1
|
Mazzarello AN, Fitch M, Cardillo M, Ng A, Bhuiya S, Sharma E, Bagnara D, Kolitz JE, Barrientos JC, Allen SL, Rai KR, Rhodes J, Hellerstein MK, Chiorazzi N. Characterization of the Intraclonal Complexity of Chronic Lymphocytic Leukemia B Cells: Potential Influences of B-Cell Receptor Crosstalk with Other Stimuli. Cancers (Basel) 2023; 15:4706. [PMID: 37835400 PMCID: PMC10571896 DOI: 10.3390/cancers15194706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) clones contain subpopulations differing in time since the last cell division ("age"): recently born, proliferative (PF; CXCR4DimCD5Bright), intermediate (IF; CXCR4IntCD5Int), and resting (RF; CXCR4BrightCD5Dim) fractions. Herein, we used deuterium (2H) incorporation into newly synthesized DNA in patients to refine the kinetics of CLL subpopulations by characterizing two additional CXCR4/CD5 fractions, i.e., double dim (DDF; CXCR4DimCD5Dim) and double bright (DBF; CXCR4BrightCD5Bright); and intraclonal fractions differing in surface membrane (sm) IgM and IgD densities. Although DDF was enriched in recently divided cells and DBF in older cells, PF and RF remained the most enriched in youngest and oldest cells, respectively. Similarly, smIgMHigh and smIgDHigh cells were the youngest, and smIgMLow and smIgDLow were the oldest, when using smIG levels as discriminator. Surprisingly, the cells closest to the last stimulatory event bore high levels of smIG, and stimulating via TLR9 and smIG yielded a phenotype more consistent with the in vivo setting. Finally, older cells were less sensitive to in vivo inhibition by ibrutinib. Collectively, these data define additional intraclonal subpopulations with divergent ages and phenotypes and suggest that BCR engagement alone is not responsible for the smIG levels found in vivo, and the differential sensitivity of distinct fractions to ibrutinib might account, in part, for therapeutic relapse.
Collapse
Affiliation(s)
- Andrea N. Mazzarello
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Mark Fitch
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Martina Cardillo
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Anita Ng
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Sabreen Bhuiya
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Esha Sharma
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Davide Bagnara
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Jonathan E. Kolitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jacqueline C. Barrientos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Steven L. Allen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kanti R. Rai
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Joanna Rhodes
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Marc K. Hellerstein
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
2
|
Chen SS, Chiorazzi N. Functional consequences of inhibition of Bruton's tyrosine kinase by ibrutinib in chronic lymphocytic leukemia. Hematol Oncol 2023; 41 Suppl 1:119-128. [PMID: 37294973 DOI: 10.1002/hon.3144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The leukemic B cells from patients with chronic lymphocytic leukemia (CLL) require interactions with non-malignant cells and matrix in the tissue microenvironment to survive and grow. These interactions are mediated through the B-cell antigen receptor (BCR), C-X-C chemokine receptor type 4 (CXCR4), and a variety of integrins, including VLA-4. Exciting each receptor type leads to activation of Bruton's tyrosine kinase (BTK), which in turn helps initiate trophic signals that prevent cell death and promote cell activation and growth as well as allowing cells to return to anatomic sites for rescue signals. These represent the two major functional actions targeted by inhibitors of Btk. Here we relate some of the therapeutic actions of ibrutinib, a Btk inhibitor that is extremely helpful for patients with CLL, certain Diffuse Large B-cell Lymphomas (ABC type), and other non-Hodgkin's lymphomas, emphasizing that ibrutinib's value results from blocking beneficial signals, not by inducing lethal ones.
Collapse
Affiliation(s)
- Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Molecular Medicine and of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
3
|
Old and New Facts and Speculations on the Role of the B Cell Receptor in the Origin of Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:ijms232214249. [PMID: 36430731 PMCID: PMC9693457 DOI: 10.3390/ijms232214249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
The engagement of the B cell receptor (BcR) on the surface of leukemic cells represents a key event in chronic lymphocytic leukemia (CLL) since it can lead to the maintenance and expansion of the neoplastic clone. This notion was initially suggested by observations of the CLL BcR repertoire and of correlations existing between certain BcR features and the clinical outcomes of single patients. Based on these observations, tyrosine kinase inhibitors (TKIs), which block BcR signaling, have been introduced in therapy with the aim of inhibiting CLL cell clonal expansion and of controlling the disease. Indeed, the impressive results obtained with these compounds provided further proof of the role of BcR in CLL. In this article, the key steps that led to the determination of the role of BcR are reviewed, including the features of the CLL cell repertoire and the fine mechanisms causing BcR engagement and cell signaling. Furthermore, we discuss the biological effects of the engagement, which can lead to cell survival/proliferation or apoptosis depending on certain intrinsic cell characteristics and on signals that the micro-environment can deliver to the leukemic cells. In addition, consideration is given to alternative mechanisms promoting cell proliferation in the absence of BcR signaling, which can explain in part the incomplete effectiveness of TKI therapies. The role of the BcR in determining clonal evolution and disease progression is also described. Finally, we discuss possible models to explain the selection of a special BcR set during leukemogenesis. The BcR may deliver activation signals to the cells, which lead to their uncontrolled growth, with the possible collaboration of other still-undefined events which are capable of deregulating the normal physiological response of B cells to BcR-delivered stimuli.
Collapse
|
4
|
Collins MA, Jung IY, Zhao Z, Apodaca K, Kong W, Lundh S, Fraietta JA, Kater AP, Sun C, Wiestner A, Melenhorst JJ. Enhanced Costimulatory Signaling Improves CAR T-cell Effector Responses in CLL. CANCER RESEARCH COMMUNICATIONS 2022; 2:1089-1103. [PMID: 36922932 PMCID: PMC10010331 DOI: 10.1158/2767-9764.crc-22-0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
CD19-redirected chimeric antigen receptor (CAR) T cells have shown remarkable activity against B-cell cancers. While second-generation CARs induce complete remission in >80% of patients with acute lymphoblastic leukemia, similar monotherapy induces long-term remissions in only 26% of patients with chronic lymphocytic leukemia (CLL). This disparity is attributed to cell-intrinsic effector defects in autologous CLL-derived T cells. However, the mechanisms by which leukemic cells impact CAR T-cell potency are poorly understood. Herein we describe an in vitro assay that recapitulates endogenous CLL-mediated T-cell defects in healthy donor CAR T cells. Contact with CLL cells insufficiently activates, but does not irreversibly impair, CAR T-cell function. This state is rescuable by strong antigenic stimulation or IL2, and is not driven by immune suppression. Rather, this activation defect is attributable to low levels of costimulatory molecules on CLL cells, and exogenous costimulation enhanced CAR T-cell activation. We next assessed the stimulatory phenotype of CLL cells derived from different niches within the same patient. Lymph node (LN)-derived CLL cells had a strong costimulatory phenotype and promoted better CAR T-cell degranulation and cytokine production than matched peripheral blood CLL cells. Finally, in vitro CD40L-activated CLL cells acquired a costimulatory phenotype similar to the LN-derived tumor and stimulated improved CAR T-cell proliferation, cytokine production, and cytotoxicity. Together, these data identify insufficient activation as a driver of poor CAR T-cell responses in CLL. The costimulatory phenotype of CLL cells drives differential CAR T-cell responses, and can be augmented by improving costimulatory signaling. Significance CLL cells insufficiently activate CAR T cells, driven by low levels of costimulatory molecules on the tumor. LN-derived CLL cells are more costimulatory and mediate enhanced CAR T-cell killing. This costimulatory phenotype can be modeled via CD40 L activation, and the activated tumor promotes stronger CAR T-cell responses.
Collapse
Affiliation(s)
- McKensie A. Collins
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - In-Young Jung
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ziran Zhao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kimberly Apodaca
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Weimin Kong
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefan Lundh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph A. Fraietta
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Arnon P. Kater
- Amsterdam UMC, University of Amsterdam, Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, the Netherlabds
| | - Clare Sun
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Adrian Wiestner
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - J. Joseph Melenhorst
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Jung B, Ferrer G, Chiu PY, Aslam R, Ng A, Palacios F, Wysota M, Cardillo M, Kolitz JE, Allen SL, Barrientos JC, Rai KR, Chiorazzi N, Sherry B. Activated CLL cells regulate IL17F producing Th17 cells in miR155 dependent and outcome specific manners. JCI Insight 2022; 7:158243. [PMID: 35511436 DOI: 10.1172/jci.insight.158243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) results from expansion of a CD5+ B-cell clone that requires interactions with other cell types, including T cells. Moreover, CLL patients have elevated circulating IL17A+ and IL17F+ CD4+ T cells (Th17s), with higher IL17A+Th17s correlating with better outcomes. We report that CLL Th17s express more miR155, a Th17 differentiation regulator, than control Th17s, despite naïve CD4+ T cell (TN) basal miR155 levels being similar in both. We also found that CLL cells directly regulate miR155 levels in TN, thereby affecting Th17 differentiation by documenting that: co-culturing TN with resting (Brest) or activated (Bact) CLL cells alters the magnitude and direction of T-cell miR155 levels; CLL Bact promote IL17A+ and IL17F+ T cell generation by a miR155-dependent mechanism, confirmed by miR155 inhibition; co-cultures of TN with CLL Bact lead to a linear correlation between the degree and direction of T-cell miR155 expression changes and IL17F production, but not IL17A; Bact-mediated changes in TN miR155 expression correlate with outcome, irrespective of IGHV mutation status, a strong prognostic indicator. Together, the results identify a previously unrecognized CLL Bact-dependent mechanism, upregulation of TN miR155 expression and subsequent enhancement of IL17F+ Th17 generation, that favors better clinical courses.
Collapse
Affiliation(s)
- Byeongho Jung
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Gerardo Ferrer
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Pui Yan Chiu
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Insitute for Medical Research, Manhasset, United States of America
| | - Rukhsana Aslam
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Anita Ng
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Florencia Palacios
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Michael Wysota
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Martina Cardillo
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Jonathan E Kolitz
- Department of Medicine, Northwell Health, New Hyde Park, United States of America
| | - Steven L Allen
- Department of Medicine, Northwell Health, New Hyde Park, United States of America
| | | | - Kanti R Rai
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Barbara Sherry
- Center for Immunology & Inflammation, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| |
Collapse
|
6
|
Mazzarello AN, Gentner-Göbel E, Dühren-von Minden M, Tarasenko TN, Nicolò A, Ferrer G, Vergani S, Liu Y, Bagnara D, Rai KR, Burger JA, McGuire PJ, Maity PC, Jumaa H, Chiorazzi N. B-cell receptor isotypes differentially associate with cell signaling, kinetics, and outcome in chronic lymphocytic leukemia. J Clin Invest 2021; 132:149308. [PMID: 34813501 PMCID: PMC8759784 DOI: 10.1172/jci149308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), the B cell receptor (BCR) plays a critical role in disease development and progression, as indicated by the therapeutic efficacy of drugs blocking BCR signaling. However, the mechanism(s) underlying BCR responsiveness are not completely defined. Selective engagement of membrane IgM or IgD on CLL cells, each coexpressed by more than 90% of cases, leads to distinct signaling events. Since both IgM and IgD carry the same antigen-binding domains, the divergent actions of the receptors are attributed to differences in immunoglobulin (Ig) structure or the outcome of signal transduction. We showed that IgM, not IgD, level and organization associated with CLL-cell birth rate and the type and consequences of BCR signaling in humans and mice. The latter IgM-driven effects were abrogated when BCR signaling was inhibited. Collectively, these studies demonstrated a critical, selective role for IgM in BCR signaling and B cell fate decisions, possibly opening new avenues for CLL therapy.
Collapse
Affiliation(s)
- Andrea N Mazzarello
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | | | | | - Tatyana N Tarasenko
- Metabolism, Infection and Immunity Section, National Institutes of Health, Bethesda, United States of America
| | | | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Stefano Vergani
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Yun Liu
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Davide Bagnara
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Kanti R Rai
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Jan A Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Peter J McGuire
- National Institutes of Health, Bethesda, United States of America
| | - Palash C Maity
- Institute for Immunology, University Hospital Ulm, Ulm, Germany
| | - Hassan Jumaa
- Institute for Immunology, University Hospital Ulm, Ulm, Germany
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| |
Collapse
|
7
|
Morande PE, Yan XJ, Sepulveda J, Seija N, Marquez ME, Sotelo N, Abreu C, Crispo M, Fernández-Graña G, Rego N, Bois T, Methot SP, Palacios F, Remedi V, Rai KR, Buschiazzo A, Di Noia JM, Navarrete MA, Chiorazzi N, Oppezzo P. AID overexpression leads to aggressive murine CLL and nonimmunoglobulin mutations that mirror human neoplasms. Blood 2021; 138:246-258. [PMID: 34292322 DOI: 10.1182/blood.2020008654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/12/2021] [Indexed: 11/20/2022] Open
Abstract
Most cancers become more dangerous by the outgrowth of malignant subclones with additional DNA mutations that favor proliferation or survival. Using chronic lymphocytic leukemia (CLL), a disease that exemplifies this process and is a model for neoplasms in general, we created transgenic mice overexpressing the enzyme activation-induced deaminase (AID), which has a normal function of inducing DNA mutations in B lymphocytes. AID not only allows normal B lymphocytes to develop more effective immunoglobulin-mediated immunity, but is also able to mutate nonimmunoglobulin genes, predisposing to cancer. In CLL, AID expression correlates with poor prognosis, suggesting a role for this enzyme in disease progression. Nevertheless, direct experimental evidence identifying the specific genes that are mutated by AID and indicating that those genes are associated with disease progression is not available. To address this point, we overexpressed Aicda in a murine model of CLL (Eμ-TCL1). Analyses of TCL1/AID mice demonstrate a role for AID in disease kinetics, CLL cell proliferation, and the development of cancer-related target mutations with canonical AID signatures in nonimmunoglobulin genes. Notably, our mouse models can accumulate mutations in the same genes that are mutated in human cancers. Moreover, some of these mutations occur at homologous positions, leading to identical or chemically similar amino acid substitutions as in human CLL and lymphoma. Together, these findings support a direct link between aberrant AID activity and CLL driver mutations that are then selected for their oncogenic effects, whereby AID promotes aggressiveness in CLL and other B-cell neoplasms.
Collapse
MESH Headings
- Animals
- Cytidine Deaminase/genetics
- Disease Models, Animal
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Up-Regulation
Collapse
Affiliation(s)
- Pablo Elías Morande
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Xiao-Jie Yan
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Julieta Sepulveda
- Laboratory of Molecular Medicine, Centro Asistencial Docente e Investigación de la Universidad de Magallanes (CADI-UMAG), School of Medicine, University of Magallanes, Punta Arenas, Chile
| | - Noé Seija
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Elena Marquez
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Sotelo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Abreu
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | | | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Therence Bois
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
| | - Stephen P Methot
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Florencia Palacios
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Victoria Remedi
- Hospital Maciel, Administración de los Servicios de Salud del Estado (ASSE), Ministerio de Salud, Montevideo, Uruguay
| | - Kanti R Rai
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; and
- Integrative Microbiology of Zoonotic Agents-International Joint Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marcelo A Navarrete
- Laboratory of Molecular Medicine, Centro Asistencial Docente e Investigación de la Universidad de Magallanes (CADI-UMAG), School of Medicine, University of Magallanes, Punta Arenas, Chile
| | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
8
|
Oppezzo P, Navarrete M, Chiorazzi N. AID in Chronic Lymphocytic Leukemia: Induction and Action During Disease Progression. Front Oncol 2021; 11:634383. [PMID: 34041018 PMCID: PMC8141630 DOI: 10.3389/fonc.2021.634383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The enzyme activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes, critical actions for an effective adaptive immune response. However, in addition to the benefits generated by its physiological roles, AID is an etiological factor for the development of human and murine leukemias and lymphomas. This review highlights the pathological role of AID and the consequences of its actions on the development, progression, and therapeutic refractoriness of chronic lymphocytic leukemia (CLL) as a model disease for mature lymphoid malignancies. First, we summarize pertinent aspects of the expression and function of AID in normal B lymphocytes. Then, we assess putative causes for AID expression in leukemic cells emphasizing the role of an activated microenvironment. Thirdly, we discuss the role of AID in lymphomagenesis, in light of recent data obtained by NGS analyses on the genomic landscape of leukemia and lymphomas, concentrating on the frequency of AID signatures in these cancers and correlating previously described tumor-gene drivers with the presence of AID off-target mutations. Finally, we discuss how these changes could affect tumor suppressor and proto-oncogene targets and how they could be associated with disease progression. Collectively, we hope that these sections will help to better understand the complex paradox between the physiological role of AID in adaptive immunity and its potential causative activity in B-cell malignancies.
Collapse
Affiliation(s)
- Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
9
|
Wu X, Fajardo-Despaigne JE, Zhang C, Neppalli V, Banerji V, Johnston JB, Gibson SB, Marshall AJ. Altered T Follicular Helper Cell Subsets and Function in Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:674492. [PMID: 33996605 PMCID: PMC8113764 DOI: 10.3389/fonc.2021.674492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Follicular helper T cells (TFH) have specialized properties in promoting normal B cell activation but their role in chronic lymphocytic leukemia (CLL) is unknown. We find that TFH cells are elevated in CLL patients and are phenotypically abnormal, expressing higher levels of PD-1, TIGIT, CD40L, IFNγ and IL-21, and exhibiting abnormal composition of TFH1, TFH2 and TFH17 subsets. Frequencies of CD4-positive T cells expressing TFH1 markers and IL-21 were positively correlated with patient lymphocyte counts and RAI stage, suggesting that accumulation of abnormal TFH cells is concomitant with expansion of the leukemic B cell clone. Treatment with ibrutinib led to normalization of TFH frequencies and phenotype. TFH cells identified in CLL bone marrow display elevated expression of several functional markers compared to blood TFH cells. CLL T cell-B cell co-culture experiments revealed a correlation of patient TFH frequencies with functional ability of their CD4-positive T cells to promote CLL proliferation. Conversely, CLL cells can preferentially activate the TFH cell subset in co-culture. Together our results indicate that CLL development is associated with expansion of abnormal TFH populations that produce elevated levels of cytokines and costimulatory molecules which may help support CLL proliferation.
Collapse
Affiliation(s)
- Xun Wu
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - J Ernesto Fajardo-Despaigne
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Christine Zhang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Vishala Neppalli
- Hematopathology Laboratory, Shared Health Manitoba, Winnipeg, MB, Canada
| | - Versha Banerji
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James B Johnston
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Spencer B Gibson
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Aaron J Marshall
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Palacios F, Yan XJ, Ferrer G, Chen SS, Vergani S, Yang X, Gardner J, Barrientos JC, Rock P, Burack R, Kolitz JE, Allen SL, Kharas MG, Abdel-Wahab O, Rai KR, Chiorazzi N. Musashi 2 influences chronic lymphocytic leukemia cell survival and growth making it a potential therapeutic target. Leukemia 2021; 35:1037-1052. [PMID: 33504942 PMCID: PMC8024198 DOI: 10.1038/s41375-020-01115-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
Progression of chronic lymphocytic leukemia (CLL) results from the expansion of a small fraction of proliferating leukemic B cells. When comparing the global gene expression of recently divided CLL cells with that of previously divided cells, we found higher levels of genes involved in regulating gene expression. One of these was the oncogene Musashi 2 (MSI2), an RNA-binding protein that induces or represses translation. While there is an established role for MSI2 in normal and malignant stem cells, much less is known about its expression and role in CLL. Here we report for the first time ex vivo and in vitro experiments that MSI2 protein levels are higher in dividing and recently divided leukemic cells and that downregulating MSI2 expression or blocking its function eliminates primary human and murine CLL and mature myeloid cells. Notably, mature T cells and hematopoietic stem and progenitor cells are not affected. We also confirm that higher MSI2 levels correlate with poor outcome markers, shorter time-to-first-treatment, and overall survival. Thus, our data highlight an important role for MSI2 in CLL-cell survival and proliferation and associate MSI2 with poor prognosis in CLL patients. Collectively, these findings pinpoint MSI2 as a potentially valuable therapeutic target in CLL.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents
- Apoptosis/drug effects
- Biomarkers, Tumor
- Caspase 3/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Survival/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Disease Models, Animal
- Gene Expression
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Knockdown Techniques
- Humans
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Molecular Targeted Therapy
- Prognosis
- RNA, Small Interfering
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Florencia Palacios
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Xiao-Jie Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Stefano Vergani
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey Gardner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaqueline C Barrientos
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Philip Rock
- Department of Pathology, University of Rochester, Rochester, NY, USA
| | - Richard Burack
- Department of Pathology, University of Rochester, Rochester, NY, USA
| | - Jonathan E Kolitz
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Steven L Allen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kanti R Rai
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA.
| |
Collapse
|
11
|
Patten PEM, Ferrer G, Chen SS, Kolitz JE, Rai KR, Allen SL, Barrientos JC, Ioannou N, Ramsay AG, Chiorazzi N. A Detailed Analysis of Parameters Supporting the Engraftment and Growth of Chronic Lymphocytic Leukemia Cells in Immune-Deficient Mice. Front Immunol 2021; 12:627020. [PMID: 33767698 PMCID: PMC7985329 DOI: 10.3389/fimmu.2021.627020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Patient-derived xenograft models of chronic lymphocytic leukemia (CLL) can be created using highly immunodeficient animals, allowing analysis of primary tumor cells in an in vivo setting. However, unlike many other tumors, CLL B lymphocytes do not reproducibly grow in xenografts without manipulation, proliferating only when there is concomitant expansion of T cells. Here we show that in vitro pre-activation of CLL-derived T lymphocytes allows for a reliable and robust system for primary CLL cell growth within a fully autologous system that uses small numbers of cells and does not require pre-conditioning. In this system, growth of normal T and leukemic B cells follows four distinct temporal phases, each with characteristic blood and tissue findings. Phase 1 constitutes a period during which resting CLL B cells predominate, with cells aggregating at perivascular areas most often in the spleen. In Phase 2, T cells expand and provide T-cell help to promote B-cell division and expansion. Growth of CLL B and T cells persists in Phase 3, although some leukemic B cells undergo differentiation to more mature B-lineage cells (plasmablasts and plasma cells). By Phase 4, CLL B cells are for the most part lost with only T cells remaining. The required B-T cell interactions are not dependent on other human hematopoietic cells nor on murine macrophages or follicular dendritic cells, which appear to be relatively excluded from the perivascular lymphoid aggregates. Notably, the growth kinetics and degree of anatomic localization of CLL B and T cells is significantly influenced by intravenous versus intraperitoneal administration. Importantly, B cells delivered intraperitoneally either remain within the peritoneal cavity in a quiescent state, despite the presence of dividing T cells, or migrate to lymphoid tissues where they actively divide; this dichotomy mimics the human condition in that cells in primary lymphoid tissues and the blood are predominately resting, whereas those in secondary lymphoid tissues proliferate. Finally, the utility of this approach is illustrated by documenting the effects of a bispecific antibody reactive with B and T cells. Collectively, this model represents a powerful tool to evaluate CLL biology and novel therapeutics in vivo.
Collapse
Affiliation(s)
- Piers E M Patten
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Institute of Haematology, King's College London, London, United Kingdom
| | - Gerardo Ferrer
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Shih-Shih Chen
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Jonathan E Kolitz
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Kanti R Rai
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Steven L Allen
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jacqueline C Barrientos
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Nikolaos Ioannou
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Institute of Haematology, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Institute of Haematology, King's College London, London, United Kingdom
| | - Nicholas Chiorazzi
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
12
|
Abstract
Patients with chronic lymphocytic leukemia can be divided into three categories: those who are minimally affected by the problem, often never requiring therapy; those that initially follow an indolent course but subsequently progress and require therapy; and those that from the point of diagnosis exhibit an aggressive disease necessitating treatment. Likewise, such patients pass through three phases: development of the disease, diagnosis, and need for therapy. Finally, the leukemic clones of all patients appear to require continuous input from the exterior, most often through membrane receptors, to allow them to survive and grow. This review is presented according to the temporal course that the disease follows, focusing on those external influences from the tissue microenvironment (TME) that support the time lines as well as those internal influences that are inherited or develop as genetic and epigenetic changes occurring over the time line. Regarding the former, special emphasis is placed on the input provided via the B-cell receptor for antigen and the C-X-C-motif chemokine receptor-4 and the therapeutic agents that block these inputs. Regarding the latter, prominence is laid upon inherited susceptibility genes and the genetic and epigenetic abnormalities that lead to the developmental and progression of the disease.
Collapse
MESH Headings
- Disease Progression
- Humans
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Mutation
- PAX5 Transcription Factor/metabolism
- Receptors, Antigen, B-Cell
- Signal Transduction
- Tumor Microenvironment
Collapse
Affiliation(s)
- Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Shih-Shih Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Kanti R Rai
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549, USA
| |
Collapse
|
13
|
Haselager MV, Kater AP, Eldering E. Proliferative Signals in Chronic Lymphocytic Leukemia; What Are We Missing? Front Oncol 2020; 10:592205. [PMID: 33134182 PMCID: PMC7578574 DOI: 10.3389/fonc.2020.592205] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells cycle between lymphoid tissue sites where they actively proliferate, and the peripheral blood (PB) where they become quiescent. Strong evidence exists for a crucial role of B cell receptor (BCR) triggering, either by (self-)antigen or by receptor auto-engagement in the lymph node (LN) to drive CLL proliferation and provide adhesion. The clinical success of Bruton's tyrosine kinase (BTK) inhibitors is widely accepted to be based on blockade of the BCR signal. Additional signals in the LN that support CLL survival derive from surrounding cells, such as CD40L-presenting T helper cells, myeloid and stromal cells. It is not quite clear if and to what extent these non-BCR signals contribute to proliferation in situ. In vitro BCR triggering, in contrast, leads to low-level activation and does not result in cell division. Various combinations of non-BCR signals delivered via co-stimulatory receptors, Toll-like receptors (TLRs), and/or soluble cytokines are applied, leading to comparatively modest and short-lived CLL proliferation in vitro. Thus, an unresolved gap exists between the condition in the patient as we now understand it and applicable knowledge that can be harnessed in the laboratory for future therapeutic applications. Even in this era of targeted drugs, CLL remains largely incurable with frequent relapses and emergence of resistance. Therefore, we require better insight into all aspects of CLL growth and potential rewiring of signaling pathways. We aim here to provide an overview of in vivo versus in vitro signals involved in CLL proliferation, point out areas of missing knowledge and suggest future directions for research.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Arnon P. Kater
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
- Department of Hematology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
14
|
Lundh S, Maji S, Melenhorst JJ. Next-generation CAR T cells to overcome current drawbacks. Int J Hematol 2020; 114:532-543. [PMID: 32594314 DOI: 10.1007/s12185-020-02923-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022]
Abstract
As a rapidly emerging treatment in the oncology field, adoptive transfer of autologous, genetically modified chimeric antigen receptor (CAR) T cells has shown striking efficacy and is curative in certain relapsed/refractory patients with hematologic malignancy. This treatment modality of using a "living drug" offers many tantalizing and novel therapeutic strategies for cancer patients whose remaining treatment options may have otherwise been limited. Despite the early success of CAR T cells in hematologic malignancies, many barriers remain for widespread adoption. General barriers include cellular manufacturing limitations, baseline quality of the T cells, adverse events post-infusion such as cytokine release syndrome (CRS) and neurotoxicity, and host rejection of non-human CARs. Additionally, each hematologic disease presents unique mechanisms of relapse which have to be addressed in future clinical trials if we are to augment the efficacy of CAR T treatment. In this review, we will describe current barriers to hindering efficacy of CAR T-cell treatment for hematologic malignancies in a disease-specific manner and review recent innovations aimed at enhancing the potency and applicability of CAR T cells, with the overall goal of building a framework to begin incorporating this form of therapy into the standard medical management of blood cancers.
Collapse
Affiliation(s)
- Stefan Lundh
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sayantan Maji
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, South Pavilion Expansion, Room 9-105, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Min EJ, Long Q. Sparse multiple co-Inertia analysis with application to integrative analysis of multi -Omics data. BMC Bioinformatics 2020; 21:141. [PMID: 32293260 PMCID: PMC7157996 DOI: 10.1186/s12859-020-3455-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/13/2020] [Indexed: 01/28/2023] Open
Abstract
Background Multiple co-inertia analysis (mCIA) is a multivariate analysis method that can assess relationships and trends in multiple datasets. Recently it has been used for integrative analysis of multiple high-dimensional -omics datasets. However, its estimated loading vectors are non-sparse, which presents challenges for identifying important features and interpreting analysis results. We propose two new mCIA methods: 1) a sparse mCIA method that produces sparse loading estimates and 2) a structured sparse mCIA method that further enables incorporation of structural information among variables such as those from functional genomics. Results Our extensive simulation studies demonstrate the superior performance of the sparse mCIA and structured sparse mCIA methods compared to the existing mCIA in terms of feature selection and estimation accuracy. Application to the integrative analysis of transcriptomics data and proteomics data from a cancer study identified biomarkers that are suggested in the literature related with cancer disease. Conclusion Proposed sparse mCIA achieves simultaneous model estimation and feature selection and yields analysis results that are more interpretable than the existing mCIA. Furthermore, proposed structured sparse mCIA can effectively incorporate prior network information among genes, resulting in improved feature selection and enhanced interpretability.
Collapse
Affiliation(s)
- Eun Jeong Min
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 423 Guardian Dr, Philadelphia, 19104, USA
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 423 Guardian Dr, Philadelphia, 19104, USA.
| |
Collapse
|
16
|
Bartholdy BA, Wang X, Yan XJ, Pascual M, Fan M, Barrientos J, Allen SL, Martinez-Climent JA, Rai KR, Chiorazzi N, Scharff MD, Roa S. CLL intraclonal fractions exhibit established and recently acquired patterns of DNA methylation. Blood Adv 2020; 4:893-905. [PMID: 32150608 PMCID: PMC7065474 DOI: 10.1182/bloodadvances.2019000817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Intraclonal subpopulations of circulating chronic lymphocytic leukemia (CLL) cells with different proliferative histories and reciprocal surface expression of CXCR4 and CD5 have been observed in the peripheral blood of CLL patients and named proliferative (PF), intermediate (IF), and resting (RF) cellular fractions. Here, we found that these intraclonal circulating fractions share persistent DNA methylation signatures largely associated with the mutation status of the immunoglobulin heavy chain locus (IGHV) and their origins from distinct stages of differentiation of antigen-experienced B cells. Increased leukemic birth rate, however, showed a very limited impact on DNA methylation of circulating CLL fractions independent of IGHV mutation status. Additionally, DNA methylation heterogeneity increased as leukemic cells advanced from PF to RF in the peripheral blood. This frequently co-occurred with heterochromatin hypomethylation and hypermethylation of Polycomb-repressed regions in the PF, suggesting accumulation of longevity-associated epigenetic features in recently born cells. On the other hand, transcriptional differences between paired intraclonal fractions confirmed their proliferative experience and further supported a linear advancement from PF to RF in the peripheral blood. Several of these differentially expressed genes showed unique associations with clinical outcome not evident in the bulk clone, supporting the pathological and therapeutic relevance of studying intraclonal CLL fractions. We conclude that independent methylation and transcriptional landscapes reflect both preexisting cell-of-origin fingerprints and more recently acquired hallmarks associated with the life cycle of circulating CLL cells.
Collapse
Affiliation(s)
- Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Xiahoua Wang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Xiao-Jie Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Marién Pascual
- Hemato-Oncology Program, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Manxia Fan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Jacqueline Barrientos
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
| | - Jose Angel Martinez-Climent
- Hemato-Oncology Program, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Kanti R Rai
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Matthew D Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Sergio Roa
- Hemato-Oncology Program, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Kwok M, Oldreive C, Rawstron AC, Goel A, Papatzikas G, Jones RE, Drennan S, Agathanggelou A, Sharma-Oates A, Evans P, Smith E, Dalal S, Mao J, Hollows R, Gordon N, Hamada M, Davies NJ, Parry H, Beggs AD, Munir T, Moreton P, Paneesha S, Pratt G, Taylor AMR, Forconi F, Baird DM, Cazier JB, Moss P, Hillmen P, Stankovic T. Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL. Blood 2020; 135:411-428. [PMID: 31794600 DOI: 10.1182/blood.2019001262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy. They exhibited shortened telomeres similar to nonregressing CLL, indicating prior proliferation. They also displayed low Ki-67, CD49d, cell-surface immunoglobulin M (IgM) expression and IgM-signaling response but high CXCR4 expression, indicating low proliferative activity associated with poor migration to proliferation centers, with these features becoming increasingly marked during regression. Spontaneously regressed CLL displayed a transcriptome profile characterized by downregulation of metabolic processes as well as MYC and its downstream targets compared with nonregressing CLL. Moreover, spontaneous regression was associated with reversal of T-cell exhaustion features including reduced programmed cell death 1 expression and increased T-cell proliferation. Interestingly, archetypal CLL genomic aberrations including HIST1H1B and TP53 mutations and del(13q14) were found in some spontaneously regressing tumors, but genetic composition remained stable during regression. Conversely, a single case of CLL relapse following spontaneous regression was associated with increased BCR signaling, CLL proliferation, and clonal evolution. These observations indicate that spontaneously regressing CLL appear to undergo a period of proliferation before entering a more quiescent state, and that a complex interaction between genomic alterations and the microenvironment determines disease course. Together, the findings provide novel insight into the biological processes underpinning spontaneous CLL regression, with implications for CLL treatment.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cell Proliferation
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin M/genetics
- Ki-67 Antigen/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Mutation
- Polymorphism, Single Nucleotide
- Receptors, CXCR4/genetics
- Tumor Microenvironment
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Haematological Malignancy Diagnostic Service, St. James's University Hospital, Leeds, United Kingdom
| | - Ceri Oldreive
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andy C Rawstron
- Haematological Malignancy Diagnostic Service, St. James's University Hospital, Leeds, United Kingdom
| | - Anshita Goel
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Grigorios Papatzikas
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Rhiannon E Jones
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Samantha Drennan
- Cancer Sciences Unit, University of Southampton, Southampton, United Kingdom
| | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Archana Sharma-Oates
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Paul Evans
- Haematological Malignancy Diagnostic Service, St. James's University Hospital, Leeds, United Kingdom
| | - Edward Smith
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Surita Dalal
- Haematological Malignancy Diagnostic Service, St. James's University Hospital, Leeds, United Kingdom
| | - Jingwen Mao
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert Hollows
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Naheema Gordon
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mayumi Hamada
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicholas J Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen Parry
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Talha Munir
- Haematological Malignancy Diagnostic Service, St. James's University Hospital, Leeds, United Kingdom
| | - Paul Moreton
- Department of Haematology, Pinderfields General Hospital, Wakefield, United Kingdom
| | - Shankara Paneesha
- Department of Haematology, Birmingham Heartlands Hospital, Birmingham, United Kingdom; and
| | - Guy Pratt
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - A Malcolm R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Francesco Forconi
- Cancer Sciences Unit, University of Southampton, Southampton, United Kingdom
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jean-Baptiste Cazier
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Paul Moss
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Peter Hillmen
- Haematological Malignancy Diagnostic Service, St. James's University Hospital, Leeds, United Kingdom
- Section of Experimental Haematology, University of Leeds, Leeds, United Kingdom
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Cawrse BM, Robinson NM, Lee NC, Wilson GM, Seley-Radtke KL. Structural and Biological Investigations for a Series of N-5 Substituted Pyrrolo[3,2- d]pyrimidines as Potential Anti-Cancer Therapeutics. Molecules 2019; 24:E2656. [PMID: 31340431 PMCID: PMC6680647 DOI: 10.3390/molecules24142656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
Pyrrolo[3,2-d]pyrimidines have been studied for many years as potential lead compounds for the development of antiproliferative agents. Much of the focus has been on modifications to the pyrimidine ring, with enzymatic recognition often modulated by C2 and C4 substituents. In contrast, this work focuses on the N5 of the pyrrole ring by means of a series of novel N5-substituted pyrrolo[3,2-d]pyrimidines. The compounds were screened against the NCI-60 Human Tumor Cell Line panel, and the results were analyzed using the COMPARE algorithm to elucidate potential mechanisms of action. COMPARE analysis returned strong correlation to known DNA alkylators and groove binders, corroborating the hypothesis that these pyrrolo[3,2-d]pyrimidines act as DNA or RNA alkylators. In addition, N5 substitution reduced the EC50 against CCRF-CEM leukemia cells by up to 7-fold, indicating that this position is of interest in the development of antiproliferative lead compounds based on the pyrrolo[3,2-d]pyrimidine scaffold.
Collapse
Affiliation(s)
- Brian M Cawrse
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Nia'mani M Robinson
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Nina C Lee
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katherine L Seley-Radtke
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
19
|
Gupta R, Li W, Yan XJ, Barrientos J, Kolitz JE, Allen SL, Rai K, Chiorazzi N, Mongini PKA. Mechanism for IL-15-Driven B Cell Chronic Lymphocytic Leukemia Cycling: Roles for AKT and STAT5 in Modulating Cyclin D2 and DNA Damage Response Proteins. THE JOURNAL OF IMMUNOLOGY 2019; 202:2924-2944. [PMID: 30988120 DOI: 10.4049/jimmunol.1801142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Clonal expansion of B cell chronic lymphocytic leukemia (B-CLL) occurs within lymphoid tissue pseudofollicles. IL-15, a stromal cell-associated cytokine found within spleens and lymph nodes of B-CLL patients, significantly boosts in vitro cycling of blood-derived B-CLL cells following CpG DNA priming. Both IL-15 and CpG DNA are elevated in microbe-draining lymphatic tissues, and unraveling the basis for IL-15-driven B-CLL growth could illuminate new therapeutic targets. Using CpG DNA-primed human B-CLL clones and approaches involving both immunofluorescent staining and pharmacologic inhibitors, we show that both PI3K/AKT and JAK/STAT5 pathways are activated and functionally important for IL-15→CD122/ɣc signaling in ODN-primed cells expressing activated pSTAT3. Furthermore, STAT5 activity must be sustained for continued cycling of CFSE-labeled B-CLL cells. Quantitative RT-PCR experiments with inhibitors of PI3K and STAT5 show that both contribute to IL-15-driven upregulation of mRNA for cyclin D2 and suppression of mRNA for DNA damage response mediators ATM, 53BP1, and MDC1. Furthermore, protein levels of these DNA damage response molecules are reduced by IL-15, as indicated by Western blotting and immunofluorescent staining. Bioinformatics analysis of ENCODE chromatin immunoprecipitation sequencing data from cell lines provides insight into possible mechanisms for STAT5-mediated repression. Finally, pharmacologic inhibitors of JAKs and STAT5 significantly curtailed B-CLL cycling when added either early or late in a growth response. We discuss how the IL-15-induced changes in gene expression lead to rapid cycling and possibly enhanced mutagenesis. STAT5 inhibitors might be an effective modality for blocking B-CLL growth in patients.
Collapse
Affiliation(s)
- Rashmi Gupta
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Wentian Li
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Xiao J Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | | | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Kanti Rai
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Patricia K A Mongini
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030; .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| |
Collapse
|
20
|
Brieghel C, Kinalis S, Yde CW, Schmidt AY, Jønson L, Andersen MA, da Cunha-Bang C, Pedersen LB, Geisler CH, Nielsen FC, Niemann CU. Deep targeted sequencing of TP53 in chronic lymphocytic leukemia: clinical impact at diagnosis and at time of treatment. Haematologica 2018; 104:789-796. [PMID: 30514802 PMCID: PMC6442964 DOI: 10.3324/haematol.2018.195818] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/23/2018] [Indexed: 12/28/2022] Open
Abstract
In chronic lymphocytic leukemia, TP53 mutations and deletion of chromosome 17p are well-characterized biomarkers associated with poor progression-free and overall survival following chemoimmunotherapy. Patients harboring low burden TP53 mutations with variant allele frequencies of 0.3-15% have been shown to have similar dismal outcome as those with high burden mutations. We here describe a highly sensitive deep targeted next-generation sequencing assay allowing for the detection of TP53 mutations as low as 0.2% variant allele frequency. Within a consecutive, single center cohort of 290 newly diagnosed patients with chronic lymphocytic leukemia, deletion of chromosome 17p was the only TP53 aberration significantly associated with shorter overall survival and treatment-free survival. We were unable to demonstrate any impact of TP53 mutations, whether high burden (variant allele frequency >10%) or low burden (variant allele frequency ≤10%), in the absence of deletion of chromosome 17p. In addition, the impact of high burden TP53 aberration (deletion of chromosome 17p and/or TP53 mutation with variant allele frequency >10%) was only evident for patients with IGHV unmutated status; no impact of TP53 aberrations on outcome was seen for patients with IGHV mutated status. In 61 patients at time of treatment, the prognostic impact of TP53 mutations over 1% variant allele frequency could be confirmed. This study furthers the identification of a clinical significant limit of detection for robust TP53 mutation analysis in chronic lymphocytic leukemia. Multicenter studies are needed for validation of ultra-sensitive TP53 mutation assays in order to define and implement a technical as well as a clinical lower limit of detection.
Collapse
Affiliation(s)
| | - Savvas Kinalis
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Christina W Yde
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Ane Y Schmidt
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Lars Jønson
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | - Finn C Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
21
|
Beekman R, Chapaprieta V, Russiñol N, Vilarrasa-Blasi R, Verdaguer-Dot N, Martens JHA, Duran-Ferrer M, Kulis M, Serra F, Javierre BM, Wingett SW, Clot G, Queirós AC, Castellano G, Blanc J, Gut M, Merkel A, Heath S, Vlasova A, Ullrich S, Palumbo E, Enjuanes A, Martín-García D, Beà S, Pinyol M, Aymerich M, Royo R, Puiggros M, Torrents D, Datta A, Lowy E, Kostadima M, Roller M, Clarke L, Flicek P, Agirre X, Prosper F, Baumann T, Delgado J, López-Guillermo A, Fraser P, Yaspo ML, Guigó R, Siebert R, Martí-Renom MA, Puente XS, López-Otín C, Gut I, Stunnenberg HG, Campo E, Martin-Subero JI. The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nat Med 2018; 24:868-880. [PMID: 29785028 PMCID: PMC6363101 DOI: 10.1038/s41591-018-0028-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a frequent hematological neoplasm in which underlying epigenetic alterations are only partially understood. Here, we analyze the reference epigenome of seven primary CLLs and the regulatory chromatin landscape of 107 primary cases in the context of normal B cell differentiation. We identify that the CLL chromatin landscape is largely influenced by distinct dynamics during normal B cell maturation. Beyond this, we define extensive catalogues of regulatory elements de novo reprogrammed in CLL as a whole and in its major clinico-biological subtypes classified by IGHV somatic hypermutation levels. We uncover that IGHV-unmutated CLLs harbor more active and open chromatin than IGHV-mutated cases. Furthermore, we show that de novo active regions in CLL are enriched for NFAT, FOX and TCF/LEF transcription factor family binding sites. Although most genetic alterations are not associated with consistent epigenetic profiles, CLLs with MYD88 mutations and trisomy 12 show distinct chromatin configurations. Furthermore, we observe that non-coding mutations in IGHV-mutated CLLs are enriched in H3K27ac-associated regulatory elements outside accessible chromatin. Overall, this study provides an integrative portrait of the CLL epigenome, identifies extensive networks of altered regulatory elements and sheds light on the relationship between the genetic and epigenetic architecture of the disease.
Collapse
Affiliation(s)
- Renée Beekman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
| | - Vicente Chapaprieta
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Núria Russiñol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Vilarrasa-Blasi
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Núria Verdaguer-Dot
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Joost H A Martens
- Molecular Biology, NCMLS, FNWI, Radboud University, Nijmegen, The Netherlands
| | - Martí Duran-Ferrer
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Marta Kulis
- Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | - François Serra
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Structural Genomics Group, CNAG-CRG, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Biola M Javierre
- Nuclear Dynamics Program, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Steven W Wingett
- Nuclear Dynamics Program, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
| | - Ana C Queirós
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Julie Blanc
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marta Gut
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Angelika Merkel
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Simon Heath
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Vlasova
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and UPF, Barcelona, Spain
| | - Sebastian Ullrich
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and UPF, Barcelona, Spain
| | - Emilio Palumbo
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and UPF, Barcelona, Spain
| | - Anna Enjuanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
| | - David Martín-García
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
| | - Magda Pinyol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
| | - Marta Aymerich
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Unitat de Hematología, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Romina Royo
- Programa Conjunto de Biología Computacional, Barcelona Supercomputing Center (BSC), Institut de Recerca Biomèdica (IRB), Spanish National Bioinformatics Institute, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Puiggros
- Programa Conjunto de Biología Computacional, Barcelona Supercomputing Center (BSC), Institut de Recerca Biomèdica (IRB), Spanish National Bioinformatics Institute, Universitat de Barcelona, Barcelona, Spain
| | - David Torrents
- Programa Conjunto de Biología Computacional, Barcelona Supercomputing Center (BSC), Institut de Recerca Biomèdica (IRB), Spanish National Bioinformatics Institute, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Avik Datta
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK
| | - Ernesto Lowy
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK
| | - Myrto Kostadima
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK
| | - Maša Roller
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK
| | - Xabier Agirre
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Tycho Baumann
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Servicio de Hematología, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Julio Delgado
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Servicio de Hematología, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Armando López-Guillermo
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Servicio de Hematología, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Peter Fraser
- Nuclear Dynamics Program, Babraham Institute, Babraham Research Campus, Cambridge, UK
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | | | - Roderic Guigó
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and UPF, Barcelona, Spain
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm and University Hospital of Ulm, Ulm, Germany
| | - Marc A Martí-Renom
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Structural Genomics Group, CNAG-CRG, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Carlos López-Otín
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Ivo Gut
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
- Hematopathology Section, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain.
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
Tomuleasa C, Selicean C, Cismas S, Jurj A, Marian M, Dima D, Pasca S, Petrushev B, Moisoiu V, Micu WT, Vischer A, Arifeen K, Selicean S, Zdrenghea M, Bumbea H, Tanase A, Grewal R, Pop L, Aanei C, Berindan-Neagoe I. Minimal residual disease in chronic lymphocytic leukemia: A consensus paper that presents the clinical impact of the presently available laboratory approaches. Crit Rev Clin Lab Sci 2018; 55:329-345. [PMID: 29801428 DOI: 10.1080/10408363.2018.1463508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy defined by the accumulation of mature lymphocytes in the lymphoid tissues, bone marrow, and blood. Therapy for CLL is guided according to the Rai and Binet staging systems. Nevertheless, state-of-the-art protocols in disease monitoring, diagnostics, and prognostics for CLL are based on the assessment of minimal residual disease (MRD). MRD is internationally considered to be the level of disease that can be detected by sensitive techniques and represents incomplete treatment and a probability of disease relapse. MRD detection has been continuously improved by the quick development of both flow cytometry and molecular biology technology, as well as by next-generation sequencing. Considering that MRD detection is moving more and more from research to clinical practice, where it can be an independent prognostic marker, in this paper, we present the methodologies by which MRD is evaluated, from translational research to clinical practice.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- a Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania.,b Research Center for Functional Genomics and Translational Medicine/Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Cristina Selicean
- a Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Sonia Cismas
- c Department of Genetics , Victor Babes University of Medicine and Pharmacy , Timisoara , Romania.,d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Anca Jurj
- e Research Center for Functional Genomics and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Mirela Marian
- a Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Delia Dima
- a Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Sergiu Pasca
- e Research Center for Functional Genomics and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Bobe Petrushev
- e Research Center for Functional Genomics and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Vlad Moisoiu
- e Research Center for Functional Genomics and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Wilhelm-Thomas Micu
- e Research Center for Functional Genomics and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Anna Vischer
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Kanza Arifeen
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sonia Selicean
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Mihnea Zdrenghea
- a Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania.,d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Horia Bumbea
- f Department of Hematology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania.,g Department of Hematology , University Clinical Hospital , Bucharest , Romania
| | - Alina Tanase
- h Department of Stem Cell Transplantation , Fundeni Clinical Institute , Bucharest , Romania
| | - Ravnit Grewal
- i South African Medical Research Council Bioinformatics Unit , The South African National Bioinformatics Institute (SANBI), University of the Western Cape , Bellville , South Africa
| | - Laura Pop
- e Research Center for Functional Genomics and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Carmen Aanei
- j Hematology Laboratory, Pole de Biologie-Pathologie , University Hospital of St. Etienne , St. Etienne , France
| | - Ioana Berindan-Neagoe
- e Research Center for Functional Genomics and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| |
Collapse
|
23
|
Jain P, Nogueras González GM, Kanagal-Shamanna R, Rozovski U, Sarwari N, Tam C, Wierda WG, A. Thompson P, Jain N, Luthra R, Quesada A, Sanchez-Petitto G, Ferrajoli A, Burger J, Kantarjian H, Cortes J, O’Brien S, Keating MJ, Estrov Z. The absolute percent deviation of IGHV mutation rather than a 98% cut-off predicts survival of chronic lymphocytic leukaemia patients treated with fludarabine, cyclophosphamide and rituximab. Br J Haematol 2018; 180:33-40. [PMID: 29164608 PMCID: PMC5745295 DOI: 10.1111/bjh.15018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/19/2017] [Indexed: 01/03/2023]
Abstract
The degree of somatic hypermutation, determined as percent deviation of immunoglobulin heavy chain gene variable region sequence from the germline (IGHV%), is an important prognostic factor in chronic lymphocytic leukaemia (CLL). Currently, a cut-off of 2% deviation or 98% sequence identity to germline in IGHV sequence is routinely used to dichotomize CLL patients into mutated and unmutated groups. Because dissimilar IGHV% cut-offs of 1-5% were identified in different studies, we wondered whether no cut-off should be applied and IGHV% treated as a continuous variable. We analysed the significance of IGHV% in 203 CLL patients enrolled on the original frontline fludarabine, cyclophosphamide and rituximab (FCR) trial with a median of 10 years follow-up. Using the Cox Proportional Hazard model, IGHV% was identified as a continuous variable that is significantly associated with progression-free (PFS) and overall survival (OS) (P < 0·001). Furthermore, we validated this finding in 323 patients treated with FCR off-protocol and in the total cohort (n = 535). Multivariate analysis revealed a continuous trend. Higher IGHV% levels were incrementally associated with favorable PFS and OS in both FCR-treated cohorts (P < 0·001, both cohorts). Taken together, our data suggest that IGHV% is a continuous variable in CLL patients treated with FCR.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers
- Cyclophosphamide/administration & dosage
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Male
- Middle Aged
- Mutation
- Neoplasm Staging
- Prognosis
- Proportional Hazards Models
- Rituximab/administration & dosage
- Treatment Outcome
- Vidarabine/administration & dosage
- Vidarabine/analogs & derivatives
- Young Adult
Collapse
Affiliation(s)
- Preetesh Jain
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Uri Rozovski
- Davidoff Cancer Center, Beilinson Campus, Tel-Aviv University, Tel-Aviv, Israel
| | - Nawid Sarwari
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - William G. Wierda
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philip A. Thompson
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nitin Jain
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andres Quesada
- Department of Hematopathology, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gabriela Sanchez-Petitto
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jan Burger
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge Cortes
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan O’Brien
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Chao Family Comprehensive Cancer Center, University of Irvine, Irvine, California, USA
| | - Michael J. Keating
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeev Estrov
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
24
|
Abstract
The last several years have witnessed a paradigm shift in the management of patients with chronic lymphocytic leukemia (CLL). The course of this very heterogeneous disease, traditionally treated with chemotherapeutic agents usually in combination with rituximab, typically has been characterized by remissions and relapses, and survival times vary greatly, depending on intrinsic biological attributes of the leukemia. The developments of the last few years have been transformative, ushering in an era of novel, molecularly targeted therapies, made possible by extensive efforts to elucidate the biology of the disease that predated the new targeted drugs. Thus, successful therapeutic targeting of the B-cell receptor signaling pathway and of the Bcl-2 anti-apoptotic protein with small molecules has now made chemotherapy-free approaches possible, hopefully mitigating the risk of development of therapy-related myeloid neoplasms and making eventual cure of CLL with the use of optimal drug combinations a realistic goal. Most importantly, these therapies have demonstrated unprecedented efficacy in patients with deletion 17p/TP53 mutation, a subset that historically has been very difficult to treat. However, as we gain more experience with the newer agents, unique safety concerns and resistance mechanisms have emerged, as has the issue of cost, as these expensive drugs are currently administered indefinitely. Accordingly, novel laboratory-based strategies and clinical trial designs are being explored to address these issues. The availability of whole exome/genome sequencing has given us profound insights into the mutational landscape of CLL. In this article, we highlight some of the most impactful advances since this topic was last reviewed in this journal.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|