1
|
Jeong Y. Comprehensive analysis of clinical, pathological, and molecular features in chronic myelomonocytic leukemia: frequent ASXL1 and NRAS mutations and higher mutation burden in myeloproliferative CMML compared to myelodysplastic CMML. Leuk Lymphoma 2025:1-10. [PMID: 39819262 DOI: 10.1080/10428194.2025.2453093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Various aspects of myeloproliferative chronic myelomonocytic leukemia (MP-CMML) and myelodysplastic CMML (MD-CMML) have been reported but inconsistencies remain. This study conducted a comprehensive retrospective analysis of clinical, pathological, and molecular data from a cohort of CMML. The results revealed a higher frequency of ASXL1 and NRAS mutations and a greater mutation burden in MP-CMML, characterized by more tier 1 or 2 variants and dominant mutations. Significant genotype-phenotype correlations were observed, including distinct patterns within MD-CMML subgroups. Additionally, NRAS or RUNX1 mutations and an abnormal karyotype were associated with worse overall survival or progression-free survival. These findings underscore the distinct molecular and pathological differences between MP-CMML and MD-CMML, highlighting the more aggressive nature of MP-CMML and the need for tailored treatment strategies.
Collapse
Affiliation(s)
- Yoonseo Jeong
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Tran Quang V, Wagner-Ballon O, Sloma I. Predicting which subsets of patients with myelodysplastic neoplasms are more likely to progress to overt chronic myelomonocytic leukemia. Leuk Lymphoma 2024; 65:1766-1776. [PMID: 39004904 DOI: 10.1080/10428194.2024.2378816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
The boundary between myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) has been revised in the latest World Health Organization classification of myeloid malignancies. These changes were motivated by the description of a subgroup of MDS patients identified as oligomonocytic chronic myelomonocytic leukemia (OM-CMML) at risk of evolving into overt CMML. Various studies will be reviewed describing the clinical and biological features of MDS patients evolving to CMML. The efforts to discover biomarkers enabling the identification of these patients at the time of MDS diagnosis will be discussed. Finally, the molecular landscape of these patients will be presented with a specific focus on the biallelic inactivation of TET2 in light of its functional impact on hematopoietic stem cells, granule-monocytic differentiation, and its tight interplay with inflammation.
Collapse
Affiliation(s)
- Violaine Tran Quang
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- AP-HP, Hôpital Henri Mondor, Hematology and Immunology Department, Créteil, France
| | - Orianne Wagner-Ballon
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- AP-HP, Hôpital Henri Mondor, Hematology and Immunology Department, Créteil, France
| | - Ivan Sloma
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- AP-HP, Hôpital Henri Mondor, Hematology and Immunology Department, Créteil, France
| |
Collapse
|
3
|
Lim K, Kan WL, Nair PC, Kutyna M, Lopez AF, Hercus T, Ross DM, Lane S, Fong CY, Brown A, Yong A, Yeung D, Hughes T, Hiwase D, Thomas D. CBL mutations in chronic myelomonocytic leukemia often occur in the RING domain with multiple subclones per patient: Implications for targeting. PLoS One 2024; 19:e0310641. [PMID: 39298477 PMCID: PMC11412512 DOI: 10.1371/journal.pone.0310641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a rare blood cancer of older adults (3 in every 1,000,000 persons) characterized by poor survival and lacking effective mutation-specific therapy. Mutations in the ubiquitin ligase Cbl occur frequently in CMML and share biological and molecular features with a clonal disease occurring in children, juvenile myelomonocytic leukemia (JMML). Here we analyzed the clinical presentations, molecular features and immunophenotype of CMML patients with CBL mutations enrolled in a prospective Phase II clinical trial stratified according to molecular markers. Clinically, CBL mutations were associated with increased bone marrow blasts at diagnosis, leukocytosis and splenomegaly, similar to patients harboring NRAS or KRAS mutations. Interestingly, 64% of patients presented with more than one CBL variant implying a complex subclonal architecture, often with co-occurrence of TET2 mutations. We found CBL mutations in CMML frequently clustered in the RING domain in contrast to JMML, where mutations frequently involve the linker helix region (P<0.0001). According to our comparative alignment of available X-ray structures, mutations in the linker helix region such as Y371E give rise to conformational differences that could be exploited by targeted therapy approaches. Furthermore, we noted an increased percentage of CMML CD34+ stem and progenitor cells expressing CD116 and CD131 in all CBL mutant cases and increased CD116 receptor density compared to healthy controls, similar to CMML overall. In summary, our data demonstrate that CBL mutations are associated with distinct molecular and clinical features in CMML and are potentially targetable with CD116-directed immunotherapy.
Collapse
Affiliation(s)
- Kelly Lim
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Winnie L Kan
- Cytokine Receptor Laboratory, SA Pathology, Adelaide, SA, Australia
| | - Pramod C Nair
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Monika Kutyna
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Angel F Lopez
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Cytokine Receptor Laboratory, SA Pathology, Adelaide, SA, Australia
| | - Timothy Hercus
- Cytokine Receptor Laboratory, SA Pathology, Adelaide, SA, Australia
| | - David M Ross
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- SA Pathology, Adelaide, SA, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Steven Lane
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | - Agnes Yong
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- Royal Perth Hospital, Perth, WA, Australia
- The University of Western Australia Medical School, Perth, WA, Australia
| | - David Yeung
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Timothy Hughes
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Devendra Hiwase
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- SA Pathology, Adelaide, SA, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Daniel Thomas
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- SA Pathology, Adelaide, SA, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
4
|
Jann JC, Hergott CB, Winkler M, Liu Y, Braun B, Charles A, Copson KM, Barua S, Meggendorfer M, Nadarajah N, Shimony S, Winer ES, Wadleigh M, Stone RM, DeAngelo DJ, Garcia JS, Haferlach T, Lindsley RC, Luskin MR, Stahl M, Tothova Z. Subunit-specific analysis of cohesin-mutant myeloid malignancies reveals distinct ontogeny and outcomes. Leukemia 2024; 38:1992-2002. [PMID: 39033241 PMCID: PMC11347381 DOI: 10.1038/s41375-024-02347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Mutations in the cohesin complex components (STAG2, RAD21, SMC1A, SMC3, and PDS5B) are recurrent genetic drivers in myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML). Whether the different cohesin subunit mutations share clinical characteristics and prognostic significance is not known. We analyzed 790 cohesin-mutant patients from the Dana-Farber Cancer Institute (DFCI) and the Munich Leukemia Laboratory (MLL), 390 of which had available outcome data, and identified subunit-specific clinical, prognostic, and genetic characteristics suggestive of distinct ontogenies. We found that STAG2 mutations are acquired at MDS stage and are associated with secondary AML, adverse prognosis, and co-occurrence of secondary AML-type mutations. In contrast, mutations in RAD21, SMC1A and SMC3 share features with de novo AML with better prognosis, and co-occurrence with de novo AML-type lesions. The findings show the heterogeneous nature of cohesin complex mutations, and inform clinical and prognostic classification, as well as distinct biology of the cohesin complex.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Cancer Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Christopher B Hergott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Marisa Winkler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Element Iowa City (JMI Laboratories), North Liberty, IA, 52317, USA
| | - Yiwen Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Benjamin Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Anne Charles
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kevin M Copson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Shougat Barua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Manja Meggendorfer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Niroshan Nadarajah
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Eric S Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Martha Wadleigh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jacqueline S Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Marlise R Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Cancer Program, Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
5
|
Montalban-Bravo G, Thongon N, Rodriguez-Sevilla JJ, Ma F, Ganan-Gomez I, Yang H, Kim YJ, Adema V, Wildeman B, Tanaka T, Darbaniyan F, Al-Atrash G, Dwyer K, Loghavi S, Kanagal-Shamanna R, Song X, Zhang J, Takahashi K, Kantarjian H, Garcia-Manero G, Colla S. Targeting MCL1-driven anti-apoptotic pathways overcomes blast progression after hypomethylating agent failure in chronic myelomonocytic leukemia. Cell Rep Med 2024; 5:101585. [PMID: 38781960 PMCID: PMC11228590 DOI: 10.1016/j.xcrm.2024.101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 11/27/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
RAS pathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Here, using single-cell, multi-omics technologies, we seek to dissect the biological mechanisms underlying the initiation and progression of RAS pathway-mutated CMML. We identify that RAS pathway mutations induce transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs) and downstream monocytic populations in response to cell-intrinsic and -extrinsic inflammatory signaling that also impair the functions of immune cells. HSPCs expand at disease progression after therapy with HMA or the BCL2 inhibitor venetoclax and rely on the NF-κB pathway effector MCL1 to maintain survival. Our study has implications for the development of therapies to improve the survival of patients with RAS pathway-mutated CMML.
Collapse
MESH Headings
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/pathology
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Humans
- Apoptosis/drug effects
- Animals
- Mutation/genetics
- Mice
- Signal Transduction/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/drug effects
- Disease Progression
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- NF-kappa B/metabolism
- DNA Methylation/drug effects
- DNA Methylation/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Blast Crisis/pathology
- Blast Crisis/drug therapy
- Blast Crisis/genetics
- Blast Crisis/metabolism
Collapse
Affiliation(s)
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi June Kim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bethany Wildeman
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faezeh Darbaniyan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen Dwyer
- Department of Stem Cell Transplantation and Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Awada H, Gurnari C, Visconte V, Durmaz A, Kuzmanovic T, Awada H, Tu ZJ, Cook JR, Bolwell BJ, Sobecks R, Kalaycio M, Bosler D, Maciejewski JP. Clonal hematopoiesis-derived therapy-related myeloid neoplasms after autologous hematopoietic stem cell transplant for lymphoid and non-lymphoid disorders. Leukemia 2024; 38:1266-1274. [PMID: 38684821 PMCID: PMC11147764 DOI: 10.1038/s41375-024-02258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Therapy-related myeloid neoplasms (tMN) are complications of cytotoxic therapies. Risk of tMN is high in recipients of autologous hematopoietic stem cell transplantation (aHSCT). Acquisition of genomic mutations represents a key pathogenic driver but the origins, timing and dynamics, particularly in the context of preexisting or emergent clonal hematopoiesis (CH), have not been sufficiently clarified. We studied a cohort of 1507 patients undergoing aHSCT and a cohort of 263 patients who developed tMN without aHSCT to determine clinico-molecular features unique to post-aHSCT tMN. We show that tMN occurs in up to 2.3% of patients at median of 2.6 years post-AHSCT. Age ≥ 60 years, male sex, radiotherapy, high treatment burden ( ≥ 3 lines of chemotherapy), and graft cellularity increased the risk of tMN. Time to evolution and overall survival were shorter in post-aHSCT tMN vs. other tMN, and the earlier group's mutational pattern was enriched in PPM1D and TP53 lesions. Preexisting CH increased the risk of adverse outcomes including post-aHSCT tMN. Particularly, antecedent lesions affecting PPM1D and TP53 predicted tMN evolution post-transplant. Notably, CH-derived tMN had worse outcomes than non CH-derived tMN. As such, screening for CH before aHSCT may inform individual patients' prognostic outcomes and influence their prospective treatment plans. Presented in part as an oral abstract at the 2022 American Society of Hematology Annual Meeting, New Orleans, LA, 2022.
Collapse
Affiliation(s)
- Hussein Awada
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, NY, USA
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, NY, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valeria Visconte
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, NY, USA
| | - Arda Durmaz
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, NY, USA
| | - Teodora Kuzmanovic
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, NY, USA
| | - Hassan Awada
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Zheng Jin Tu
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - James R Cook
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Brian J Bolwell
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald Sobecks
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matt Kalaycio
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David Bosler
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, NY, USA.
| |
Collapse
|
7
|
Castaño-Díez S, Pomares H, Esteban D, Guijarro F, Jiménez-Vicente C, Zugasti I, Álamo JR, Mayayo VT, López-Guerra M, de la Fuente C, Charry P, Cortés-Bullich A, Bataller Á, Maluquer C, Colomer D, Rozman M, Arnan M, Xicoy B, Esteve J, Díaz-Beyá M. Characteristics and long-term outcome in a large series of chronic myelomonocytic leukaemia patients including 104 formerly referred to as oligomonocytic. Br J Haematol 2024; 204:892-897. [PMID: 38013238 DOI: 10.1111/bjh.19217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Recently modified diagnostic criteria for chronic myelomonocytic leukaemia (CMML) have lowered the cut-off for absolute monocytosis. In the largest series to date, we have analysed 313 CMML patients, including 104 with oligomonocytic (OM)-CMML. Five-year survival was longer for OM-CMML than for other patients (p < 0.001). Multivariate analysis identified OM-CMML as a favourable prognostic factor (HR 0.58; p = 0.002). The 5-year cumulative incidence of progression to classical CMML was 47%. Older age and transfusion dependence were adverse prognostic factors for OM-CMML. Our results support the inclusion of OM-CMML in the CMML category as a subtype with superior outcomes.
Collapse
Affiliation(s)
- Sandra Castaño-Díez
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Helena Pomares
- Hematology Department, Institut Català d'Oncologia (ICO), Hospital Duran i Reynals, Hospitalet de Llobregat, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain
| | - Daniel Esteban
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Francesca Guijarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematopathology Section, Servei d'Anatomia Patològica, CDB, Hospital Clínic Barcelona, Barcelona, Spain
| | - Carlos Jiménez-Vicente
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Inés Zugasti
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - José Ramón Álamo
- Hematopathology Section, Servei d'Anatomia Patològica, CDB, Hospital Clínic Barcelona, Barcelona, Spain
| | | | - Mònica López-Guerra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematopathology Section, Servei d'Anatomia Patològica, CDB, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Cristina de la Fuente
- Hematology Department, Institut Català d'Oncologia (ICO), Hospital Germans Trias i Pujol, Badalona, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paola Charry
- Apheresis Department, Hospital Clínic Barcelona, Barcelona, Spain
| | | | - Álex Bataller
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Clara Maluquer
- Hematology Department, Institut Català d'Oncologia (ICO), Hospital Duran i Reynals, Hospitalet de Llobregat, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematopathology Section, Servei d'Anatomia Patològica, CDB, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - María Rozman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematopathology Section, Servei d'Anatomia Patològica, CDB, Hospital Clínic Barcelona, Barcelona, Spain
| | - Montserrat Arnan
- Hematology Department, Institut Català d'Oncologia (ICO), Hospital Duran i Reynals, Hospitalet de Llobregat, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain
| | - Blanca Xicoy
- Hematology Department, Institut Català d'Oncologia (ICO), Hospital Germans Trias i Pujol, Badalona, Universitat Autònoma de Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Jordi Esteve
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Marina Díaz-Beyá
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| |
Collapse
|
8
|
Liu ZS, Sinha S, Bannister M, Song A, Arriaga-Gomez E, McKeeken AJ, Bonner EA, Hanson BK, Sarchi M, Takashima K, Zong D, Corral VM, Nguyen E, Yoo J, Chiraphapphaiboon W, Leibson C, McMahon MC, Rai S, Swisher EM, Sachs Z, Chatla S, Stirewalt DL, Deeg HJ, Skorski T, Papapetrou EP, Walter MJ, Graubert TA, Doulatov S, Lee SC, Nguyen HD. R-Loop Accumulation in Spliceosome Mutant Leukemias Confers Sensitivity to PARP1 Inhibition by Triggering Transcription-Replication Conflicts. Cancer Res 2024; 84:577-597. [PMID: 37967363 PMCID: PMC10922727 DOI: 10.1158/0008-5472.can-23-3239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
RNA splicing factor (SF) gene mutations are commonly observed in patients with myeloid malignancies. Here we showed that SRSF2- and U2AF1-mutant leukemias are preferentially sensitive to PARP inhibitors (PARPi), despite being proficient in homologous recombination repair. Instead, SF-mutant leukemias exhibited R-loop accumulation that elicited an R-loop-associated PARP1 response, rendering cells dependent on PARP1 activity for survival. Consequently, PARPi induced DNA damage and cell death in SF-mutant leukemias in an R-loop-dependent manner. PARPi further increased aberrant R-loop levels, causing higher transcription-replication collisions and triggering ATR activation in SF-mutant leukemias. Ultimately, PARPi-induced DNA damage and cell death in SF-mutant leukemias could be enhanced by ATR inhibition. Finally, the level of PARP1 activity at R-loops correlated with PARPi sensitivity, suggesting that R-loop-associated PARP1 activity could be predictive of PARPi sensitivity in patients harboring SF gene mutations. This study highlights the potential of targeting different R-loop response pathways caused by spliceosome gene mutations as a therapeutic strategy for treating cancer. SIGNIFICANCE Spliceosome-mutant leukemias accumulate R-loops and require PARP1 to resolve transcription-replication conflicts and genomic instability, providing rationale to repurpose FDA-approved PARP inhibitors for patients carrying spliceosome gene mutations.
Collapse
Affiliation(s)
- Zhiyan Silvia Liu
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- These authors contributed equally
| | - Sayantani Sinha
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- These authors contributed equally
| | - Maxwell Bannister
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Axia Song
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Erica Arriaga-Gomez
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexander J. McKeeken
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth A. Bonner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Benjamin K. Hanson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Martina Sarchi
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Molecular Medicine, University of Pavia, 27100 Pavia PV, Italy
| | - Kouhei Takashima
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Regenerative Medicine and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dawei Zong
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Victor M. Corral
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Evan Nguyen
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jennifer Yoo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Cassandra Leibson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Matthew C. McMahon
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sumit Rai
- Massachusetts General Hospital Cancer Center, Charlestown, MA
| | - Elizabeth M. Swisher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
| | - Zohar Sachs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Derek L. Stirewalt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - H. Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Regenerative Medicine and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J. Walter
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - Sergei Doulatov
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Stanley C. Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Hai Dang Nguyen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Tatwavedi D, Pellagatti A, Boultwood J. Recent advances in the application of induced pluripotent stem cell technology to the study of myeloid malignancies. Adv Biol Regul 2024; 91:100993. [PMID: 37827894 DOI: 10.1016/j.jbior.2023.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Acquired myeloid malignancies are a spectrum of clonal disorders known to be caused by sequential acquisition of genetic lesions in hematopoietic stem and progenitor cells, leading to their aberrant self-renewal and differentiation. The increasing use of induced pluripotent stem cell (iPSC) technology to study myeloid malignancies has helped usher a paradigm shift in approaches to disease modeling and drug discovery, especially when combined with gene-editing technology. The process of reprogramming allows for the capture of the diversity of genetic lesions and mutational burden found in primary patient samples into individual stable iPSC lines. Patient-derived iPSC lines, owing to their self-renewal and differentiation capacity, can thus be a homogenous source of disease relevant material that allow for the study of disease pathogenesis using various functional read-outs. Furthermore, genome editing technologies like CRISPR/Cas9 enable the study of the stepwise progression from normal to malignant hematopoiesis through the introduction of specific driver mutations, individually or in combination, to create isogenic lines for comparison. In this review, we survey the current use of iPSCs to model acquired myeloid malignancies including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), acute myeloid leukemia and MDS/MPN overlap syndromes. The use of iPSCs has enabled the interrogation of the underlying mechanism of initiation and progression driving these diseases. It has also made drug testing, repurposing, and the discovery of novel therapies for these diseases possible in a high throughput setting.
Collapse
Affiliation(s)
- Dharamveer Tatwavedi
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Zhang M, Lang X, Chen X, Lv Y. Prospective Identification of Prognostic Hot-Spot Mutant Gene Signatures for Leukemia: A Computational Study Based on Integrative Analysis of TCGA and cBioPortal Data. Mol Biotechnol 2023; 65:1898-1912. [PMID: 36879146 DOI: 10.1007/s12033-023-00704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
The advantage of an increasing amount of bioinformatics data on leukemias intrigued us to explore the hot-spot mutation profiles and investigate the implications of those hot-spot mutations in patient survival. We retrieved somatic mutations and their distribution in protein domains through data analysis of The Cancer Genome Atlas and cBioPortal databases. After determining differentially expressed mutant genes related to leukemia, we further conducted principal component analysis and single-factor Cox regression analyses. Moreover, survival analysis was performed for the obtained candidate genes, followed by a multi-factor Cox proportional hazard model method for the impacts of the candidate genes on the survival and prognosis of patients with leukemia. At last, the signaling pathways involved in leukemia were investigated by gene set enrichment analysis. There were 223 somatic missense mutation hot-spots identified with pertinence to leukemia, which were distributed in 41 genes. Differential expression in leukemia was witnessed in 39 genes. We found a close correlation between seven genes and the prognosis of leukemia patients, among which, three genes could significantly influence the survival rate. In addition, among these three genes, CD74 and P2RY8 were highlighted due to close pertinence with survival conditions of leukemia patients. Finally, data suggested that B cell receptor, Hedgehog, and TGF-beta signaling pathways were enriched in low-hazard patients. In conclusion, these data underline the involvement of hot-spot mutations of CD74 and P2RY8 genes in survival status of leukemia patients, highlighting their as novel therapeutic targets or prognostic indicators for leukemia patients. Summary of Graphical Abstract: We identified 223 leukemia-associated somatic missense mutation hotspots concentrated in 41 different genes from 2297 leukemia patients in the TCGA database. Differential analysis of leukemic and normal samples from the TCGA and GTEx databases revealed that 39 of these 41 genes showed significant differential expression in leukemia. These 39 genes were subjected to PCA analysis, univariate Cox analysis, survival analysis, multivariate Cox regression analysis, GSEA pathway enrichment analysis, and then the association with leukemia survival prognosis and related pathways were investigated.
Collapse
Affiliation(s)
- Min Zhang
- Department of Hematology, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, No. 599, Jinshan West Road, Yongkang, Jinhua City, Zhejiang Province, 321300, People's Republic of China.
| | - Xianghua Lang
- Department of Hematology, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, No. 599, Jinshan West Road, Yongkang, Jinhua City, Zhejiang Province, 321300, People's Republic of China
| | - Xinyi Chen
- Department of Hematology, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, No. 599, Jinshan West Road, Yongkang, Jinhua City, Zhejiang Province, 321300, People's Republic of China
| | - Yuke Lv
- Department of Hematology, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, No. 599, Jinshan West Road, Yongkang, Jinhua City, Zhejiang Province, 321300, People's Republic of China
| |
Collapse
|
11
|
Montalban-Bravo G, Kanagal-Shamanna R, Li Z, Hammond D, Chien K, Rodriguez-Sevilla JJ, Sasaki K, Jabbour E, DiNardo C, Takahashi K, Short N, Issa GC, Pemmaraju N, Kadia T, Ravandi F, Daver N, Borthakur G, Loghavi S, Pierce S, Bueso-Ramos C, Kantarjian H, Garcia-Manero G. Phenotypic subtypes of leukaemic transformation in chronic myelomonocytic leukaemia. Br J Haematol 2023; 203:581-592. [PMID: 37608562 DOI: 10.1111/bjh.19060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
Chronic myelomonocytic leukaemia (CMML) is a haematological disorder with high risk of transformation to acute myeloid leukaemia (AML). To characterize the phenotypic and genomic patterns of CMML progression, we evaluated a cohort of 189 patients with AML evolving from CMML. We found that transformation occurs through distinct trajectories characterized by genomic profiles and clonal evolution: monocytic (Mo-AML, 53%), immature myeloid (My-AML, 43%) or erythroid (Ery-AML, 2%). Mo-AML, characterized by expansion of monoblasts and promonocytes (low CD34, CD117 expression; high CD14, CD33, CD56 and CD64 expression), were defined by SRSF2, TET2 and RAS pathway mutation co-dominance and were more likely to evolve from SRSF2-TET2 co-mutant CMML through emergence/expansion of RAS pathway mutant clones. Conversely, My-AML, characterized by expansion of immature myeloid blasts (high frequency of CD34, CD38, CD117; low frequency of CD14, CD64 and CD56 expression) were less likely to exhibit SRSF2-TET2 co-mutations or RAS pathway mutations and had higher frequency of CEBPA mutations. Ery-AML was defined by complex karyotypes and TP53 mutations. A trend towards improved OS and EFS with hypomethylating agent-venetoclax combination was observed in My-AML, but not Mo-AML. These findings define distinct progression of CMML and set the basis for future studies evaluating the role of phenotype-specific therapeutics.
Collapse
Affiliation(s)
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
12
|
Griffin GK, Booth CAG, Togami K, Chung SS, Ssozi D, Verga JA, Bouyssou JM, Lee YS, Shanmugam V, Hornick JL, LeBoeuf NR, Morgan EA, Bernstein BE, Hovestadt V, van Galen P, Lane AA. Ultraviolet radiation shapes dendritic cell leukaemia transformation in the skin. Nature 2023; 618:834-841. [PMID: 37286599 PMCID: PMC10284703 DOI: 10.1038/s41586-023-06156-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Tumours most often arise from progression of precursor clones within a single anatomical niche. In the bone marrow, clonal progenitors can undergo malignant transformation to acute leukaemia, or differentiate into immune cells that contribute to disease pathology in peripheral tissues1-4. Outside the marrow, these clones are potentially exposed to a variety of tissue-specific mutational processes, although the consequences of this are unclear. Here we investigate the development of blastic plasmacytoid dendritic cell neoplasm (BPDCN)-an unusual form of acute leukaemia that often presents with malignant cells isolated to the skin5. Using tumour phylogenomics and single-cell transcriptomics with genotyping, we find that BPDCN arises from clonal (premalignant) haematopoietic precursors in the bone marrow. We observe that BPDCN skin tumours first develop at sun-exposed anatomical sites and are distinguished by clonally expanded mutations induced by ultraviolet (UV) radiation. A reconstruction of tumour phylogenies reveals that UV damage can precede the acquisition of alterations associated with malignant transformation, implicating sun exposure of plasmacytoid dendritic cells or committed precursors during BPDCN pathogenesis. Functionally, we find that loss-of-function mutations in Tet2, the most common premalignant alteration in BPDCN, confer resistance to UV-induced cell death in plasmacytoid, but not conventional, dendritic cells, suggesting a context-dependent tumour-suppressive role for TET2. These findings demonstrate how tissue-specific environmental exposures at distant anatomical sites can shape the evolution of premalignant clones to disseminated cancer.
Collapse
Affiliation(s)
- Gabriel K Griffin
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | | | - Katsuhiro Togami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sun Sook Chung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel Ssozi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Julia A Verga
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juliette M Bouyssou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yoke Seng Lee
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Vignesh Shanmugam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicole R LeBoeuf
- Department of Dermatology, Center for Cutaneous Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA
| | | | - Bradley E Bernstein
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Volker Hovestadt
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| | - Peter van Galen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| | - Andrew A Lane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Qu SQ, Pan LJ, Qin TJ, Xu ZF, Li B, Wang HJ, Sun Q, Jia YJ, Li CW, Cai WY, Gao QY, Jiao M, Xiao ZJ. [Molecular features of 109 patients with chronic myelomonocytic leukemia in a single center]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:373-379. [PMID: 37550186 PMCID: PMC10440619 DOI: 10.3760/cma.j.issn.0253-2727.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 08/09/2023]
Abstract
Objective: To explore the molecular features of chronic myelomonocytic leukemia (CMML) . Methods: According to 2022 World Health Organization (WHO 2022) classification, 113 CMML patients and 840 myelodysplastic syndrome (MDS) patients from March 2016 to October 2021 were reclassified, and the clinical and molecular features of CMML patients were analyzed. Results: Among 113 CMML patients, 23 (20.4%) were re-diagnosed as acute myeloid leukemia (AML), including 18 AML with NPM1 mutation, 3 AML with KMT2A rearrangement, and 2 AML with MECOM rearrangement. The remaining 90 patients met the WHO 2022 CMML criteria. In addition, 19 of 840 (2.3%) MDS patients met the WHO 2022 CMML criteria. At least one gene mutation was detected in 99% of CMML patients, and the median number of mutations was 4. The genes with mutation frequency ≥ 10% were: ASXL1 (48%), NRAS (34%), RUNX1 (33%), TET2 (28%), U2AF1 (23%), SRSF2 (21.1%), SETBP1 (20%), KRAS (17%), CBL (15.6%) and DNMT3A (11%). Paired analysis showed that SRSF2 was frequently co-mutated with ASXL1 (OR=4.129, 95% CI 1.481-11.510, Q=0.007) and TET2 (OR=5.276, 95% CI 1.979-14.065, Q=0.001). SRSF2 and TET2 frequently occurred in elderly (≥60 years) patients with myeloproliferative CMML (MP-CMML). U2AF1 mutations were often mutually exclusive with TET2 (OR=0.174, 95% CI 0.038-0.791, Q=0.024), and were common in younger (<60 years) patients with myelodysplastic CMML (MD-CMML). Compared with patients with absolute monocyte count (AMoC) ≥1×10(9)/L and <1×10(9)/L, the former had a higher median age of onset (60 years old vs 47 years old, P<0.001), white blood cell count (15.9×10(9)/L vs 4.4×10(9)/L, P<0.001), proportion of monocytes (21.5% vs 15%, P=0.001), and hemoglobin level (86 g/L vs 74 g/L, P=0.014). TET2 mutations (P=0.021) and SRSF2 mutations (P=0.011) were more common in patients with AMoC≥1×10(9)/L, whereas U2AF1 mutations (P<0.001) were more common in patients with AMoC<1×10(9)/L. There was no significant difference in the frequency of other gene mutations between the two groups. Conclusion: According to WHO 2022 classification, nearly 20% of CMML patients had AMoC<1×10(9)/L at the time of diagnosis, and MD-CMML and MP-CMML had different molecular features.
Collapse
Affiliation(s)
- S Q Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - L J Pan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - T J Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Z F Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - B Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - H J Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Q Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Y J Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - C W Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - W Y Cai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Q Y Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - M Jiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Z J Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
14
|
Patwardhan PP, Aarabi M, Aggarwal N. Genomics of myelodysplastic/myeloproliferative neoplasm. Semin Diagn Pathol 2023; 40:195-201. [PMID: 37105794 DOI: 10.1053/j.semdp.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Myelodysplastic/ Myeloproliferative neoplasms (MDS/MPN) demonstrate overlapping pathologic and molecular features of myelodysplastic (MDS) and myeloproliferative (MPN) neoplasms. Diagnosis is difficult based on morphology alone, requiring exclusion of various non-neoplastic causes for CBC abnormalities and morphologic findings and other myeloid neoplasms. Identifying a clonal abnormality by cytogenetics or molecular studies has vastly improved our ability to diagnose MDS/MPN and has been incorporated in the different classification schemas. Currently two separate classification systems are in use- The 5th edition WHO and international consensus classification. The two competing classifications emphasize genetic work-up and are similar on many levels; however, they do introduce diagnostic dilemma when diagnosing certain entities such as chronic myelomonocytic leukemia in the presence of NPM1 mutations. The genetic profile overlaps among different subentities; however, the combination and the incidence of mutations; together with the clinical features and morphology helps in further subclassification. In this review, we discuss the advances in molecular characterization of MDS/MPN. We attempt to summarize the differences between the various classification schemes, and highlight the changes made in the diagnostic criteria.
Collapse
Affiliation(s)
| | - Mahmoud Aarabi
- UPMC Medical Genetics & Genomics Laboratories, UPMC Magee-Womens Hospital, Pittsburgh, PA, 15213, United States of America; Departments of Pathology, and Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States of America
| | - Nidhi Aggarwal
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
15
|
Montalban-Bravo G, Ma F, Thongon N, Yang H, Gomez IG, Rodriguez-Sevilla JJ, Adema V, Wildeman B, Lockyer P, Kim YJ, Tanaka T, Darbaniyan F, Pancholy S, Zhang G, Al-Atrash G, Dwyer K, Takahashi K, Garcia-Manero G, Kantarjian H, Colla S. Targeting MCL1-driven anti-apoptotic pathways to overcome hypomethylating agent resistance in RAS -mutated chronic myelomonocytic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.535928. [PMID: 37066354 PMCID: PMC10104149 DOI: 10.1101/2023.04.07.535928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
RAS pathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Using single-cell, multi-omics technologies, we sought to dissect the biological mechanisms underlying the initiation and progression of RAS pathway-mutated CMML. We found that RAS pathway mutations induced the transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs), which underwent proliferation and monocytic differentiation in response to cell-intrinsic and -extrinsic inflammatory signaling that also impaired immune cells' functions. HSPCs expanded at disease progression and relied on the NF- K B pathway effector MCL1 to maintain their survival, which explains why patients with RAS pathway- mutated CMML do not benefit from BCL2 inhibitors such as venetoclax. Our study has implications for developing therapies to improve the survival of patients with RAS pathway- mutated CMML.
Collapse
|
16
|
Stölzel F, Fordham SE, Nandana D, Lin WY, Blair H, Elstob C, Bell HL, Mohr B, Ruhnke L, Kunadt D, Dill C, Allsop D, Piddock R, Soura EN, Park C, Fadly M, Rahman T, Alharbi A, Wobus M, Altmann H, Röllig C, Wagenführ L, Jones GL, Menne T, Jackson GH, Marr HJ, Fitzgibbon J, Onel K, Meggendorfer M, Robinson A, Bziuk Z, Bowes E, Heidenreich O, Haferlach T, Villar S, Ariceta B, Diaz RA, Altschuler SJ, Wu LF, Prosper F, Montesinos P, Martinez-Lopez J, Bornhäuser M, Allan JM. Biallelic TET2 mutations confer sensitivity to 5'-azacitidine in acute myeloid leukemia. JCI Insight 2023; 8:e150368. [PMID: 36480300 PMCID: PMC9977313 DOI: 10.1172/jci.insight.150368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Precision medicine can significantly improve outcomes for patients with cancer, but implementation requires comprehensive characterization of tumor cells to identify therapeutically exploitable vulnerabilities. Here, we describe somatic biallelic TET2 mutations in an elderly patient with acute myeloid leukemia (AML) that was chemoresistant to anthracycline and cytarabine but acutely sensitive to 5'-azacitidine (5'-Aza) hypomethylating monotherapy, resulting in long-term morphological remission. Given the role of TET2 as a regulator of genomic methylation, we hypothesized that mutant TET2 allele dosage affects response to 5'-Aza. Using an isogenic cell model system and an orthotopic mouse xenograft, we demonstrate that biallelic TET2 mutations confer sensitivity to 5'-Aza compared with cells with monoallelic mutations. Our data argue in favor of using hypomethylating agents for chemoresistant disease or as first-line therapy in patients with biallelic TET2-mutated AML and demonstrate the importance of considering mutant allele dosage in the implementation of precision medicine for patients with cancer.
Collapse
Affiliation(s)
- Friedrich Stölzel
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Sarah E. Fordham
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Devi Nandana
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wei-Yu Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen Blair
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire Elstob
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hayden L. Bell
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Brigitte Mohr
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Leo Ruhnke
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Desiree Kunadt
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Claudia Dill
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Daniel Allsop
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Piddock
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emmanouela-Niki Soura
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine Park
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mohd Fadly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thahira Rahman
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Abrar Alharbi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manja Wobus
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Heidi Altmann
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Christoph Röllig
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Lisa Wagenführ
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Gail L. Jones
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Tobias Menne
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Graham H. Jackson
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Helen J. Marr
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Jude Fitzgibbon
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Kenan Onel
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Amber Robinson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Zuzanna Bziuk
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Bowes
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Sara Villar
- Department of Hematology, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beñat Ariceta
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Navarra, Spain
- IdiSNA, Navarra, Spain
| | - Rosa Ayala Diaz
- Hematology Department, Hospital 12 de Octubre (i+12), Centro Nacional de Investigaciones Oncológicas (CNIO), Complutense University, Madrid, Spain
| | - Steven J. Altschuler
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | - Lani F. Wu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | - Felipe Prosper
- Department of Hematology, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pau Montesinos
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Joaquin Martinez-Lopez
- Hematology Department, Hospital 12 de Octubre (i+12), Centro Nacional de Investigaciones Oncológicas (CNIO), Complutense University, Madrid, Spain
| | - Martin Bornhäuser
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - James M. Allan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
17
|
Pellagatti A, Boultwood J. Splicing factor mutations in the myelodysplastic syndromes: Role of key aberrantly spliced genes in disease pathophysiology and treatment. Adv Biol Regul 2023; 87:100920. [PMID: 36216757 DOI: 10.1016/j.jbior.2022.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 03/01/2023]
Abstract
Mutations of splicing factor genes (including SF3B1, SRSF2, U2AF1 and ZRSR2) occur in more than half of all patients with myelodysplastic syndromes (MDS), a heterogeneous group of myeloid neoplasms. Splicing factor mutations lead to aberrant pre-mRNA splicing of many genes, some of which have been shown in functional studies to impact on hematopoiesis and to contribute to the MDS phenotype. This clearly demonstrates that impaired spliceosome function plays an important role in MDS pathophysiology. Recent studies that harnessed the power of induced pluripotent stem cell (iPSC) and CRISPR/Cas9 gene editing technologies to generate new iPSC-based models of splicing factor mutant MDS, have further illuminated the role of key downstream target genes. The aberrantly spliced genes and the dysregulated pathways associated with splicing factor mutations in MDS represent potential new therapeutic targets. Emerging data has shown that IRAK4 is aberrantly spliced in SF3B1 and U2AF1 mutant MDS, leading to hyperactivation of NF-κB signaling. Pharmacological inhibition of IRAK4 has shown efficacy in pre-clinical studies and in MDS clinical trials, with higher response rates in patients with splicing factor mutations. Our increasing knowledge of the effects of splicing factor mutations in MDS is leading to the development of new treatments that may benefit patients harboring these mutations.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
Xu JJ, Chalk AM, Wall M, Langdon WY, Smeets MF, Walkley CR. Srsf2 P95H/+ co-operates with loss of TET2 to promote myeloid bias and initiate a chronic myelomonocytic leukemia-like disease in mice. Leukemia 2022; 36:2883-2893. [PMID: 36271153 DOI: 10.1038/s41375-022-01727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Recurrent mutations in RNA splicing proteins and epigenetic regulators contribute to the development of myelodysplastic syndrome (MDS) and related myeloid neoplasms. In chronic myelomonocytic leukemia (CMML), SRSF2 mutations occur in ~50% of patients and TET2 mutations in ~60%. Clonal analysis indicates that either mutation can arise as the founder lesion. Based on human cancer genetics we crossed an inducible Srsf2P95H/+ mutant model with Tet2fl/fl mice to mutate both concomitantly in hematopoietic stem cells. At 20-24 weeks post mutation induction, we observed subtle differences in the Srsf2/Tet2 mutants compared to either single mutant. Under conditions of native hematopoiesis with aging, we see a distinct myeloid bias and monocytosis in the Srsf2/Tet2 mutants. A subset of the compound Srsf2/Tet2 mutants display an increased granulocytic and distinctive monocytic proliferation (myelomonocytic hyperplasia), with increased immature promonocytes and monoblasts and binucleate promonocytes. Exome analysis of progressed disease demonstrated mutations in genes and pathways similar to those reported in human CMML. Upon transplantation, recipients developed leukocytosis, monocytosis, and splenomegaly. We reproduce Srsf2/Tet2 co-operativity in vivo, yielding a disease with core characteristics of CMML, unlike single Srsf2 or Tet2 mutation. This model represents a significant step toward building high fidelity and genetically tractable models of CMML.
Collapse
Affiliation(s)
- Jane Jialu Xu
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia
- Columbia Stem Cell Initiative, Columbia University Irving Medical Centre, New York City, NY, 10032, USA
| | - Alistair M Chalk
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Meaghan Wall
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Wallace Y Langdon
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Monique F Smeets
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia.
| | - Carl R Walkley
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
19
|
Castaño-Díez S, López-Guerra M, Bosch-Castañeda C, Bataller A, Charry P, Esteban D, Guijarro F, Jiménez-Vicente C, Castillo-Girón C, Cortes A, Martínez-Roca A, Triguero A, Álamo JR, Beà S, Costa D, Colomer D, Rozman M, Esteve J, Díaz-Beyá M. Real-World Data on Chronic Myelomonocytic Leukemia: Clinical and Molecular Characteristics, Treatment, Emerging Drugs, and Patient Outcomes. Cancers (Basel) 2022; 14:cancers14174107. [PMID: 36077644 PMCID: PMC9455040 DOI: 10.3390/cancers14174107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Despite emerging molecular information on chronic myelomonocytic leukemia (CMML), patient outcome remains unsatisfactory and little is known about the transformation to acute myeloid leukemia (AML). In a single-center cohort of 219 CMML patients, we explored the potential correlation between clinical features, gene mutations, and treatment regimens with overall survival (OS) and clonal evolution into AML. The most commonly detected mutations were TET2, SRSF2, ASXL1, and RUNX1. Median OS was 34 months and varied according to age, cytogenetic risk, FAB, CPSS and CPSS-Mol categories, and number of gene mutations. Hypomethylating agents were administered to 37 patients, 18 of whom responded. Allogeneic stem cell transplantation (alloSCT) was performed in 22 patients. Two-year OS after alloSCT was 60.6%. Six patients received targeted therapy with IDH or FLT3 inhibitors, three of whom attained a long-lasting response. AML transformation occurred in 53 patients and the analysis of paired samples showed changes in gene mutation status. Our real-world data emphasize that the outcome of CMML patients is still unsatisfactory and alloSCT remains the only potentially curative treatment. However, targeted therapies show promise in patients with specific gene mutations. Complete molecular characterization can help to improve risk stratification, understand transformation, and personalize therapy.
Collapse
Affiliation(s)
- Sandra Castaño-Díez
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- Medical School, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Mónica López-Guerra
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | | | - Alex Bataller
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- Medical School, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Josep Carreras Leukemia Research Institute, 08916 Badalona, Spain
| | - Paola Charry
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Daniel Esteban
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Francesca Guijarro
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- Medical School, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Jiménez-Vicente
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Carlos Castillo-Girón
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Albert Cortes
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- Hematology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Alexandra Martínez-Roca
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Ana Triguero
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - José Ramón Álamo
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Silvia Beà
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Dolors Costa
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Dolors Colomer
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - María Rozman
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Jordi Esteve
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- Medical School, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Josep Carreras Leukemia Research Institute, 08916 Badalona, Spain
| | - Marina Díaz-Beyá
- Hematology and Hematopathology Departments, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Josep Carreras Leukemia Research Institute, 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-9-227-54-28
| |
Collapse
|
20
|
Nie Y, Shao L, Zhang H, He CK, Li H, Zou J, Chen L, Ji H, Tan H, Lin Y, Ru K. Mutational landscape of chronic myelomonocytic leukemia in Chinese patients. Exp Hematol Oncol 2022; 11:32. [PMID: 35610628 PMCID: PMC9128105 DOI: 10.1186/s40164-022-00284-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic myelomonocytic leukemia (CMML) is a rare and heterogeneous hematological malignancy. It has been shown that the molecular abnormalities such as ASXL1, TET2, SETBP1, and SRSF2 mutations are common in Caucasian population. METHODS We retrospectively analyzed 178 Chinese CMML patients. The targeted next generation sequencing (NGS) was used to evaluate 114 gene variations, and the prognostic factors for OS were determined by COX regression analysis. RESULTS The CMML patients showed a unique mutational spectrum, including TET2 (36.5%), NRAS (31.5%), ASXL1 (28.7%), SRSF2 (24.7%), and RUNX1 (21.9%). Of the 102 patients with clonal analysis, the ancestral events preferentially occurred in TET2 (18.5%), splicing factors (16.5%), RAS (14.0%), and ASXL1 (7.8%), and the subclonal genes were mainly ASXL1, TET2, and RAS. In addition, the secondary acute myeloid leukemia (sAML) transformed from CMML often had mutations in DNMT3A, ETV6, FLT3, and NPM1, while the primary AML (pAML) demonstrated more mutations in CEBPA, DNMT3A, FLT3, IDH1/2, NPM1, and WT1. It was of note that a series of clones were emerged during the progression from CMML to AML, including DNMT3A, FLT3, and NPM1. By univariate analysis, ASXL1 mutation, intermediate- and high-risk cytogenetic abnormality, CMML-specific prognostic scoring system (CPSS) stratifications (intermediate-2 and high group), and treatment options (best supportive care) predicted for worse OS. Multivariate analysis revealed a similar outcome. CONCLUSIONS The common mutations in Chinese CMML patients included epigenetic modifiers (TET2 and ASXL1), signaling transduction pathway components (NRAS), and splicing factor (SRSF2). The CMML patients with DNMT3A, ETV6, FLT3, and NPM1 mutations tended to progress to sAML. ASXL1 mutation and therapeutic modalities were independent prognostic factors for CMML.
Collapse
Affiliation(s)
- Yanbo Nie
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hong Zhang
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | | | - Hongyu Li
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | - Junyan Zou
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | - Long Chen
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | - Huaiyue Ji
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | - Hao Tan
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | - Yani Lin
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China.
| | - Kun Ru
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China.
| |
Collapse
|
21
|
Mei M, Pillai R, Kim S, Estrada-Merly N, Afkhami M, Yang L, Meng Z, Abid MB, Aljurf M, Bacher U, Beitinjaneh A, Bredeson C, Cahn JY, Cerny J, Copelan E, Cutler C, DeFilipp Z, Perez MAD, Farhadfar N, Freytes CO, Gadalla SM, Ganguly S, Gale RP, Gergis U, Grunwald MR, Hamilton BK, Hashmi S, Hildebrandt GC, Lazarus HM, Litzow M, Munker R, Murthy HS, Nathan S, Nishihori T, Patel SS, Rizzieri D, Seo S, Shah MV, Solh M, Verdonck LF, Vij R, Sobecks RM, Oran B, Scott BL, Saber W, Nakamura R. The mutational landscape in chronic myelomonocytic leukemia and its impact on allogeneic hematopoietic cell transplantation outcomes: a Center for Blood and Marrow Transplantation Research (CIBMTR) analysis. Haematologica 2022; 108:150-160. [PMID: 35443559 PMCID: PMC9827167 DOI: 10.3324/haematol.2021.280203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 02/05/2023] Open
Abstract
Somatic mutations are recognized as an important prognostic factor in chronic myelomonocytic leukemia (CMML). However, limited data are available regarding their impact on outcomes after allogeneic hematopoietic cell transplantation (HCT). In this registry analysis conducted in collaboration with the Center for International Blood and Marrow Transplantation Registry database/sample repository, we identified 313 adult patients with CMML (median age: 64 years, range, 28- 77) who underwent allogeneic HCT during 2001-2017 and had an available biospecimen in the form of a peripheral blood sample obtained prior to the start of conditioning. In multivariate analysis, a CMML-specific prognostic scoring system (CPSS) score of intermediate-2 (HR=1.46, P=0.049) or high (HR=3.22, P=0.0004) correlated significantly with overall survival. When the molecularly informed CPSS-Mol prognostic model was applied, a high CPSS-Mol score (HR=2 P=0.0079) correlated significantly with overall survival. The most common somatic mutations were in ASXL1 (62%), TET2 (35%), KRAS/NRAS (33% combined), and SRSF2 (31%). DNMT3A and TP53 mutations were associated with decreased overall survival (HR=1.70 [95% CI: 1.11-2.60], P=0.0147 and HR=2.72 [95% CI: 1.37-5.39], P=0.0042, respectively) while DNMT3A, JAK2, and TP53 mutations were associated with decreased disease-free survival (HR=1.66 [95% CI: 1.11-2.49], P=0.0138, HR=1.79 [95% CI: 1.06-3.03], P=0.0293, and HR=2.94 [95% CI: 1.50-5.79], P=0.0018, respectively). The only mutation associated with increased relapse was TP53 (HR=2.94, P=0.0201). Nonetheless, the impact of TP53 mutations specifically should be interpreted cautiously given their rarity in CMML. We calculated the goodness of fit measured by Harrell's C-index for both the CPSS and CPSS-Mol, which were very similar. In summary, via registry data we have determined the mutational landscape in patients with CMML who underwent allogeneic HCT, and demonstrated an association between CPSS-Mol and transplant outcomes although without major improvement in the risk prediction beyond that provided by the CPSS.
Collapse
Affiliation(s)
- Matthew Mei
- Department of Hematology/HCT, City of Hope National Medical Center, Duarte, CA, USA,*MM, RP, WS and RN contributed equally to this work
| | - Raju Pillai
- Department of Pathology, City of Hope, Duarte, CA, USA,*MM, RP, WS and RN contributed equally to this work
| | - Soyoung Kim
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, USA,CIBMTR (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Noel Estrada-Merly
- CIBMTR (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Lixin Yang
- Department of Pathology, City of Hope, Duarte, CA, USA
| | - Zhuo Meng
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Muhammad Bilal Abid
- Divisions of Hematology/Oncology & Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mahmoud Aljurf
- Department of Oncology, King Faisal Specialist Hospital Center & Research, Riyadh, Saudi Arabia
| | - Ulrike Bacher
- Department of Hematology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amer Beitinjaneh
- Division of Transplantation and Cellular Therapy, University of Miami Hospital and Clinics, Sylvester Comprehensive Cancer Center, Miami, Fl, USA
| | - Christopher Bredeson
- The Ottawa Hospital Transplant & Cellular Therapy Program, Ottawa, Ontario, Canada
| | - Jean-Yves Cahn
- Department of Hematology, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Jan Cerny
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical Center, Worcester, MA, USA
| | - Edward Copelan
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Corey Cutler
- Stem Cell Transplantation and Cellular Therapy, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA, USA
| | - Miguel Angel Diaz Perez
- Department of Hematology/Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Nosha Farhadfar
- Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - César O. Freytes
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shahinaz M. Gadalla
- Divsion of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, MD, USA
| | - Siddhartha Ganguly
- Division of Hematological Malignancy and Cellular Therapeutics, University of Kansas Health System, Kansas City, KS, USA
| | - Robert Peter Gale
- Haematology Research Centre, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Usama Gergis
- Department of Medical Oncology, Division of Hematological Malignancies, Thomas Jefferson University, Philadelphia, PA USA
| | - Michael R. Grunwald
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Betty K. Hamilton
- Blood & Marrow Transplant Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shahrukh Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA,Department of Medicine, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | | | - Hillard M. Lazarus
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Mark Litzow
- Division of Hematology and Transplant Center, Mayo Clinic Rochester, Rochester, MN, USA
| | - Reinhold Munker
- Markey Cancer Center, University of Kentucky, Lexington, K Y, USA
| | - Hemant S. Murthy
- Division of Hematology-Oncology, Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL, USA
| | - Sunita Nathan
- Section of Bone Marrow Transplant and Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Taiga Nishihori
- Department of Blood & Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, Tampa, FL, USA
| | - Sagar S. Patel
- Blood and Marrow Transplant Program, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Sachiko Seo
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | | | - Melhem Solh
- The Blood and Marrow Transplant Group of Georgia, Northside Hospital, Atlanta, GA, USA
| | - Leo F. Verdonck
- Department of Hematology/Oncology, Isala Clinic, Zwolle, The Netherlands
| | - Ravi Vij
- Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Betul Oran
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Bart L. Scott
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wael Saber
- CIBMTR (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA,*MM, RP, WS and RN contributed equally to this work
| | - Ryotaro Nakamura
- Department of Hematology/HCT, City of Hope National Medical Center, Duarte, CA, USA,*MM, RP, WS and RN contributed equally to this work
| |
Collapse
|
22
|
Enjeti AK, Agarwal R, Blombery P, Chee L, Chua CC, Grigg A, Hamad N, Iland H, Lane S, Perkins A, Singhal D, Tate C, Tiong IS, Ross DM. Panel-based gene testing in myelodysplastic/myeloproliferative neoplasm- overlap syndromes: Australasian Leukaemia and Lymphoma Group (ALLG) consensus statement. Pathology 2022; 54:389-398. [DOI: 10.1016/j.pathol.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
|
23
|
Emergence of clone with PHF6 nonsense mutation in chronic myelomonocytic leukemia at relapse after allogeneic HCT. Int J Hematol 2022; 115:748-752. [PMID: 34988909 DOI: 10.1007/s12185-021-03284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Disease relapse is a major cause of treatment failure after allogeneic hematopoietic cell transplantation (HCT) and the mechanisms of relapse remain unclear. We encountered a 58-year-old man with chronic myelomonocytic leukemia (CMML) that relapsed after haploidentical HCT from his daughter. Peripheral blood samples collected at HCT and at relapse were analyzed, and CD14+/CD16- monocytes that typically accumulate in CMML were isolated by flow cytometry. Whole-exome sequencing of the monocytes revealed 8 common mutations in CMML at HCT. In addition, a PHF6 nonsense mutation not detected at HCT was detected at relapse. RNA sequencing could not detect changes in expression of HLA or immune-checkpoint molecules, which are important mechanisms of immune evasion. However, gene set enrichment analysis (GSEA) revealed that a TNF-α signaling pathway was downregulated at relapse. Ubiquitination of histone H2B at lysine residue 120 (H2BK120ub) at relapse was significantly decreased at the protein level, indicating that PHF6 loss might downregulate a TNF-α signaling pathway by reduction of H2BK120ub. This case illustrates that PHF6 loss contributes to a competitive advantage for the clone under stress conditions and leads to relapse after HCT.
Collapse
|
24
|
Abstract
Chronic myelomonocytic leukemia (CMML) is a rare and challenging type of myeloproliferative neoplasm. Poor prognosis and high mortality, associated predominantly with progression to secondary acute myeloid leukemia (sAML), is still an unsolved problem. Despite a growing body of knowledge about the molecular repertoire of this disease, at present, the prognostic significance of CMML-associated mutations is controversial. The absence of available CMML cell lines and the small number of patients with CMML make pre-clinical testing and clinical trials complicated. Currently, specific therapy for CMML has not been approved; most of the currently available therapeutic approaches are based on myelodysplastic syndrome (MDS) and other myeloproliferative neoplasm (MNP) studies. In this regard, the development of the robust CMML animal models is currently the focus of interest. This review describes important studies concerning animal models of CMML, examples of methodological approaches, and the obtained hematologic phenotypes.
Collapse
|
25
|
Martinez-Verbo L, Estrada N, Cabezón M, Palomo L, García O, Arnan M, Coll R, Xicoy B, Zamora L. Mutational profile and relative telomere length in Chronic Myelomonocytic Leukemia subgroups according to the 2016 World Health Organization classification. Leuk Res 2021; 111:106726. [PMID: 34673443 DOI: 10.1016/j.leukres.2021.106726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/21/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Laura Martinez-Verbo
- Myeloid Neoplasm Group, Josep Carreras Leukemia Research Institute (IJC), Institut Català d'Oncologia (ICO)-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain
| | - Natalia Estrada
- Myeloid Neoplasm Group, Josep Carreras Leukemia Research Institute (IJC), Institut Català d'Oncologia (ICO)-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain
| | - Marta Cabezón
- Myeloid Neoplasm Group, Josep Carreras Leukemia Research Institute (IJC), Institut Català d'Oncologia (ICO)-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain; Hematology Department, ICO Badalona -Hospital Germans Trias i Pujol, Institut de Recerca Josep Carreras, Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain
| | - Laura Palomo
- MDS Group, Josep Carreras Leukemia Research Institute (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain
| | - Olga García
- Hematology Department, ICO Badalona -Hospital Germans Trias i Pujol, Institut de Recerca Josep Carreras, Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain
| | - Monserrat Arnan
- Hematology Department, ICO L'Hospitalet -Hospital Duran i Reynals, Hospitalet de Llobregat (Barcelona), Spain
| | - Rosa Coll
- Hematology Department, ICO Girona - Hospital Josep Trueta, Girona, Spain
| | - Blanca Xicoy
- Myeloid Neoplasm Group, Josep Carreras Leukemia Research Institute (IJC), Institut Català d'Oncologia (ICO)-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain; Hematology Department, ICO Badalona -Hospital Germans Trias i Pujol, Institut de Recerca Josep Carreras, Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain.
| | - Lurdes Zamora
- Myeloid Neoplasm Group, Josep Carreras Leukemia Research Institute (IJC), Institut Català d'Oncologia (ICO)-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain; Hematology Department, ICO Badalona -Hospital Germans Trias i Pujol, Institut de Recerca Josep Carreras, Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain
| |
Collapse
|
26
|
Hammond D, Montalban-Bravo G. Management and Outcomes of Blast Transformed Chronic Myelomonocytic Leukemia. Curr Hematol Malig Rep 2021; 16:405-417. [PMID: 34499330 DOI: 10.1007/s11899-021-00643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Despite recent advances in the treatment of de novo acute myeloid leukemia (AML), AML arising from antecedent chronic myelomonocytic leukemia (CMML) continues to have dismal outcomes. While the unique biological drivers of CMML and subsequent leukemic transformation (LT) have been revealed with advances in molecular characterization, this has not yet translated to the bedside. Here, we review these biologic drivers, outcomes with current therapies, and rationale avenues of future investigation specifically in blast phase CMML (CMML-BP). RECENT FINDINGS CMML-BP outcomes are studied as an aggregate with more common categories of AML with myelodysplasia-related changes (AML-MRCs) or the even broader category of secondary AML (sAML), which illustrates the crux of the problem. While a modest survival advantage with allogeneic hematopoietic stem cell transplant exists, the difficulty is bridging patients to transplant and managing patients that require an allograft-sparing approach. Limited data suggest that short-lived remissions can be obtained employing CPX-351 or venetoclax-based lower intensity combination therapy. Promising future strategies include repurposing cladribine, exploiting the supportive role of dendritic cell subsets with anti-CD123 therapies, MCL-1 inhibition, dual MEK/PLK1 inhibition, FLT3 inhibition in RAS-mutated and CBL-mutated subsets, and immune therapies targeting novel immune checkpoint molecules such as the leukocyte immunoglobulin-like receptor B4 (LILRB4), an immune-modulatory transmembrane protein restrictively expressed on monocytic cells. The successful management of an entity as unique as CMML-BP will require a cooperative, concerted effort to design and conduct clinical trials dedicated to this rare form of sAML.
Collapse
Affiliation(s)
- Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
27
|
Mutational landscape of chronic myelomonocytic leukemia and its potential clinical significance. Int J Hematol 2021; 115:21-32. [PMID: 34449040 DOI: 10.1007/s12185-021-03210-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
We evaluated the mutational landscape of chronic myelomonocytic leukemia (CMML) and its potential clinical significance. We analyzed 47 samples with a panel of 112 genes using next-generation sequencing. Forty-five of the 47 patients (95.74%) had at least one mutation identified, with an average of 3.7 (range 0-9) per patient. The most common mutation was NRAS, followed by ASXL1, TET2, SRSF2, RUNX1, KRAS, and SETBP1. Patients 60 years and older more frequently had mutations in TET2 (56% vs. 9.09%, P = 0.001) and ASXL1 (48% vs. 18.18%, P = 0.031) than patients younger than 60 years. Median overall survival (OS) in patients with CMML was 22.0 months (95% CI 19.7-24.3 months). ASXL1 (18 vs. 22 months, P = 0.012), RUNX1 (17 vs. 22 months, P = 0.001), and SETBP1 (20 vs. 27 months, P = 0.032) mutations predicted inferior OS. However, only RUNX1 mutation was significantly associated with inferior acute myeloid leukemia (AML)-free survival. Our data showed that mutation profile differed significantly between CMML patients aged 60 years and older versus those younger than 60 years, and some of these mutations impact the progression and prognosis of the disease to a certain extent.
Collapse
|
28
|
Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021; 138:649-661. [PMID: 34157074 PMCID: PMC8394903 DOI: 10.1182/blood.2019004259] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cohesin is a multisubunit protein complex that forms a ring-like structure around DNA. It is essential for sister chromatid cohesion, chromatin organization, transcriptional regulation, and DNA damage repair and plays a major role in dynamically shaping the genome architecture and maintaining DNA integrity. The core complex subunits STAG2, RAD21, SMC1, and SMC3, as well as its modulators PDS5A/B, WAPL, and NIPBL, have been found to be recurrently mutated in hematologic and solid malignancies. These mutations are found across the full spectrum of myeloid neoplasia, including pediatric Down syndrome-associated acute megakaryoblastic leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia, and de novo and secondary acute myeloid leukemias. The mechanisms by which cohesin mutations act as drivers of clonal expansion and disease progression are still poorly understood. Recent studies have described the impact of cohesin alterations on self-renewal and differentiation of hematopoietic stem and progenitor cells, which are associated with changes in chromatin and epigenetic state directing lineage commitment, as well as genomic integrity. Herein, we review the role of the cohesin complex in healthy and malignant hematopoiesis. We discuss clinical implications of cohesin mutations in myeloid malignancies and discuss opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, University of Heidelberg, Mannheim, Germany; and
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
29
|
Hochman MJ, Savani BN, Jain T. Examining disease boundaries: Genetics of myelodysplastic/myeloproliferative neoplasms. EJHAEM 2021; 2:607-615. [PMID: 35844680 PMCID: PMC9175746 DOI: 10.1002/jha2.264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal myeloid malignancies that are characterized by dysplasia resulting in cytopenias as well as proliferative features such as thrombocytosis or splenomegaly. Recent studies have better defined the genetics underlying this diverse group of disorders. Trisomy 8, monosomy 7, and loss of Y chromosome are the most common cytogenetic abnormalities seen. Chronic myelomonocytic leukemia (CMML) likely develops from early clones with TET2 mutations that drive granulomonocytic differentiation. Mutations in SRSF2 are common and those in the RAS-MAPK pathway are typically implicated in disease with a proliferative phenotype. Several prognostic systems have incorporated genetic features, with ASXL1 most consistently demonstrating worse prognosis. Atypical chronic myeloid leukemia (aCML) is most known for granulocytosis with marked dysplasia and often harbors ASXL1 mutations, but SETBP1 and ETNK1 are more specific to this disease. MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T) most commonly involves spliceosome mutations (namely SF3B1) and mutations in the JAK-STAT pathway. Finally, MDS/MPN-unclassifiable (MDS/MPN-U) is least characterized but a significant fraction carries mutations in TP53. The remaining patients have clinical and/or genetic features similar to the other MDS/MPNs, suggesting there is room to better characterize this entity. Evolution from age-related clonal hematopoiesis to MDS/MPN likely depends on the order of mutation acquisition and interactions between various biologic factors. Genetics will continue to play a critical role in our understanding of these illnesses and advancing patient care.
Collapse
Affiliation(s)
- Michael J. Hochman
- Division of Hematological Malignancies and Bone Marrow TransplantationSidney Kimmel Comprehensive Cancer CenterJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Bipin N. Savani
- Division of Hematology and OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Tania Jain
- Division of Hematological Malignancies and Bone Marrow TransplantationSidney Kimmel Comprehensive Cancer CenterJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
30
|
El Hussein S, Wang SA, Pemmaraju N, Khoury JD, Loghavi S. Chronic Myelomonocytic Leukemia: Hematopathology Perspective. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:142-149. [PMID: 35663104 PMCID: PMC9138437 DOI: 10.36401/jipo-21-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 06/15/2023]
Abstract
Our understanding of chronic myelomonocytic leukemia (CMML) has evolved tremendously over the past decade. Large-scale sequencing studies have led to increased insight into the genomic landscape of CMML and clinical implications of these changes. This in turn has resulted in refined and improved risk stratification models, which to date remain versatile and subject to remodeling, as new and evolving studies continue to refine our understanding of this disease. In this article, we present an up-to-date review of CMML from a hematopathology perspective, while providing a clinically practical summary that sheds light on the constant evolution of our understanding of this disease.
Collapse
Affiliation(s)
- Siba El Hussein
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A. Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
Honda A, Koya J, Yoshimi A, Miyauchi M, Taoka K, Kataoka K, Arai S, Kurokawa M. Loss-of-function mutations in BCOR contribute to chemotherapy resistance in acute myeloid leukemia. Exp Hematol 2021; 101-102:42-48.e11. [PMID: 34333045 DOI: 10.1016/j.exphem.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Primary refractory acute myeloid leukemia (AML) is unresponsive to conventional chemotherapy and has a poor prognosis. Despite the recent identification of novel driver mutations and advances in the understanding of the molecular pathogenesis, little is known about the relationship between genetic abnormalities and chemoresistance in AML. In this study, we subjected 39 samples from patients with primary refractory AML to whole-exome and targeted sequencing analyses to identify somatic mutations contributing to chemoresistance in AML. First, we identified 49 genes that might contribute to chemotherapy resistance through the whole-exome sequencing of samples from 6 patients with primary refractory AML. We then identified a significantly higher frequency of mutations in the gene encoding BCL-6 co-repressor (BCOR) in patients with primary refractory AML through the targeted sequencing of all coding sequence of 49 genes. Notably, the presence of BCOR mutations appeared to have a negative impact on prognosis in our cohort and previous larger studies. Subsequently, to investigate the biological effect of BCOR mutations on sensitivity to anticancer drugs, we established BCOR knockout human leukemic cell lines using the CRISPR/Cas9 system. Here, BCOR knockout cell lines exhibited statistically significant reductions in sensitivity to anticancer drugs, compared with the wild-type controls both in vitro and in vivo in xenograft mouse models. In conclusion, loss-of-function BCOR mutations appear to contribute to chemotherapy resistance and may be a promising therapeutic target in primary refractory AML.
Collapse
Affiliation(s)
- Akira Honda
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Junji Koya
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Akihide Yoshimi
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masashi Miyauchi
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuki Taoka
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Keisuke Kataoka
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shunya Arai
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Cell Therapy and Transplantation Medicine, University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
32
|
Epigenetic dysregulation in myeloid malignancies. Blood 2021; 138:613-624. [PMID: 34157099 DOI: 10.1182/blood.2019004262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic deregulation is now a well-recognized -though not yet fully understood- mechanism that contributes to the development and progression of myeloid malignancies. In the past 15 years, next generation sequencing studies have revealed patterns of aberrant DNA methylation, altered chromatin states, and mutations in chromatin modifiers across the spectrum of myeloid malignancies. Studies into the mechanisms that drive these diseases through mouse modeling have helped identify new avenues for therapeutic interventions, from initial treatment to resistant, relapsed disease. This is particularly significant when chemotherapy with cytotoxic agents remains the general standard of care. In this review, we will discuss some of the recent findings of epigenetic mechanisms and how these are informing the development of more targeted strategies for therapeutic intervention in myeloid malignancies.
Collapse
|
33
|
Chan O, Renneville A, Padron E. Chronic myelomonocytic leukemia diagnosis and management. Leukemia 2021; 35:1552-1562. [PMID: 33714974 DOI: 10.1038/s41375-021-01207-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/23/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Chronic myelomonocytic leukemia (CMML) is a rare, heterogeneous myeloid malignancy classified as a myelodysplastic syndromes/myeloproliferative neoplasm (MDS/MPN) overlap syndrome by the World Health Organization (WHO). Its initial presentation can be incidental or associated with myelodysplastic or myeloproliferative symptoms and up to 20% of patients harbor a concurrent inflammatory or autoimmune condition. Persistent monocytosis is the hallmark of CMML but diagnosis can be challenging. Increased understanding of human monocyte subsets, chromosomal abnormalities, and somatic gene mutations have led to more accurate diagnosis and improved prognostication. A number of risk stratification systems have been developed and validated but using those that incorporate molecular information such as CMML Prognostic Scoring System (CPSS)-Mol, Mayo Molecular, and Groupe Francophone des Myelodysplasies (GFM) are preferred. Symptom-directed approaches forms the basis of CMML management. Outcomes vary substantially depending on risk ranging from observation for a number of years to rapidly progressive disease and acute myeloid leukemia (AML) transformation. Patients who are low risk but with symptoms from cytopenias or proliferative features such as splenomegaly may be treated with hypomethylating agents (HMAs) or cytoreductive therapy, respectively, with the goal of durable symptoms control. Allogeneic hematopoietic cell transplantation should be considered for intermediate to high risk patients. The lack of effective pharmaceutical options has generated interest in novel therapeutics for this disease, and early phase clinical trial results are promising.
Collapse
Affiliation(s)
- Onyee Chan
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
34
|
Laboratory Evaluation and Pathological Workup of Neoplastic Monocytosis - Chronic Myelomonocytic Leukemia and Beyond. Curr Hematol Malig Rep 2021; 16:286-303. [PMID: 33945086 DOI: 10.1007/s11899-021-00625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Monocytosis is a distinct but non-specific manifestation of various physiologic and pathologic conditions. Among hematopoietic stem cell neoplasms, depending on the criteria used for disease classification, monocytosis may be a consistent and integral component of diseases such as chronic myelomonocytic leukemia or acute myeloid leukemia with monocytic differentiation, or it may represent an inconsistent finding that often provides a clue to the underlying genetic changes driving the neoplasm. The purpose of this review is to provide the readers with a laboratory-based approach to neoplastic monocytosis. RECENT FINDINGS In-depth elucidation of the genomic landscape of myeloid neoplasms within the past few years has broadened our understanding of monocytosis and its implications for diagnosis and prognosis. Genetic findings also shed light on potential disease response - or lack thereof - to various therapeutic agents used in the setting of myeloid neoplasms. In this review, we provide our approach to diagnose neoplastic monocytosis in the context of case-based studies while incorporating the most recent literature on this topic.
Collapse
|
35
|
Kwon J. Diagnosis and treatment of chronic myelomonocytic leukemia. Blood Res 2021; 56:S5-S16. [PMID: 33935030 PMCID: PMC8094002 DOI: 10.5045/br.2021.2020321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a clonal disorder of hematopoietic cells and is a complex of heterogeneous conditions with both myeloproliferative and myelodysplastic features. The diagnosis of CMML is made using morphologic criteria including monocyte-dominant leukocytosis, dysplastic changes, and increased blasts in the bone marrow. Recently, the identification of monocyte subtypes in peripheral blood using multiparameter flow cytometry has been actively studied. Chromosomal abnormalities are the basis of CMML risk stratification, and mutations in several genes including ASXL1 are known to be important not only for the diagnosis and treatment of this disease but also for predicting its prognosis. The standard treatment principles for CMML have not yet been clearly defined; however, hypomethylating agents are mainly considered the frontline therapy in most cases. Although allogeneic hematopoietic stem cell transplantation has limited applications owing to its toxicity, it still plays an important role as the only curative treatment option. Researchers are continuing to develop new drugs for CMML treatment and to prove their clinical usefulness. This review summarizes what is known to date on the diagnosis, treatment, and prognostic factors of CMML and presents future directions by analyzing recent research trends.
Collapse
Affiliation(s)
- Jihyun Kwon
- Division of Hematology and Oncology, Department of Internal Medicine, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
36
|
Schiffer M, Zhao J, Johnson A, Lee J, Bewersdorf JP, Zeidan AM. The development and clinical use of oral hypomethylating agents in acute myeloid leukemia and myelodysplastic syndromes: dawn of the total oral therapy era. Expert Rev Anticancer Ther 2021; 21:989-1002. [PMID: 33853476 DOI: 10.1080/14737140.2021.1918002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Intravenous and subcutaneous hypomethylating agents have held a key role in myelodysplastic syndrome, chronic myelomonocytic leukemia and acute myeloid leukemia treatment. Following the approval of the cedazuridine/decitabine combination, ASTX727, as well as development of an oral formulation of azacitidine, CC-486, in the USA in 2020, these agents could gradually replace their injectable counterparts. AREAS COVERED ASTX727 is approved for the treatment of adult patients with intermediate 1 or high-risk MDS as well as those with chronic myelomonocytic leukemia based on the findings from the ASTX727-01-B and ASCERTAIN trials. Oral azacitidine (CC-486) is approved for maintenance treatment of acute myeloid leukemia after induction chemotherapy for patients unfit for allogeneic hematopoietic cell transplant based on the findings from the QUAZAR AML-001 trial. EXPERT OPINION Oral hypomethylating agent formulations have the potential to offer a convenient alternative to injectable hypomethylating agent. However, their current FDA-approved indications are narrow and efficacy needs to be shown in clinical trials before considering use beyond the approved indications. Areas of special interest include: identification of predictive biomarkers for clinical benefit, post-transplant maintenance therapy, and potential combination therapies with other oral agents such as venetoclax, IDH and FLT3 inhibitors.
Collapse
Affiliation(s)
- Molly Schiffer
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Jennifer Zhao
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Aubrey Johnson
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Jane Lee
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | | | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, and Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
37
|
Palomo L, Acha P, Solé F. Genetic Aspects of Myelodysplastic/Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13092120. [PMID: 33925681 PMCID: PMC8124412 DOI: 10.3390/cancers13092120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal myeloid neoplasms characterized, at the time of their presentation, by the simultaneous presence of both myelodysplastic and myeloproliferative features. In MDS/MPN, the karyotype is often normal but mutations in genes that are common across myeloid neoplasms can be detected in a high proportion of cases by targeted sequencing. In this review, we intend to summarize the main genetic findings across all MDS/MPN overlap syndromes and discuss their relevance in the management of patients. Abstract Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are myeloid neoplasms characterized by the presentation of overlapping features from both myelodysplastic syndromes and myeloproliferative neoplasms. Although the classification of MDS/MPN relies largely on clinical features and peripheral blood and bone marrow morphology, studies have demonstrated that a large proportion of patients (~90%) with this disease harbor somatic mutations in a group of genes that are common across myeloid neoplasms. These mutations play a role in the clinical heterogeneity of these diseases and their clinical evolution. Nevertheless, none of them is specific to MDS/MPN and current diagnostic criteria do not include molecular data. Even when such alterations can be helpful for differential diagnosis, they should not be used alone as proof of neoplasia because some of these mutations may also occur in healthy older people. Here, we intend to review the main genetic findings across all MDS/MPN overlap syndromes and discuss their relevance in the management of the patients.
Collapse
Affiliation(s)
- Laura Palomo
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
- Experimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Pamela Acha
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
- Correspondence: ; Tel.: +34-93-557-2806
| |
Collapse
|
38
|
CBL mutations drive PI3K/AKT signaling via increased interaction with LYN and PIK3R1. Blood 2021; 137:2209-2220. [PMID: 33512474 DOI: 10.1182/blood.2020006528] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Casitas B-lineage lymphoma (CBL) encodes an E3 ubiquitin ligase and signaling adaptor that regulates receptor and nonreceptor tyrosine kinases. Recurrent CBL mutations occur in myeloid neoplasms, including 10% to 20% of chronic myelomonocytic leukemia (CMML) cases, and selectively disrupt the protein's E3 ubiquitin ligase activity. CBL mutations have been associated with poor prognosis, but the oncogenic mechanisms and therapeutic implications of CBL mutations remain incompletely understood. We combined functional assays and global mass spectrometry to define the phosphoproteome, CBL interactome, and mechanism of signaling activation in a panel of cell lines expressing an allelic series of CBL mutations. Our analyses revealed that increased LYN activation and interaction with mutant CBL are key drivers of enhanced CBL phosphorylation, phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) recruitment, and downstream phosphatidylinositol 3-kinase (PI3K)/AKT signaling in CBL-mutant cells. Signaling adaptor domains of CBL, including the tyrosine kinase-binding domain, proline-rich region, and C-terminal phosphotyrosine sites, were all required for the oncogenic function of CBL mutants. Genetic ablation or dasatinib-mediated inhibition of LYN reduced CBL phosphorylation, CBL-PIK3R1 interaction, and PI3K/AKT signaling. Furthermore, we demonstrated in vitro and in vivo antiproliferative efficacy of dasatinib in CBL-mutant cell lines and primary CMML. Overall, these mechanistic insights into the molecular function of CBL mutations provide rationale to explore the therapeutic potential of LYN inhibition in CBL-mutant myeloid malignancies.
Collapse
|
39
|
A Single-Run Next-Generation Sequencing (NGS) Assay for the Simultaneous Detection of Both Gene Mutations and Large Chromosomal Abnormalities in Patients with Myelodysplastic Syndromes (MDS) and Related Myeloid Neoplasms. Cancers (Basel) 2021; 13:cancers13081947. [PMID: 33919541 PMCID: PMC8072643 DOI: 10.3390/cancers13081947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Chromosomal abnormalities and somatic mutations are found in patients with myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in around 50–80% of cases. The identification of these alterations is important for the accurate diagnosis and prognostic classification of these patients. Often, an apparently normal or failed karyotype might lead to an inadequate estimation of the prognostic risk, and several strategies should be combined to solve these cases. The aim of this study was to introduce a novel next-generation sequencing (NGS)-based strategy for the simultaneous detection of all the clinically relevant genetic alterations associated with these disorders. We validated this approach on a large cohort of patients by comparing our findings with those obtained with standard-of-care methods (i.e., karyotype and SNP-arrays). We show that our platform represents a significant improvement on current strategies in defining diagnosis and risk stratification of patients with MDS and myeloid-related disorders. Abstract Myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms are clonal disorders that share most of their cytogenetic and molecular alterations. Despite the increased knowledge of the prognostic importance of genetics in these malignancies, next-generation sequencing (NGS) has not been incorporated into clinical practice in a validated manner, and the conventional karyotype remains mandatory in the evaluation of suspected cases. However, non-informative cytogenetics might lead to an inadequate estimation of the prognostic risk. Here, we present a novel targeted NGS-based assay for the simultaneous detection of all the clinically relevant genetic alterations associated with these disorders. We validated this platform in a large cohort of patients by performing a one-to-one comparison with the lesions from karyotype and single-nucleotide polymorphism (SNP) arrays. Our strategy demonstrated an approximately 97% concordance with standard clinical assays, showing sensitivity at least equivalent to that of SNP arrays and higher than that of conventional cytogenetics. In addition, this NGS assay was able to identify both copy-neutral loss of heterozygosity events distributed genome-wide and copy number alterations, as well as somatic mutations within significant driver genes. In summary, we show a novel NGS platform that represents a significant improvement to current strategies in defining diagnosis and risk stratification of patients with MDS and myeloid-related disorders.
Collapse
|
40
|
Jian J, Qiao Y, Li Y, Guo Y, Ma H, Liu B. Mutations in chronic myelomonocytic leukemia and their prognostic relevance. Clin Transl Oncol 2021; 23:1731-1742. [PMID: 33861431 DOI: 10.1007/s12094-021-02585-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/06/2021] [Indexed: 12/19/2022]
Abstract
Chronic myelomonocytic leukemia (CMML) is a hematologic malignancy that overlaps with myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) and tends to transform into acute myeloid leukemia (AML). Among cases of CMML, > 90% have gene mutations, primarily involving TET2 (~ 60%), ASXL1 (~ 40%), SRSF2 (~ 50%), and the RAS pathways (~ 30%). These gene mutations are associated with both the clinical phenotypes and the prognosis of CMML, special CMML variants and pre-phases of CMML. Cytogenetic abnormalities and the size of genome are also associated with prognosis. Meanwhile, cases with ASXL1, DNMT3A, NRAS, SETBP1, CBL and RUNX1 mutations may have inferior prognoses, but only ASXL1 mutations were confirmed to be independent predictors of the patient outcome and were included in three prognostic models. Novel treatment targets related to the various gene mutations are emerging. Therefore, this review provides new insights to explore the correlations among gene mutations, clinical phenotypes, prognosis, and novel drugs in CMML.
Collapse
Affiliation(s)
- J Jian
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Y Qiao
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Y Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Y Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - H Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Department of Hematology, The First Affiliated Hospital, Lanzhou University, 1 Donggangxilu street, Lanzhou, Gansu, China.
| | - B Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Department of Hematology, The First Affiliated Hospital, Lanzhou University, 1 Donggangxilu street, Lanzhou, Gansu, China.
| |
Collapse
|
41
|
Vantyghem S, Peterlin P, Thépot S, Ménard A, Dubruille V, Debord C, Guillaume T, Garnier A, Le Bourgeois A, Wuilleme S, Godon C, Theisen O, Eveillard M, Delaunay J, Maisonneuve H, Morineau N, Villemagne B, Vigouroux S, Subiger F, Lestang E, Loirat M, Parcelier A, Godmer P, Mercier M, Trebouet A, Luque Paz D, Le Calloch R, Le Clech L, Bossard C, Moreau A, Ugo V, Hunault M, Moreau P, Le Gouill S, Chevallier P, Béné MC, Le Bris Y. Diagnosis and prognosis are supported by integrated assessment of next-generation sequencing in chronic myeloid malignancies. A real-life study. Haematologica 2021; 106:701-707. [PMID: 32241844 PMCID: PMC7927891 DOI: 10.3324/haematol.2019.242677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Next-generation sequencing (NGS) is used to investigate the presence of somatic mutations. The utility of incorporating routine sequencing to guide diagnosis and therapeutic decisions remains unclear. We report the findings of an observational, multicenter study that aimed to assess the impact of somatic mutation testing by NGS in a reallife setting of chronic myeloid malignancies. A total of 177 patients were enrolled, partitioned into two overlapping groups. In group A (n=94), the indication was to search for clonal hematopoiesis, in a context of suspected myelodysplastic syndrome or myeloproliferative neoplasia. In group B (n=95), the theranostic impact of somatic mutations was studied. A panel of 34 genes was used on DNA extracted from blood or bone marrow samples. Within group A, the detection of clonal hematopoiesis supported the diagnosis of chronic myeloid malignancies for 31 patients while the absence of clonal hematopoiesis ruled out the suspected diagnosis in 47 patients. Within group B, NGS identified prognostically relevant somatic mutations in 32 patients, which had a therapeutic impact in 18 cases. By determining the presence or absence of somatic mutations, the application of NGS in daily practice was found to be useful for an integrated final diagnosis in 83% of the patients. Moreover, the search for somatic mutations had a prognostic impact that led to treatment modification in 19% of the cases. This study outlines the fact that adequate implementation of new investigations may have a significant positive medico-economic impact by enabling appropriate management of patients.
Collapse
Affiliation(s)
| | | | - Sylvain Thépot
- Hematology Clinic, Angers University Hospital, Angers,CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Pays de la Loire
| | - Audrey Ménard
- Hematology Biology, Nantes University Hospital, Nantes
| | | | | | | | - Alice Garnier
- Hematology Clinic, Nantes University Hospital, Nantes
| | | | | | | | | | - Marion Eveillard
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Pays de la Loire,Hematology Biology, Nantes University Hospital, Nantes
| | | | | | | | | | | | | | - Elsa Lestang
- Hematology Clinic, Saint Nazaire Hospital, Saint Nazaire
| | - Marion Loirat
- Hematology Clinic, Saint Nazaire Hospital, Saint Nazaire
| | | | - Pascal Godmer
- Hematology Clinic, Bretagne Atlantique Hospital, Vannes
| | | | | | - Damien Luque Paz
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Pays de la Loire,Hematology Biology, Angers University Hospital, Angers
| | | | | | - Céline Bossard
- Pathology Department, Nantes University Hospital, Nantes, France
| | - Anne Moreau
- Pathology Department, Nantes University Hospital, Nantes, France
| | - Valérie Ugo
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Pays de la Loire,Hematology Biology, Angers University Hospital, Angers
| | - Mathilde Hunault
- Hematology Clinic, Angers University Hospital, Angers,CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Pays de la Loire
| | - Philippe Moreau
- Hematology Clinic, Nantes University Hospital, Nantes,CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Pays de la Loire
| | - Steven Le Gouill
- Hematology Clinic, Nantes University Hospital, Nantes,CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Pays de la Loire
| | - Patrice Chevallier
- Hematology Clinic, Nantes University Hospital, Nantes,CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Pays de la Loire
| | - Marie C Béné
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Pays de la Loire,Hematology Biology, Nantes University Hospital, Nantes
| | - Yannick Le Bris
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Pays de la Loire,Hematology Biology, Nantes University Hospital, Nantes
| |
Collapse
|
42
|
Patil A, Wanve B, Kar P, Velusamy S. Occurrence of a Clonal T-Cell Population in a Case of Chronic Myelomonocytic Leukemia. PLASMATOLOGY 2021; 14:2634853521991509. [PMID: 33628070 PMCID: PMC7883145 DOI: 10.1177/2634853521991509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/08/2021] [Indexed: 11/16/2022]
Abstract
Chronic myelo-monocytic leukemia (CMML) is an aggressive myeloid neoplasm with some features of a myelodysplastic syndrome (MDS) and others of a myeloproliferative neoplasm (MPN). Rarely, patients with CMML have a co-existing lympho-proliferative disorder (LPD). In most cases, the lymphoid neoplasm is diagnosed first, and the CMML is considered to be a secondary therapy-induced form of leukemia. We report herein a unique case of de-novo CMML, with an underlying clonal T-cell population and describe its clinical presentation and laboratory findings. A 70-year old male presented with a 3-month history of cough, dsypnea, abdominal distension, and low-grade fever. Physical and radiological examination revealed hepatosplenomegaly but no lymphadenopathy. Peripheral blood had absolute monocytosis with marrow showing CMML with 10% blasts along with dysplasia in myeloid and erythroid lineages. Flow cytometry indicated possibility of chronic myelo-monocytic leukemia with 13% monocytic cells along with an additional clonal population of gamma/delta T cells (15%) with aberrant immunophenotype. Polymerase chain reaction (PCR) analysis was positive for clonal T-cell rearrangement. A diagnosis of CMML with an underlying clonal T-CLPD was made. The synchronous occurrence of CMML and T-cell neoplasm may be attributed to a genetic mutation common to both. Currently, there are no treatment guidelines for group of patients; hence individualized therapeutic strategies should be implemented to enable symptomatic improvement and provide optimum care.
Collapse
Affiliation(s)
- Anupama Patil
- Department of Pathology, SRL Diagnostics, Fortis Hospital, Bengaluru, Karnataka, India
| | - Balasaheb Wanve
- Department of Hemato-Oncology, Fortis Hospital, Bengaluru, Karnataka, India
| | - Pradeep Kar
- Department of Pathology, SRL Diagnostics, Fortis Hospital, Bengaluru, Karnataka, India
| | - Shanthi Velusamy
- Department of Pathology, SRL Diagnostics, Fortis Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
43
|
Montalban-Bravo G, Darbaniyan F, Kanagal-Shamanna R, Ganan-Gomez I, Class CA, Sasaki K, Naqvi K, Wei Y, Yang H, Soltysiak KA, Chien KS, Bueso-Ramos C, Do KA, Kantarjian H, Garcia-Manero G. Type I interferon upregulation and deregulation of genes involved in monopoiesis in chronic myelomonocytic leukemia. Leuk Res 2021; 101:106511. [PMID: 33517186 DOI: 10.1016/j.leukres.2021.106511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
Chronic myelomonocytic leukemia (CMML) is characterized by myelomonocytic bias and monocytic proliferation. Whether cell-intrinsic innate immune or inflammatory upregulation mediate disease pathogenesis and phenotype or whether the degree of aberrant monocytic differentiation influences outcomes remains unclear. We compared the transcriptomic features of bone marrow CD34+ cells from 19 patients with CMML and compared to healthy individuals. A total of 1495 genes had significantly differential expression in CMML (q<0.05, fold change>2), including 1271 genes that were significantly upregulated and 224 that were significantly downregulated in CMML. Top upregulated genes were associated with interferon (IFN) alpha and beta signaling, chemokine receptors, IFN gamma, G protein-coupled receptor ligand signaling, and genes involved in immunomodulatory interactions between lymphoid and non-lymphoid cells. Additionally, 6 gene sets were differentially upregulated and 139 were significantly downregulated in patients with myeloproliferative compared to myelodysplastic CMML. A total of 23 genes involved in regulation of monopoiesis were upregulated in CMML compared to healthy controls. We developed a prediction model using Cox regression including 3 of these genes, which differentiated patients into two prognostic subsets with distinct survival outcomes. This data warrants further evaluation of the roles and therapeutic potential of type I IFN signaling and monopoiesis in CMML.
Collapse
Affiliation(s)
- Guillermo Montalban-Bravo
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Faezeh Darbaniyan
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rashmi Kanagal-Shamanna
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Irene Ganan-Gomez
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Caleb A Class
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Butler University, Indianapolis, IN, United States
| | - Koji Sasaki
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kiran Naqvi
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yue Wei
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hui Yang
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kelly A Soltysiak
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kelly S Chien
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carlos Bueso-Ramos
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kim-Anh Do
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hagop Kantarjian
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guillermo Garcia-Manero
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
44
|
Guan Y, Hasipek M, Tiwari AD, Maciejewski JP, Jha BK. TET-dioxygenase deficiency in oncogenesis and its targeting for tumor-selective therapeutics. Semin Hematol 2021; 58:27-34. [PMID: 33509440 PMCID: PMC7938524 DOI: 10.1053/j.seminhematol.2020.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/04/2020] [Accepted: 12/19/2020] [Indexed: 02/08/2023]
Abstract
TET2 is one of the most frequently mutated genes in myeloid neoplasms. TET2 loss-of-function perturbs myeloid differentiation and causes clonal expansion. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, targeted therapies are lagging. Here we review known biochemical mechanisms and candidate therapies that emerge from this. Specifically, we discuss the potential utility of vitamin C to compensate for TET-dioxygenase deficiency, to thereby restore the biochemical function. An alternative approach exploits the TET-deficient state for synthetic lethality, exploiting the fact that a minimum level of TET-dioxygenase activity is required for cell survival, rendering TET2-mutant malignant cells selectively vulnerable to inhibitors of TET-function.
Collapse
Affiliation(s)
- Yihong Guan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Metis Hasipek
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Anand D Tiwari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Babal K Jha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
45
|
Pellagatti A, Boultwood J. SF3B1 mutant myelodysplastic syndrome: Recent advances. Adv Biol Regul 2020; 79:100776. [PMID: 33358369 DOI: 10.1016/j.jbior.2020.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
The myelodysplastic syndromes (MDS) are common myeloid malignancies. Mutations in genes encoding different components of the spliceosome occur in more than half of all MDS patients. SF3B1 is the most frequently mutated splicing factor gene in MDS, and there is a strong association between SF3B1 mutations and the presence of ring sideroblasts in the bone marrow of MDS patients. It has been recently proposed that SF3B1 mutant MDS should be recognized as a distinct nosologic entity. Splicing factor mutations cause aberrant pre-mRNA splicing of many target genes, some of which have been shown to impact on hematopoiesis in functional studies. Emerging data show that some of the downstream effects of different mutated splicing factors converge on common cellular processes, such as hyperactivation of NF-κB signaling and increased R-loops. The aberrantly spliced target genes and the dysregulated pathways and cellular processes associated with splicing factor mutations provided the rationale for new potential therapeutic approaches to target MDS cells with mutations of SF3B1 and other splicing factors.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, And NIHR Oxford BRC Haematology Theme, Oxford, UK.
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, And NIHR Oxford BRC Haematology Theme, Oxford, UK.
| |
Collapse
|
46
|
Abstract
In recent years CMML has received increased attention as the most commonly observed MDS/MPN overlap syndrome. Renewed interest has occurred in part due to widespread adoption of next-generation sequencing panels that help render the diagnosis in the absence of morphologic dysplasia. Although most CMML patients exhibit somatic mutations in epigenetic modifiers, spliceosome components, transcription factors and signal transduction genes, it is increasingly clear that a small subset harbors an inherited predisposition to CMML and other myeloid neoplasms. More intriguing is the fact that the mutational spectrum observed in CMML is found in other types of myeloid leukemias, begging the question of how similar genetic backgrounds can lead to such divergent clinical phenotypes. In this review we present a contemporary snapshot of the genetic complexity inherent to CMML, explore the relationship between genotype-phenotype and present a stepwise model of CMML pathogenesis and progression.
Collapse
Affiliation(s)
- Ami B Patel
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
47
|
Ramos Perez J, Montalban-Bravo G. Emerging drugs for the treatment of chronic myelomonocytic leukemia. Expert Opin Emerg Drugs 2020; 25:515-529. [PMID: 33280448 DOI: 10.1080/14728214.2020.1854224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Introduction: Chronic myelomonocytic leukemia (CMML) is a clonal hematologic disorder with heterogenous prognosis, but with no curative therapies with exception of allogeneic transplant. Therapeutic options for patients with CMML are limited, and although hypomethylating agents such as azacitidine and decitabine are the standard of care, only 40% of patients achieve a response, and most responses are transient. Over the last 5 years, significant advances have been made in the understanding of the clonal landscape of CMML, some of the mechanisms associated to resistance to HMA, and other key biological processes involved in disease pathogenesis. Areas covered: The current article reviews the most relevant emerging therapies currently undergoing clinical trials for the treatment of previously untreated or relapsed CMML. Expert opinion: The presence of recurrent somatic mutations in CMML represents therapeutic opportunities to utilize specific small molecule inhibitors such as IDH, FLT3, MEK/ERK, PLK1, or splicing inhibitors and modulators. In addition, other novel agents such as immune therapies, BCL2 or MCL1 inhibitors and other monoclonal antibodies could lead to therapeutic advances. Identifying specific patient populations likely to benefit from some of these interventions, and development of optimal combinations will remain the challenge when determining their role in therapy.
Collapse
Affiliation(s)
- Jorge Ramos Perez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | | |
Collapse
|
48
|
Jiang Z, Sun X, Wu Z, Alhatem A, Zheng R, Liu D, Wang Y, Kumar D, Xia C, You B, Wang H, Liu C, Jiang JG. Cytogenetic and molecular landscape and its potential clinical significance in Hispanic CMML patients from Puerto Rico. Oncotarget 2020; 11:4411-4420. [PMID: 33315966 PMCID: PMC7720771 DOI: 10.18632/oncotarget.27824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic neoplasm that exhibits myelodysplastic and myeloproliferative characteristics with heterogeneous clinical and pathological features. There are limited publications on the ethnic and racial disparity of cytogenetics and genomics in CMML patients. This study aims to define the cytogenetic and molecular landscape in Hispanic CMML patients from Puerto Rico and explore its possible clinical significance. One hundred and eleven (111) Hispanic CMML patients from Puerto Rico were diagnosed in our institute from 2009 to 2018. Karyotypes were available in one hundred and seven (107) patients. Seventeen (17) patients had abnormal karyotypes (17/107, 16%). Compared to previously published data, Hispanic CMML patients in this study had significantly lower rates of overall cytogenetic abnormalities (16% vs 27-28%, p < 0.05) and trisomy 8 (2% vs 7%, p < 0.05). Among one hundred and eleven (111) Hispanic CMML patients, 40-gene myeloid molecular profile tests were performed in fifty-six (56) CMML patients. Gene mutations were identified in fifty-four (54) patients (96%). The most frequent mutated genes were: TET2, SRSF2, ASXL1, ZRSR2, DNMT3A, NRAS, CBL, and RUNX1. Twenty-nine (29) out of fifty-six (56) patients (29/56, 52%) had mutated TET2/wild type ASXL1 (muTET2/wtASXL1). Previous studies indicated that mutated ASXL1, DNMT3A, NRAS, RUNX1, and SETBP1 may associate with an unfavorable prognosis and muTET2/wtASXL1 may associate with a favorable prognosis in CMML patients. Compared to previously published data, Hispanic CMML patients from Puerto Rico in this study had significantly lower mutation rates in ASXL1 and SETBP1, and a higher rate of muTET2/wtASXL1. The findings raise the possibility of a favorable prognosis in Hispanic CMML patients.
Collapse
Affiliation(s)
- Zeju Jiang
- Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xinlai Sun
- Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Zhao Wu
- Neogenomics, Carlsbad, CA 92008, USA
| | - Albert Alhatem
- Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ruifang Zheng
- Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dongfang Liu
- Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Yaqun Wang
- Department of Biostatistics, Rutgers School of Public Health and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Dibyendu Kumar
- Institute of Genomics Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Changqing Xia
- Institute of Genomics Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Bei You
- Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - He Wang
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Chen Liu
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Jie-Gen Jiang
- Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Institute of Genomics Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
49
|
|
50
|
Distinct clinical and biological implications of CUX1 in myeloid neoplasms. Blood Adv 2020; 3:2164-2178. [PMID: 31320321 DOI: 10.1182/bloodadvances.2018028423] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/01/2019] [Indexed: 01/19/2023] Open
Abstract
Somatic mutations of the CUT-like homeobox 1 (CUX1) gene (CUX1 MT) can be found in myeloid neoplasms (MNs), in particular, in myelodysplastic syndromes (MDSs). The CUX1 locus is also deleted in 3 of 4 MN cases with -7/del(7q). A cohort of 1480 MN patients was used to characterize clinical features and clonal hierarchy associated with CUX1 MT and CUX1 deletions (CUX1 DEL) and to analyze their functional consequences in vitro. CUX1 MT were present in 4% of chronic MNs. CUX1 DEL were preferentially found in advanced cases (6%). Most MDS and acute myeloid leukemia (AML) patients with -7/del(7q) and up to 15% of MDS patients and 5% of AML patients diploid for the CUX1 locus exhibited downmodulated CUX1 expression. In 75% of mutant cases, CUX1 MT were heterozygous, whereas microdeletions and homozygous and compound-heterozygous mutations were less common. CUX MT/DEL were associated with worse survival compared with CUX1 WT Within the clonal hierarchy, 1 of 3 CUX1 MT served as founder events often followed by secondary BCOR and ASXL1 subclonal hits, whereas TET2 was the most common ancestral lesion, followed by subclonal CUX1 MT Comet assay of patients' bone marrow progenitor cells and leukemic cell lines performed in various experimental conditions revealed that frameshift mutations, hemizygous deletions, or experimental CUX1 knockdown decrease the repair of oxidized bases. These functional findings may explain why samples with either CUX1 MT or low CUX1 expression coincided with significantly higher numbers of somatic hits by whole-exome sequencing. Our findings implicate the DNA repair dysfunction resulting from CUX1 lesions in the pathogenesis of MNs, in which they lead to a mutator phenotype.
Collapse
|