1
|
Zhang X, Li J, Tang G, Wang Z, Guo Q, Guo Q, Qin Q, Fan Y. The prevalence and factors of willingness to accept circumcision among MSM in Maanshan City, China. AIDS Care 2024; 36:752-761. [PMID: 38266488 DOI: 10.1080/09540121.2023.2299664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
To investigate the prevalence of male circumcision and the willingness to undergo male circumcision and influencing factors among MSM in Maanshan City, we conducted a cross-sectional study from June 2016 to December 2019. Respondent-driven sampling (RDS) was used to recruit participants. Influential factors of willingness to accept circumcision were identified by a multivariable logistic regression model. The multivariable logistic regression model revealed that five variables were independent influential factors for willingness to participate. The factors include that used condoms during last anal intercourse (OR = 1.87, 95% CI:1.03-3.41, P = 0.04), sex with female sex partners (OR = 0.499, 95% CI:0.298-0.860, P = 0.012, level of education (junior college: OR = 0.413, 95% CI:0.200-0.854, P = 0.017; bachelor's degree or higher: OR = 0.442, 95% CI:0.208-0.938, P = 0.033), condom use during oral sex in the last six months (OR = 4.20, 95% CI:1.47-12.0, P = 0.007) and level of knowledge of PrEP (OR = 5.09, 95% CI:1.39-18.7, P = 0.014). Given the willingness of MSM to accept circumcision was low in China, establishing a proper understanding of circumcision is essential if it is to be used as a strategy to prevent HIV infection among MSM. Therefore, publicity and education on the operation should be strengthened to increase the willingness to undergo male circumcision.
Collapse
Affiliation(s)
- Xinhong Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jianwei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Gan Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ziwei Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Qian Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Qisheng Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Qirong Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
- Ma'anshan Center for Disease Control and Prevention, Ma'anshan, People's Republic of China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
2
|
Vine EE, Austin PJ, O'Neil TR, Nasr N, Bertram KM, Cunningham AL, Harman AN. Epithelial dendritic cells vs. Langerhans cells: Implications for mucosal vaccines. Cell Rep 2024; 43:113977. [PMID: 38512869 DOI: 10.1016/j.celrep.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present. Importantly, there are functional differences in how LCs and DCs take up and process pathogens as well as their ability to activate and polarize T cells, though whether DCs participate in neuroimmune interactions like LCs is yet to be elucidated. A correct definition and functional characterization of APCs in the skin and anogenital tissues are of utmost importance for the design of better vaccines and blocking pathogen transmission. Here, we provide a historical perspective on the evolution of our understanding of the APCs that inhabit the SSE, including a detailed review of the most recent literature.
Collapse
Affiliation(s)
- Erica Elizabeth Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Westmead Clinic School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Paul Jonathon Austin
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas Ray O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Kirstie Melissa Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony Lawrence Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
3
|
Almomani O, Nnamutete J, Shao Z, Biribawa VM, Ssemunywa H, Namuniina A, Okech B, Ulanova S, Zuanazzi D, Liu CM, Tobian AAR, Galiwango RM, Kaul R, Prodger JL. Effect of cryopreservation on CD4+ T cell subsets in foreskin tissue. PLoS One 2024; 19:e0297884. [PMID: 38427640 PMCID: PMC10906856 DOI: 10.1371/journal.pone.0297884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/03/2024] [Indexed: 03/03/2024] Open
Abstract
Voluntary medical male circumcision (VMMC) reduces HIV acquisition by at least 60%, but the determinants of HIV susceptibility in foreskin tissues are incompletely understood. Flow cytometry is a powerful tool that helps us understand tissue immune defenses in mucosal tissue like the inner foreskin, but foreskin flow cytometry has only been validated using fresh tissue samples. This restricts immune analyses to timepoints immediately after surgical acquisition and hinders research in this area. We compared fresh analysis with whole tissue cryopreservation and later thawing and digestion to analyze CD4+ T cell populations relevant to HIV susceptibility (CCR5, CD25, CD127, CCR4, CXCR3, CCR6, CCR10, HLA-DR, and CD38). Eight foreskin samples from HIV-negative males aged >18 years were collected after VMMC. For each sample, half the foreskin was immediately cryopreserved for later digestion and flow cytometry analysis, while the remaining tissues were analyzed fresh. We demonstrate no significant impact of cryopreservation on CD4+ T cell expression of CD25, CCR4, CCR6, HLA-DR, CCR10, or CD127. Although expression levels of CCR5, CD38, and CXCR3 were increased after cryopreservation, the relative ranking of participants was retained. In conclusion, cryopreserved foreskin tissues may be suitable for subsequent digestion and flow cytometry phenotyping of HIV-susceptible T cell populations.
Collapse
Affiliation(s)
- Omar Almomani
- Department of Microbiology and Immunology, Western University, London, Canada
| | | | - Zhongtian Shao
- Department of Microbiology and Immunology, Western University, London, Canada
| | | | | | | | - Brenda Okech
- UVRI-IAVI HIV Vaccine Program Limited, Entebbe, Uganda
| | - Sofya Ulanova
- Department of Microbiology and Immunology, Western University, London, Canada
| | - David Zuanazzi
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Cindy M. Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | - Aaron A. R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Toronto, Canada
- University Health Network, Toronto, Canada
| | - Jessica L. Prodger
- Department of Microbiology and Immunology, Western University, London, Canada
| |
Collapse
|
4
|
Guiton R, Drevet JR. Viruses, bacteria and parasites: infection of the male genital tract and fertility. Basic Clin Androl 2023; 33:19. [PMID: 37468865 DOI: 10.1186/s12610-023-00193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/05/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Infertility affects one couple out of six worldwide. Male infertilty can result from congenital or acquired factors, of which pathogens that reach the genital tract through sexual contact or blood dissemination. The impact of major viral, bacterial and parasitic infections on the male genital tract and fertility has been summarized. RESULTS AND CONCLUSIONS A systematic review of articles published in the Google Scholar and PubMed databases was conducted. It turns out that viruses, as well as bacteria and parasites are major inducers of male genital tract infections and ensuing infertility through damage to the organs and subsequent loss of function and/or through direct damage to the sperm cells. Moreover, not only male infertility results from such infections but these can also be transmitted to women and even to the offspring, thus highlighting the need to efficiently detect, treat and prevent them.
Collapse
Affiliation(s)
- Rachel Guiton
- Université Clermont Auvergne, CNRS UMR6293, GReD Institute, 63001, Clermont-Ferrand, France.
| | - Joël R Drevet
- Université Clermont Auvergne, CNRS UMR6293, GReD Institute, 63001, Clermont-Ferrand, France
| |
Collapse
|
5
|
Hokello J, Tyagi P, Dimri S, Sharma AL, Tyagi M. Comparison of the Biological Basis for Non-HIV Transmission to HIV-Exposed Seronegative Individuals, Disease Non-Progression in HIV Long-Term Non-Progressors and Elite Controllers. Viruses 2023; 15:1362. [PMID: 37376660 DOI: 10.3390/v15061362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-exposed seronegative individuals (HESIs) are a small fraction of persons who are multiply exposed to human immunodeficiency virus (HIV), but do not exhibit serological or clinical evidence of HIV infection. In other words, they are groups of people maintaining an uninfected status for a long time, even after being exposed to HIV several times. The long-term non-progressors (LTNPs), on the other hand, are a group of HIV-infected individuals (approx. 5%) who remain clinically and immunologically stable for an extended number of years without combination antiretroviral therapy (cART). Meanwhile, elite controllers are comprise a much lower number (0.5%) of HIV-infected persons who spontaneously and durably control viremia to below levels of detection for at least 12 months, even when using the most sensitive assays, such as polymerase chain reaction (PCR) in the absence of cART. Despite the fact that there is no universal agreement regarding the mechanisms by which these groups of individuals are able to control HIV infection and/or disease progression, there is a general consensus that the mechanisms of protection are multifaceted and include genetic, immunological as well as viral factors. In this review, we analyze and compare the biological factors responsible for the control of HIV in these unique groups of individuals.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | - Priya Tyagi
- Cherry Hill East High School, 1750 Kresson Rd, Cherry Hill, NJ 08003, USA
| | - Shelly Dimri
- George C. Marshall High School, Fairfax County Public Schools, 7731 Leesburg Pike, Falls Church, VA 22043, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Mariotton J, Cohen E, Zhu A, Auffray C, Barbosa Bomfim CC, Barry Delongchamps N, Zerbib M, Bomsel M, Ganor Y. TRPV1 activation in human Langerhans cells and T cells inhibits mucosal HIV-1 infection via CGRP-dependent and independent mechanisms. Proc Natl Acad Sci U S A 2023; 120:e2302509120. [PMID: 37216549 PMCID: PMC10235960 DOI: 10.1073/pnas.2302509120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Upon its mucosal transmission, HIV type 1 (HIV-1) rapidly targets genital antigen-presenting Langerhans cells (LCs), which subsequently transfer infectious virus to CD4+ T cells. We previously described an inhibitory neuroimmune cross talk, whereby calcitonin gene-related peptide (CGRP), a neuropeptide secreted by peripheral pain-sensing nociceptor neurons innervating all mucosal epithelia and associating with LCs, strongly inhibits HIV-1 transfer. As nociceptors secret CGRP following the activation of their Ca2+ ion channel transient receptor potential vanilloid 1 (TRPV1), and as we reported that LCs secret low levels of CGRP, we investigated whether LCs express functional TRPV1. We found that human LCs expressed mRNA and protein of TRPV1, which was functional and induced Ca2+ influx following activation with TRPV1 agonists, including capsaicin (CP). The treatment of LCs with TRPV1 agonists also increased CGRP secretion, reaching its anti-HIV-1 inhibitory concentrations. Accordingly, CP pretreatment significantly inhibited LCs-mediated HIV-1 transfer to CD4+ T cells, which was abrogated by both TRPV1 and CGRP receptor antagonists. Like CGRP, CP-induced inhibition of HIV-1 transfer was mediated via increased CCL3 secretion and HIV-1 degradation. CP also inhibited direct CD4+ T cells HIV-1 infection, but in CGRP-independent manners. Finally, pretreatment of inner foreskin tissue explants with CP markedly increased CGRP and CCL3 secretion, and upon subsequent polarized exposure to HIV-1, inhibited an increase in LC-T cell conjugate formation and consequently T cell infection. Our results reveal that TRPV1 activation in human LCs and CD4+ T cells inhibits mucosal HIV-1 infection, via CGRP-dependent/independent mechanisms. Formulations containing TRPV1 agonists, already approved for pain relief, could hence be useful against HIV-1.
Collapse
Affiliation(s)
- Jammy Mariotton
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Emmanuel Cohen
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Aiwei Zhu
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Cédric Auffray
- Laboratory of Regulation of T Cell Effector Functions, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Caio César Barbosa Bomfim
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | | | - Marc Zerbib
- Urology Service, Groupe Hospitalier (GH) Cochin-St Vincent de Paul, F-75014Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of infection Immunity and Inflammation, Universiteé Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, F-75014Paris, France
| |
Collapse
|
7
|
Armstrong E, Kaul R, Cohen CR. Optimizing the vaginal microbiome as a potential strategy to reduce heterosexual HIV transmission. J Intern Med 2023; 293:433-444. [PMID: 36544257 DOI: 10.1111/joim.13600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacterial vaginosis (BV) is a proinflammatory genital condition characterized by high vaginal bacterial diversity and a paucity of Lactobacillus species. BV has been linked to an elevated risk of HIV acquisition among HIV-negative women and of forward HIV transmission to male sex partners among women living with HIV (adjusted hazard ratios of 1.69 and 3.17, respectively), potentially by eliciting genital inflammation in women with BV and their male sex partners. BV is also highly prevalent among women in sub-Saharan Africa, suggesting that BV treatment may have potential as an HIV prevention strategy. BV is typically treated with antibiotics but recurrence rates are high, possibly because treatment does not directly promote Lactobacillus growth. More recently, BV treatment strategies incorporating live biotherapeutic lactobacilli have led to sustained optimization of the vaginal microbiome and a decrease in inflammatory biomarkers previously associated with HIV susceptibility. Future studies are urgently needed to evaluate BV treatment strategies that can optimize the vaginal microbiome in the long term through colonization with H2 O2 -producing vaginal lactobacilli and to assess whether vaginal microbiota optimization is able to reduce the risk of HIV transmission.
Collapse
Affiliation(s)
- Eric Armstrong
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, University Health Network, Toronto, Canada
| | - Craig R Cohen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
8
|
Karim QA, Archary D, Barré-Sinoussi F, Broliden K, Cabrera C, Chiodi F, Fidler SJ, Gengiah TN, Herrera C, Kharsany ABM, Liebenberg LJP, Mahomed S, Menu E, Moog C, Scarlatti G, Seddiki N, Sivro A, Cavarelli M. Women for science and science for women: Gaps, challenges and opportunities towards optimizing pre-exposure prophylaxis for HIV-1 prevention. Front Immunol 2022; 13:1055042. [PMID: 36561760 PMCID: PMC9763292 DOI: 10.3389/fimmu.2022.1055042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Preventing new HIV infections remains a global challenge. Young women continue to bear a disproportionate burden of infection. Oral pre-exposure prophylaxis (PrEP), offers a novel women-initiated prevention technology and PrEP trials completed to date underscore the importance of their inclusion early in trials evaluating new HIV PrEP technologies. Data from completed topical and systemic PrEP trials highlight the role of gender specific physiological and social factors that impact PrEP uptake, adherence and efficacy. Here we review the past and current developments of HIV-1 prevention options for women with special focus on PrEP considering the diverse factors that can impact PrEP efficacy. Furthermore, we highlight the importance of inclusion of female scientists, clinicians, and community advocates in scientific efforts to further improve HIV prevention strategies.
Collapse
Affiliation(s)
- Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah J. Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London UK and Imperial College NIHR BRC, London, United Kingdom
| | - Tanuja N. Gengiah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carolina Herrera
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ayesha B. M. Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
- MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nabila Seddiki
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
9
|
Prodger JL, Galiwango RM, Tobian AAR, Park D, Liu CM, Kaul R. How Does Voluntary Medical Male Circumcision Reduce HIV Risk? Curr HIV/AIDS Rep 2022; 19:484-490. [PMID: 36308579 PMCID: PMC9617235 DOI: 10.1007/s11904-022-00634-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Voluntary medical male circumcision (VMMC) is a surgical procedure that reduces HIV acquisition risk by almost two-thirds. However, global implementation is lagging, in part due to VMMC hesitancy. A better understanding of the mechanism(s) by which this procedure protects against HIV may increase acceptance of VMMC as an HIV risk reduction approach among health care providers and their clients. RECENT FINDINGS HIV acquisition in the uncircumcised penis occurs preferentially across the inner foreskin tissues, due to increased susceptibility that is linked to elevated inflammatory cytokine levels in the sub-preputial space and an increased tissue density of HIV-susceptible CD4 + T cells. Inflammation can be caused by sexually transmitted infections, but is more commonly induced by specific anaerobic components of the penile microbiome. Circumcision protects by both directly removing the susceptible tissues of the inner foreskin, and by inducing a less inflammatory residual penile microbiome. VMMC reduces HIV susceptibility by removing susceptible penile tissues, and also through impacts on the penile immune and microbial milieu. Understanding these mechanisms may not only increase VMMC acceptability and reinvigorate global VMMC programs, but may also lead to non-surgical HIV prevention approaches focused on penile immunology and/or microbiota.
Collapse
Affiliation(s)
- Jessica L Prodger
- Departments of Microbiology and Immunology and Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | | | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Daniel Park
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| | - Cindy M Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| | - Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Medical Sciences Building Rm. 6356, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- University Health Network, Toronto, ON, Canada.
| |
Collapse
|
10
|
Petkov S, Herrera C, Else L, Lebina L, Opoka D, Seiphetlo TB, Pillay ADAP, Mugaba S, Namubiru P, Odoch G, Ssemata AS, Serwanga J, Kaleebu P, Webb EL, Khoo S, Martinson N, Gray CM, Fox J, Chiodi F. Short-term oral pre-exposure prophylaxis against HIV-1 modulates the transcriptome of foreskin tissue in young men in Africa. Front Immunol 2022; 13:1009978. [PMID: 36479111 PMCID: PMC9720390 DOI: 10.3389/fimmu.2022.1009978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
Whilst short-term oral pre-exposure prophylaxis (PrEP) with antiretroviral drugs in men who have sex with men has shown protection against HIV-1 infection, the impact of this regimen on the in vivo foreskin transcriptome is unknown. We collected foreskin tissue after voluntary medical male circumcision from 144 young men (72 from Uganda and 72 from South Africa) randomized to one to two doses of either oral tenofovir (TFV) disoproxil fumarate (FTC-TDF) or tenofovir alafenamide (FTC-TAF) or no drug (untreated controls). This novel approach allowed us to examine the impact of short-term oral PrEP on transcriptome of the male genital tract. A single dose of FTC-TDF did not affect the foreskin transcriptome in relation to control arm, however one dose of FTC-TAF induced upregulation of four genes AKAP8, KIAA0141, HSCB and METTL17. Following two doses of either FTC-TDF or FTC-TAF, there was an increase in 34 differentially expressed genes for FTC-TDF and 15 for FTC-TAF, with nine DEGs in common: KIAA0141, SAFB2, CACTIN, FXR2, AKAP8, HSCB, CLNS1A, DDX27 and DCAF15. Functional analysis of differentially expressed genes revealed modulation of biological processes related to mitochondrial stress (KIAA0141, HSCB and METTL17), anti-viral and anti-inflammatory pathways (CACTIN and AKAP8). Our results show that short-course on-demand oral PrEP in men modulates genes in foreskin tissue which are likely unfavorable to HIV acquisition and replication. We also describe an upregulated expression of genes involved in diverse mitochondria biology which may potentially result in worsened mitochondria-related. These results warrant further studies to assess the role of short-course and prolonged oral PrEP on biological processes of the foreskin mucosa.
Collapse
Affiliation(s)
- Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Herrera
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Laura Else
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Opoka
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Thabiso B. Seiphetlo
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Azure-Dee AP. Pillay
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Mugaba
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Patricia Namubiru
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Geoffrey Odoch
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Andrew S. Ssemata
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jennifer Serwanga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Emily L. Webb
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Clive M. Gray
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa
| | - Julie Fox
- Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Chigorimbo-Murefu NTL, Potgieter M, Dzanibe S, Gabazana Z, Buri G, Chawla A, Nleya B, Olivier AJ, Harryparsad R, Calder B, Garnett S, Maziya L, Lewis DA, Jaspan H, Wilson D, Passmore JAS, Mulder N, Blackburn J, Bekker LG, Gray CM. A pilot study to show that asymptomatic sexually transmitted infections alter the foreskin epithelial proteome. Front Microbiol 2022; 13:928317. [PMID: 36325020 PMCID: PMC9618803 DOI: 10.3389/fmicb.2022.928317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
There is limited data on the role of asymptomatic STIs (aSTIs) on the risk of human immunodeficiency virus (HIV) acquisition in the male genital tract (MGT). The impact of foreskin removal on lowering HIV acquisition is well described, but molecular events leading to HIV acquisition are unclear. Here, in this pilot study, we show that asymptomatic urethral infection with Chlamydia trachomatis (CT) significantly impacts the foreskin proteome composition. We developed and optimized a shotgun liquid chromatography coupled tandem mass spectrometry (MS)-based proteomics approach and utilized this on foreskins collected at medical male circumcision (MMC) from 16 aSTI+ men and 10 age-matched STI- controls. We used a novel bioinformatic metaproteomic pipeline to detect differentially expressed (DE) proteins. Gene enrichment ontology analysis revealed proteins associated with inflammatory and immune activation function in both inner and outer foreskin from men with an aSTI. Neutrophil activation/degranulation and viral-evasion proteins were significantly enriched in foreskins from men with aSTI, whereas homotypic cell-cell adhesion proteins were enriched in foreskin tissue from men without an aSTI. Collectively, our data show that asymptomatic urethral sexually transmitted infections result in profound alterations in epithelial tissue that are associated with depletion of barrier integrity and immune activation.
Collapse
Affiliation(s)
- Nyaradzo T. L. Chigorimbo-Murefu
- Divisions of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Matthys Potgieter
- Division of Computational Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Chemical and Systems Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sonwabile Dzanibe
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Zikhona Gabazana
- Division of Computational Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gershom Buri
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Aditya Chawla
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bokani Nleya
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Abraham J. Olivier
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rushil Harryparsad
- Divisions of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bridget Calder
- Division of Chemical and Systems Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shaun Garnett
- Division of Chemical and Systems Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lungile Maziya
- Department of Medicine, Edendale Hospital, Pietermaritzburg, South Africa
| | - David A. Lewis
- Western Sydney Sexual Health Centre, Western Sydney Local Health District, Parramatta, NSW, Australia
- Westmead Clinical School and Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Heather Jaspan
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Doug Wilson
- Department of Medicine, Edendale Hospital, Pietermaritzburg, South Africa
| | - Jo-Ann S. Passmore
- Divisions of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicola Mulder
- Division of Computational Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jonathan Blackburn
- Division of Chemical and Systems Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Clive M. Gray
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
12
|
Baharlou H, Canete N, Vine EE, Hu K, Yuan D, Sandgren KJ, Bertram KM, Nasr N, Rhodes JW, Gosselink MP, Di Re A, Reza F, Ctercteko G, Pathma-Nathan N, Collins G, Toh J, Patrick E, Haniffa MA, Estes JD, Byrne SN, Cunningham AL, Harman AN. An in situ analysis pipeline for initial host-pathogen interactions reveals signatures of human colorectal HIV transmission. Cell Rep 2022; 40:111385. [PMID: 36130503 DOI: 10.1016/j.celrep.2022.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
The initial immune response to HIV determines transmission. However, due to technical limitations we still do not have a comparative map of early mucosal transmission events. By combining RNAscope, cyclic immunofluorescence, and image analysis tools, we quantify HIV transmission signatures in intact human colorectal explants within 2 h of topical exposure. We map HIV enrichment to mucosal dendritic cells (DCs) and submucosal macrophages, but not CD4+ T cells, the primary targets of downstream infection. HIV+ DCs accumulate near and within lymphoid aggregates, which act as early sanctuaries of high viral titers while facilitating HIV passage to the submucosa. Finally, HIV entry induces recruitment and clustering of target cells, facilitating DC- and macrophage-mediated HIV transfer and enhanced infection of CD4+ T cells. These data demonstrate a rapid response to HIV structured to maximize the likelihood of mucosal infection and provide a framework for in situ studies of host-pathogen interactions and immune-mediated pathologies.
Collapse
Affiliation(s)
- Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia.
| | - Nicolas Canete
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Erica E Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Di Yuan
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Martijn P Gosselink
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Angelina Di Re
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Faizur Reza
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Nimalan Pathma-Nathan
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Geoff Collins
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - James Toh
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Maths and Statistics, Faculty of Science, Sydney, NSW, Australia
| | - Muzlifah A Haniffa
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK; Wellcome Sanger Institute, Hinxton, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jacob D Estes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Scott N Byrne
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Xuan S, Li Y, Wu Y, Adcock IM, Zeng X, Yao X. Langerin-expressing dendritic cells in pulmonary immune-related diseases. Front Med (Lausanne) 2022; 9:909057. [PMID: 36160158 PMCID: PMC9490018 DOI: 10.3389/fmed.2022.909057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Dendritic cells (DCs) are “frontline” immune cells dedicated to antigen presentation. They serve as an important bridge connecting innate and adaptive immunity, and express various receptors for antigen capture. DCs are divided into various subclasses according to their differential expression of cell surface receptors and different subclasses of DCs exhibit specific immunological characteristics. Exploring the common features of each sub-category has became the focus of many studies. There are certain amounts of DCs expressing langerin in airways and peripheral lungs while the precise mechanism by which langerin+ DCs drive pulmonary disease is unclear. Langerin-expressing DCs can be further subdivided into numerous subtypes based on the co-expressed receptors, but here, we identify commonalities across these subtypes that point to the major role of langerin. Better understanding is required to clarify key disease pathways and determine potential new therapeutic approaches.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuebei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunhui Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiaoning Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xin Yao
| |
Collapse
|
14
|
Morris BJ, Moreton S, Krieger JN, Klausner JD. Infant Circumcision for Sexually Transmitted Infection Risk Reduction Globally. GLOBAL HEALTH: SCIENCE AND PRACTICE 2022; 10:GHSP-D-21-00811. [PMID: 36041835 PMCID: PMC9426975 DOI: 10.9745/ghsp-d-21-00811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
Population-based studies in high-income countries have failed to find that male circumcision protects against sexually transmitted infections. Using evidence from several sources, we show that male circumcision does protect against HIV during insertive intercourse for men who have sex with men.
Collapse
Affiliation(s)
- Brian J Morris
- School of Medical Sciences, University of Sydney, Sydney, Australia.
| | | | - John N Krieger
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey D Klausner
- Department of Medicine, Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
KORUNMASIZ CİNSEL İLİŞKİ SONUCU ÜRETRİT TANISI ALAN SÜNNETLİ HASTALARDA ASEMPTOMATİK HIV, HEPATİT B, HEPATİT C VE SİFİLİZ GÖRÜLME SIKLIĞI. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aim: In this study, it was aimed to determine the frequency of asymptomatic Human Immunodeficiency Virus (HIV), Hepatitis B, Hepatitis C, and syphilis in circumcised patients diagnosed with urethritis transmitted by sexual intercourse because of unprotected sexual contact.
Material and Methods: We retrospectively investigated the serological results of HIV, Hepatitis B, Hepatitis C, and Syphilis diseases in 364 male patients diagnosed with urethritis, all of them were circumcised during childhood. The study included patients who applied to the urology outpatient clinic of secondary state hospital between January 2017 and December 2019 with symptoms or signs of urethritis. In the examination, only urethral discharge could be seen without symptoms. After the patients were examined, first void urine samples were taken. Also at the first examination, peripheral blood samples were tested for HIV, Hepatitis B, Hepatitis C, and syphilis antibodies.
Results: As a result of retrospective screening of the serological results of 364 male patients diagnosed with urethritis, Hepatitis B positivity was 1.09% with 4 cases, Hepatitis C positivity was found as 0.27% in 1 case and the Syphilis positivity rate was 1.92% with 7 cases in 364 patients. None of the patients had HIV positivity.
Conclusions: The fact that there was not any encounter of HIV-positive patients in patients diagnosed with urethritis because of unprotected sexual contact led to the thought that circumcision had a protective contribution in these patients with urethritis, who were all circumcised. Also, screening tests, especially syphilis, should be performed on all patients diagnosed with STI infection.
Collapse
|
16
|
HIV Latency in Myeloid Cells: Challenges for a Cure. Pathogens 2022; 11:pathogens11060611. [PMID: 35745465 PMCID: PMC9230125 DOI: 10.3390/pathogens11060611] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
The use of antiretroviral therapy (ART) for Human Immunodeficiency Virus (HIV) treatment has been highly successful in controlling plasma viremia to undetectable levels. However, a complete cure for HIV is hindered by the presence of replication-competent HIV, integrated in the host genome, that can persist long term in a resting state called viral latency. Resting memory CD4+ T cells are considered the biggest reservoir of persistent HIV infection and are often studied exclusively as the main target for an HIV cure. However, other cell types, such as circulating monocytes and tissue-resident macrophages, can harbor integrated, replication-competent HIV. To develop a cure for HIV, focus is needed not only on the T cell compartment, but also on these myeloid reservoirs of persistent HIV infection. In this review, we summarize their importance when designing HIV cure strategies and challenges associated to their identification and specific targeting by the “shock and kill” approach.
Collapse
|
17
|
CGRP inhibits human Langerhans cells infection with HSV by differentially modulating specific HSV-1 and HSV-2 entry mechanisms. Mucosal Immunol 2022; 15:762-771. [PMID: 35562558 DOI: 10.1038/s41385-022-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
Herpes simplex virus (HSV) is widespread globally, with both HSV-1 and HSV-2 responsible for genital herpes. During sexual transmission, HSV targets epithelial cells, sensory peripheral pain neurons secreting the mucosal neuropeptide calcitonin gene-related peptide (CGRP), and mucosal immune cells including Langerhans cells (LCs). We previously described a neuro-immune crosstalk, whereby CGRP inhibits LCs-mediated human immunodeficiency virus type 1 (HIV-1) transmission. Herein, to further explore CGRP-mediated anti-viral function, we investigated whether CGRP affects LCs infection with HSV. We found that both HSV-1 and HSV-2 primary isolates productively infect monocyte-derived LCs (MDLCs) and inner foreskin LCs. Moreover, CGRP significantly inhibits infection with both HSV subtypes of MDLCs and langerinhigh, but not langerinlow, inner foreskin LCs. For HSV-1, infection is mediated via the HSV-1-specific entry receptor 3-O sulfated heparan sulfate (3-OS HS) in a pH-depended manner, and CGRP down-regulates 3-OS HS surface expression, as well as abrogates pH dependency. For HSV-2, infection involves langerin-mediated endocytosis in a pH-independent manner, and CGRP up-regulates surface expression of atypical langerin double-trimer oligomers. Our results show that CGRP inhibits mucosal HSV infection by differentially modulating subtype-specific entry receptors and mechanisms in human LCs. CGRP could turn out useful for prevention of LCs-mediated HSV infection and HSV/HIV-1 co-infection.
Collapse
|
18
|
Real F, Ganor Y, Bomsel M. Experimental Models to Study HIV Latency Reversal from Male Genital Myeloid Cells. Methods Mol Biol 2022; 2407:189-204. [PMID: 34985666 DOI: 10.1007/978-1-0716-1871-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
HIV reservoirs in tissues are poorly understood and their establishment largely depends on the nature of tissues that interact with the virus. In this chapter, we will describe in vitro and ex vivo models of human urethral mucosal macrophages used in the investigation of the establishment and maintenance of tissue HIV reservoirs. In addition, we will describe how macrophage latent HIV infection was assessed in these models by reverting a nonproductive state of infection back into a productive state. Consequently, infectious particles are released to the macrophage extracellular milieu and detected by adapted viral outgrowth assays. Altogether, these approaches provide invaluable tools for the investigation on tissue-specific pathways that HIV-1 employs to reach host cells and form reservoirs in the genital mucosa. These models will contribute to the development of an efficient and targeted prophylaxis against HIV and of a HIV cure.
Collapse
Affiliation(s)
- Fernando Real
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Yonatan Ganor
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Morgane Bomsel
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France.
- INSERM U1016, Paris, France.
- CNRS UMR8104, Paris, France.
| |
Collapse
|
19
|
HIV transmitting mononuclear phagocytes; integrating the old and new. Mucosal Immunol 2022; 15:542-550. [PMID: 35173293 PMCID: PMC9259493 DOI: 10.1038/s41385-022-00492-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023]
Abstract
In tissue, mononuclear phagocytes (MNP) are comprised of Langerhans cells, dendritic cells, macrophages and monocyte-derived cells. They are the first immune cells to encounter HIV during transmission and transmit the virus to CD4 T cells as a consequence of their antigen presenting cell function. To understand the role these cells play in transmission, their phenotypic and functional characterisation is important. With advancements in high parameter single cell technologies, new MNPs subsets are continuously being discovered and their definition and classification is in a state of flux. This has important implications for our knowledge of HIV transmission, which requires a deeper understanding to design effective vaccines and better blocking strategies. Here we review the historical research of the role MNPs play in HIV transmission up to the present day and revaluate these studies in the context of our most recent understandings of the MNP system.
Collapse
|
20
|
Mariotton J, Sams A, Cohen E, Sennepin A, Siracusano G, Sanvito F, Edvinsson L, Delongchamps NB, Zerbib M, Lopalco L, Bomsel M, Ganor Y. Native CGRP Neuropeptide and Its Stable Analogue SAX, But Not CGRP Peptide Fragments, Inhibit Mucosal HIV-1 Transmission. Front Immunol 2021; 12:785072. [PMID: 34956215 PMCID: PMC8692891 DOI: 10.3389/fimmu.2021.785072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background The vasodilator neuropeptide calcitonin gene-related peptide (CGRP) plays both detrimental and protective roles in different pathologies. CGRP is also an essential component of the neuro-immune dialogue between nociceptors and mucosal immune cells. We previously discovered that CGRP is endowed with anti-viral activity and strongly inhibits human immunodeficiency virus type 1 (HIV-1) infection, by suppressing Langerhans cells (LCs)-mediated HIV-1 trans-infection in-vitro and mucosal HIV-1 transmission ex-vivo. This inhibition is mediated via activation of the CGRP receptor non-canonical NFκB/STAT4 signaling pathway that induces a variety of cooperative mechanisms. These include CGRP-mediated increase in the expression of the LC-specific pathogen recognition C-type lectin langerin and decrease in LC-T-cell conjugates formation. The clinical utility of CGRP and modalities of CGRP receptor activation, for inhibition of mucosal HIV-1 transmission, remain elusive. Methods We tested the capacity of CGRP to inhibit HIV-1 infection in-vivo in humanized mice. We further compared the anti-HIV-1 activities of full-length native CGRP, its metabolically stable analogue SAX, and several CGRP peptide fragments containing its binding C-terminal and activating N-terminal regions. These agonists were evaluated for their capacity to inhibit LCs-mediated HIV-1 trans-infection in-vitro and mucosal HIV-1 transmission in human mucosal tissues ex-vivo. Results A single CGRP intravaginal topical treatment of humanized mice, followed by HIV-1 vaginal challenge, transiently restricts the increase in HIV-1 plasma viral loads but maintains long-lasting higher CD4+ T-cell counts. Similarly to CGRP, SAX inhibits LCs-mediated HIV-1 trans-infection in-vitro, but with lower potency. This inhibition is mediated via CGRP receptor activation, leading to increased expression of both langerin and STAT4 in LCs. In contrast, several N-terminal and N+C-terminal bivalent CGRP peptide fragments fail to increase langerin and STAT4, and accordingly lack anti-HIV-1 activities. Finally, like CGRP, treatment of human inner foreskin tissue explants with SAX, followed by polarized inoculation with cell-associated HIV-1, completely blocks formation of LC-T-cell conjugates and HIV-1 infection of T-cells. Conclusion Our results show that CGRP receptor activation by full-length CGRP or SAX is required for efficient inhibition of LCs-mediated mucosal HIV-1 transmission. These findings suggest that formulations containing CGRP, SAX and/or their optimized agonists/analogues could be harnessed for HIV-1 prevention.
Collapse
Affiliation(s)
- Jammy Mariotton
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR8104, Paris, France
| | - Anette Sams
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emmanuel Cohen
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR8104, Paris, France
| | - Alexis Sennepin
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR8104, Paris, France
| | - Gabriel Siracusano
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Marc Zerbib
- Urology Service, GH Cochin-St Vincent de Paul, Paris, France
| | - Lucia Lopalco
- Immunobiology of HIV, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR8104, Paris, France
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR8104, Paris, France
| |
Collapse
|
21
|
How dendritic cells sense and respond to viral infections. Clin Sci (Lond) 2021; 135:2217-2242. [PMID: 34623425 DOI: 10.1042/cs20210577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
The ability of dendritic cells (DCs) to sense viral pathogens and orchestrate a proper immune response makes them one of the key players in antiviral immunity. Different DC subsets have complementing functions during viral infections, some specialize in antigen presentation and cross-presentation and others in the production of cytokines with antiviral activity, such as type I interferons. In this review, we summarize the latest updates concerning the role of DCs in viral infections, with particular focus on the complex interplay between DC subsets and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Despite being initiated by a vast array of immune receptors, DC-mediated antiviral responses often converge towards the same endpoint, that is the production of proinflammatory cytokines and the activation of an adaptive immune response. Nonetheless, the inherent migratory properties of DCs make them a double-edged sword and often viral recognition by DCs results in further viral dissemination. Here we illustrate these various aspects of the antiviral functions of DCs and also provide a brief overview of novel antiviral vaccination strategies based on DCs targeting.
Collapse
|
22
|
Sobia P, Archary D. Preventive HIV Vaccines-Leveraging on Lessons from the Past to Pave the Way Forward. Vaccines (Basel) 2021; 9:vaccines9091001. [PMID: 34579238 PMCID: PMC8472969 DOI: 10.3390/vaccines9091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Almost four decades on, since the 1980’s, with hundreds of HIV vaccine candidates tested in both non-human primates and humans, and several HIV vaccines trials later, an efficacious HIV vaccine continues to evade us. The enormous worldwide genetic diversity of HIV, combined with HIV’s inherent recombination and high mutation rates, has hampered the development of an effective vaccine. Despite the advent of antiretrovirals as pre-exposure prophylaxis and preventative treatment, which have shown to be effective, HIV infections continue to proliferate, highlighting the great need for a vaccine. Here, we provide a brief history for the HIV vaccine field, with the most recent disappointments and advancements. We also provide an update on current passive immunity trials, testing proof of the concept of the most clinically advanced broadly neutralizing monoclonal antibodies for HIV prevention. Finally, we include mucosal immunity, the importance of vaccine-elicited immune responses and the challenges thereof in the most vulnerable environment–the female genital tract and the rectal surfaces of the gastrointestinal tract for heterosexual and men who have sex with men transmissions, respectively.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: ; Tel.: +27-(0)-31-655-0540
| |
Collapse
|
23
|
Nijmeijer BM, Langedijk CJM, Geijtenbeek TBH. Mucosal Dendritic Cell Subsets Control HIV-1's Viral Fitness. Annu Rev Virol 2021; 7:385-402. [PMID: 32991263 DOI: 10.1146/annurev-virology-020520-025625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cell (DC) subsets are abundantly present in genital and intestinal mucosal tissue and are among the first innate immune cells that encounter human immunodeficiency virus type 1 (HIV-1) after sexual contact. Although DCs have specific characteristics that greatly enhance HIV-1 transmission, it is becoming evident that most DC subsets also have virus restriction mechanisms that exert selective pressure on the viruses during sexual transmission. In this review we discuss the current concepts of the immediate events following viral exposure at genital mucosal sites that lead to selection of specific HIV-1 variants called transmitted founder (TF) viruses. We highlight the importance of the TF HIV-1 phenotype and the role of different DC subsets in establishing infection. Understanding the biology of HIV-1 transmission will contribute to the design of novel treatment strategies preventing HIV-1 dissemination.
Collapse
Affiliation(s)
- Bernadien M Nijmeijer
- Department of Experimental Immunology, Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Catharina J M Langedijk
- Department of Experimental Immunology, Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
24
|
Circumcision as an Intervening Strategy against HIV Acquisition in the Male Genital Tract. Pathogens 2021; 10:pathogens10070806. [PMID: 34201976 PMCID: PMC8308621 DOI: 10.3390/pathogens10070806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Unsafe sex with HIV-infected individuals remains a major route for HIV transmission, and protective strategies, such as the distribution of free condoms and pre-or post-prophylaxis medication, have failed to control the spread of HIV, particularly in resource-limited settings and high HIV prevalence areas. An additional key strategy for HIV prevention is voluntary male circumcision (MC). International health organizations (e.g., the World Health Organization, UNAIDS) have recommended this strategy on a larger scale, however, there is a general lack of public understanding about how MC effectively protects against HIV infection. This review aims to discuss the acquisition of HIV through the male genital tract and explain how and why circumcised men are more protected from HIV infection during sexual activity than uncircumcised men who are at higher risk of HIV acquisition.
Collapse
|
25
|
Nijmeijer BM, Bermejo-Jambrina M, Kaptein TM, Ribeiro CMS, Wilflingseder D, Geijtenbeek TBH. HIV-1 subverts the complement system in semen to enhance viral transmission. Mucosal Immunol 2021; 14:743-750. [PMID: 33568786 PMCID: PMC8075950 DOI: 10.1038/s41385-021-00376-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/13/2020] [Accepted: 01/04/2021] [Indexed: 02/04/2023]
Abstract
Semen is important in determining HIV-1 susceptibility but it is unclear how it affects virus transmission during sexual contact. Mucosal Langerhans cells (LCs) are the first immune cells to encounter HIV-1 during sexual contact and have a barrier function as LCs are restrictive to HIV-1. As semen from people living with HIV-1 contains complement-opsonized HIV-1, we investigated the effect of complement on HIV-1 dissemination by human LCs in vitro and ex vivo. Notably, pre-treatment of HIV-1 with semen enhanced LC infection compared to untreated HIV-1 in the ex vivo explant model. Infection of LCs and transmission to target cells by opsonized HIV-1 was efficiently inhibited by blocking complement receptors CR3 and CR4. Complement opsonization of HIV-1 enhanced uptake, fusion, and integration by LCs leading to an increased transmission of HIV-1 to target cells. However, in the absence of both CR3 and CR4, C-type lectin receptor langerin was able to restrict infection of complement-opsonized HIV-1. These data suggest that complement enhances HIV-1 infection of LCs by binding CR3 and CR4, thereby bypassing langerin and changing the restrictive nature of LCs into virus-disseminating cells. Targeting complement factors might be effective in preventing HIV-1 transmission.
Collapse
Affiliation(s)
- Bernadien M Nijmeijer
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Marta Bermejo-Jambrina
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Tanja M Kaptein
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Carla M S Ribeiro
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
26
|
Bertram KM, Truong NR, Smith JB, Kim M, Sandgren KJ, Feng KL, Herbert JJ, Rana H, Danastas K, Miranda-Saksena M, Rhodes JW, Patrick E, Cohen RC, Lim J, Merten SL, Harman AN, Cunningham AL. Herpes Simplex Virus type 1 infects Langerhans cells and the novel epidermal dendritic cell, Epi-cDC2s, via different entry pathways. PLoS Pathog 2021; 17:e1009536. [PMID: 33905459 PMCID: PMC8104422 DOI: 10.1371/journal.ppat.1009536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/07/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Skin mononuclear phagocytes (MNPs) provide the first interactions of invading viruses with the immune system. In addition to Langerhans cells (LCs), we recently described a second epidermal MNP population, Epi-cDC2s, in human anogenital epidermis that is closely related to dermal conventional dendritic cells type 2 (cDC2) and can be preferentially infected by HIV. Here we show that in epidermal explants topically infected with herpes simplex virus (HSV-1), both LCs and Epi-cDC2s interact with HSV-1 particles and infected keratinocytes. Isolated Epi-cDC2s support higher levels of infection than LCs in vitro, inhibited by acyclovir, but both MNP subtypes express similar levels of the HSV entry receptors nectin-1 and HVEM, and show similar levels of initial uptake. Using inhibitors of endosomal acidification, actin and cholesterol, we found that HSV-1 utilises different entry pathways in each cell type. HSV-1 predominantly infects LCs, and monocyte-derived MNPs, via a pH-dependent pathway. In contrast, Epi-cDC2s are mainly infected via a pH-independent pathway which may contribute to the enhanced infection of Epi-cDC2s. Both cells underwent apoptosis suggesting that Epi-cDC2s may follow the same dermal migration and uptake by dermal MNPs that we have previously shown for LCs. Thus, we hypothesize that the uptake of HSV and infection of Epi-cDC2s will stimulate immune responses via a different pathway to LCs, which in future may help guide HSV vaccine development and adjuvant targeting.
Collapse
Affiliation(s)
- Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jacinta B. Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Min Kim
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kerrie J. Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Konrad L. Feng
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jason J. Herbert
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jake W. Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Ralph C. Cohen
- Department of Surgery, University of Sydney and The Children’s Hospital at Westmead, Westmead, Australia
| | - Jake Lim
- Department of Surgery, Westmead Private Hospital, Westmead, Australia
| | - Steven L. Merten
- Department of Surgery, Macquarie University Hospital, Macquarie Park, Australia
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- * E-mail:
| |
Collapse
|
27
|
Rhodes JW, Botting RA, Bertram KM, Vine EE, Rana H, Baharlou H, Vegh P, O'Neil TR, Ashhurst AS, Fletcher J, Parnell GP, Graham JD, Nasr N, Lim JJK, Barnouti L, Haertsch P, Gosselink MP, Di Re A, Reza F, Ctercteko G, Jenkins GJ, Brooks AJ, Patrick E, Byrne SN, Hunter E, Haniffa MA, Cunningham AL, Harman AN. Human anogenital monocyte-derived dendritic cells and langerin+cDC2 are major HIV target cells. Nat Commun 2021; 12:2147. [PMID: 33846309 PMCID: PMC8042121 DOI: 10.1038/s41467-021-22375-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue mononuclear phagocytes (MNP) are specialised in pathogen detection and antigen presentation. As such they deliver HIV to its primary target cells; CD4 T cells. Most MNP HIV transmission studies have focused on epithelial MNPs. However, as mucosal trauma and inflammation are now known to be strongly associated with HIV transmission, here we examine the role of sub-epithelial MNPs which are present in a diverse array of subsets. We show that HIV can penetrate the epithelial surface to interact with sub-epithelial resident MNPs in anogenital explants and define the full array of subsets that are present in the human anogenital and colorectal tissues that HIV may encounter during sexual transmission. In doing so we identify two subsets that preferentially take up HIV, become infected and transmit the virus to CD4 T cells; CD14+CD1c+ monocyte-derived dendritic cells and langerin-expressing conventional dendritic cells 2 (cDC2).
Collapse
Affiliation(s)
- Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Rachel A Botting
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia.,Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Erica E Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Peter Vegh
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK
| | - Thomas R O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Anneliese S Ashhurst
- School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - James Fletcher
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK
| | - Grant P Parnell
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - J Dinny Graham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | | | | | - Peter Haertsch
- Burns Unit, Concord Repatriation General Hospital, Sydney, Australia
| | - Martijn P Gosselink
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Angelina Di Re
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Faizur Reza
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Gregory J Jenkins
- Department of Obstetrics and Gynaecology, Westmead Hospital, Westmead, NSW, Australia
| | - Andrew J Brooks
- Department of Urology, Westmead Hospital, Westmead, NSW, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Maths and Statistics, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Scott N Byrne
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | | | - Muzlifah A Haniffa
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK.,Wellcome Sanger Institute, Hinxton, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia. .,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
28
|
O’Neil TR, Hu K, Truong NR, Arshad S, Shacklett BL, Cunningham AL, Nasr N. The Role of Tissue Resident Memory CD4 T Cells in Herpes Simplex Viral and HIV Infection. Viruses 2021; 13:359. [PMID: 33668777 PMCID: PMC7996247 DOI: 10.3390/v13030359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue-resident memory T cells (TRM) were first described in 2009. While initially the major focus was on CD8+ TRM, there has recently been increased interest in defining the phenotype and the role of CD4+ TRM in diseases. Circulating CD4+ T cells seed CD4+ TRM, but there also appears to be an equilibrium between CD4+ TRM and blood CD4+ T cells. CD4+ TRM are more mobile than CD8+ TRM, usually localized deeper within the dermis/lamina propria and yet may exhibit synergy with CD8+ TRM in disease control. This has been demonstrated in herpes simplex infections in mice. In human recurrent herpes infections, both CD4+ and CD8+ TRM persisting between lesions may control asymptomatic shedding through interferon-gamma secretion, although this has been more clearly shown for CD8+ T cells. The exact role of the CD4+/CD8+ TRM axis in the trigeminal ganglia and/or cornea in controlling recurrent herpetic keratitis is unknown. In HIV, CD4+ TRM have now been shown to be a major target for productive and latent infection in the cervix. In HSV and HIV co-infections, CD4+ TRM persisting in the dermis support HIV replication. Further understanding of the role of CD4+ TRM and their induction by vaccines may help control sexual transmission by both viruses.
Collapse
Affiliation(s)
- Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sana Arshad
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
29
|
Isaguliants M, Bayurova E, Avdoshina D, Kondrashova A, Chiodi F, Palefsky JM. Oncogenic Effects of HIV-1 Proteins, Mechanisms Behind. Cancers (Basel) 2021; 13:305. [PMID: 33467638 PMCID: PMC7830613 DOI: 10.3390/cancers13020305] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
People living with human immunodeficiency virus (HIV-1) are at increased risk of developing cancer, such as Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), cervical cancer, and other cancers associated with chronic viral infections. Traditionally, this is linked to HIV-1-induced immune suppression with depletion of CD4+ T-helper cells, exhaustion of lymphopoiesis and lymphocyte dysfunction. However, the long-term successful implementation of antiretroviral therapy (ART) with an early start did not preclude the oncological complications, implying that HIV-1 and its antigens are directly involved in carcinogenesis and may exert their effects on the background of restored immune system even when present at extremely low levels. Experimental data indicate that HIV-1 virions and single viral antigens can enter a wide variety of cells, including epithelial. This review is focused on the effects of five viral proteins: envelope protein gp120, accessory protein negative factor Nef, matrix protein p17, transactivator of transcription Tat and reverse transcriptase RT. Gp120, Nef, p17, Tat, and RT cause oxidative stress, can be released from HIV-1-infected cells and are oncogenic. All five are in a position to affect "innocent" bystander cells, specifically, to cause the propagation of (pre)existing malignant and malignant transformation of normal epithelial cells, giving grounds to the direct carcinogenic effects of HIV-1.
Collapse
Affiliation(s)
- Maria Isaguliants
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ekaterina Bayurova
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Darya Avdoshina
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Alla Kondrashova
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Joel M. Palefsky
- Department of Medicine, University of California, San Francisco, CA 94117, USA;
| |
Collapse
|
30
|
Teixeira TA, Oliveira YC, Bernardes FS, Kallas EG, Duarte-Neto AN, Esteves SC, Drevet JR, Hallak J. Viral infections and implications for male reproductive health. Asian J Androl 2021; 23:335-347. [PMID: 33473014 PMCID: PMC8269834 DOI: 10.4103/aja.aja_82_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral infections have haunted humankind since times immemorial. Overpopulation, globalization, and extensive deforestation have created an ideal environment for a viral spread with unknown and multiple shedding routes. Many viruses can infect the male reproductive tract, with potential adverse consequences to male reproductive health, including infertility and cancer. Moreover, some genital tract viral infections can be sexually transmitted, potentially impacting the resulting offspring's health. We have summarized the evidence concerning the presence and adverse effects of the relevant viruses on the reproductive tract (mumps virus, human immunodeficiency virus, herpes virus, human papillomavirus, hepatitis B and C viruses, Ebola virus, Zika virus, influenza virus, and coronaviruses), their routes of infection, target organs and cells, prevalence and pattern of virus shedding in semen, as well as diagnosis/testing and treatment strategies. The pathophysiological understanding in the male genital tract is essential to assess its clinical impact on male reproductive health and guide future research.
Collapse
Affiliation(s)
- Thiago A Teixeira
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo 04534-011, SP, Brazil.,Division of Urology, University of São Paulo, São Paulo 05403-000, SP, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo 05508-060, SP, Brazil.,Division of Urology, School of Medicine, Federal University of Amapa, Macapa 68903-419, AP, Brazil
| | - Yasmin C Oliveira
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo 04534-011, SP, Brazil.,Division of Urology, School of Medicine, Federal University of Amapa, Macapa 68903-419, AP, Brazil
| | - Felipe S Bernardes
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo 04534-011, SP, Brazil.,Division of Urology, University of São Paulo, São Paulo 05403-000, SP, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo 05508-060, SP, Brazil
| | - Esper G Kallas
- Department of Infectious and Parasitic Diseases, University of São Paulo, São Paulo 05403-000, SP, Brazil
| | - Amaro N Duarte-Neto
- BIAS - Brazilian Image Autopsy Study Group, Department of Pathology, University of São Paulo, São Paulo 05403-000, SP, Brazil
| | - Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas 13075-460, SP, Brazil.,Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas 13083-968, SP, Brazil.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus 8000, Denmark
| | - Joël R Drevet
- GReD Institute, CNRS-INSERM-Université Clermont Auvergne, Faculty of Medicine, Clermont-Ferrand 63000, France
| | - Jorge Hallak
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo 04534-011, SP, Brazil.,Division of Urology, University of São Paulo, São Paulo 05403-000, SP, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo 05508-060, SP, Brazil.,Reproductive Toxicology Unit, Department of Pathology, University of São Paulo, São Paulo 05403-000, SP, Brazil
| |
Collapse
|
31
|
The CH1α domain of mucosal gp41 IgA contributes to antibody specificity and antiviral functions in HIV-1 highly exposed Sero-Negative individuals. PLoS Pathog 2020; 16:e1009103. [PMID: 33315937 PMCID: PMC7802955 DOI: 10.1371/journal.ppat.1009103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/12/2021] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
The antibody molecule comprises a variable domain conferring antigen specificity and affinity distinct from the heavy chain constant (CH) domains dictating effector functions. We here interrogate this paradigm by evaluating the unique influence of the CH1α domain on epitope specificity and functions using two mucosal gp41-specific Fab-IgAs (FabA) derived from HIV-1 highly-exposed but persistently seronegative individuals (HESN). These HESN develop selectively affinity-matured HIV-1-specific mucosal IgA that target the gp41 viral envelope and might provide protection although by unclear mechanisms. Isotype-switching FabAs into Fab-IgGs (FabGs) results in a >10-fold loss in affinity for HIV-1 clade A, B, and C gp41, together with reduced neutralization of HIV-1 cross-clade. The FabA conformational epitopes map selectively on gp41 in 6-Helix bundle and pre-fusion conformations cross-clade, unlike FabGs. Finally, we designed in silico, a 12 amino-acid peptide recapitulating one FabA conformational epitope that inhibits the FabA binding to gp41 cross-clade and its neutralizing activity. Altogether, our results reveal that the CH1α domain shapes the antibody paratope through an allosteric effect, thereby strengthening the antibody specificity and functional activities. Further, they clarify the mechanisms by which these HESN IgAs might confer protection against HIV-1-sexual acquisition. The IgA-specific epitope we characterized by reverse vaccinology could help designing a mucosal HIV-1 vaccine.
Collapse
|
32
|
Relaño-Rodríguez I, Muñoz-Fernández MÁ. Emergence of Nanotechnology to Fight HIV Sexual Transmission: The Trip of G2-S16 Polyanionic Carbosilane Dendrimer to Possible Pre-Clinical Trials. Int J Mol Sci 2020; 21:ijms21249403. [PMID: 33321835 PMCID: PMC7764023 DOI: 10.3390/ijms21249403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Development of new, safe, and effective microbicides to prevent human immunodeficiency virus HIV sexual transmission is needed. Unfortunately, most microbicides proved ineffective to prevent the risk of HIV-infection in clinical trials. We are working with G2-S16 polyanionic carbosilane dendrimer (PCD) as a new possible vaginal topical microbicide, based on its short reaction times, wide availability, high reproducibility, and quantitative yields of reaction. G2-S16 PCD exerts anti-HIV activity at an early stage of viral replication, by blocking gp120/CD4/CCR5 interaction, and providing a barrier against infection for long periods of time. G2-S16 PCD was stable at different pH values, as well as in the presence of seminal fluids. It maintained the anti-HIV activity against R5/X4 HIV over time, did not generate any type of drug resistance, and retained the anti-HIV effect when exposed to semen-enhanced viral infection. Importantly, G2-S16 PCD did not modify vaginal microbiota neither in vitro or in vivo. Histopathological examination did not show vaginal irritation, inflammation, lesions, or damage in the vaginal mucosa, after administration of G2-S16 PCD at different concentrations and times in female mice and rabbit animal models. Based on these promising data, G2-S16 PCD could become a good, safe, and readily available candidate to use as a topical vaginal microbicide against HIV.
Collapse
Affiliation(s)
- Ignacio Relaño-Rodríguez
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Maria Ángeles Muñoz-Fernández
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
- Health Research Institute Gregorio Marañon (IiSGM), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-586-8565
| |
Collapse
|
33
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
34
|
Real F, Sennepin A, Ganor Y, Schmitt A, Bomsel M. Live Imaging of HIV-1 Transfer across T Cell Virological Synapse to Epithelial Cells that Promotes Stromal Macrophage Infection. Cell Rep 2019; 23:1794-1805. [PMID: 29742434 DOI: 10.1016/j.celrep.2018.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/20/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
During sexual intercourse, HIV-1 crosses epithelial barriers composing the genital mucosa, a poorly understood feature that requires an HIV-1-infected cell vectoring efficient mucosal HIV-1 entry. Therefore, urethral mucosa comprising a polarized epithelium and a stroma composed of fibroblasts and macrophages were reconstructed in vitro. Using this system, we demonstrate by live imaging that efficient HIV-1 transmission to stromal macrophages depends on cell-mediated transfer of the virus through virological synapses formed between HIV-1-infected CD4+ T cells and the epithelial cell mucosal surface. We visualized HIV-1 translocation through mucosal epithelial cells via transcytosis in regions where virological synapses occurred. In turn, interleukin-13 is secreted and HIV-1 targets macrophages, which develop a latent state of infection reversed by lipopolysaccharide (LPS) activation. The live observation of virological synapse formation reported herein is key in the design of vaccines and antiretroviral therapies aimed at blocking HIV-1 access to cellular reservoirs in genital mucosa.
Collapse
Affiliation(s)
- Fernando Real
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, 3I Department, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; INSERM, U1016, Institut Cochin, 75014 Paris, France
| | - Alexis Sennepin
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, 3I Department, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; INSERM, U1016, Institut Cochin, 75014 Paris, France
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, 3I Department, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; INSERM, U1016, Institut Cochin, 75014 Paris, France
| | - Alain Schmitt
- Electron Microscopy Facility, Cochin Institute, Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; INSERM, U1016, Institut Cochin, 75014 Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, 3I Department, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; INSERM, U1016, Institut Cochin, 75014 Paris, France.
| |
Collapse
|
35
|
HIV-1 Reverse Transcriptase Promotes Tumor Growth and Metastasis Formation via ROS-Dependent Upregulation of Twist. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6016278. [PMID: 31885806 PMCID: PMC6915010 DOI: 10.1155/2019/6016278] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
HIV-induced immune suppression results in the high prevalence of HIV/AIDS-associated malignancies including Kaposi sarcoma, non-Hodgkin lymphoma, and cervical cancer. HIV-infected people are also at an increased risk of “non-AIDS-defining” malignancies not directly linked to immune suppression but associated with viral infections. Their incidence is increasing despite successful antiretroviral therapy. The mechanism behind this phenomenon remains unclear. Here, we obtained daughter clones of murine mammary gland adenocarcinoma 4T1luc2 cells expressing consensus reverse transcriptase of HIV-1 subtype A FSU_A strain (RT_A) with and without primary mutations of drug resistance. In in vitro tests, mutations of resistance to nucleoside inhibitors K65R/M184V reduced the polymerase, and to nonnucleoside inhibitors K103N/G190S, the RNase H activities of RT_A. Expression of these RT_A variants in 4T1luc2 cells led to increased production of the reactive oxygen species (ROS), lipid peroxidation, enhanced cell motility in the wound healing assay, and upregulation of expression of Vimentin and Twist. These properties, particularly, the expression of Twist, correlated with the levels of expression RT_A and/or the production of ROS. When implanted into syngeneic BALB/C mice, 4T1luc2 cells expressing nonmutated RT_A demonstrated enhanced rate of tumor growth and increased metastatic activity, dependent on the level of expression of RT_A and Twist. No enhancement was observed for the clones expressing mutated RT_A variants. Plausible mechanisms are discussed involving differential interactions of mutated and nonmutated RTs with its cellular partners involved in the regulation of ROS. This study establishes links between the expression of HIV-1 RT, production of ROS, induction of EMT, and enhanced propagation of RT-expressing tumor cells. Such scenario can be proposed as one of the mechanisms of HIV-induced/enhanced carcinogenesis not associated with immune suppression.
Collapse
|
36
|
Schiffer JT, Gottlieb SL. Biologic interactions between HSV-2 and HIV-1 and possible implications for HSV vaccine development. Vaccine 2019; 37:7363-7371. [PMID: 28958807 PMCID: PMC5867191 DOI: 10.1016/j.vaccine.2017.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Development of a safe and effective vaccine against herpes simplex virus type 2 (HSV-2) has the potential to limit the global burden of HSV-2 infection and disease, including genital ulcer disease and neonatal herpes, and is a global sexual and reproductive health priority. Another important potential benefit of an HSV-2 vaccine would be to decrease HIV infections, as HSV-2 increases the risk of HIV-1 acquisition several-fold. Acute and chronic HSV-2 infection creates ulcerations and draws dendritic cells and activated CD4+ T cells into genital mucosa. These cells are targets for HIV entry and replication. Prophylactic HSV-2 vaccines (to prevent infection) and therapeutic vaccines (to modify or treat existing infections) are currently under development. By preventing or modifying infection, an effective HSV-2 vaccine could limit HSV-associated genital mucosal inflammation and thus HIV risk. However, a vaccine might have competing effects on HIV risk depending on its mechanism of action and cell populations generated in the genital mucosa. In this article, we review biologic interactions between HSV-2 and HIV-1, consider HSV-2 vaccine development in the context of HIV risk, and discuss implications and research needs for future HSV vaccine development.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, United States; University of Washington, Department of Medicine, Seattle, WA, United States.
| | - Sami L Gottlieb
- World Health Organization, Department of Reproductive Health and Research, Geneva, Switzerland
| |
Collapse
|
37
|
Haid B, Reider D, Nägele F, Spinoit AF, Pechriggl E, Romani N, Fritsch H, Oswald J. Langerhans cells in hypospadias: an analysis of Langerin (CD207) and HLA-DR on epidermal sheets and full thickness skin sections. BMC Urol 2019; 19:114. [PMID: 31718599 PMCID: PMC6852928 DOI: 10.1186/s12894-019-0551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypospadias are among the most common genital malformations. Langerhans Cells (LCs) play a pivotal role in HIV and HPV infection. The migration of LC precursors to skin coincides with the embryonic period of hypospadias development and genetic alterations leading to the formation of hypospadias impact the development of ectodermally derived tissues. We hypothesized that this might be associated with a difference in frequency or morphology of epidermal and dermal LCs in hypospadias patients. METHODS A total of 43 patients from two centers were prospectively included into this study after parental consent and ethics approval. Epidermal and dermal sheets were prepared from skin samples of 26 patients with hypospadias, 13 patients without penile malformations and 4 patients with penile malformations other than hypospadias. Immunofluorescence staining of sheets was performed with anti-HLA-DR-FITC and anti-CD207/Langerin-A594 antibodies. Skin sections from 11 patients without penile malformation and 11 patients with hypospadias were stained for Langerin. Frequencies as well as morphology and distribution of epidermal and dermal LCs on sheets and sections were microscopically evaluated. Cell counts were compared by unpaired t-tests. RESULTS There was no difference in frequency of epidermal LCs, Neither on sheets (873 ± 61 vs. 940 ± 84LCs/mm2, p = 0.522) nor on sections (32 ± 3 vs. 30 ± 2LCs/mm2, p = 0.697). Likewise, the frequency of dermal LCs (5,9 ± 0,9 vs. 7.5 ± 1.3LCs/mm2, p = 0.329) was comparable between patients with hypospadias and without penile malformation. No differences became apparent in subgroup analyses, comparing distal to proximal hypospadias (p = 0.949), younger and older boys (p = 0.818) or considering topical dihydrotestosterone treatment prior to surgery (p = 0.08). The morphology of the LCs was not different comparing hypospadias patients with boys without penile malformations. CONCLUSIONS LCs are present in similar frequencies and with a comparable morphology and distribution in patients with hypospadias as compared to children without penile malformations. This suggests that patients with hypospadias are not different from patients with normal penile development considering this particular compartment of their skin immunity.
Collapse
Affiliation(s)
- Bernhard Haid
- Department of Pediatric Urology, Hospital of the Sisters of Charity, Ordensklinikum Linz, Seilerstätte 4, 4020, Linz, Austria. .,Department of Urology, Ludwig Maximilians University, Marchioninistraße 15, 81367, Munich, Germany.
| | - Daniela Reider
- Department for Dermatology and Venereology, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Felix Nägele
- Section for clinical and functional Anatomy, Medical University Innsbruck, Müllerstraße 59, 6020, Innsbruck, Austria
| | - Anne-Françoise Spinoit
- Department of Urology, University Clinic Gent, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Elisabeth Pechriggl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University Innsbruck, Innerkoflerstraße 1, Innsbruck, Austria
| | - Nikolaus Romani
- Department for Dermatology and Venereology, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Helga Fritsch
- Section for clinical and functional Anatomy, Medical University Innsbruck, Müllerstraße 59, 6020, Innsbruck, Austria
| | - Josef Oswald
- Department of Pediatric Urology, Hospital of the Sisters of Charity, Ordensklinikum Linz, Seilerstätte 4, 4020, Linz, Austria
| |
Collapse
|
38
|
Morris BJ, Moreton S, Krieger JN. Critical evaluation of arguments opposing male circumcision: A systematic review. J Evid Based Med 2019; 12:263-290. [PMID: 31496128 PMCID: PMC6899915 DOI: 10.1111/jebm.12361] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 05/12/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To systematically evaluate evidence against male circumcision (MC). METHODS We searched PubMed, Google Scholar, EMBASE and Cochrane databases. RESULTS Database searches retrieved 297 publications for inclusion. Bibliographies of these yielded 101 more. After evaluation we found: Claims that MC carries high risk were contradicted by low frequency of adverse events that were virtually all minor and easily treated with complete resolution. Claims that MC causes psychological harm were contradicted by studies finding no such harm. Claims that MC impairs sexual function and pleasure were contradicted by high-quality studies finding no adverse effect. Claims disputing the medical benefits of MC were contradicted by a large body of high-quality evidence indicating protection against a wide range of infections, dermatological conditions, and genital cancers in males and the female sexual partners of men. Risk-benefit analyses reported that benefits exceed risks by 100-200 to 1. To maximize benefits and minimize risks, the evidence supported early infant MC rather than arguments that the procedure should be delayed until males are old enough to decide for themselves. Claims that MC of minors is unethical were contradicted by balanced evaluations of ethical issues supporting the rights of children to be provided with low-risk, high-benefit interventions such as MC for better health. Expert evaluations of case-law supported the legality of MC of minors. Other data demonstrated that early infant MC is cost-saving to health systems. CONCLUSIONS Arguments opposing MC are supported mostly by low-quality evidence and opinion, and are contradicted by strong scientific evidence.
Collapse
Affiliation(s)
- Brian J Morris
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | | | - John N Krieger
- Department of UrologyUniversity of Washington School of MedicineSeattleWashington
| |
Collapse
|
39
|
Bertram KM, Tong O, Royle C, Turville SG, Nasr N, Cunningham AL, Harman AN. Manipulation of Mononuclear Phagocytes by HIV: Implications for Early Transmission Events. Front Immunol 2019; 10:2263. [PMID: 31616434 PMCID: PMC6768965 DOI: 10.3389/fimmu.2019.02263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Mononuclear phagocytes are antigen presenting cells that play a key role in linking the innate and adaptive immune systems. In tissue, these consist of Langerhans cells, dendritic cells and macrophages, all of which express the key HIV entry receptors CD4 and CCR5 making them directly infectible with HIV. Mononuclear phagocytes are the first cells of the immune system to interact with invading pathogens such as HIV. Each cell type expresses a specific repertoire of pathogen binding receptors which triggers pathogen uptake and the release of innate immune cytokines. Langerhans cells and dendritic cells migrate to lymph nodes and present antigens to CD4 T cells, whereas macrophages remain tissue resident. Here we review how HIV-1 manipulates these cells by blocking their ability to produce innate immune cytokines and taking advantage of their antigen presenting cell function in order to gain transport to its primary target cells, CD4 T cells.
Collapse
Affiliation(s)
- Kirstie Melissa Bertram
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Orion Tong
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Caroline Royle
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Stuart Grant Turville
- HIV Biology, Kirby Institute, Kensington, NSW, Australia.,The University of New South Whales, Sydney, NSW, Australia
| | - Najla Nasr
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Anthony Lawrence Cunningham
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Andrew Nicholas Harman
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| |
Collapse
|
40
|
Nijmeijer BM, Geijtenbeek TBH. Negative and Positive Selection Pressure During Sexual Transmission of Transmitted Founder HIV-1. Front Immunol 2019; 10:1599. [PMID: 31354736 PMCID: PMC6635476 DOI: 10.3389/fimmu.2019.01599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
Sexual transmission of HIV-1 consists of processes that exert either positive or negative selection pressure on the virus. The sum of these selection pressures lead to the transmission of only one specific HIV-1 strain, termed the transmitted founder virus. Different dendritic cell subsets are abundantly present at mucosal sites and, interestingly, these DC subsets exert opposite pressure on viral selection during sexual transmission. In this review we describe receptors and cellular compartments in DCs that are involved in HIV-1 communication leading to either viral restriction by the host or further dissemination to establish a long-lived reservoir. We discuss the current understanding of host antiretroviral restriction factors against HIV-1 and specifically against the HIV-1 transmitted founder virus. We will also discuss potential clinical implications for exploiting these intrinsic restriction factors in developing novel therapeutic targets. A better understanding of these processes might help in developing strategies against HIV-1 infections by targeting dendritic cells.
Collapse
Affiliation(s)
- Bernadien M Nijmeijer
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
41
|
Bertram KM, Botting RA, Baharlou H, Rhodes JW, Rana H, Graham JD, Patrick E, Fletcher J, Plasto TM, Truong NR, Royle C, Doyle CM, Tong O, Nasr N, Barnouti L, Kohout MP, Brooks AJ, Wines MP, Haertsch P, Lim J, Gosselink MP, Ctercteko G, Estes JD, Churchill MJ, Cameron PU, Hunter E, Haniffa MA, Cunningham AL, Harman AN. Identification of HIV transmitting CD11c + human epidermal dendritic cells. Nat Commun 2019; 10:2759. [PMID: 31227717 PMCID: PMC6588576 DOI: 10.1038/s41467-019-10697-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/24/2019] [Indexed: 11/10/2022] Open
Abstract
Langerhans cells (LC) are thought to be the only mononuclear phagocyte population in the epidermis where they detect pathogens. Here, we show that CD11c+ dendritic cells (DCs) are also present. These cells are transcriptionally similar to dermal cDC2 but are more efficient antigen-presenting cells. Compared to LCs, epidermal CD11c+ DCs are enriched in anogenital tissues where they preferentially interact with HIV, express the higher levels of HIV entry receptor CCR5, support the higher levels of HIV uptake and replication and are more efficient at transmitting the virus to CD4 T cells. Importantly, these findings are observed using both a lab-adapted and transmitted/founder strain of HIV. We also describe a CD33low cell population, which is transcriptionally similar to LCs but does not appear to function as antigen-presenting cells or acts as HIV target cells. Our findings reveal that epidermal DCs in anogenital tissues potentially play a key role in sexual transmission of HIV. Composition and function of immune populations at barrier surfaces is crucial for response to infection. Here, the authors identify a population of dendritic cells in human epidermis, abundant in anogenital epithelia and distinct from Langerhans cells by surface phenotype and by high capacity for HIV infection and transmission.
Collapse
Affiliation(s)
- Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Rachel A Botting
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - J Dinny Graham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - James Fletcher
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Toby M Plasto
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Caroline Royle
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Chloe M Doyle
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Laith Barnouti
- Australia Plastic Surgery, 185-211, Broadway, Sydney, New South Wales, 2007, Australia
| | - Mark P Kohout
- Australia Plastic Surgery, 185-211, Broadway, Sydney, New South Wales, 2007, Australia
| | - Andrew J Brooks
- Westmead Hospital, Westmead, New South Wales, 2145, Australia
| | - Michael P Wines
- Royal North Shore Hospital, Reserve Rd, St Leonards, New South Wales, 2065, Australia
| | - Peter Haertsch
- Burns Unit, Concord Repatriation General Hospital, Sydney, 2139, New South Wales, Australia
| | - Jake Lim
- Dr Jake Lim PLC, Shop 12, Cnr of Aird & Marsden Street, Parramatta, New South Wales, 2150, Australia
| | - Martijn P Gosselink
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,Westmead Hospital, Westmead, New South Wales, 2145, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,Westmead Hospital, Westmead, New South Wales, 2145, Australia
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, 21702, USA
| | - Melissa J Churchill
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Eric Hunter
- Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Muzlifah A Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4LP, UK
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia. .,The University of Sydney, Sydney, 2006, New South Wales, Australia.
| |
Collapse
|
42
|
Galiwango RM, Yegorov S, Joag V, Prodger J, Shahabi K, Huibner S, Muyanja E, Kabuubi BR, Namuniina A, Nalutaaya A, Ssemaganda A, Lutwama F, Kitandwe PK, Nanvubya A, Mpendo J, Bagaya B, Kiwanuka N, Kaul R. Characterization of CD4 + T cell subsets and HIV susceptibility in the inner and outer foreskin of Ugandan men. Am J Reprod Immunol 2019; 82:e13143. [PMID: 31081958 DOI: 10.1111/aji.13143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Biological mechanisms of foreskin HIV acquisition are poorly defined. The inner foreskin is preferentially infected in explant models, so we hypothesized that this site would be enriched for HIV-susceptible CD4+ T cells and proinflammatory/chemoattractant cytokines. METHOD OF STUDY A total of 42 HIV-uninfected Ugandan men without genital symptoms provided foreskin tissues and swabs at the time of elective penile circumcision. The immune phenotype of foreskin-derived CD4+ T cells and entry of a CCR5-tropic HIV pseudovirus was characterized, and specific cytokine levels assayed by multiplexed chemiluminescent ELISA. RESULTS Unexpectedly, outer foreskin CD4+ T cells more frequently expressed CCR5 (median 29.2% vs 22.9%, P = 0.01) and CD69 (median 36.5% vs 15%, P < 0.01), and on a per-cell basis, HIV entry was higher. However, overall CD4+ T cell density was approximately twofold higher in the inner foreskin, and several highly susceptible T cell subsets were increased at this site, including Th17 cells (20.0% vs 14.1%, P = 0.0021). Specific pro-inflammatory cytokine levels were also higher on the inner foreskin surface (IL-17, IL-8, RANTES and IL-1β; all P < 0.05). CONCLUSION There was marked heterogeneity in CD4+ T cell populations and immune milieu between inner and outer foreskin tissues. Despite higher per-cell viral entry into CD4+ T cells from the outer foreskin, the higher target cell density and enriched pro-inflammatory cytokines of the inner foreskin suggest that this may be a preferential site for HIV acquisition.
Collapse
Affiliation(s)
| | - Sergey Yegorov
- Department of Immunology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vineet Joag
- Department of Immunology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Prodger
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kamnoosh Shahabi
- Department of Immunology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sanja Huibner
- Department of Immunology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Enoch Muyanja
- HIV Vaccine Program, Uganda Virus Research Institute - International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Brian Roy Kabuubi
- HIV Vaccine Program, Uganda Virus Research Institute - International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Annmarie Namuniina
- HIV Vaccine Program, Uganda Virus Research Institute - International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Annet Nalutaaya
- HIV Vaccine Program, Uganda Virus Research Institute - International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Aloysius Ssemaganda
- HIV Vaccine Program, Uganda Virus Research Institute - International AIDS Vaccine Initiative, Entebbe, Uganda.,Laboratory of Vaccines for the Developing World, Institute for Glycomics, Griffith University, Mount Gravatt, Queensland, Australia
| | - Fredrick Lutwama
- HIV Vaccine Program, Uganda Virus Research Institute - International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Paul Kato Kitandwe
- HIV Vaccine Program, Uganda Virus Research Institute - International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Annet Nanvubya
- HIV Vaccine Program, Uganda Virus Research Institute - International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Juliet Mpendo
- HIV Vaccine Program, Uganda Virus Research Institute - International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Bernard Bagaya
- HIV Vaccine Program, Uganda Virus Research Institute - International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Noah Kiwanuka
- HIV Vaccine Program, Uganda Virus Research Institute - International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Rupert Kaul
- Department of Immunology and Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Rhodes JW, Tong O, Harman AN, Turville SG. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front Immunol 2019; 10:1088. [PMID: 31156637 PMCID: PMC6532592 DOI: 10.3389/fimmu.2019.01088] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) play important roles in orchestrating host immunity against invading pathogens, representing one of the first responders to infection by mucosal invaders. From their discovery by Ralph Steinman in the 1970s followed shortly after with descriptions of their in vivo diversity and distribution by Derek Hart, we are still continuing to progressively elucidate the spectrum of DCs present in various anatomical compartments. With the power of high-dimensional approaches such as single-cell sequencing and multiparameter cytometry, recent studies have shed new light on the identities and functions of DC subtypes. Notable examples include the reclassification of plasmacytoid DCs as purely interferon-producing cells and re-evaluation of intestinal conventional DCs and macrophages as derived from monocyte precursors. Collectively, these observations have changed how we view these cells not only in steady-state immunity but also during disease and infection. In this review, we will discuss the current landscape of DCs and their ontogeny, and how this influences our understanding of their roles during HIV infection.
Collapse
Affiliation(s)
- Jake William Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Discipline of Applied Medical Sciences, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stuart Grant Turville
- University of New South Wales, Sydney, NSW, Australia.,Kirby Institute, Kensington, NSW, Australia
| |
Collapse
|
44
|
Abstract
Most new HIV infections, over 80%, occur through sexual transmission. During sexual transmission, the virus must bypass specific female and male reproductive tract anatomical barriers to encounter viable target cells. Understanding the generally efficient ability of these barrier to exclude HIV and the precise mechanisms of HIV translocation beyond these genital barriers is essential for vaccine and novel therapeutic development. In this review, we explore the mucosal, barriers of cervico-vaginal and penile tissues that comprise the female and male reproductive tracts. The unique cellular assemblies f the squamous and columnar epithelium are illustrate highlighting their structure and function. Each anatomical tissue offers a unique barrier to virus entry in healthy individuals. Unfortunately barrier dysfunction can lead to HIV transmission. How these diverse mucosal barriers have the potential to fail is considered, highlighting those anatomical areas that are postulated to offer a weaker barrier and are; therefore, more susceptible to viral ingress. Risk factors, such as sexually transmitted infections, microbiome dysbiosis, and high progestin environments are also associated with increased acquisition of HIV. How these states may affect the integrity of mucosal barriers leading to HIV acquisition are discussed suggesting mechanisms of transmission and revealing potential targets for intervention.
Collapse
Affiliation(s)
- Ann M Carias
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Lurie 9-290, Chicago, IL 60611, USA
| | - Thomas J Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Lurie 9-290, Chicago, IL 60611, USA
| |
Collapse
|
45
|
Gonzalez SM, Aguilar-Jimenez W, Su RC, Rugeles MT. Mucosa: Key Interactions Determining Sexual Transmission of the HIV Infection. Front Immunol 2019; 10:144. [PMID: 30787929 PMCID: PMC6373783 DOI: 10.3389/fimmu.2019.00144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
In the context of HIV sexual transmission at the genital mucosa, initial interactions between the virus and the mucosal immunity determine the outcome of the exposure. Hence, these interactions have been deeply explored in attempts to undercover potential targets for developing preventative strategies. The knowledge gained has led to propose a hypothetical model for mucosal HIV transmission. Subsequent research studies on this topic further revealed new mechanisms and identified new host-HIV interactions. This review aims at integrating these findings to inform better and update the current model of HIV transmission. At the earliest stage of virus exposure, the epithelial integrity and the presence of antiviral factors are critical in preventing viral entry to the submucosa. However, the virus has been shown to enter to the submucosa in the presence of physical abrasion or via epithelial transmigration using paracellular passage or transcytosis mechanisms. The efficiency of these processes is greater with cell-associated viral inoculums and can be influenced by the presence of viral and immune factors, and by the structure of the exposed epithelium. Once the virus reaches the submucosa, dendritic cells and fibroblasts, as recently described, have been shown in vitro of being capable of facilitating the transfer of viral particles to susceptible cells, leading to viral dissemination, most likely in a trans-infection manner. The presence of activated CD4+ T cells in submucosa increases the probability of infection, where the predominant microbiota could be implicated through the modulation of an inflammatory microenvironment. Other factors such as genital fluids and hormones could also play an essential role in HIV transmission. Here, we review the most recent evidence described for mucosal HIV-transmission contributing with the understanding of this phenomenon.
Collapse
Affiliation(s)
- Sandra M Gonzalez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,National HIV and Retrovirology Laboratory, JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | | | - Ruey-Chyi Su
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
46
|
HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat Microbiol 2019; 4:633-644. [PMID: 30718846 DOI: 10.1038/s41564-018-0335-z] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) eradication is prevented by the establishment on infection of cellular HIV-1 reservoirs that are not fully characterized, especially in genital mucosal tissues (the main HIV-1 entry portal on sexual transmission). Here, we show, using penile tissues from HIV-1-infected individuals under suppressive combination antiretroviral therapy, that urethral macrophages contain integrated HIV-1 DNA, RNA, proteins and intact virions in virus-containing compartment-like structures, whereas viral components remain undetectable in urethral T cells. Moreover, urethral cells specifically release replication-competent infectious HIV-1 following reactivation with the macrophage activator lipopolysaccharide, while the T-cell activator phytohaemagglutinin is ineffective. HIV-1 urethral reservoirs localize preferentially in a subset of polarized macrophages that highly expresses the interleukin-1 receptor, CD206 and interleukin-4 receptor, but not CD163. To our knowledge, these results are the first evidence that human urethral tissue macrophages constitute a principal HIV-1 reservoir. Such findings are determinant for therapeutic strategies aimed at HIV-1 eradication.
Collapse
|
47
|
Bomsel M, Lopalco L, Uberti-Foppa C, Siracusano G, Ganor Y. Short Communication: Decreased Plasma Calcitonin Gene-Related Peptide as a Novel Biomarker for HIV-1 Disease Progression. AIDS Res Hum Retroviruses 2019; 35:52-55. [PMID: 30489145 DOI: 10.1089/aid.2018.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 mucosal transmission in genital epithelia occurs through infection of Langerhans cells and subsequent transinfection of CD4+ T cells. We previously reported that the vasodilator neuropeptide calcitonin gene-related peptide (CGRP), secreted upon activation of sensory peripheral neurons that innervate all mucosal epithelia, significantly inhibits transinfection. To investigate the association between CGRP and HIV-1 during infection, we evaluated circulating CGRP levels in HIV-1-infected patients. Plasma was obtained from combination antiretroviral therapy (cART)-naive or cART-treated patients with primary/acute (PHI) or chronic (CHI) HIV-1 infection, as well as from individuals who naturally control HIV-1 infection, namely exposed seronegatives (ESNs), elite controllers (ECs), and long-term nonprogressors (LTNPs). CGRP plasma levels were measured using an enzyme immunoassay. Compared with healthy HIV-1-negative controls, CGRP plasma levels significantly decreased in PHI patients and even further in CHI patients, but remained unchanged in ESNs, ECs, and LTNPs. Moreover, CGRP plasma levels were restored to baseline upon cART in both PHI and CHI. Finally, CGRP plasma levels directly correlated with CD4+ T cell counts and inversely with viral loads. Altogether, CGRP could serve as a novel diagnostic plasma biomarker for progression of HIV-1 infection. Moreover, administration of CGRP to cART-naive HIV-1-infected patients, to compensate for CGRP decline, could help controlling on-going HIV-1 infection.
Collapse
Affiliation(s)
- Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR8104, Paris, France
- INSERM U1016, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | - Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR8104, Paris, France
- INSERM U1016, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
48
|
Introini A, Vanpouille C, Fitzgerald W, Broliden K, Margolis L. Ex Vivo Infection of Human Lymphoid Tissue and Female Genital Mucosa with Human Immunodeficiency Virus 1 and Histoculture. J Vis Exp 2018. [PMID: 30371673 DOI: 10.3791/57013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Histocultures allow studying intercellular interactions within human tissues, and they can be employed to model host-pathogen interactions under controlled laboratory conditions. Ex vivo infection of human tissues with human immunodeficiency virus (HIV), among other viruses, has been successfully used to investigate early disease pathogenesis, as well as a platform to test the efficacy and toxicity of antiviral drugs. In the present protocol, we explain how to process and infect with HIV-1 tissue explants from human tonsils and cervical mucosae, and maintain them in culture on top of gelatin sponges at the liquid-air interface for about two weeks. This non-polarized culture setting maximizes access to nutrients in culture medium and oxygen, although progressive loss of tissue integrity and functional architectures remains its main limitation. This method allows monitoring HIV-1 replication and pathogenesis using several techniques, including immunoassays, qPCR, and flow cytometry. Of importance, the physiologic variability between tissue donors, as well as between explants from different areas of the same specimen, may significantly affect experimental results. To ensure result reproducibility, it is critical to use an adequate number of explants, technical replicates, and donor-matched control conditions to normalize the results of the experimental treatments when compiling data from multiple experiments (i.e., conducted using tissue from different donors) for statistical analysis.
Collapse
Affiliation(s)
- Andrea Introini
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet; Section of Intercellular Interactions, Eunice Shriver National Institute of Child Health and Human Development, National Institutes of Health;
| | - Christophe Vanpouille
- Section of Intercellular Interactions, Eunice Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Wendy Fitzgerald
- Section of Intercellular Interactions, Eunice Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Kristina Broliden
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet
| | - Leonid Margolis
- Section of Intercellular Interactions, Eunice Shriver National Institute of Child Health and Human Development, National Institutes of Health
| |
Collapse
|
49
|
Human cytomegalovirus-infected cells release extracellular vesicles that carry viral surface proteins. Virology 2018; 524:97-105. [PMID: 30165311 PMCID: PMC6258833 DOI: 10.1016/j.virol.2018.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) released by virus-infected cells typically incorporate host and viral components inside the vesicles (cargo molecules). Here, we investigated if human cytomegalovirus (HCMV) proteins are incorporated in EV outer membrane released by HCMV-infected cells. We separated EVs from HCMV using an iodixanol step-gradient and found that the separated vesicles carried EV markers such as the tetraspanin CD63 and Rab27A. Flow analysis of individual EVs demonstrated that on average, 15 ± 3.7% of EVs were positive for gB, 5.3 ± 2.3% were positive for gH and 3.74 ± 1.5% were positive for both gB and gH. In light of previous findings demonstrating HIV envelope proteins in EV membranes, the presence of viral protein at the surface of EVs released by HCMV-infected cells indicated that viral membrane proteins incorporated in EVs released by virus-infected cells may be a general phenomenon.
Collapse
|
50
|
Ospina Stella A, Turville S. All-Round Manipulation of the Actin Cytoskeleton by HIV. Viruses 2018; 10:v10020063. [PMID: 29401736 PMCID: PMC5850370 DOI: 10.3390/v10020063] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.
Collapse
Affiliation(s)
- Alberto Ospina Stella
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| | - Stuart Turville
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| |
Collapse
|