390/pharmaceutics15051475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated genotype- and tissue-related differences in the biodistribution of superparamagnetic magnetite (Fe3O4) nanoparticles (IONs) into the heart and liver of normotensive Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats after a single i.v. infusion of polyethylene glycol-coated IONs (~30 nm, 1mg Fe/kg) 100 min post-infusion. The effects of IONs on the expression of selected genes involved in the regulation of iron metabolism, including Nos, Sod and Gpx4, and their possible regulation by nuclear factor (erythroid-derived 2)-like 2 (NRF2, encoded by Nfe2l2) and iron-regulatory protein (encoded by Irp1) were investigated. In addition, superoxide and nitric oxide (NO) production were determined. Results showed reduced ION incorporations into tissues of SHR compared to WKY and in the hearts compared to the livers. IONs reduced plasma corticosterone levels and NO production in the livers of SHR. Elevated superoxide production was found only in ION-treated WKY. Results also showed differences in the regulation of iron metabolism on the gene level in the heart and liver. In the hearts, gene expressions of Nos2, Nos3, Sod1, Sod2, Fpn, Tf, Dmt1 and Fth1 correlated with Irp1 but not with Nfe2l2, suggesting that their expression is regulated by mainly iron content. In the livers, expressions of Nos2, Nos3, Sod2, Gpx4, and Dmt1 correlated with Nfe2l2 but not with Irp1, suggesting a predominant effect of oxidative stress and/or NO.
Collapse
Affiliation(s)
- Michal Kluknavsky
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia
| | - Andrea Micurova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia
| | - Martin Skratek
- Institute of Measurement Science, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Peter Balis
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia
| | - Monika Okuliarova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Jan Manka
- Institute of Measurement Science, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Iveta Bernatova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia
| |
Collapse
|
5
|
Xu L, Liu Y, Chen X, Zhong H, Wang Y. Ferroptosis in life: To be or not to be. Biomed Pharmacother 2023; 159:114241. [PMID: 36634587 DOI: 10.1016/j.biopha.2023.114241] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death, characterized by a dysregulated iron metabolism and accumulation of lipid peroxides. It features the alteration of mitochondria and aberrant accumulation of excessive iron as well as loss of the cysteine-glutathione-GPX4 axis. Eventually, the accumulated lipid peroxides result in lethal damage to the cells. Ferroptosis is induced by the overloading of iron and the accumulation of ROS and can be inhibited by the activation of the GPX4 pathway, FS1-CoQ10 pathway, GCH1-BH4 pathway, and the DHODH pathway, it is also regulated by the oncogenes and tumor suppressors. Ferroptosis involves various physiological and pathological processes, and increasing evidence indicates that ferroptosis play a critical role in cancers and other diseases. It inhibits the proliferation of malignant cells in various types of cancers and inducing ferroptosis may become a new method of cancer treatment. Many inhibitors targeting the key factors of ferroptosis such as SLC7A11, GPX4, and iron overload have been developed. The application of ferroptosis is mainly divided into two directions, i.e. to avoid ferroptosis in healthy cells and selectively induce ferroptosis in cancers. In this review, we provide a critical analysis of the concept, and regulation pathways of ferroptosis and explored its roles in various diseases, we also summarized the compounds targeting ferroptosis, aiming to promote the speed of clinical use of ferroptosis induction in cancer treatment.
Collapse
Affiliation(s)
- Ling Xu
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA 96813
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Glutathione system enhancement for cardiac protection: pharmacological options against oxidative stress and ferroptosis. Cell Death Dis 2023; 14:131. [PMID: 36792890 PMCID: PMC9932120 DOI: 10.1038/s41419-023-05645-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
The glutathione (GSH) system is considered to be one of the most powerful endogenous antioxidant systems in the cardiovascular system due to its key contribution to detoxifying xenobiotics and scavenging overreactive oxygen species (ROS). Numerous investigations have suggested that disruption of the GSH system is a critical element in the pathogenesis of myocardial injury. Meanwhile, a newly proposed type of cell death, ferroptosis, has been demonstrated to be closely related to the GSH system, which affects the process and outcome of myocardial injury. Moreover, in facing various pathological challenges, the mammalian heart, which possesses high levels of mitochondria and weak antioxidant capacity, is susceptible to oxidant production and oxidative damage. Therefore, targeted enhancement of the GSH system along with prevention of ferroptosis in the myocardium is a promising therapeutic strategy. In this review, we first systematically describe the physiological functions and anabolism of the GSH system, as well as its effects on cardiac injury. Then, we discuss the relationship between the GSH system and ferroptosis in myocardial injury. Moreover, a comprehensive summary of the activation strategies of the GSH system is presented, where we mainly identify several promising herbal monomers, which may provide valuable guidelines for the exploration of new therapeutic approaches.
Collapse
|
7
|
Abstract
The cardiovascular system requires iron to maintain its high energy demands and metabolic activity. Iron plays a critical role in oxygen transport and storage, mitochondrial function, and enzyme activity. However, excess iron is also cardiotoxic due to its ability to catalyze the formation of reactive oxygen species and promote oxidative damage. While mammalian cells have several redundant iron import mechanisms, they are equipped with a single iron-exporting protein, which makes the cardiovascular system particularly sensitive to iron overload. As a result, iron levels are tightly regulated at many levels to maintain homeostasis. Iron dysregulation ranges from iron deficiency to iron overload and is seen in many types of cardiovascular disease, including heart failure, myocardial infarction, anthracycline-induced cardiotoxicity, and Friedreich's ataxia. Recently, the use of intravenous iron therapy has been advocated in patients with heart failure and certain criteria for iron deficiency. Here, we provide an overview of systemic and cellular iron homeostasis in the context of cardiovascular physiology, iron deficiency, and iron overload in cardiovascular disease, current therapeutic strategies, and future perspectives.
Collapse
Affiliation(s)
- Konrad Teodor Sawicki
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Adam De Jesus
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
8
|
Massaiu I, Campodonico J, Mapelli M, Salvioni E, Valerio V, Moschetta D, Myasoedova VA, Cappellini MD, Pompilio G, Poggio P, Agostoni P. Dysregulation of Iron Metabolism-Linked Genes at Myocardial Tissue and Cell Levels in Dilated Cardiomyopathy. Int J Mol Sci 2023; 24:ijms24032887. [PMID: 36769209 PMCID: PMC9918212 DOI: 10.3390/ijms24032887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
In heart failure, the biological and clinical connection between abnormal iron homeostasis, myocardial function, and prognosis is known; however, the expression profiles of iron-linked genes both at myocardial tissue and single-cell level are not well defined. Through publicly available bulk and single-nucleus RNA sequencing (RNA-seq) datasets of left ventricle samples from adult non-failed (NF) and dilated cardiomyopathy (DCM) subjects, we aim to evaluate the altered iron metabolism in a diseased condition, at the whole cardiac tissue and single-cell level. From the bulk RNA-seq data, we found 223 iron-linked genes expressed at the myocardial tissue level and 44 differentially expressed between DCM and NF subjects. At the single-cell level, at least 18 iron-linked expressed genes were significantly regulated in DCM when compared to NF subjects. Specifically, the iron metabolism in DCM cardiomyocytes is altered at several levels, including: (1) imbalance of Fe3+ internalization (SCARA5 down-regulation) and reduction of internal conversion from Fe3+ to Fe2+ (STEAP3 down-regulation), (2) increase of iron consumption to produce hemoglobin (HBA1/2 up-regulation), (3) higher heme synthesis and externalization (ALAS2 and ABCG2 up-regulation), (4) lower cleavage of heme to Fe2+, biliverdin and carbon monoxide (HMOX2 down-regulation), and (5) positive regulation of hepcidin (BMP6 up-regulation).
Collapse
Affiliation(s)
| | | | | | | | | | - Donato Moschetta
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | | | - Maria Domenica Cappellini
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Paolo Poggio
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Correspondence: (P.P.); (P.A.); Tel.: +39-02-5800-2853 (P.P.); +39-02-5800-2488 (P.A.)
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Correspondence: (P.P.); (P.A.); Tel.: +39-02-5800-2853 (P.P.); +39-02-5800-2488 (P.A.)
| |
Collapse
|
9
|
Appiah D, Schreiner PJ, Pankow JS, Brock G, Tang W, Norby FL, Michos ED, Ballantyne CM, Folsom AR. Long-term changes in plasma proteomic profiles in premenopausal and postmenopausal Black and White women: the Atherosclerosis Risk in Communities study. Menopause 2022; 29:1150-1160. [PMID: 35969495 PMCID: PMC9509415 DOI: 10.1097/gme.0000000000002031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The activity, localization, and turnover of proteins within cells and plasma may contribute to physiologic changes during menopause and may influence disease occurrence. We examined cross-sectional differences and long-term changes in plasma proteins between premenopausal and naturally postmenopausal women. METHODS We used data from 4,508 (19% Black) women enrolled in the Atherosclerosis Risk in Communities study. SOMAscan multiplexed aptamer technology was used to measure 4,697 plasma proteins. Linear regression models were used to compare differences in proteins at baseline (1993-1995) and 18-year change in proteins from baseline to 2011-2013. RESULTS At baseline, 472 women reported being premenopausal and 4,036 women reported being postmenopausal, with average ages of 52.3 and 61.4 years, respectively. A greater proportion of postmenopausal women had diabetes (15 vs 9%), used hypertension (38 vs 27%) and lipid-lowering medications (10 vs 3%), and had elevated total cholesterol and waist girth. In multivariable adjusted models, 38 proteins differed significantly between premenopausal and postmenopausal women at baseline, with 29 of the proteins also showing significantly different changes between groups over the 18-year follow-up as the premenopausal women also reached menopause. These proteins were associated with various molecular/cellular functions (cellular development, growth, proliferation and maintenance), physiological system development (skeletal and muscular system development, and cardiovascular system development and function), and diseases/disorders (hematological and metabolic diseases and developmental disorders). CONCLUSIONS We observed significantly different changes between premenopausal and postmenopausal women in several plasma proteins that reflect many biological processes. These processes may help to understand disease development during the postmenopausal period.
Collapse
Affiliation(s)
- Duke Appiah
- Department of Public Health, Texas Tech University Health Sciences Center, Lubbock TX
| | - Pamela J. Schreiner
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - James S. Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Guy Brock
- Department of Biostatistics, The Ohio State University, Columbus OH
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Faye L. Norby
- Department of Cardiology, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA
| | - Erin D. Michos
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MA
| | | | - Aaron R. Folsom
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| |
Collapse
|
10
|
Kozłowska B, Sochanowicz B, Kraj L, Palusińska M, Kołsut P, Szymański Ł, Lewicki S, Śmigielski W, Kruszewski M, Leszek P. Expression of Iron Metabolism Proteins in Patients with Chronic Heart Failure. J Clin Med 2022; 11:jcm11030837. [PMID: 35160288 PMCID: PMC8837054 DOI: 10.3390/jcm11030837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/25/2022] Open
Abstract
In heart failure, iron deficiency is a common comorbid disease that negatively influences exercise tolerance, number of hospitalizations and mortality rate, and this is why iron iv supplementation is recommended. Little is known about the changes in iron-related proteins in the human HF myocardium. The purpose of this study was to assess iron-related proteins in non-failing (NFH) vs. failing (FH) human myocardium. The study group consisted of 58 explanted FHs; control consisted of 31 NFHs unsuitable for transplantation. Myocardial proteins expressions: divalent metal transporter (DMT-1); L-type calcium channel (L-CH); transferrin receptors (TfR-1/TfR-2); ferritins: heavy (FT-H) or light (FT-L) chain, mitochondrial (FT-MT); ferroportin (FPN), regulatory factors and oxidative stress marker: 4-hydroxynonenal (4-HNE). In FH, the expression in almost all proteins responsible for iron transport: DMT-1, TfR-1, L-CH, except TfR-2, and storage: FT-H/-L/-MT were reduced, with no changes in FPN. Moreover, 4-HNE expression (pg/mg; NFH 10.6 ± 8.4 vs. FH 55.7 ± 33.7; p < 0.0001) in FH was increased. HNE-4 significantly correlated with DMT-1 (r = −0.377, p = 0.036), L-CH (r = −0.571, p = 0.001), FT-H (r = −0.379, p = 0.036), also FPN (r = 0.422, p = 0.018). Reducing iron-gathering proteins and elevated oxidative stress in failing hearts is very unfavorable for myocardiocytes. It should be taken into consideration before treatment with drugs or supplements that elevate free oxygen radicals in the heart.
Collapse
Affiliation(s)
- Bogna Kozłowska
- Department of Heart Failure and Transplantology, The Cardinal Stefan Wyszyński National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
| | - Barbara Sochanowicz
- Centre of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa, Poland; (B.S.); (M.K.)
| | - Leszek Kraj
- Department of Oncology, Medical University of Warsaw, 01-163 Warsaw, Poland;
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland; (M.P.); (Ł.S.); (S.L.)
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland; (M.P.); (Ł.S.); (S.L.)
| | - Piotr Kołsut
- Department of Cardiac Surgery and Transplantology, The Cardinal Stefan Wyszyński National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland; (M.P.); (Ł.S.); (S.L.)
| | - Sławomir Lewicki
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland; (M.P.); (Ł.S.); (S.L.)
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland
| | - Witold Śmigielski
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, The Cardinal Stefan Wyszyński National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
| | - Marcin Kruszewski
- Centre of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa, Poland; (B.S.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Przemysław Leszek
- Department of Heart Failure and Transplantology, The Cardinal Stefan Wyszyński National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-3434-483
| |
Collapse
|
11
|
Ceelen D, Voors AA, Tromp J, van Veldhuisen DJ, Dickstein K, de Boer RA, Lang CC, Anker SD, Ng LL, Metra M, Ponikowski P, Figarska SM. Pathophysiological pathways related to high plasma GDF-15 concentrations in patients with heart failure. Eur J Heart Fail 2022; 24:308-320. [PMID: 34989084 PMCID: PMC9302623 DOI: 10.1002/ejhf.2424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022] Open
Abstract
AIMS Elevated concentrations of Growth Differentiation factor 15 (GDF-15) in patients with heart failure (HF) have been consistently associated with worse clinical outcomes, but what disease mechanisms high GDF-15 concentrations represent remains unclear. Here, we aim to identify activated pathophysiological pathways related to elevated GDF-15 expression in patients with HF. METHODS AND RESULTS In 2279 patients with HF, we measured circulating levels of 363 biomarkers. Then, we performed a pathway over-representation analysis to identify key biological pathways between patients in the highest and lowest GDF-15 concentration quartiles. Data were validated in an independent cohort of 1705 patients with HF. In both cohorts, the strongest up-regulated biomarkers in those with high GDF-15 were fibroblast growth factor 23 (FGF-23), death receptor 5 (TRAIL-R2), WNT1-inducible-signaling pathway protein 1 (WISP-1), TNF Receptor Superfamily Member 11a (TNFRSF11A), leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4), and Trefoil Factor 3 (TFF3). Pathway over-representation analysis revealed that high GDF-15 patients had increased activity of pathways related to inflammatory processes, notably positive regulation of chemokine production; response to interleukin 6 (IL-6); tumour necrosis factor (TNF) and death receptor activity; and positive regulation of T cell differentiation and inflammatory response. Furthermore, we found pathways involved in regulation of insulin-like growth factor (IGF) receptor signalling and regulatory pathways of tissue, bones, and branching structures. GDF-15 quartiles significantly predicted all-cause mortality and HF hospitalization. CONCLUSION Patients with HF and high plasma concentrations of GDF-15 are characterized by increased activation of inflammatory pathways and pathways related to IGF-1 regulation and bone/tissue remodelling.
Collapse
Affiliation(s)
- Daan Ceelen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jasper Tromp
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,National Heart Centre Singapore, Singapore
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kenneth Dickstein
- University of Bergen, Bergen, Norway.,Stavanger University Hospital, Stavanger, Norway
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chim C Lang
- School of Medicine Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Stefan D Anker
- Department of Cardiology (CVK); and Berlin Institute of Health Center for Regenerative Therapies (BCRT); German Centre for Cardiovascular Research (DZHK) partner site Berlin; Charité Universitätsmedizin Berlin, Germany
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Piotr Ponikowski
- Department of Heart Diseases, Wrocław Medical University, Wroclaw, Poland; Center for Heart Diseases, University Hospital in Wrocław, Wroclaw, Poland
| | - Sylwia M Figarska
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Lees JG, Napierala M, Pébay A, Dottori M, Lim SY. Cellular pathophysiology of Friedreich's ataxia cardiomyopathy. Int J Cardiol 2022; 346:71-78. [PMID: 34798207 DOI: 10.1016/j.ijcard.2021.11.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022]
Abstract
Friedreich's ataxia (FRDA) is a hereditary neuromuscular disorder. Cardiomyopathy is the leading cause of premature death in FRDA. FRDA cardiomyopathy is a complex and progressive disease with no cure or treatment to slow its progression. At the cellular level, cardiomyocyte hypertrophy, apoptosis and fibrosis contribute to the cardiac pathology. However, the heart is composed of multiple cell types and several clinical studies have reported the involvement of cardiac non-myocytes such as vascular cells, autonomic neurons, and inflammatory cells in the pathogenesis of FRDA cardiomyopathy. In fact, several of the cardiac pathologies associated with FRDA including cardiomyocyte necrosis, fibrosis, and arrhythmia, could be contributed to by a diseased vasculature and autonomic dysfunction. Here, we review available evidence regarding the current understanding of cellular mechanisms for, and the involvement of, cardiac non-myocytes in the pathogenesis of FRDA cardiomyopathy.
Collapse
Affiliation(s)
- Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, School of Medicine, Molecular Horizons, University of Wollongong, New South Wales 2522, Australia; Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
13
|
Jayakumar D, S Narasimhan KK, Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J Trace Elem Med Biol 2022; 69:126882. [PMID: 34710708 DOI: 10.1016/j.jtemb.2021.126882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain. To handle this tremendous level of oxygen, the iron metabolism in the heart is utmost crucial. Iron availability to the heart is therefore tightly regulated by (i) the hepcidin/ferroportin axis, which controls dietary iron absorption, storage, and recycling, and (ii) iron regulatory proteins 1 and 2 (IRP1/2) via hypoxia inducible factor 1 (HIF1) pathway. Despite iron being vital to the heart, recent investigations have demonstrated that iron imbalance is a common manifestation in conditions of heart failure (HF), since free iron readily transforms between Fe2+ and Fe3+via the Fenton reaction, leading to reactive oxygen species (ROS) production and oxidative damage. Therefore, to combat iron-mediated oxidative stress, targeting Nrf2/ARE antioxidant signaling is rational. The involvement of Nrf2 in regulating several genes engaged in heme synthesis, iron storage, and iron export is beginning to be uncovered. Consequently, it is possible that Nrf2/hepcidin/ferroportin might act as an epicenter connecting iron metabolism to redox alterations. However, the mechanism bridging the two remains obscure. In this review, we tried to summarize the contemporary insight of how cardiomyocytes regulate intracellular iron levels and discussed the mechanisms linking cardiac dysfunction with iron imbalance. Further, we emphasized the impact of Nrf2 on the interplay between systemic/cardiac iron control in the context of heart disease, particularly in myocardial ischemia and HF.
Collapse
Affiliation(s)
- Deepthy Jayakumar
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neurosciences, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
14
|
Vinchi F. Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxid Redox Signal 2021; 35:387-414. [PMID: 33554718 PMCID: PMC8328045 DOI: 10.1089/ars.2020.8167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Significance: While atherosclerosis is an almost inevitable consequence of aging, food preferences, lack of exercise, and other aspects of the lifestyle in many countries, the identification of new risk factors is of increasing importance to tackle a disease, which has become a major health burden for billions of people. Iron has long been suspected to promote the development of atherosclerosis, but data have been conflicting, and the contribution of iron is still debated controversially. Recent Advances: Several experimental and clinical studies have been recently published about this longstanding controversial problem, highlighting the critical need to unravel the complexity behind this topic. Critical Issues: The aim of the current review is to provide an overview of the current knowledge about the proatherosclerotic impact of iron, and discuss the emerging role of non-transferrin-bound iron (NTBI) as driver of vasculotoxicity and atherosclerosis. Finally, I will provide detailed mechanistic insights on the cellular processes and molecular pathways underlying iron-exacerbated atherosclerosis. Overall, this review highlights a complex framework where NTBI acts at multiple levels in atherosclerosis by altering the serum and vascular microenvironment in a proatherogenic and proinflammatory manner, affecting the functionality and survival of vascular cells, promoting foam cell formation and inducing angiogenesis, calcification, and plaque destabilization. Future Directions: The use of additional iron markers (e.g., NTBI) may help adequately predict predisposition to cardiovascular disease. Clinical studies are needed in the aging population to address the atherogenic role of iron fluctuations within physiological limits and the therapeutic value of iron restriction approaches. Antioxid. Redox Signal. 35, 387-414.
Collapse
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), New York Blood Center (NYBC), New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
15
|
Weinmann K, Werner J, Rottbauer W, Keßler M. Immunoadsorption for heart failure is associated with normalization of iron metabolism. Biomarkers 2021; 26:395-400. [PMID: 33843393 DOI: 10.1080/1354750x.2021.1904001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIMS In heart failure (HF) patients, early stages are associated with increased iron levels, whereas iron deficiency is a common feature of chronic HF. We investigated the acute and long-term changes in iron metabolism in HF patients after immunoadsorption treatment and intravenous immunoglobulin (IVIG) administration. METHODS AND RESULTS Twenty-seven patients with HF with reduced ejection fraction (HFrEF) received a single cycle of immunoadsorption followed by IVIG administration. Left ventricular ejection fraction (LVEF) and iron biomarker (ferritin, hepcidin and interleukin-6) were evaluated at baseline, after immunoadsorption and during long-term follow-up of 29.3 months. LVEF improved significantly after immunoadsorption treatment from baseline 27% to 43% at long-term follow-up. Ferritin decreased from baseline 300.2 to 201.3 ng/mL (p < 0.0001) during immunoadsorption treatment and normalized during long-term to 207.9 ng/mL. Hepcidin showed a V-shaped course, with a significant decrease after immunoadsorption and normalization during long-term. Interleukin-6 levels showed no relevant inflammation. CONCLUSIONS Our data suggest that initial high serum ferritin and hepcidin levels indicate elevated iron levels characteristic of early stages of HFrEF, without inflammation. Normalization of hepcidin and ferritin was paralleled by restoration of systolic cardiac function after immunoadsorption treatment, without development of iron deficiency, as usually observed in chronic HF.
Collapse
Affiliation(s)
- Karolina Weinmann
- Department of Internal Medicine II - Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Jakob Werner
- Department of Internal Medicine II - Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Wolfgang Rottbauer
- Department of Internal Medicine II - Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Mirjam Keßler
- Department of Internal Medicine II - Cardiology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
16
|
Afsar RE, Kanbay M, Ibis A, Afsar B. In-depth review: is hepcidin a marker for the heart and the kidney? Mol Cell Biochem 2021; 476:3365-3381. [PMID: 33942218 DOI: 10.1007/s11010-021-04168-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Iron is an essential trace element involved in oxidation-reduction reactions, oxygen transport and storage, and energy metabolism. Iron in excess can be toxic for cells, since iron produces reactive oxygen species and is important for survival of pathogenic microbes. There is a fine-tuning in the regulation of serum iron levels, determined by intestinal absorption, macrophage iron recycling, and mobilization of hepatocyte stores versus iron utilization, primarily by erythroid cells in the bone marrow. Hepcidin is the major regulatory hormone of systemic iron homeostasis and is upregulated during inflammation. Hepcidin metabolism is altered in chronic kidney disease. Ferroportin is an iron export protein and mediates iron release into the circulation from duodenal enterocytes, splenic reticuloendothelial macrophages, and hepatocytes. Systemic iron homeostasis is controlled by the hepcidin-ferroportin axis at the sites of iron entry into the circulation. Hepcidin binds to ferroportin, induces its internalization and intracellular degradation, and thus inhibits iron absorption from enterocytes, and iron release from macrophages and hepatocytes. Recent data suggest that hepcidin, by slowing or preventing the mobilization of iron from macrophages, may promote atherosclerosis and may be associated with increased cardiovascular disease risk. This article reviews the current data regarding the molecular and cellular pathways of systemic and autocrine hepcidin production and seeks the answer to the question whether changes in hepcidin translate into clinical outcomes of all-cause and cardiovascular mortality, and cardiovascular and renal end-points.
Collapse
Affiliation(s)
- Rengin Elsurer Afsar
- Department of Nephrology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Mehmet Kanbay
- Department of Nephrology, Faculty of Medicine, Koc University, Istanbul, Turkey
| | - Avsin Ibis
- Department of Nephrology, Afyon Kocatepe Devlet Hastanesi, Afyon, Turkey
| | - Baris Afsar
- Department of Nephrology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
17
|
Del Vecchio L, Ekart R, Ferro CJ, Malyszko J, Mark PB, Ortiz A, Sarafidis P, Valdivielso JM, Mallamaci F. Intravenous iron therapy and the cardiovascular system: risks and benefits. Clin Kidney J 2021; 14:1067-1076. [PMID: 34188903 PMCID: PMC8223589 DOI: 10.1093/ckj/sfaa212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Anaemia is a common complication of chronic kidney disease (CKD). In this setting, iron deficiency is frequent because of the combination of increased iron needs to sustain erythropoiesis with increased iron losses. Over the years, evidence has accumulated on the involvement of iron in influencing pulmonary vascular resistance, endothelial function, atherosclerosis progression and infection risk. For decades, iron therapy has been the mainstay of therapy for renal anaemia together with erythropoiesis-stimulating agents (ESAs). Despite its long-standing use, grey areas still surround the use of iron therapy in CKD. In particular, the right balance between either iron repletion with adequate therapy and the avoidance of iron overload and its possible negative effects is still a matter of debate. This is particularly true in patients having functional iron deficiency. The recent Proactive IV Iron Therapy in Haemodialysis Patients trial supports the use of intravenous (IV) iron therapy until a ferritin upper limit of 700 ng/mL is reached in haemodialysis patients on ESA therapy, with short dialysis vintage and minimal signs of inflammation. IV iron therapy has also been proven to be effective in the setting of heart failure (HF), where it improves exercise capacity and quality of life and possibly reduces the risk of HF hospitalizations and cardiovascular deaths. In this review we discuss the risks of functional iron deficiency and the possible benefits and risks of iron therapy for the cardiovascular system in the light of old and new evidence.
Collapse
Affiliation(s)
- Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant’Anna Hospital, ASST Lariana, Como, Italy
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Clinical Center Maribor, Maribor, Slovenia
| | - Charles J Ferro
- Renal Unit, University Hospitals Birmingham and Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Disease, Medical University of Warsaw, Warsaw, Poland
| | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jose M Valdivielso
- Vascular and Renal Translational Research Group and UDETMA, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Francesca Mallamaci
- CNR-IFC Clinical Epidemiology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | | |
Collapse
|
18
|
Darvishi-Khezri H, Karami H. Luspatercept: A Gigantic Step in the Treatment of Transfusion-Dependent β-Thalassemia Patients-a Quick Review. Adv Ther 2021; 38:1732-1745. [PMID: 33661441 DOI: 10.1007/s12325-021-01663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/10/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Some studies have indicated that the use of luspatercept may be a novel and efficient treatment for β-thalassemia patients. In this article, we aimed to review the current evidence related to luspatercept prescription and its clinical effectiveness in patients with β-thalassemia. METHODS PubMed, Web of Science, Scopus, Trip and CENTRAL were searched up to June 2020. The inclusion criteria were English-language articles that studied the effects of luspatercept on improving anemia severity in patients with β-thalassemia in a clinical setting. RESULTS The search strategy yielded 273 potentially relevant articles. After searching the databases, scanning of titles, abstracts and full texts for relevancy was performed to identify suitable articles. A total of 77 articles were confirmed for full text analysis. The estimated number of patients needed to treat (NNT) for luspatercept treatment, using data derived from conducted clinical trials, according to a reduction in transfusion need of ≥ 33% or ≥ 50 from baseline, during week 13-24/week 37-48/any 12- and 24-week intervals as outcomes, was 3-5 in patients with β-thalassemia. CONCLUSION Based on the conducted studies, the effectiveness of luspatercept on transfusion burden and hemoglobin levels was outstanding in β-thalassemia patients. Further large and well-designed clinical studies are needed to identify any unforeseen complications subsequent to use of luspatercept, particularly when used with other treatments with potentially serious adverse effects such as anti-osteoporotic and iron chelator agents.
Collapse
|
19
|
Knezevic J, Starchl C, Tmava Berisha A, Amrein K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients 2020; 12:E1769. [PMID: 32545596 PMCID: PMC7353203 DOI: 10.3390/nu12061769] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
A healthy gut microbiota not only has beneficial effects on the activity of the immune system, but also on thyroid function. Thyroid and intestinal diseases prevalently coexist-Hashimoto's thyroiditis (HT) and Graves' disease (GD) are the most common autoimmune thyroid diseases (AITD) and often co-occur with Celiac Disease (CD) and Non-celiac wheat sensitivity (NCWS). This can be explained by the damaged intestinal barrier and the following increase of intestinal permeability, allowing antigens to pass more easily and activate the immune system or cross-react with extraintestinal tissues, respectively. Dysbiosis has not only been found in AITDs, but has also been reported in thyroid carcinoma, in which an increased number of carcinogenic and inflammatory bacterial strains were observed. Additionally, the composition of the gut microbiota has an influence on the availability of essential micronutrients for the thyroid gland. Iodine, iron, and copper are crucial for thyroid hormone synthesis, selenium and zinc are needed for converting T4 to T3, and vitamin D assists in regulating the immune response. Those micronutrients are often found to be deficient in AITDs, resulting in malfunctioning of the thyroid. Bariatric surgery can lead to an inadequate absorption of these nutrients and further implicates changes in thyroid stimulating hormone (TSH) and T3 levels. Supplementation of probiotics showed beneficial effects on thyroid hormones and thyroid function in general. A literature research was performed to examine the interplay between gut microbiota and thyroid disorders that should be considered when treating patients suffering from thyroid diseases. Multifactorial therapeutic and preventive management strategies could be established and more specifically adjusted to patients, depending on their gut bacteria composition. Future well-powered human studies are warranted to evaluate the impact of alterations in gut microbiota on thyroid function and diseases.
Collapse
Affiliation(s)
- Jovana Knezevic
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (J.K.); (K.A.)
| | - Christina Starchl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (J.K.); (K.A.)
| | - Adelina Tmava Berisha
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (J.K.); (K.A.)
| |
Collapse
|
20
|
Abstract
Iron deficiency (ID) is a common and ominous comorbidity in heart failure (HF) and predicts worse outcomes, independently of the presence of anaemia. Accumulated data from animal models of systemic ID suggest that ID is associated with several functional and structural abnormalities of the heart. However, the exact role of myocardial iron deficiency irrespective of systemic ID and/or anaemia has been elusive. Recently, several transgenic models of cardiac-specific ID have been developed to investigate the influence of ID on cardiac tissue. In this review, we discuss structural and functional cardiac consequences of ID in these models and summarize data from clinical studies. Moreover, the beneficial effects of intravenous iron supplementation are specified.
Collapse
|
21
|
Ghanavat M, Haybar H, Pezeshki SMS, Shahjahani M, Jodat H, Elyasi M, Saki N. Cardiomyopathy in Thalassemia: Quick Review from Cellular Aspects to Diagnosis and Current Treatments. Lab Med 2020; 51:143-150. [PMID: 32155272 DOI: 10.1093/labmed/lmz052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cardiomyopathic manifestations induced by continuous blood transfusion are the leading cause of death among patients with thalassemia major (TM). Despite introduction of chelation therapy, heart failure after cardiomyopathic manifestations is still a major threat to patients. METHODS We performed a search of relevant English-language literature, retrieving publications from the PubMed database and the Google Scholar search engine (2005-2018). We used "thalassemia major", "cardiomyopathy", "iron overload", "cardiac magnetic resonance T2" "chelation therapy", and "iron burden" as keywords. RESULTS The results of the studies we found suggest that cardiac hepcidin is a major regulator of iron homeostasis in cardiac tissue. Unlike previous assumptions, the heart appears to have a limited regeneration capability, originating from a small population of hypoxic cardiomyocytes. CONCLUSIONS Oxygen levels determine cardiomyocyte gene-expression patterns. Upregulation of cardiac hepcidin in hypoxia preserves cardiomyocytes from forming out of reactive oxygen species catalyzed by free cellular iron in cardiomyocytes. Using the limited regeneration capacity of cardiac cells and gaining further understanding of the cellular aspects of cardiomyopathic manifestations may help health care professionals to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Majid Ghanavat
- Child Growth & Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hosein Jodat
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Milad Elyasi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Child Growth & Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Bolotta A, Pini A, Abruzzo PM, Ghezzo A, Modesti A, Gamberi T, Ferreri C, Bugamelli F, Fortuna F, Vertuani S, Manfredini S, Zucchini C, Marini M. Effects of tocotrienol supplementation in Friedreich's ataxia: A model of oxidative stress pathology. Exp Biol Med (Maywood) 2020; 245:201-212. [PMID: 31795754 PMCID: PMC7045332 DOI: 10.1177/1535370219890873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023] Open
Abstract
Friedreich’s ataxia is an autosomal recessive disorder characterized by impaired mitochondrial function, resulting in oxidative stress. In this study, we aimed at evaluating whether tocotrienol, a phytonutrient that diffuses easily in tissues with saturated fatty layers, could complement the current treatment with idebenone, a quinone analogue with antioxidant properties. Five young Friedreich’s ataxia patients received a low-dose tocotrienol supplementation (5 mg/kg/day), while not discontinuing idebenone treatment. Several oxidative stress markers and biological parameters related to oxidative stress were evaluated at the time of initiation of treatment and 2 and 12 months post-treatment. Some oxidative stress-related parameters and some inflammation indices were altered in Friedreich’s ataxia patients taking idebenone alone and tended to be normal values following tocotrienol supplementation; likewise, a cardiac magnetic resonance study showed some improvement following one-year tocotrienol treatment. The pathway by which tocotrienol affects the Nrf2 modulation of hepcidin gene expression, a peptide involved in iron handling and in inflammatory responses, is viewed in the light of the disruption of the iron intracellular distribution and of the Nrf2 anergy characterizing Friedreich’s ataxia. This research provides a suitable model to analyze the efficacy of therapeutic strategies able to counteract the excess free radicals in Friedreich’s ataxia, and paves the way to long-term clinical studies.
Collapse
Affiliation(s)
- Alessandra Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan 20148, Italy
| | - Antonella Pini
- Child Neurology and Psychiatry Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Provvidenza M Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan 20148, Italy
| | - Alessandro Ghezzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Firenze 50134, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Firenze 50134, Italy
| | | | - Francesca Bugamelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Filippo Fortuna
- Neurochemistry Laboratory, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro 61121, Italy
| | - Silvia Vertuani
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara 44100, Italy
| | - Stefano Manfredini
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara 44100, Italy
| | - Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan 20148, Italy
| |
Collapse
|
23
|
Daher R, Lefebvre T, Puy H, Karim Z. Extrahepatic hepcidin production: The intriguing outcomes of recent years. World J Clin Cases 2019; 7:1926-1936. [PMID: 31423425 PMCID: PMC6695539 DOI: 10.12998/wjcc.v7.i15.1926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 02/05/2023] Open
Abstract
Hepcidin is the hyposideremic hormone regulating iron metabolism. It is a defensin-like disulfide-bonded peptide with antimicrobial activity. The main site of hepcidin production is the liver where its synthesis is modulated by iron, inflammation and erythropoietic signaling. However, hepcidin locally produced in several peripheral organs seems to be an important actor for the maintenance of iron homeostasis in these organs. This review highlights the presence of peripheral hepcidin and its potential functions. Understanding the role of extrahepatic hepcidin could be of great physiological and therapeutic importance for several specific pathologies.
Collapse
Affiliation(s)
- Raêd Daher
- Université Paris Diderot, Bichat site, Paris 75018, France
- Inflammation Research Center (CRI), INSERM U1149/ERL CNRS 8252, Paris 75018, France
- Laboratory of Excellence, GR-Ex, Paris 75018, France
| | - Thibaud Lefebvre
- Université Paris Diderot, Bichat site, Paris 75018, France
- Inflammation Research Center (CRI), INSERM U1149/ERL CNRS 8252, Paris 75018, France
- Laboratory of Excellence, GR-Ex, Paris 75018, France
| | - Hervé Puy
- Université Paris Diderot, Bichat site, Paris 75018, France
- Inflammation Research Center (CRI), INSERM U1149/ERL CNRS 8252, Paris 75018, France
- Laboratory of Excellence, GR-Ex, Paris 75018, France
| | - Zoubida Karim
- Université Paris Diderot, Bichat site, Paris 75018, France
- Inflammation Research Center (CRI), INSERM U1149/ERL CNRS 8252, Paris 75018, France
- Laboratory of Excellence, GR-Ex, Paris 75018, France
| |
Collapse
|
24
|
New Insights into the Hepcidin-Ferroportin Axis and Iron Homeostasis in iPSC-Derived Cardiomyocytes from Friedreich's Ataxia Patient. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7623023. [PMID: 31049138 PMCID: PMC6458886 DOI: 10.1155/2019/7623023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022]
Abstract
Iron homeostasis in the cardiac tissue as well as the involvement of the hepcidin-ferroportin (HAMP-FPN) axis in this process and in cardiac functionality are not fully understood. Imbalance of iron homeostasis occurs in several cardiac diseases, including iron-overload cardiomyopathies such as Friedreich's ataxia (FRDA, OMIM no. 229300), a hereditary neurodegenerative disorder. Exploiting the induced pluripotent stem cells (iPSCs) technology and the iPSC capacity to differentiate into specific cell types, we derived cardiomyocytes of a FRDA patient and of a healthy control subject in order to study the cardiac iron homeostasis and the HAMP-FPN axis. Both CTR and FRDA iPSCs-derived cardiomyocytes express cardiac differentiation markers; in addition, FRDA cardiomyocytes maintain the FRDA-like phenotype. We found that FRDA cardiomyocytes show an increase in the protein expression of HAMP and FPN. Moreover, immunofluorescence analysis revealed for the first time an unexpected nuclear localization of FPN in both CTR and FRDA cardiomyocytes. However, the amount of the nuclear FPN was less in FRDA cardiomyocytes than in controls. These and other data suggest that iron handling and the HAMP-FPN axis regulation in FRDA cardiac cells are hampered and that FPN may have new, still not fully understood, functions. These findings underline the complexity of the cardiac iron homeostasis.
Collapse
|
25
|
Effect of Serum Hepcidin on Predicting Mortality in Hemodialysis Patients: A Prospective Cohort Study. IRANIAN RED CRESCENT MEDICAL JOURNAL 2019. [DOI: 10.5812/ircmj.87091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Vela D. Systemic and local hepcidin as emerging and important peptides in renal homeostasis and pathology. Biofactors 2019; 45:118-134. [PMID: 30461080 DOI: 10.1002/biof.1468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022]
Abstract
Recent data suggest that the importance of hepcidin goes beyond its classical role in controlling systemic iron metabolism. Local hepcidins are emerging as important peptides for organ homeostasis in the brain, heart, blood vessels, and in cancer as well. Similarly, accumulating data indicate that hepcidin does seem to be an important factor in renal homeostasis. This review encompasses present knowledge concerning the role of hepcidin in renoprotection and its use as a biomarker of kidney diseases. Understanding the role of hepcidin in kidneys is important due to its relevance for kidney physiology and its potential therapeutic application in kidney pathologies. © 2018 BioFactors, 45(2):118-134, 2019.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Prishtina, Prishtina, Kosova
| |
Collapse
|
27
|
Zhang H, Zhabyeyev P, Wang S, Oudit GY. Role of iron metabolism in heart failure: From iron deficiency to iron overload. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1925-1937. [PMID: 31109456 DOI: 10.1016/j.bbadis.2018.08.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Iron metabolism is a balancing act, and biological systems have evolved exquisite regulatory mechanisms to maintain iron homeostasis. Iron metabolism disorders are widespread health problems on a global scale and range from iron deficiency to iron-overload. Both types of iron disorders are linked to heart failure. Iron play a fundamental role in mitochondrial function and various enzyme functions and iron deficiency has a particular negative impact on mitochondria function. Given the high-energy demand of the heart, iron deficiency has a particularly negative impact on heart function and exacerbates heart failure. Iron-overload can result from excessive gut absorption of iron or frequent use of blood transfusions and is typically seen in patients with congenital anemias, sickle cell anemia and beta-thalassemia major, or in patients with primary hemochromatosis. This review provides an overview of normal iron metabolism, mechanisms underlying development of iron disorders in relation to heart failure, including iron-overload cardiomyopathy, and clinical perspective on the treatment options for iron metabolism disorders.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada
| | - Pavel Zhabyeyev
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada
| | - Shaohua Wang
- Mazankowski Alberta Heart Institute, Canada; Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada.
| |
Collapse
|