1
|
Bang S, Choi D, Shin J, Kim J, Choi Y, Lee SE, Hong S. Automated System for Attomolar-Level Detection of MiRNA as a Biomarker for Influenza A Virus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33897-33906. [PMID: 38902962 DOI: 10.1021/acsami.4c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We have developed an automated sensing system for the repeated detection of a specific microRNA (miRNA) of the influenza A (H1N1) virus. In this work, magnetic particles functionalized with DNAs, target miRNAs, and alkaline phosphate (ALP) enzymes formed sandwich structures. These particles were trapped on nickel (Ni) patterns of our sensor chip by an external magnetic field. Then, additional electrical signals from electrochemical markers generated by ALP enzymes were measured using the sensor, enabling the highly sensitive detection of target miRNA. The magnetic particles used on the sensor were easily removed by applying the opposite direction of external magnetic fields, which allowed us to repeat sensing measurements. As a proof of concept, we demonstrated the detection of miRNA-1254, one of the biomarkers for the H1N1 virus, with a high sensitivity down to 1 aM in real time. Moreover, our sensor could selectively detect the target from other miRNA samples. Importantly, our sensor chip showed reliable electrical signals even after six repeated miRNA sensing measurements. Furthermore, we achieved technical advances to utilize our sensor platform as part of an automated sensing system. In this regard, our reusable sensing platform could be utilized for versatile applications in the field of miRNA detection and basic research.
Collapse
Affiliation(s)
- Sunwoo Bang
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Danmin Choi
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Junghyun Shin
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Jeongsu Kim
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Yoonji Choi
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Sang-Eun Lee
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Le Dortz LL, Rouxel C, Polack B, Boulouis HJ, Lagrée AC, Deshuillers PL, Haddad N. Tick-borne diseases in Europe: Current prevention, control tools and the promise of aptamers. Vet Parasitol 2024; 328:110190. [PMID: 38714064 DOI: 10.1016/j.vetpar.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
In Europe, tick-borne diseases (TBDs) cause significant morbidity and mortality, affecting both human and animal health. Ticks can transmit a wide variety of pathogens (bacteria, viruses, and parasites) and feed on many vertebrate hosts. The incidence and public health burden of TBDs are tending to intensify in Europe due to various factors, mainly anthropogenic and often combined. Early detection of tick-borne pathogens (TBPs), preventive measures and treatment are of great importance to control TBDs and their expansion. However, there are various limitations in terms of the sensitivity and/or specificity of detection and prevention methods, and even in terms of feasibility. Aptamers are single-stranded DNA or RNA that could address these issues as they are able to bind with high affinity and specificity to a wide range of targets (e.g., proteins, small compounds, and cells) due to their unique three-dimensional structure. To date, aptamers have been selected against TBPs such as tick-borne encephalitis virus, Francisella tularensis, and Rickettsia typhi. These studies have demonstrated the benefits of aptamer-based assays for pathogen detection and medical diagnosis. In this review, we address the applications of aptamers to TBDs and discuss their potential for improving prevention measures (use of chemical acaricides, vaccination), diagnosis and therapeutic strategies to control TBDs.
Collapse
Affiliation(s)
- Lisa Lucie Le Dortz
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Clotilde Rouxel
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Bruno Polack
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Henri-Jean Boulouis
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Anne-Claire Lagrée
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Pierre Lucien Deshuillers
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Nadia Haddad
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France.
| |
Collapse
|
3
|
Córdova-Espinoza MG, González-Vázquez R, Barron-Fattel RR, Gónzalez-Vázquez R, Vargas-Hernández MA, Albores-Méndez EM, Esquivel-Campos AL, Mendoza-Pérez F, Mayorga-Reyes L, Gutiérrez-Nava MA, Medina-Quero K, Escamilla-Gutiérrez A. Aptamers: A Cutting-Edge Approach for Gram-Negative Bacterial Pathogen Identification. Int J Mol Sci 2024; 25:1257. [PMID: 38279257 PMCID: PMC10817072 DOI: 10.3390/ijms25021257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Early and accurate diagnoses of pathogenic microorganisms is essential to correctly identify diseases, treating infections, and tracking disease outbreaks associated with microbial infections, to develop precautionary measures that allow a fast and effective response in epidemics and pandemics, thus improving public health. Aptamers are a class of synthetic nucleic acid molecules with the potential to be used for medical purposes, since they can be directed towards any target molecule. Currently, the use of aptamers has increased because they are a useful tool in the detection of specific targets. We present a brief review of the use of aptamers to detect and identify bacteria or even some toxins with clinical importance. This work describes the advances in the technology of aptamers, with the purpose of providing knowledge to develop new aptamers for diagnoses and treatment of different diseases caused by infectious microorganisms.
Collapse
Affiliation(s)
- María Guadalupe Córdova-Espinoza
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico;
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Hospital de Especialidades, “Dr. Antonio Fraga Mouret”, National Medical Center La Raza, Mexico City 02990, Mexico
| | - Rosa González-Vázquez
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Hospital de Especialidades, “Dr. Antonio Fraga Mouret”, National Medical Center La Raza, Mexico City 02990, Mexico
| | - Rolando Rafik Barron-Fattel
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
| | - Raquel Gónzalez-Vázquez
- Laboratory of Biotechnology, Department of Biological Systems, Metropolitana Campus Xochimilco, CONAHCYT—Universidad Autonoma, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico;
| | - Marco Antonio Vargas-Hernández
- Research Department, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Exsal Manuel Albores-Méndez
- Research Department, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Ana Laura Esquivel-Campos
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - Felipe Mendoza-Pérez
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - Lino Mayorga-Reyes
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - María Angélica Gutiérrez-Nava
- Laboratory of Microbial Ecology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, Mexico City 04960, Mexico;
| | - Karen Medina-Quero
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico;
| | - Alejandro Escamilla-Gutiérrez
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Microbiology Laboratory, Hospital General “Dr. Gaudencio González Garza”, National Medical Center La Raza, Mexico City 02990, Mexico
| |
Collapse
|
4
|
Chowdhury MA, Collins JM, Gell DA, Perry S, Breadmore MC, Shigdar S, King AE. Isolation and Identification of the High-Affinity DNA Aptamer Target to the Brain-Derived Neurotrophic Factor (BDNF). ACS Chem Neurosci 2024; 15:346-356. [PMID: 38149631 DOI: 10.1021/acschemneuro.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Aptamers are functional oligonucleotide ligands used for the molecular recognition of various targets. The natural characteristics of aptamers make them an excellent alternative to antibodies in diagnostics, therapeutics, and biosensing. DNA aptamers are mainly single-stranded oligonucleotides (ssDNA) that possess a definite binding to targets. However, the application of aptamers to the fields of brain health and neurodegenerative diseases has been limited to date. Herein, a DNA aptamer against the brain-derived neurotrophic factor (BDNF) protein was obtained by in vitro selection. BDNF is a potential biomarker of brain health and neurodegenerative diseases and has functions in the synaptic plasticity and survival of neurons. We identified eight aptamers that have binding affinity for BDNF from a 50-nucleotide library. Among these aptamers, NV_B12 showed the highest sensitivity and selectivity for detecting BDNF. In an aptamer-linked immobilized sorbent assay (ALISA), the NV_B12 aptamer strongly bound to BDNF protein, in a dose-dependent manner. The dissociation constant (Kd) for NV_B12 was 0.5 nM (95% CI: 0.4-0.6 nM). These findings suggest that BDNF-specific aptamers could be used as an alternative to antibodies in diagnostic and detection assays for BDNF.
Collapse
Affiliation(s)
- Md Anisuzzaman Chowdhury
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - David A Gell
- Menzies Research Institute, School of Medicine, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Sandy Bay, Hobart, Tasmania 7001, Australia
| | - Sarah Shigdar
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria 3220, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| |
Collapse
|
5
|
Kour S, Sharma N, N B, Kumar P, Soodan JS, Santos MVD, Son YO. Advances in Diagnostic Approaches and Therapeutic Management in Bovine Mastitis. Vet Sci 2023; 10:449. [PMID: 37505854 PMCID: PMC10384116 DOI: 10.3390/vetsci10070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Mastitis causes huge economic losses to dairy farmers worldwide, which largely negatively affects the quality and quantity of milk. Mastitis decreases overall milk production, degrades milk quality, increases milk losses because of milk being discarded, and increases overall production costs due to higher treatment and labour costs and premature culling. This review article discusses mastitis with respect to its clinical epidemiology, the pathogens involved, economic losses, and basic and advanced diagnostic tools that have been used in recent times to diagnose mastitis effectively. There is an increasing focus on the application of novel therapeutic approaches as an alternative to conventional antibiotic therapy because of the decreasing effectiveness of antibiotics, emergence of antibiotic-resistant bacteria, issue of antibiotic residues in the food chain, food safety issues, and environmental impacts. This article also discussed nanoparticles'/chitosan's roles in antibiotic-resistant strains and ethno-veterinary practices for mastitis treatment in dairy cattle.
Collapse
Affiliation(s)
- Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Balaji N
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Jasvinder Singh Soodan
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Marcos Veiga Dos Santos
- Department of Animal Sciences, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 690756, Republic of Korea
| |
Collapse
|
6
|
Moreno M, García-Sacristán A, Martín ME, González VM. Enzyme-Linked Oligonucleotide Assay (ELONA). Methods Mol Biol 2023; 2570:235-242. [PMID: 36156787 DOI: 10.1007/978-1-0716-2695-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aptamers are single-stranded oligonucleotides able to recognize a target with high affinity and specificity. Aptamers are used in different diagnostics applications, highlighting, among all, variations of the traditional enzyme-linked immunosorbent assay (ELISA). In this chapter, we show the procedures for the development of two types of indirect ELONA: a sandwich ELONA and a direct ELONA coupled to either real-time quantitative PCR as a direct and sensitive readout.
Collapse
Affiliation(s)
| | | | - M Elena Martín
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Víctor M González
- Aptus Biotech SL, Madrid, Spain. .,Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Madrid, Spain.
| |
Collapse
|
7
|
Yunussova N, Sypabekova M, Zhumabekova Z, Matkarimov B, Kanayeva D. A Novel ssDNA Aptamer Targeting Carcinoembryonic Antigen: Selection and Characterization. BIOLOGY 2022; 11:biology11101540. [PMID: 36290442 PMCID: PMC9598387 DOI: 10.3390/biology11101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/20/2022]
Abstract
One of the major causes of a drastically shorter life expectancy and one of the most prevalent diseases in the world today is cancer. Given the data on the rise in cancer cases throughout the world, it is obvious that, despite the diagnostic techniques currently being used, there is a pressing need to develop precise and sensitive techniques for early diagnosis of the disease. A high degree of affinity and specificity towards particular targets is maintained by the short nucleic acid molecules known as aptamers. Aptamers outperform antibodies due to their unique benefits, such as their simplicity in synthesis and modification, lack of toxicity, and long-term stability. Utilizing an accurate recognition element and a robust signal transduction mechanism, molecular diagnostics can be extremely sensitive and specific. In this study, development of new single-stranded DNA aptamers against CEA for use in cancer diagnostics was accomplished using SELEX and NGS methods. As a result of 12 iterative SELEX rounds, nine aptamer candidates against CEA were developed. NGS comparative analysis revealed that round twelve had an enriched number of aptamers that were specifically bound, as opposed to round eight. Among the selected nine sequences characterized by bioinformatics analysis and ELONA, an aptamer sequence with the highest specificity and affinity for the target protein was identified and further examined. Aptamer sequence (6) was screened in a concentration-dependent assay, specificity analysis was performed, and its potential secondary and tertiary structures were predicted, which enabled us to test one of the possible putative interactions with CEA. Finally, aptamer sequence (6) labelled with a Cy5 fluorescent tag was used in confocal microscopy to observe its binding towards the CEA expressed in HT-29 human colon adenocarcinoma cell line.
Collapse
Affiliation(s)
- Nigara Yunussova
- Ph.D. Program in Life Sciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Marzhan Sypabekova
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Zhazira Zhumabekova
- M.Sc. Program in Biological Sciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Damira Kanayeva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
- Correspondence:
| |
Collapse
|
8
|
Recent developments in application of nucleic acid aptamer in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Mandal M, Dutta N, Dutta G. Aptamer-based biosensors and their implications in COVID-19 diagnosis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5400-5417. [PMID: 34751684 DOI: 10.1039/d1ay01519b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel infectious member of the coronavirus family, has caused millions of cases of infection and deaths all over the world, and been declared a pandemic by the World Health Organization. Conventional laboratory-based diagnostic testing has faced extreme difficulties in meeting the overwhelming demand for testing worldwide, and this has brought about a pressing need for cost-effective rapid diagnosis. There has been a surge in the number of prototypes of diagnostic kits developed, although many of these have been found to be lacking in terms of their accuracy and sensitivity. One type of chip-based diagnostic platform is the aptamer-based biosensor. Aptamers are artificially synthesized oligonucleotides that are capable of specifically binding to a target antigen. As of now, some aptamers have been reported for SARS-CoV-2. Although many ultrasensitive aptasensors have been developed for viruses, few have been successfully adapted for SARS-CoV-2 detection. Our review discusses the recent developments in the domain of SARS-CoV-2 specific aptamer isolation, the design of electrochemical and optical aptasensors, and the implications of aptasensor-based COVID-19 diagnosis.
Collapse
Affiliation(s)
- Mukti Mandal
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Nirmita Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
10
|
Navien TN, Yeoh TS, Anna A, Tang TH, Citartan M. Aptamers isolated against mosquito-borne pathogens. World J Microbiol Biotechnol 2021; 37:131. [PMID: 34240263 DOI: 10.1007/s11274-021-03097-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Mosquito-borne diseases are a major threat to public health. The shortcomings of diagnostic tools, especially those that are antibody-based, have been blamed in part for the rising annual morbidity and mortality caused by these diseases. Antibodies harbor a number of disadvantages that can be clearly addressed by aptamers as the more promising molecular recognition elements. Aptamers are defined as single-stranded DNA or RNA oligonucleotides generated by SELEX that exhibit high binding affinity and specificity against a wide variety of target molecules based on their unique structural conformations. A number of aptamers were developed against mosquito-borne pathogens such as Dengue virus, Zika virus, Chikungunya virus, Plasmodium parasite, Francisella tularensis, Japanese encephalitis virus, Venezuelan equine encephalitis virus, Rift Valley fever virus and Yellow fever virus. Intrigued by these achievements, we carry out a comprehensive overview of the aptamers developed against these mosquito-borne infectious agents. Characteristics of the aptamers and their roles in diagnostic, therapeutic as well as other applications are emphasized.
Collapse
Affiliation(s)
- Tholasi Nadhan Navien
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Tzi Shien Yeoh
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Andrew Anna
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
11
|
Srivastava S, Abraham PR, Mukhopadhyay S. Aptamers: An Emerging Tool for Diagnosis and Therapeutics in Tuberculosis. Front Cell Infect Microbiol 2021; 11:656421. [PMID: 34277465 PMCID: PMC8280756 DOI: 10.3389/fcimb.2021.656421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) has been plaguing human civilization for centuries, and currently around one-third of the global population is affected with TB. Development of novel intervention tools for early diagnosis and therapeutics against Mycobacterium tuberculosis (M.tb) is the main thrust area in today's scenario. In this direction global efforts were made to use aptamers, the chemical antibodies as tool for TB diagnostics and therapeutics. This review describes the various aptamers introduced for targeting M.tb and highlights the need for development of novel aptamers to selectively target virulent proteins of M.tb for vaccine and anti-TB drugs. The objective of this review is to highlight the diagnostic and therapeutic application of aptamers used for tuberculosis. The discovery of aptamers, SELEX technology, different types of SELEX development processes, DNA and RNA aptamers reported for diseases and pathogenic agents as well have also been described in detail. But the emphasis of this review is on the development of aptamers which can block the function of virulent mycobacterial components for developing newer TB vaccine candidates and/or drug targets. Aptamers designed to target M.tb cell wall proteins, virulent factors, secretory proteins, or combination could orchestrate advanced diagnosis and therapeutic measures for tuberculosis.
Collapse
Affiliation(s)
- Shruti Srivastava
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Philip Raj Abraham
- Unit of OMICS, ICMR-Vector Control Research Centre (VCRC), Puducherry, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
12
|
Vishwakarma A, Lal R, Ramya M. Aptamer-based approaches for the detection of waterborne pathogens. Int Microbiol 2021; 24:125-140. [PMID: 33404933 DOI: 10.1007/s10123-020-00154-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Waterborne ailments pose a serious threat to public health and are a huge economic burden. Lack of hygiene in drinking and recreational water is the chief source of microbial pathogens in developing countries. Poor water quality and sanitation account for more than 3.4 million deaths a year worldwide. This has urged authorities and researchers to explore different avenues of pathogen detection. There is a growing demand for rapid and reliable sensor technologies, in particular those that can detect in situ and perform in harsh conditions. Some of the major waterborne pathogens include Vibrio cholerae, Leptospira interrogans, Campylobacter jejuni, Shigella spp., enterotoxigenic Escherichia coli, Clostridium difficile, Cryptosporidium parvum, Entamoeba histolytica, and Hepatitis A virus. While conventional methods of pathogen detection like serodiagnosis and microbiological methods have been superseded by nucleic acid amplification methods, there is still potential for improvement. This review provides an insight into aptamers and their utility in the form of aptasensors. It discusses how aptamer-based approaches have emerged as a novel strategy and its advantages over more resource-intensive and complex biochemical approaches.
Collapse
Affiliation(s)
- Archana Vishwakarma
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Roshni Lal
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India.
| |
Collapse
|
13
|
Ojha YR, Giovannucci DR, Cameron BD. Selection and characterization of structure-switching DNA aptamers for the salivary peptide histatin 3. J Biotechnol 2020; 327:9-17. [PMID: 33387594 DOI: 10.1016/j.jbiotec.2020.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 11/10/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022]
Abstract
In this study, single-stranded DNA aptamers that switch structural conformation upon binding to the salivary peptide histatin 3 have been reported for the first time. Histatin 3 is an antimicrobial peptide that possesses the capability of being a therapeutic agent against oral candidiasis and has recently been linked as a novel biomarker for acute stress. The aptamers were identified through a library immobilization version of an iterative in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment (SELEX). Through the SELEX process, four unique aptamer candidates sharing a consensus sequence were identified. These selected sequences exhibited binding affinity and specificity to histatin 3 and in order to further characterize these aptamers, a direct format enzyme-linked aptamer sorbent assay (ELASA) was developed. The best performing candidate demonstrated an equilibrium dissociation constant (Kd) value of 1.97 ± 0.48 μM. These novel aptamers have the potential to lead to the further development of refined sensing assays and platforms for the detection and quantification of histatin 3 in human saliva and other biological media.
Collapse
Affiliation(s)
- Yagya R Ojha
- Department of Bioengineering, University of Toledo, Toledo, OH 43606, USA
| | | | - Brent D Cameron
- Department of Bioengineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
14
|
Schmitz FRW, Valério A, de Oliveira D, Hotza D. An overview and future prospects on aptamers for food safety. Appl Microbiol Biotechnol 2020; 104:6929-6939. [PMID: 32588103 PMCID: PMC7315907 DOI: 10.1007/s00253-020-10747-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Introduction Many bacteria are responsible for infections in humans and plants, being found in vegetables, water, and medical devices. Most bacterial detection methods are time-consuming and take days to give the result. Aptamers are a promising alternative for a quick and reliable measurement technique to detect bacteria present in food products. Selected aptamers are DNA or RNA oligonucleotides that can bind with bacteria or other molecules with affinity and specificity for the target cells by the SELEX or cell-SELEX technique. This method is based on some rounds to remove the non-ligand oligonucleotides, leaving the aptamers specific to bind to the selected bacteria. Compared with conventional methodologies, the detection approach using aptamers is a rapid, low-cost form of analysis. Objective This review summarizes obtention methods and applications of aptamers in the food industry and biotechnology. Besides, different techniques with aptamers are presented, which enable more effective target detection. Conclusion Applications of aptamers as biosensors, or the association of aptamers with nanomaterials, may be employed in analyses by colorimetric, fluorescence, or electrical devices. Additionally, more efficient ways of sample preparation are presented, which can support food safety to provide human health, with a low-cost method for contaminant detection.Key points • Aptamers are promising for detecting contaminants outbreaks. • Studies are needed to identify aptamers for different targets. |
Collapse
Affiliation(s)
- Fernanda Raquel Wust Schmitz
- Department of Chemical Engineering and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Alexsandra Valério
- Department of Chemical Engineering and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil.
| | - Dachamir Hotza
- Department of Chemical Engineering and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
15
|
Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int J Mol Sci 2020; 21:ijms21124522. [PMID: 32630547 PMCID: PMC7350236 DOI: 10.3390/ijms21124522] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aptamers are short single stranded DNA or RNA oligonucleotides that can recognize analytes with extraordinary target selectivity and affinity. Despite their promising properties and diagnostic potential, the number of commercial applications remains scarce. In order to endow them with novel recognition motifs and enhanced properties, chemical modification of aptamers has been pursued. This review focuses on chemical modifications, aimed at increasing the binding affinity for the aptamer's target either in a non-covalent or covalent fashion, hereby improving their application potential in a diagnostic context. An overview of current methodologies will be given, thereby distinguishing between pre- and post-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) modifications.
Collapse
|
16
|
Vargas-Montes M, Cardona N, Moncada DM, Molina DA, Zhang Y, Gómez-Marín JE. Enzyme-Linked Aptamer Assay (ELAA) for Detection of Toxoplasma ROP18 Protein in Human Serum. Front Cell Infect Microbiol 2019; 9:386. [PMID: 31799213 PMCID: PMC6863806 DOI: 10.3389/fcimb.2019.00386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii engenders the common parasitic disease toxoplasmosis in almost all warm-blooded animals. Being a critical secretory protein, ROP18 is a major virulence factor of Toxoplasma. There are no reports about ROP18 detection in human serum samples with different clinical manifestations. New aptamers against ROP18 protein were developed through Systematic Evolution of Ligands by Exponential enrichment (SELEX). An Enzyme-Linked Aptamer Assay (ELAA) platform was developed using SELEX-derived aptamers, namely AP001 and AP002. The ELAA was used to evaluate total antigen from T. gondii RH strain (RH Ag) and recombinant protein of ROP18 (rROP18). The results showed that the ELAA presented higher affinity and specificity to RH Ag and rROP18, compared to negative controls. Detection limit of rROP18 protein in serum samples was measured by standard addition method, achieving a lower concentration of 1.56 μg/mL. Moreover, 62 seropositive samples with different clinical manifestations of toxoplasmosis and 20 seronegative samples were tested. A significant association between ELAA test positive for human serum samples and severe congenital toxoplasmosis was found (p = 0.006). Development and testing of aptamers-based assays opens a window for low-cost and rapid tests looking for biomarkers and improves our understanding about the role of ROP18 protein on the pathogenesis of human toxoplasmosis.
Collapse
Affiliation(s)
| | - Nestor Cardona
- Centre for Biomedical Research CIBM, University of Quindío, Armenia, Colombia.,Dentistry Faculty, University Antonio Nariño, Armenia, Colombia
| | | | | | - Yang Zhang
- College of Science, Harbin Institute of Technology, Shenzhen, China
| | | |
Collapse
|
17
|
Moreno M, Fernández-Algar M, Fernández-Chamorro J, Ramajo J, Martínez-Salas E, Briones C. A Combined ELONA-(RT)qPCR Approach for Characterizing DNA and RNA Aptamers Selected against PCBP-2. Molecules 2019; 24:molecules24071213. [PMID: 30925703 PMCID: PMC6480920 DOI: 10.3390/molecules24071213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 11/21/2022] Open
Abstract
Improvements in Systematic Evolution of Ligands by EXponential enrichment (SELEX) technology and DNA sequencing methods have led to the identification of a large number of active nucleic acid molecules after any aptamer selection experiment. As a result, the search for the fittest aptamers has become a laborious and time-consuming task. Herein, we present an optimized approach for the label-free characterization of DNA and RNA aptamers in parallel. The developed method consists in an Enzyme-Linked OligoNucleotide Assay (ELONA) coupled to either real-time quantitative PCR (qPCR, for DNA aptamers) or reverse transcription qPCR (RTqPCR, for RNA aptamers), which allows the detection of aptamer-target interactions in the high femtomolar range. We have applied this methodology to the affinity analysis of DNA and RNA aptamers selected against the poly(C)-binding protein 2 (PCBP-2). In addition, we have used ELONA-(RT)qPCR to quantify the dissociation constant (Kd) and maximum binding capacity (Bmax) of 16 high affinity DNA and RNA aptamers. The Kd values of the high affinity DNA aptamers were compared to those derived from colorimetric ELONA performed in parallel. Additionally, Electrophoretic Mobility Shift Assays (EMSA) were used to confirm the binding of representative PCBP-2-specific RNA aptamers in solution. We propose this ELONA-(RT)qPCR approach as a general strategy for aptamer characterization, with a broad applicability in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Miguel Moreno
- Laboratory of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
| | - María Fernández-Algar
- Laboratory of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
| | | | - Jorge Ramajo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain.
| | | | - Carlos Briones
- Laboratory of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| |
Collapse
|
18
|
Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal Bioanal Chem 2019; 411:1229-1238. [PMID: 30637436 DOI: 10.1007/s00216-018-1555-z] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023]
Abstract
Despite of various advancements in biosensing, a rapid, accurate, and on-site detection of a bacterial pathogen is a real challenge due to the lack of appropriate diagnostic platforms. To address this unmet need, we herein report an aptamer-mediated tunable NanoZyme sensor for the detection of Pseudomonas aeruginosa, an infectious bacterial pathogen. Our approach exploits the inherent peroxidase-like NanoZyme activity of gold nanoparticles (GNPs) in combination with high affinity and specificity of a Pseudomonas aeruginosa-specific aptamer (F23). The presence of aptamer inhibits the inherent peroxidase-like activity of GNPs by simple adsorption on to the surface of GNPs. However, in the presence of cognate target (P. aeruginosa), owing to the high affinity for P. aeruginosa, the aptamer leaves the GNP surface, allowing GNPs to resume their peroxidase-like activity, resulting in oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). As TMB is an electrochemically active species, we have been able to translate the NanoZyme-based method into an ultrasensitive electrochemical assay using disposable carbon screen-printed electrode. This approach is highly sensitive and allows us to rapidly detect P. aeruginosa with a low-end detection limit of ~ 60 CFU/mL in water within 10 min. This generic aptamer-NanoZyme-based electrochemical sensing strategy may, in principle, be applicable for the detection of various other bacterial pathogens.
Collapse
|
19
|
Mie M, Niimi T, Mashimo Y, Kobatake E. Construction of DNA-NanoLuc luciferase conjugates for DNA aptamer-based sandwich assay using Rep protein. Biotechnol Lett 2019; 41:357-362. [PMID: 30603832 DOI: 10.1007/s10529-018-02641-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/19/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We developed a DNA-NanoLuc luciferase (NnaoLuc) conjugates for DNA aptamer-based sandwich assay using the catalytic domain of the replication initiator protein derived from porcine circovirus type 2 (pRep). RESULTS For construction of DNA aptamer and NanoLuc conjugate using the catalytic domain of Rep from PCV2. pRep fused to NanoLuc was genetically constructed and expressed in E. coli. After purification, the activities of fused pRep and NanoLuc were evaluated, and DNA-NanoLuc conjugates were constructed via the fused pRep. Finally, constructed DNA-NanoLuc conjugates were applied for use in a DNA aptamer-based sandwich assay. Here, pRep was used not only for conjugation of the NanoLuc to the detection aptamer, but also for immobilization of the capture aptamer on the plate surface. CONCLUSION We have demonstrated that DNA-NanoLuc conjugates via the catalytic domain of PCV2 Rep could be applied for DNA aptamer-based sandwich assay system.
Collapse
Affiliation(s)
- Masayasu Mie
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama, 226-8502, Japan.
| | - Takahiro Niimi
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama, 226-8502, Japan
| | - Yasumasa Mashimo
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama, 226-8502, Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama, 226-8502, Japan
| |
Collapse
|
20
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
21
|
Kalra P, Mishra SK, Kaur S, Kumar A, Prasad HK, Sharma TK, Tyagi JS. G-Quadruplex-Forming DNA Aptamers Inhibit the DNA-Binding Function of HupB and Mycobacterium tuberculosis Entry into Host Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:99-109. [PMID: 30245472 PMCID: PMC6148841 DOI: 10.1016/j.omtn.2018.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 01/26/2023]
Abstract
The entry and survival of Mycobacterium tuberculosis (Mtb) within host cells is orchestrated partly by an essential histone-like protein HupB (Rv2986c). Despite being an essential drug target, the lack of structural information has impeded the development of inhibitors targeting the indispensable and multifunctional C-terminal domain (CTD) of HupB. To bypass the requirement for structural information in the classical drug discovery route, we generated a panel of DNA aptamers against HupB protein through systemic evolution of ligands by exponential (SELEX) enrichment. Two G-quadruplex-forming high-affinity aptamers (HupB-4T and HupB-13T) were identified, each of which bound two distinct sites on full-length HupB, with an estimated KD of ∼1.72 μM and ∼0.17 μM, respectively, for the high-affinity sites. While HupB-4T robustly inhibited DNA-binding activity of HupB in vitro, both the aptamers recognized surface-located HupB and significantly blocked Mtb entry into THP-1 monocytic cells (p < 0.0001). In summary, DNA aptamers generated in this study block DNA-binding activity of HupB, inhibit virulent Mtb infection in host cells, and demonstrate aptamers to be inhibitors of HupB functions. This study also illustrates the utility of SELEX in developing inhibitors against essential targets for whom structural information is not available.
Collapse
Affiliation(s)
- Priya Kalra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, Delhi 110029, India
| | - Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
| | - Surinder Kaur
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, Delhi 110029, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
| | | | - Tarun Kumar Sharma
- Centre for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, Delhi 110029, India; Centre for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.
| |
Collapse
|
22
|
Suh SH, Choi SJ, Dwivedi HP, Moore MD, Escudero-Abarca BI, Jaykus LA. Use of DNA aptamer for sandwich type detection of Listeria monocytogenes. Anal Biochem 2018; 557:27-33. [PMID: 29649475 DOI: 10.1016/j.ab.2018.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 02/03/2023]
Abstract
A single stranded (ss) DNA aptamer, specific to members of Listeria genus, was used to develop a two-site binding sandwich assay for capture and detection of L. monocytogenes. Antibody-immobilized immunomagnetic beads were used to capture L. monocytogenes, followed by their exposure to the aptamer detector. Detection was achieved by amplification of cell-bound aptamers by qPCR. The lower limit of detection for the combined assay was 2.5 CFU L. monocytogenes in 500 μl buffer. This is juxtaposed to a detection limit of 2.4 log10 CFU in 500 μl buffer for immunomagnetic separation coupled with qPCR detection of L. monocytogenes targeting the hly gene. When applied to turkey deli meat, subjected to 24 h of non-selective enrichment, the two-site binding sandwich assay showed positive results at initial inoculum levels of 1-2 log10 CFU per 25 g sample. Because of its lower limit of detection, the assay reported here could be useful for detection of L. monocytogenes in foods and environmental samples.
Collapse
Affiliation(s)
- Soo Hwan Suh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Soo Jung Choi
- Functional Food Research Center, Korea University, Seoul, South Korea.
| | - Hari P Dwivedi
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Matthew D Moore
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Blanca I Escudero-Abarca
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
23
|
Amraee M, Oloomi M, Yavari A, Bouzari S. DNA aptamer identification and characterization for E. coli O157 detection using cell based SELEX method. Anal Biochem 2017; 536:36-44. [PMID: 28818557 DOI: 10.1016/j.ab.2017.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/05/2017] [Accepted: 08/11/2017] [Indexed: 01/11/2023]
Abstract
Escherichia coli (E. coli) O157:H7 is a foodborne pathogen that causes symptoms in humans. Its rapid identification should be considered to avoid toxic effects of the pathogen. In this study, systematic evolution of ligands by exponential enrichment using whole cells (Cell-SELEX) method was used for recognizing E. coli strain, O157 by single-stranded DNA library of aptamer. Nine rounds of cell-selex procedure were applied using O157, as a whole-cell target, with O42, K12, Top10, DH5α E. coli cells, Shigella flexneri and Salmonella typhi as counterparts. The specific interaction between selected DNA aptamers and targeted cell was assessed. After applying six rounds of SELEX for selection of DNA aptamers, the candidate sequences were obtained. Finally, specific aptamer was selected as an ideal aptamer for detection and capturing of E. coli O157. Dissociation constant of the selected aptamer were calculated (107.6 ± 67.8 pM). In addition, the secondary structure prediction and cross reactivity assays were performed. The isolated aptamer efficiency was confirmed and it was shown that the new DNA aptamer sequence has the ability to use for detection. This specific O157:H7 aptamer have the potential for application as a diagnostic ligand and could be used for detection of the related food borne diseases.
Collapse
Affiliation(s)
- Masoum Amraee
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| | - Afsaneh Yavari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| |
Collapse
|
24
|
Sypabekova M, Bekmurzayeva A, Wang R, Li Y, Nogues C, Kanayeva D. Selection, characterization, and application of DNA aptamers for detection of Mycobacterium tuberculosis secreted protein MPT64. Tuberculosis (Edinb) 2017; 104:70-78. [PMID: 28454652 DOI: 10.1016/j.tube.2017.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/05/2017] [Accepted: 03/14/2017] [Indexed: 12/30/2022]
Abstract
Rapid detection of Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis (TB), is important for global control of this disease. Aptamers have emerged as a potential rival for antibodies in therapeutics, diagnostics and biosensing due to their inherent characteristics. The aim of the current study was to select and characterize single-stranded DNA aptamers against MPT64 protein, one of the predominant secreted proteins of Mtb pathogen. Aptamers specific to MPT64 protein were selected in vitro using systematic evolution of ligands through exponential enrichment (SELEX) method. The selection was started with a pool of ssDNA library with randomized 40-nucleotide region. A total of 10 cycles were performed and seventeen aptamers with unique sequences were identified by sequencing. Dot Blot analysis was performed to monitor the SELEX process and to conduct the preliminary tests on the affinity and specificity of aptamers. Enzyme linked oligonucleotide assay (ELONA) showed that most of the aptamers were specific to the MPT64 protein with a linear correlation of R2 = 0.94 for the most selective. Using Surface Plasmon Resonance (SPR), dissociation equilibrium constant KD of 8.92 nM was obtained. Bioinformatics analysis of the most specific aptamers revealed the existence of a conserved as well as distinct sequences and possible binding site on MPT64. The specificity was determined by testing non-target ESAT-6 and CFP-10. Negligible cross-reactivity confirmed the high specificity of the selected aptamer. The selected aptamer was further tested on clinical sputum samples using ELONA and had sensitivity and specificity of 91.3% and 90%, respectively. Microscopy, culture positivity and nucleotide amplification methods were used as reference standards. The aptamers studied could be further used for the development of medical diagnostic tools and detection assays for Mtb.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana, 010000, Kazakhstan; School of Engineering, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana, 010000, Kazakhstan
| | - Aliya Bekmurzayeva
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana, 010000, Kazakhstan; School of Engineering, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana, 010000, Kazakhstan
| | - Ronghui Wang
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Claude Nogues
- LBPA, IDA, ENS Cachan, CNRS, Université Paris-Saclay, F-94235, Cachan, France
| | - Damira Kanayeva
- Department of Biology, School of Science and Technology, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana, 010000, Kazakhstan.
| |
Collapse
|
25
|
Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv 2017; 35:275-301. [PMID: 28108354 DOI: 10.1016/j.biotechadv.2017.01.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/19/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
This review is intended to guide the novice in aptamer research and development to understand virtually all of the aptamer development options and currently available assay modalities. Aptamer development topics range from discussions of basic and advanced versions of Systematic Evolution of Ligands by EXponential Enrichment (SELEX) and SELEX variations involving incorporation of exotic unnatural nucleotides to expand library diversity for even greater aptamer affinity and specificity to improved next generation methods of DNA sequencing, screening and tracking aptamer development throughout the SELEX process and characterization of lead aptamer candidates. Aptamer assay development topics include descriptions of various colorimetric and fluorescent assays in microplates or on membranes including homogeneous beacon and multiplexed Fluorescence Resonance Energy Transfer (FRET) assays. Finally, a discussion of the potential for marketing successful aptamer-based assays or test kits is included.
Collapse
Affiliation(s)
- Tarun Kumar Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Haryana 121001, India.
| | - John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite, 230, San Antonio, TX 78229, USA..
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India.; Faculty of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
26
|
Alfavian H, Mousavi Gargari SL, Rasoulinejad S, Medhat A. Development of a DNA aptamer that binds specifically to group A Streptococcus serotype M3. Can J Microbiol 2016; 63:160-168. [PMID: 28121169 DOI: 10.1139/cjm-2016-0495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group A streptococcus (GAS) is an important Gram-positive pathogen that causes various human diseases ranging from peripheral lesions to invasive infections. The M protein is one of the main virulence factors present on the cell surface and is associated with invasive GAS infections. Compared with other M types, serotype M3 has a predominant role in lethal infections and demonstrates epidemic behaviors, including streptococcal toxic shock syndrome, bacteremia, and necrotizing fasciitis. Traditional methods for M typing are time-consuming, tedious, contradictory, and generally restricted to reference laboratories. Therefore, development of a new M-typing technique is needed. Aptamers with the ability to detect their target with a high degree of accuracy and specificity can be ideal candidates for specific M-typing of Streptococcus pyogenes. In this study DNA aptamers with a high binding affinity towards S. pyogenes serotype M3 were selected through 12 iterative rounds of the Systematic Evolution of Ligands by EXponential (SELEX) enrichment procedure using live cells as a target. We monitored the progress of the SELEX procedure by flow cytometry analysis. Of several aptamer sequences analyzed, 12L18A showed the highest binding efficiency towards S. pyogenes type M3, with an apparent dissociation constant (Kd) of 7.47 ± 1.72 pmol/L being the lowest. Therefore the isolated aptamer can be used in any tool, such as a biosensor, for the detection of S. pyogenes and can be used in the development of a novel M-typing system.
Collapse
Affiliation(s)
- Hanif Alfavian
- a Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | | | - Samaneh Rasoulinejad
- a Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Arvin Medhat
- b GENEXIR Biopharma, a knowledge-based company at Pasteur Institute of Iran Health Technology Park, Tehran, Iran
| |
Collapse
|
27
|
Rasoulinejad S, Gargari SLM. Aptamer-nanobody based ELASA for specific detection of Acinetobacter baumannii isolates. J Biotechnol 2016; 231:46-54. [PMID: 27234880 DOI: 10.1016/j.jbiotec.2016.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/12/2016] [Accepted: 05/19/2016] [Indexed: 11/26/2022]
Abstract
Acinetobacter baumannii has turned into an important threat in nosocomial outbreak infections and multidrug resistance leading to high mortality rates in the 21st century. In recent years its mortality has increased by 15% which in part could be due to lack of a rapid and sensitive diagnostic test. In this work we introduced a new detection test for A. baumannii with two highly specific aptamer and nanobody molecules. High binding affinity DNA oligonucleotide aptamers toward A. baumannii were selected through 12 rounds of whole cell System Evolution of Ligands by EXponential enrichment process (SELEX). The SELEX procedures was monitored by flow cytometry. The dissociation constant and binding efficiency of the selected aptamer Aci49 was 7.547±1:353pM and 47.50%, respectively. A sandwich enzyme linked aptamer sorbent assay (ELASA) was designed with the biotinylated Aci49 aptamer and our previously developed nanobody against biofilm associated protein (Bap). The assay system was optimized with A. baumannii (ATCC 19606) and 47 clinical isolates of A. baumannii were tested. The threshold of detection in sandwich ELASA process was10(3) CFU/ml. The sensitivity of test toward the clinical isolates was 95.47%. Our results reveal that the sandwich ELASA is sensitive and specific enough for the rapid detection of A. baumannii from clinical isolates.
Collapse
|
28
|
Marton S, Cleto F, Krieger MA, Cardoso J. Isolation of an Aptamer that Binds Specifically to E. coli. PLoS One 2016; 11:e0153637. [PMID: 27104834 PMCID: PMC4841571 DOI: 10.1371/journal.pone.0153637] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/01/2016] [Indexed: 01/24/2023] Open
Abstract
Escherichia coli is a bacterial species found ubiquitously in the intestinal flora of animals, although pathogenic variants cause major public health problems. Aptamers are short oligonucleotides that bind to targets with high affinity and specificity, and have great potential for use in diagnostics and therapy. We used cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) to isolate four single stranded DNA (ssDNA) aptamers that bind strongly to E. coli cells (ATCC generic strain 25922), with Kd values in the nanomolar range. Fluorescently labeled aptamers label the surface of E. coli cells, as viewed by fluorescent microscopy. Specificity tests with twelve different bacterial species showed that one of the aptamers–called P12-31—is highly specific for E. coli. Importantly, this aptamer binds to Meningitis/sepsis associated E. coli (MNEC) clinical isolates, and is the first aptamer described with potential for use in the diagnosis of MNEC-borne pathologies.
Collapse
Affiliation(s)
- Soledad Marton
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Fernanda Cleto
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Marco Aurélio Krieger
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil.,Instituto Carlos Chagas, Laboratório de Genomica Functional, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Josiane Cardoso
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| |
Collapse
|
29
|
Yüce M, Ullah N, Budak H. Trends in aptamer selection methods and applications. Analyst 2016; 140:5379-99. [PMID: 26114391 DOI: 10.1039/c5an00954e] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aptamers are target specific ssDNA, RNA or peptide sequences generated by an in vitro selection and amplification method called SELEX (Systematic Evolution of Ligands by EXponential Enrichment), which involves repetitive cycles of binding, recovery and amplification steps. Aptamers have the ability to bind with a variety of targets such as drugs, proteins, heavy metals, and pathogens with high specificity and selectivity. Aptamers are similar to monoclonal antibodies regarding their binding affinities, but they offer a number of advantages over the existing antibody-based detection methods, which make the aptamers promising diagnostic and therapeutic tools for future biomedical and analytical applications. The aim of this review article is to provide an overview of the recent advancements in aptamer screening methods along with a concise description of the major application areas of aptamers including biomarker discovery, diagnostics, imaging and nanotechnology.
Collapse
Affiliation(s)
- Meral Yüce
- Sabanci University, Nanotechnology Research and Application Centre, 34956, Istanbul, Turkey.
| | | | | |
Collapse
|
30
|
Lou B, Chen E, Zhao X, Qu F, Yan J. The application of capillary electrophoresis for assisting whole-cell aptamers selection by characterizing complete ssDNA distribution. J Chromatogr A 2016; 1437:203-209. [PMID: 26877178 DOI: 10.1016/j.chroma.2016.01.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/06/2016] [Accepted: 01/27/2016] [Indexed: 01/16/2023]
Abstract
Whole-cell SELEX faces more difficulties than SELEX against purified molecules target. In this work, we demonstrate the application of capillary electrophoresis for assisting whole-cell aptamers selection by characterizing complete ssDNA distribution. We chose three cancer cell lines U251, Hela and PC3 as target, FAM labeled Sgc8c (a 41mer aptamer) and FAM labeled 41mer random ssDNA library as ssDNA model. CE conditions of running buffer and capillary length and inner diameter as well as UV and LIF detection were optimized. The distribution percentage of Sgc8c and ssDNA library against U251, Hela and PC3 was demonstrated, the relative peak area of their complex is 8.94%, 1.05% and 0.44% for Sgc8c and 9.03%, 1.04% and 0.12% for ssDNA library respectively. Under the chosen experimental conditions, binding ability comparison of three cell lines was U251>Hela>PC3, which was validated by laser confocol microscope. For each cell, distribution percentage of ssDNA library was compared with that of Sgc8c. Finally, whole-cell complex of U251-Sgc8c was confirmed by increase incubation time and fraction CE analysis.
Collapse
Affiliation(s)
- Beilei Lou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Erning Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Beijing Centre for Physical and Chemical Analysis, Beijing 100089, China
| | - Xinying Zhao
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, China
| | - Feng Qu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Jieying Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
31
|
Bitaraf FS, Rasooli I, Mousavi Gargari SL. DNA aptamers for the detection of Haemophilus influenzae type b by cell SELEX. Eur J Clin Microbiol Infect Dis 2016; 35:503-10. [PMID: 26768582 DOI: 10.1007/s10096-015-2567-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Abstract
Haemophilus influenzae type b (Hib) causes acute bacterial meningitis (ABM) in children, with a mortality rate of about 3-6 % of the affected patients. ABM can lead to death during a period of hours to several days and, hence, rapid and early detection of the infection is crucial. Aptamers, the short single-stranded DNA or RNA with high affinity to target molecules, are selected by a high-flux screening technique known as in vitro screening and systematic evolution of ligands by exponential enrichment technology (SELEX). In this study, whole-cell SELEX was applied for the selection of target-specific aptamers with high affinity to Hib. ssDNA aptamers prepared by lambda exonuclease were incubated with the target cells (Hib). The aptameric binding rate to Hib was characterized for binding affinity after seven SELEX rounds by flow cytometry. The aptamers with higher binding affinity were cloned. Four of 68 aptamer clones were selected for sequencing. The dissociation constant (Kd) of the high-affinity aptamer clones 45 and 63 were 47.10 and 28.46 pM, respectively. These aptamers did not bind to other bacterial species, including the seven meningitis-causing bacteria. They showed distinct affinity to various H. influenzae strains only. These aptamers showed the highest affinity to Hib and the lowest affinity to H. influenzae type c and to other meningitis-causing bacteria. Clone 63 could detect Hib in patients' cerebrospinal fluid (CSF) samples at 60 colony-forming units (CFU)/mL. The results indicate applicability of the aptamers for rapid and early detection of infections brought about by Hib.
Collapse
Affiliation(s)
- F S Bitaraf
- Department of Biology, Shahed University, Tehran-Qom Express Way, Tehran, 3319118651, Iran
| | - I Rasooli
- Department of Biology, Shahed University, Tehran-Qom Express Way, Tehran, 3319118651, Iran.
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran.
| | - S L Mousavi Gargari
- Department of Biology, Shahed University, Tehran-Qom Express Way, Tehran, 3319118651, Iran
| |
Collapse
|
32
|
Development and characterization of an enzyme-linked DNA aptamer-magnetic bead-based assay for human IGF-I in serum. Microchem J 2016. [DOI: 10.1016/j.microc.2015.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Davydova A, Vorobjeva M, Pyshnyi D, Altman S, Vlassov V, Venyaminova A. Aptamers against pathogenic microorganisms. Crit Rev Microbiol 2015; 42:847-65. [PMID: 26258445 PMCID: PMC5022137 DOI: 10.3109/1040841x.2015.1070115] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An important current issue of modern molecular medicine and biotechnology is the search for new approaches to early diagnostic assays and adequate therapy of infectious diseases. One of the promising solutions to this problem might be a development of nucleic acid aptamers capable of interacting specifically with bacteria, protozoa, and viruses. Such aptamers can be used for the specific recognition of infectious agents as well as for blocking of their functions. The present review summarizes various modern SELEX techniques used in this field, and of several currently identified aptamers against viral particles and unicellular organisms, and their applications. The prospects of applying nucleic acid aptamers for the development of novel detection systems and antibacterial and antiviral drugs are discussed.
Collapse
Affiliation(s)
- Anna Davydova
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Maria Vorobjeva
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Dmitrii Pyshnyi
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Sidney Altman
- b Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , CT , USA
| | - Valentin Vlassov
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Alya Venyaminova
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| |
Collapse
|
34
|
Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26199940 PMCID: PMC4493287 DOI: 10.1155/2015/419318] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed.
Collapse
|
35
|
Parashar A, Rajput YS, Sharma R. Aptamer-based sensing of β-casomorphin-7. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2647-2653. [PMID: 25712869 DOI: 10.1021/acs.jafc.5b00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
β-Casomorphin-7 (BCM-7), a seven amino acid peptide, is released during digestion of β-casein A1 variant of milk which is speculated to be associated with certain diseases. Fifteen ssDNA aptamers having high affinity toward BCM-7 were identified from a 72 nt long random library after ten rounds of systematic evolution of ligands by exponential enrichment. Dissociation constant values of selected aptamers were in the range of 7.7-156.7 nM. Seq6 aptamer exhibited the lowest Kd value. Nine aptamers were evaluated for their binding toward BCM-7, BCM-9A1, and BCM-9A2 peptides, and binding was variable. SeqU5 exhibited the lowest binding with BCM-9A1 and BCM-9A2. Aptamer-coated gold nanoparticles (GNPs) resulted in color change of GNPs in the presence of BCM-7, thereby establishing recognition of BCM-7 by aptamers. The enzyme-linked aptamer-sorbent assay (ELASA) was evaluated as an assay of BCM-7 in biological fluids. BCM-7-peroxidase competed with BCM-7 in ELASA, performed with BCM-7 solution and BCM-7 spiked urine pretreated with urease, plasma, and β-casein digest samples.
Collapse
Affiliation(s)
- Abhishek Parashar
- †Animal Biochemistry Division, National Dairy Research Institute, Karnal-132001, India
| | - Yudhishthir S Rajput
- †Animal Biochemistry Division, National Dairy Research Institute, Karnal-132001, India
| | - Rajan Sharma
- ‡Dairy Chemistry Division, National Dairy Research Institute, Karnal-132001, India
| |
Collapse
|
36
|
Lamont EA, Wang P, Enomoto S, Borewicz K, Abdallah A, Isaacson RE, Sreevatsan S. A combined enrichment and aptamer pulldown assay for Francisella tularensis detection in food and environmental matrices. PLoS One 2014; 9:e114622. [PMID: 25536105 PMCID: PMC4275185 DOI: 10.1371/journal.pone.0114622] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis, a Gram-negative bacterium and causative agent of tularemia, is categorized as a Class A select agent by the Centers for Disease Control and Prevention due to its ease of dissemination and ability to cause disease. Oropharyngeal and gastrointestinal tularemia may occur due to ingestion of contaminated food and water. Despite the concern to public health, little research is focused on F. tularensis detection in food and environmental matrices. Current diagnostics rely on host responses and amplification of F. tularensis genetic elements via Polymerase Chain Reaction; however, both tools are limited by development of an antibody response and limit of detection, respectively. During our investigation to develop an improved culture medium to aid F. tularensis diagnostics, we found enhanced F. tularensis growth using the spent culture filtrate. Addition of the spent culture filtrate allowed for increased detection of F. tularensis in mixed cultures of food and environmental matrices. Ultraperformance liquid chromatography (UPLC)/MS analysis identified several unique chemicals within the spent culture supernatant of which carnosine had a matching m/z ratio. Addition of 0.625 mg/mL of carnosine to conventional F. tularensis medium increased the growth of F. tularensis at low inoculums. In order to further enrich F. tularensis cells, we developed a DNA aptamer cocktail to physically separate F. tularensis from other bacteria present in food and environmental matrices. The combined enrichment steps resulted in a detection range of 1-106 CFU/mL (starting inoculums) in both soil and lettuce backgrounds. We propose that the two-step enrichment process may be utilized for easy field diagnostics and subtyping of suspected F. tularensis contamination as well as a tool to aid in basic research of F. tularensis ecology.
Collapse
Affiliation(s)
- Elise A. Lamont
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ping Wang
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Shinichiro Enomoto
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Klaudyna Borewicz
- Molecular Ecology Group, Wageningen University, Dreijenplen 10, 6703HB, Wageningen, Netherlands
| | - Ahmed Abdallah
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Richard E. Isaacson
- Department of Veterinary Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Veterinary Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
37
|
Simmons SC, Jämsä H, Silva D, Cortez CM, McKenzie EA, Bitu CC, Salo S, Nurmenniemi S, Nyberg P, Risteli J, deAlmeida CEB, Brenchley PEC, Salo T, Missailidis S. Anti-heparanase aptamers as potential diagnostic and therapeutic agents for oral cancer. PLoS One 2014; 9:e96846. [PMID: 25295847 PMCID: PMC4189786 DOI: 10.1371/journal.pone.0096846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 04/11/2014] [Indexed: 12/13/2022] Open
Abstract
Heparanase is an endoglycosidase enzyme present in activated leucocytes, mast cells, placental tissue, neutrophils and macrophages, and is involved in tumour metastasis and tissue invasion. It presents a potential target for cancer therapies and various molecules have been developed in an attempt to inhibit the enzymatic action of heparanase. In an attempt to develop a novel therapeutic with an associated diagnostic assay, we have previously described high affinity aptamers selected against heparanase. In this work, we demonstrated that these anti-heparanase aptamers are capable of inhibiting tissue invasion of tumour cells associated with oral cancer and verified that such inhibition is due to inhibition of the enzyme and not due to other potentially cytotoxic effects of the aptamers. Furthermore, we have identified a short 30 bases aptamer as a potential candidate for further studies, as this showed a higher ability to inhibit tissue invasion than its longer counterpart, as well as a reduced potential for complex formation with other non-specific serum proteins. Finally, the aptamer was found to be stable and therefore suitable for use in human models, as it showed no degradation in the presence of human serum, making it a potential candidate for both diagnostic and therapeutic use.
Collapse
Affiliation(s)
- Suzanne C. Simmons
- Department of Chemistry and Analytical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Hannaleena Jämsä
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Medical Research Center and Oulu University Hospital, Oulu, Finland
| | - Dilson Silva
- Institute of Mathematics and Statistics, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Celia M. Cortez
- Institute of Mathematics and Statistics, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Edward A. McKenzie
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Carolina C. Bitu
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Medical Research Center and Oulu University Hospital, Oulu, Finland
| | - Sirpa Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
| | - Sini Nurmenniemi
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
| | - Pia Nyberg
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Medical Research Center and Oulu University Hospital, Oulu, Finland
| | - Juha Risteli
- Institute of Diagnostics, Department of Clinical Chemistry, University of Oulu, Oulu, Finland
| | - Carlos E. B. deAlmeida
- Department of Chemistry and Analytical Sciences, The Open University, Milton Keynes, United Kingdom
- Laboratório de Radiobiologia, Instituto de Radioproteção e Dosimetria, Rio de Janeiro, Brazil
| | | | - Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Medical Research Center and Oulu University Hospital, Oulu, Finland
- Graduate Program in Estomatopatologia, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
- Institute of Dentistry, University of Helsinki, Helsinki, Finland
- * E-mail: (SM); (TS)
| | - Sotiris Missailidis
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (SM); (TS)
| |
Collapse
|
38
|
Gopinath SC, Tang TH, Chen Y, Citartan M, Lakshmipriya T. Bacterial detection: From microscope to smartphone. Biosens Bioelectron 2014; 60:332-42. [DOI: 10.1016/j.bios.2014.04.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/13/2014] [Accepted: 04/07/2014] [Indexed: 01/15/2023]
|
39
|
Selection of peptidoglycan-specific aptamers for bacterial cells identification. Appl Biochem Biotechnol 2014; 174:2548-56. [PMID: 25185503 DOI: 10.1007/s12010-014-1206-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023]
Abstract
Peptidoglycan is a highly complex and essential macromolecule of bacterial outer cell wall; it is a heteropolymer made up of linear glycan strands cross-linked by peptides. Peptidoglycan has a particular composition which makes it a possible target for specific bacterial recognition. Aptamers are single-stranded DNA or RNA oligonucleotides that bind to target molecules with high affinity and specificity. Aptamers can be labeled with different radioisotopes and possess several properties that make them suitable for molecular imaging. The purpose of this study was to obtain aptamers for use as radiopharmaceutical in bacterial infection diagnosis. Two aptamers (Antibac1 and Antibac2) against peptidoglycan were selected through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology. The dissociation constant (Kd) for Antibac1 was 0.415 + 0.047 μM and for Antibac2 was 1.261 + 0.280 μM. These aptamers labeled with (32)P showed high affinity for Staphylococcus aureus cells. The binding to S. aureus and Escherichia coli in vitro were significantly higher than for Candida albicans and human fibroblasts, demonstrating their specificity for bacterial cells. These results point Antibac1 and Antibac2 as promising tools for bacterial infections identification.
Collapse
|
40
|
Dulay SB, Gransee R, Julich S, Tomaso H, O׳ Sullivan CK. Automated microfluidically controlled electrochemical biosensor for the rapid and highly sensitive detection of Francisella tularensis. Biosens Bioelectron 2014; 59:342-9. [DOI: 10.1016/j.bios.2014.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 11/29/2022]
|
41
|
Meng C, Zhao X, Qu F, Mei F, Gu L. Interaction evaluation of bacteria and protoplasts with single-stranded deoxyribonucleic acid library based on capillary electrophoresis. J Chromatogr A 2014; 1358:269-76. [DOI: 10.1016/j.chroma.2014.06.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/02/2014] [Accepted: 06/24/2014] [Indexed: 11/28/2022]
|
42
|
Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold. Pathogens 2014; 3:341-55. [PMID: 25437803 PMCID: PMC4243449 DOI: 10.3390/pathogens3020341] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 12/18/2022] Open
Abstract
Preliminary studies aimed at improving the sensitivity of foodborne pathogen detection via lateral flow (LF) test strips by use of high affinity DNA aptamers for capture and reporter functions when coupled to red-emitting quantum dots (Qdot 655) are reported. A variety of DNA aptamers developed against Escherichia coli, Listeria monocytogenes, and Salmonella enterica were paired in capture and reporter combinations to determine which yielded the strongest detection of their cognate bacteria using a colloidal gold screening system. Several promising sandwich combinations were identified for each of the three bacterial LF strip systems. The best E. coli aptamer-LF system was further studied and yielded a visible limit of detection (LOD) of ~3,000 E. coli 8739 and ~6,000 E. coli O157:H7 in buffer. These LODs were reduced to ~300–600 bacterial cells per test respectively by switching to a Qdot 655 aptamer-LF system. Novel aspects of these assays such as the use of high levels of detergents to avoid quantum dot agglutination and enhance migration in analytical membranes, identification of optimal analytical membrane types, UV-immobilization of capture aptamers, and novel dual biotin/digoxigenin-end labeled aptamer streptavidin-colloidal gold or -Qdot 655 conjugates plus anti-digoxigenin antibody control lines are also discussed. In general, this work provides proof-of-principle for highly sensitive aptamer-Qdot LF strip assays for rapid foodborne pathogen detection.
Collapse
|
43
|
Vivekananda J, Salgado C, Millenbaugh NJ. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin. Biochem Biophys Res Commun 2014; 444:433-8. [PMID: 24472539 DOI: 10.1016/j.bbrc.2014.01.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/20/2014] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is a versatile pathogen capable of causing a broad spectrum of diseases ranging from superficial skin infections to life threatening conditions such as endocarditis, septicemia, pneumonia and toxic shock syndrome. In vitro and in vivo studies identified an exotoxin, α-toxin, as a major cause of S. aureus toxicity. Because S. aureus has rapidly evolved resistance to a number of antibiotics, including methicillin, it is important to identify new therapeutic strategies, other than antibiotics, for inhibiting the harmful effects of this pathogen. Aptamers are single-stranded DNA or RNA oligonucleotides with three-dimensional folded conformations that bind with high affinity and selectivity to targets and modulate their biological functions. The goal of this study was to isolate DNA aptamers that specifically inhibit the cytotoxic activity of α-toxin. After 10 rounds of Systematic Evolution of Ligands by EXponential Enrichment (SELEX), 49 potential anti-α-toxin aptamers were identified. In vitro neutralization assays demonstrated that 4 of these 49 aptamers, AT-27, AT-33, AT-36, and AT-49, significantly inhibited α-toxin-mediated cell death in Jurkat T cells. Furthermore, RT-PCR analysis revealed that α-toxin increased the transcription of the inflammatory cytokines TNF-α and IL-17 and that anti-α-toxin aptamers AT-33 and AT-36 inhibited the upregulation of these genes. Collectively, the data suggest the feasibility of generating functionally effective aptamers against α-toxin for treatment of S. aureus infections.
Collapse
Affiliation(s)
- Jeevalatha Vivekananda
- Maxillofacial Injury and Disease Department, Craniofacial Health and Restorative Medicine, Naval Medical Research Unit San Antonio, JBSA-Fort Sam Houston, TX 78234, USA
| | - Christi Salgado
- Maxillofacial Injury and Disease Department, Craniofacial Health and Restorative Medicine, Naval Medical Research Unit San Antonio, JBSA-Fort Sam Houston, TX 78234, USA
| | - Nancy J Millenbaugh
- Maxillofacial Injury and Disease Department, Craniofacial Health and Restorative Medicine, Naval Medical Research Unit San Antonio, JBSA-Fort Sam Houston, TX 78234, USA.
| |
Collapse
|
44
|
Amaya-González S, de-los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ. Aptamer-based analysis: a promising alternative for food safety control. SENSORS (BASEL, SWITZERLAND) 2013; 13:16292-311. [PMID: 24287543 PMCID: PMC3892839 DOI: 10.3390/s131216292] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 02/07/2023]
Abstract
Ensuring food safety is nowadays a top priority of authorities and professional players in the food supply chain. One of the key challenges to determine the safety of food and guarantee a high level of consumer protection is the availability of fast, sensitive and reliable analytical methods to identify specific hazards associated to food before they become a health problem. The limitations of existing methods have encouraged the development of new technologies, among them biosensors. Success in biosensor design depends largely on the development of novel receptors with enhanced affinity to the target, while being stable and economical. Aptamers fulfill these characteristics, and thus have surfaced as promising alternatives to natural receptors. This Review describes analytical strategies developed so far using aptamers for the control of pathogens, allergens, adulterants, toxins and other forbidden contaminants to ensure food safety. The main progresses to date are presented, highlighting potential prospects for the future.
Collapse
Affiliation(s)
- Sonia Amaya-González
- Departamento de Química-Física y Analítica, Universidad de Oviedo, Julián Clavería, 8, Oviedo 33006, Spain; E-Mails: (S.A.-G.); (N.S.-Á.); (A.J.M.-O.)
| | - Noemí de-los-Santos-Álvarez
- Departamento de Química-Física y Analítica, Universidad de Oviedo, Julián Clavería, 8, Oviedo 33006, Spain; E-Mails: (S.A.-G.); (N.S.-Á.); (A.J.M.-O.)
| | - Arturo J. Miranda-Ordieres
- Departamento de Química-Física y Analítica, Universidad de Oviedo, Julián Clavería, 8, Oviedo 33006, Spain; E-Mails: (S.A.-G.); (N.S.-Á.); (A.J.M.-O.)
| | - Maria Jesús Lobo-Castañón
- Departamento de Química-Física y Analítica, Universidad de Oviedo, Julián Clavería, 8, Oviedo 33006, Spain; E-Mails: (S.A.-G.); (N.S.-Á.); (A.J.M.-O.)
| |
Collapse
|
45
|
Aptasensor and genosensor methods for detection of microbes in real world samples. Methods 2013; 64:229-40. [PMID: 23872322 DOI: 10.1016/j.ymeth.2013.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 12/31/2022] Open
Abstract
The increasing concerns about food and environmental safety have prompted the desire to develop rapid, specific, robust and highly sensitive methods for the detection of microorganisms to ensure public health. Although traditional microbiological methods are available, they are labor intensive, unsuitable for on-site and high throughput analysis, and need well-trained personnel. To circumvent these drawbacks, many efforts have been devoted towards the development of biosensors, using nucleic acid as bio-recognition element. In this review, we will focus on recent significant advances made in two types of DNA-based biosensors, namely genosensors, and aptasensors. In genosensor approach, DNA or RNA target is detected through the hybridization reaction between DNA or RNA and ssDNA sensing element, while in aptasensor method, DNA or RNA aptamer, capable of binding to a target molecule with high affinity and specificity, plays the role of receptor. The goal of this article is to review the innovative methods that have been emerged in genosensor and aptasensor during recent years. Particular attention is given to recent advances and trends in selection of biorecognition element, DNA immobilization strategies and sensing formats.
Collapse
|
46
|
Wang R, Zhao J, Jiang T, Kwon YM, Lu H, Jiao P, Liao M, Li Y. Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. J Virol Methods 2013; 189:362-9. [PMID: 23523887 DOI: 10.1016/j.jviromet.2013.03.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/10/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
Abstract
Aptamers are artificial oligonucleotides (DNA or RNA) that can bind to a broad range of targets. In diagnostic and detection assays, aptamers represent an alternative to antibodies as recognition agents. The objective of this study was to select and characterize DNA aptamers that can specifically bind to avian influenza virus (AIV) H5N1 based on Systematic Evolution of Ligands by EXponential enrichment (SELEX) and surface plasmon resonance (SPR). The selection was started with an ssDNA (single-stranded DNA) library of 10¹⁴ molecules randomized at central 74 t. For the first four selection cycles, purified hemagglutinin (HA) from AIV H5N1 was used as the target protein, and starting from the fifth cycle, entire H5N1 virus was applied in order to improve the specificity. After 13 rounds of selection, DNA aptamers that bind to the H5N1 were isolated and three aptamer sequences were characterized further by sequencing and affinity binding. Dot blot analysis was employed for monitoring the SELEX process and conducting the preliminary tests on the affinity and specificity of aptamers. With the increasing number of selection cycles, a steady increase in the color density was observed, indicating that the aptamers with good binding affinity to the target were enriched. The best aptamer candidate had a dissociation constant (KD) of 4.65 M as determined by SPR, showing a strong binding between the HA and the selected aptamer. The specificity was determined by testing non-target AIV H5N2, H5N3, H5N9, H9N2 and H7N2. Negligible cross-reactivity confirmed the high specificity of selected aptamers. The developed aptamer was then applied for detection of AIV H5N1 in spiked poultry swab samples. The obtained aptamers could open up possibilities for the development of aptamer-based medical diagnostics and detection assays for AIV H5N1. (The H5N1 used in this study was inactivated virus.).
Collapse
Affiliation(s)
- Ronghui Wang
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Selection of DNA aptamers for capture and detection of Salmonella Typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 2013; 97:3677-86. [PMID: 23494620 DOI: 10.1007/s00253-013-4766-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/04/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
Alternative ligands such as nucleic acid aptamers can be used for pathogen capture and detection and offer advantages over antibodies, including reduced cost, ease of production and modification, and improved stability. DNA aptamers demonstrating binding specificity to Salmonella enterica serovar Typhimurium were identified by whole-cell-systematic evolution of ligands by exponential enrichment (SELEX) beginning with a combinatorial library of biotin-labeled single stranded DNA molecules. Aptamer specificity was achieved using whole-cell counter-SELEX against select non-Salmonella genera. Aptamers binding to Salmonella were sorted, cloned, sequenced, and characterized for binding efficiency. Out of 18 candidate aptamers screened, aptamer S8-7 showed relatively high binding affinity with an apparent dissociation constant (K d value) of 1.73 ± 0.54 μM and was selected for further characterization. Binding exclusivity analysis of S8-7 showed low apparent cross-reactivity with other foodborne bacteria including Escherichia coli O157: H7 and Citrobacter braakii and moderate cross-reactivity with Bacillus cereus. Aptamer S8-7 was successfully used as a ligand for magnetic capture of serially diluted Salmonella Typhimurium cells, followed by downstream detection using qPCR. The lower limit of detection of the aptamer magnetic capture-qPCR assay was 10(2)-10(3) CFU equivalents of Salmonella Typhimurium in a 290-μl sample volume. Mean capture efficiency ranged from 3.6 to 12.6 %. Unique aspects of the study included (a) the use of SELEX targeting whole cells; (b) the application of flow cytometry for aptamer pool selection, thereby favoring purification of ligands with both high binding affinity and targeting abundant cell surface moieties; and (c) the use of pre-labeled primers that circumvented the need for post-selection ligand labeling. Taken together, this study provides proof-of-concept that biotinylated aptamers selected by whole-cell SELEX can be used in a qPCR-based capture-detection platform for Salmonella Typhimurium.
Collapse
|
48
|
Martín ME, García-Hernández M, García-Recio EM, Gómez-Chacón GF, Sánchez-López M, González VM. DNA aptamers selectively target Leishmania infantum H2A protein. PLoS One 2013; 8:e78886. [PMID: 24205340 PMCID: PMC3804487 DOI: 10.1371/journal.pone.0078886] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/16/2013] [Indexed: 02/08/2023] Open
Abstract
Parasites of the genus Leishmania produce leishmaniasis which affects millions people around the world. Understanding the molecular characteristics of the parasite can increase the knowledge about the mechanisms underlying disease development and progression. Thus, the study of the molecular features of histones has been considered of particular interest because Leishmania does not condense the chromatin during mitosis and, consequently, a different role for these proteins in the biology of the parasite can be expected. Furthermore, the sequence divergences in the amino and in the carboxy-terminal domains of the kinetoplastid core histones convert them in potential diagnostic and/or therapeutics targets. Aptamers are oligonucleotide ligands that are selected in vitro by their affinity and specificity for the target as a consequence of the particular tertiary structure that they are able to acquire depending on their sequence. Development of high-affinity molecules with the ability to recognize specifically Leishmania histones is essential for the progress of this kind of study. Two aptamers which specifically recognize Leishmania infantum H2A histone were cloned from a previously obtained ssDNA enriched population. These aptamers were sequenced and subjected to an in silico analysis. ELONA, slot blot and Western blot were performed to establish aptamer affinity and specificity for LiH2A histone and ELONA assays using peptides corresponding to overlapped sequences of LiH2A were made mapping the aptamers:LiH2A interaction. As "proofs of concept", aptamers were used to determine the number of parasites in an ELONA platform and to purify LiH2A from complex mixtures. The aptamers showed different secondary structures among them; however, both of them were able to recognize the same peptides located in a side of the protein. In addition, we demonstrate that these aptamers are useful for LiH2A identification and also may be of potential application as diagnostic system and as a laboratory tool with purification purpose.
Collapse
Affiliation(s)
- M. Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Madrid, Spain
| | | | - Eva M. García-Recio
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | - Víctor M. González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Madrid, Spain
- * E-mail:
| |
Collapse
|
49
|
Abstract
The objective of this study was to develop a quartz crystal microbalance (QCM) aptasensor based on ssDNA crosslinked polymeric hydrogel for rapid, sensitive and specific detection of avian influenza virus (AIV) H5N1. A selected aptamer with high affinity and specificity against AIV H5N1 surface protein was used, and hybridization between the aptamer and ssDNA formed the crosslinker in the polymer hydrogel. The aptamer hydrogel was immobilized on the gold surface of QCM sensor using a self-assembled monolayer method. The hydrogel remained in the state of shrink if no H5N1 virus was present in the sample because of the crosslinking between the aptamer and ssDNA in the polymer network. When it exposed to target virus, the binding reaction between the aptamer and H5N1 virus caused the dissolution of the linkage between the aptamer and ssDNA, resulting in the abrupt swelling of the hydrogel. The swollen hydrogel was monitored by the QCM sensor in terms of decreased frequency. Three polymeric hydrogels with different ratio (100:1 hydrogel I, 10:1 hydrogel II, 1:1 hydrogel III) of acrylamide and the aptamer monomer were synthesized, respectively, and then were used as the QCM sensor coating material. The results showed that the developed hydrogel QCM aptasensor was capable of detecting target H5N1 virus, and among the three developed aptamer hydrogels, hydrogel III coated QCM aptasensor achieved the highest sensitivity with the detection limit of 0.0128 HAU (HA unit). The total detection time from sampling to detection was only 30 min. In comparison with the anti-H5 antibody coated QCM immunosensor, the hydrogel QCM aptasensor lowered the detection limit and reduced the detection time.
Collapse
Affiliation(s)
- Ronghui Wang
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | | |
Collapse
|
50
|
|